EP1572292B1 - Procede et dispositif pour l'application d'information filtre permettant d'identifier des combinaisons d'electrodes - Google Patents

Procede et dispositif pour l'application d'information filtre permettant d'identifier des combinaisons d'electrodes Download PDF

Info

Publication number
EP1572292B1
EP1572292B1 EP03810806A EP03810806A EP1572292B1 EP 1572292 B1 EP1572292 B1 EP 1572292B1 EP 03810806 A EP03810806 A EP 03810806A EP 03810806 A EP03810806 A EP 03810806A EP 1572292 B1 EP1572292 B1 EP 1572292B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
combinations
information
filter information
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03810806A
Other languages
German (de)
English (en)
Other versions
EP1572292A1 (fr
Inventor
Jeffrey M. Sieracki
Richard B. North
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of EP1572292A1 publication Critical patent/EP1572292A1/fr
Application granted granted Critical
Publication of EP1572292B1 publication Critical patent/EP1572292B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37247User interfaces, e.g. input or presentation means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain

Definitions

  • the invention relates to medical devices, and more particularly, to programming of implantable medical devices that deliver neurostimulation therapy.
  • Implantable medical devices are used to deliver neurostimulation therapy to patients to treat a variety of symptoms or conditions such as chronic pain, tremor, Parkinson's disease, epilepsy, incontinence, or gastroparesis.
  • implantable medical devices deliver neurostimulation therapy in the form of electrical pulses via leads that include electrodes.
  • the electrodes may be located proximate to the spinal cord, pelvic nerves, or stomach, or within the brain of a patient.
  • the electrodes carried on one or more leads that are implanted within a patient may be referred to as an electrode set or array.
  • a clinician may select values for a number of programmable parameters in order to define the neurostimulation therapy to be delivered to a patient. For example, the clinician may select an amplitude, which may be a current or voltage amplitude, and pulse width for a stimulation waveform to be delivered to the patient, as well as a rate at which the pulses are to be delivered to the patient.
  • the clinician may also select as parameters particular electrodes within an electrode set to be used to deliver the pulses, e.g., a combination of electrodes from the electrode set.
  • a combination of electrodes may be defined by the polarities, e.g., positive, negative, or off (high impedance), of each of the electrodes within the electrode set.
  • a group of parameter values may be referred to as a program in the sense that they drive the neurostimulation therapy to be delivered to the patient.
  • the process of selecting values for the parameters that provide adequate results can be time consuming, and, as a portion of the overall parameter selection process, the process of selecting combinations of electrodes can be particularly time-consuming and tedious.
  • the clinician may need to test all possible combinations of electrodes within the set implanted in the patient, or a significant portion thereof, in order to identify one or more adequate combinations of electrodes. In some cases, the clinician may test combinations by manually specifying each combination to test based on intuition or some idiosyncratic methodology, and recording notes on the efficacy and side effects of each combination after delivery of stimulation via that combination. In this manner, the clinician is able to later compare and select from the tested combinations.
  • implantable medical devices commonly deliver spinal cord stimulation therapy (SCS) to a patient via two leads that include eight electrodes per lead and provide well over one million potential electrode combinations.
  • SCS spinal cord stimulation therapy
  • Programming systems and methods are known in the art.
  • US 6,052,624 discloses a system and method for use with an implantable tissue stimulator that allows a clinician or patient to quickly determine a desired electrode stimulation pattern.
  • the invention is directed to techniques for identifying a subset of the possible combinations of electrodes within a set of electrodes used to deliver neurostimulation therapy to a patient.
  • the present invention is defined by the independent claims. Preferred embodiments are set out in the dependent claims.
  • Filter information is compared to information that describes combinations of electrodes to determine whether the combinations are valid, e.g., are to be included in the subset.
  • the filter information may be specified by a user, such as a clinician that programs an implantable medical device coupled to the electrode set for delivery of neurostimulation therapy.
  • the filter information may, for example, identify a number of electrodes for valid electrode combinations, identify a fixed polarity of one or more of the electrodes of the electrode set for valid electrode combinations, and/or identify a relational characteristic, e.g., contiguous or guarded electrodes, of electrodes within a valid combination of electrodes.
  • the programming device receives information that describes the configuration of the electrode set, and generates some of the filter information based on the configuration. For example, the programming device may determine that some electrodes of the electrode set are unsuitable for combination as active electrodes because of their relative positions within the patient, e.g., the distance between the electrodes.
  • the configuration information may include, for example, information describing the number of leads that carry the electrode set and their position within a patient, the number of electrodes per lead, the type of leads, the position of electrodes on leads, and/or the position of electrodes within the patient
  • configuration information may include information describing the spatial and/or geometric relationships of the electrodes within an electrode set and the leads that carry the electrodes.
  • the programming device may iteratively generate the information describing combinations of electrodes, and compare the generated information for each combination to the filter information. Combinations of electrodes generated by the comparison process may be sorted in an order different from which they were generated, e.g., a random order, for presentation within a list or as part of programs to test on the patient.
  • the filter information and electrode configuration information are stored within a memory of the programming device, e.g., as part of a record for the patient, as a compact description of the subset of combinations identified. At a later time, the subset can be recreated by the programming device using the filter information and the electrode configuration information.
  • the invention may provide advantages. For example, by identifying a subset of the possible electrode combinations, a programming device according to the invention avoids testing all possible electrode combinations on a patient. Consequently, use of such a programming device may reduce the time required of the clinician and patient to program an implantable medical device for the provision of neurostimulation therapy to the patient.
  • the programming device may allow the clinician to avoid manually entering desired electrode combinations.
  • a subset of electrode combinations generated by such a programming device may be more complete, e.g., may include a more complete listing of combinations that have the desired characteristics, than one generated by a clinician using an idiosyncratic method to identify electrode combinations to test.
  • By storing filter and configuration information as a compact description of an identified subset some embodiments of the programming device may reduce the memory requirements for storage of a treatment record for the patient. Preferred embodiments will now be described, by way of example only, with reference to the drawings.
  • FIG. 1 is a conceptual diagram illustrating an example system for managing delivery of neurostimulation therapy to a patient.
  • FIG. 2 is a block diagram illustrating an example implantable medical device that delivers neurostimulation therapy to a patient via a combination of electrodes from an electrode set.
  • FIG. 3 is a block diagram illustrating an example programming device that identifies combinations of electrodes from an electrode set based on filter information according to the invention.
  • FIG. 4 is a conceptual diagram illustrating an example graphical user interface that may be provided by the programming device of FIG. 3 to allow a user to provide filter information to the device.
  • FIG. 5 is a flow diagram illustrating an example method that may be employed by the programming device of FIG. 3 to identify combinations of electrodes from an electrode set based on filter information.
  • FIG. 6 is a flow diagram illustrating another example method that may be employed by the programming device of FIG. 3 to identify combinations of electrodes from an electrode set based on filter information.
  • FIG. 1 is a conceptual diagram illustrating an example system 10 for managing delivery of neurostimulation therapy to a patient 12.
  • System 10 includes an implantable medical device 14 that delivers neurostimulation therapy to patient 12.
  • IMD 14 takes the form of an implantable pulse generator, and delivers neurostimulation therapy to patient 12 in the form of electrical pulses.
  • IMD 14 delivers neurostimulation therapy to patient 12 via leads 16A and 16B (collectively “leads 16").
  • Leads 16 may, as shown in FIG. 1 , be implanted proximate to the spinal cord 18 of patient 12, and IMD 14 may deliver spinal cord stimulation (SCS) therapy to patient 12 in order to, for example, reduce pain experienced by patient 12.
  • SCS spinal cord stimulation
  • the invention is not limited to the configuration of leads 16 shown in FIG. 1 , or the delivery of SCS therapy.
  • IMD 14 may be coupled to any number of leads 16, and the one or more leads 16 may extend from IMD 14 to any position within patient 12 for delivery of neurostimulation to treat any of a number of symptoms or conditions of patient 12.
  • one or more leads 16 may extend from IMD 14 to the brain (not shown) of patient 12, and IMD 14 may deliver deep brain stimulation (DBS) therapy to patient 12 to, for example, treat tremor or epilepsy.
  • DBS deep brain stimulation
  • one or more leads 16 may be implanted proximate to the pelvic nerves (not shown) or stomach (not shown), and IMD 14 may deliver neurostimulation therapy to treat incontinence or gastroparesis.
  • Each of leads 16 includes one or more electrodes (not shown).
  • the electrodes carried by leads 16 form a set, i.e., array, of electrodes implanted within patient 12.
  • IMD 14 delivers neurostimulation to patient 12 via a selected combination of the electrodes within the electrode set.
  • a combination of electrodes from within an electrode set includes two or more of the electrodes, and includes at least one anode and at least one cathode.
  • a combination of electrodes from within an electrode set may be defined by the polarities, e.g., positive, negative, or off (high impedance), of each of the electrodes within the electrode set.
  • IMD 14 delivers neurostimulation therapy to patient 12 according to a program.
  • the program may include values for a number of parameters, and the parameter values define the neurostimulation therapy delivered according to that program.
  • the parameters may include voltage or current pulse amplitudes, pulse widths, pulse rates, and the like.
  • the program also includes as a parameter information identifying a combination of electrodes from an electrode set implanted within patient 12 that is used by IMD 14 to deliver neurostimulation therapy to patient 12 according to the program.
  • the program may include information indicating the polarities of each of the electrodes of the electrode set for delivery of neurostimulation by IMD 14 according to that program.
  • System 10 also includes a clinician programmer 20.
  • Clinician programmer 20 may, as shown in FIG. 1 , be a handheld computing device.
  • clinician programmer 20 includes a display 22, such as a LCD or LED display, to display information to a user, and a keypad 24, which may be used by a user to interact with clinician programmer 20.
  • display 22 may be a touch screen display, and a user may interact with clinician programmer 20 via display 22.
  • a user may also interact with clinician programmer 20 using peripheral pointing devices, such as a stylus or mouse.
  • Keypad 24 may take the form of an alphanumeric keypad or a reduced set of keys associated with particular functions.
  • a clinician may use clinician programmer 20 to program neurostimulation therapy for patient 12.
  • a clinician programs neurostimulation therapy for patient 12 by specifying one or more programs, e.g., by selecting parameter values for one or more programs, to be used by IMD 14 for delivery of neurostimulation to patient 12.
  • a number of programs, each program including information identifying a combination of electrodes from an electrode set, are tested on patient 12, e.g., clinician programmer 20 directs IMD 14 to deliver neurostimulation therapy to patient 12 according to each program.
  • the clinician selects one or more of the tested programs for use by IMD 14 in delivering neurostimulation therapy to patient 12.
  • the clinician enters parameters, directs clinician programmer 20 to program IMD 14 with the parameters, and receives feedback from patient 12 for each program tested on patient 12.
  • clinician programmer 20 provides an automated testing routine for sequentially testing a number of programs on patient 12. For example, after the clinician initializes clinician programmer 20, patient 12 may interact with clinician programmer 20 to control presentation of, and provide feedback for, a number of automatically generated and sequentially presented programs. Exemplary automated testing routines are described in greater detail in U.S. Patent No. 6,308,102, issued to Sieracki et al.
  • clinician programmer 20 identifies a subset of the possible combinations of electrodes from electrode set to be tested on patient 12 based on filter information.
  • clinician programmer 20 presents a listing of the identified subset of electrode combinations to the clinician, so that the clinician may, for example, use the identified electrode combinations as part of programs to test on patient 12.
  • clinician programmer 20 may automatically present programs that include the identified electrode combinations for testing on patient 12 by sequentially programming IMD 14 to deliver neurostimulation to patient 12 according to the programs, e.g., as a part of an automated testing routine.
  • clinician programmer 20 avoids testing all possible electrode combinations on patient 12, and may consequently reduce the time required of the clinician and patient 12 to program IMD 14. Further, by automatically identifying the electrode combinations, clinician programmer 20 may allow the clinician to avoid manually entering desired electrode combinations. As will be described in greater detail below, the clinician may provide filter information to clinician programmer 20 that relates to one or more characteristics of desired, e.g., valid, electrode combinations, and clinician programmer 20 may use the filter information to automatically identify the desired electrode combinations for presentation, e.g., within a list or as part of an automated testing routine.
  • FIG. 2 is a block diagram illustrating an example configuration of IMD 14.
  • IMD 14 may deliver neurostimulation therapy via electrodes 32A-H of lead 16A and electrodes 321-P of lead 16B (collectively "electrodes 32").
  • Electrodes 32 collectively form a set 30 of electrodes implanted within patient 12 ( FIG. 1 ).
  • Electrodes 32 may be ring electrodes.
  • the configuration, type and number of electrodes 32 within set 30 illustrated in FIG. 2 are merely exemplary.
  • Electrodes 32 are electrically coupled to a therapy delivery circuit 34 via leads 16.
  • Therapy delivery circuit 34 may, for example, include one or more output pulse generators, e.g., capacitive elements and switches, coupled to a power source such as a battery.
  • Therapy delivery circuit 34 delivers electrical pulses to patient 12 via combination of electrodes 32 from within set 30 that includes two or more active electrodes under the control of a processor 36.
  • Processor 36 controls therapy delivery circuit 34 to deliver neurostimulation therapy according to a selected program. Specifically, processor 36 may control circuit 34 to deliver electrical pulses with the amplitudes and widths, and at the rates specified by the program. Processor 36 may also control circuit 34 to deliver the pulses via a selected combination of electrodes 32 of set 30, as specified by the program. As indicated above, the program may indicate the polarities, e.g., anode, cathode, or off (high impedance), of each of electrodes 32 within set 30. Processor 36 may include a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an field programmable gate array (FPGA), discrete logic circuitry, or the like.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • IMD 14 also includes a memory 38.
  • memory 38 stores one or more programs 40 that are available to be selected by processor 36 for delivery of neurostimulation therapy.
  • Memory 38 may also include program instructions that, when executed by processor 36, cause IMD 14 to perform the functions ascribed to IMD 14 herein.
  • Memory 38 may include any volatile, non-volatile, magnetic, optical, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically erasable programmable ROM (EEPROM), flash memory, and the like.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile RAM
  • EEPROM electrically erasable programmable ROM
  • IMD 14 also includes a telemetry circuit 42 that allows processor 36 to communicate with clinician programmer 20.
  • Processor 36 receives programs to test on patient 12 from clinician programmer 20 via telemetry circuit 42 during programming by a clinician.
  • Processor 36 further receives programs 40 selected by the clinician from among the tested programs from clinician programmer 20 via telemetry circuit 42, and stores the received programs 40 within memory 38.
  • FIG. 3 is a block diagram illustrating an example configuration of clinician programmer 20.
  • a clinician and in some cases patient 12, may interact with a processor 50 via a user interface 52 in order to program neurostimulation therapy for patient 12 as described herein.
  • User interface 52 may include display 22 and keypad 24 ( FIG. 1 ), and may also include a touch screen or peripheral pointing devices as described above.
  • Processor 50 may also provide a graphical user interface (GUI) to facilitate interaction with the clinician, as will be described in greater detail below.
  • GUI graphical user interface
  • Processor 50 may include a microprocessor, a controller, a DSP, an ASIC, an FPGA, discrete logic circuitry, or the like.
  • Clinician programmer 20 also includes a memory 54.
  • memory 54 includes program instructions that, when executed by processor 50, cause clinician programmer 20 to perform the functions ascribed to clinician programmer 20 herein.
  • Memory 54 may include any volatile, non-volatile, fixed, removable, magnetic, optical, or electrical media, such as a RAM, ROM, CD-ROM, hard disk, removable magnetic disk, memory cards or sticks, NVRAM, EEPROM, flash memory, and the like.
  • memory 54 stores filter information 56.
  • Processor 50 uses filter information 56 to identify a subset of the potential combinations of electrodes 32 within set 30. Specifically processor 50 compares information that describes potential combinations of electrodes 32 from electrode set 30 to filter information 56, and identifies combinations to be included in the subset based on the comparison.
  • Filter information 56 includes information that relates to at least one characteristic of valid, e.g., desired, electrode combinations.
  • filter information 56 may include information that describes a number of electrodes 32, e.g., two, three, or four electrodes, that valid electrode combinations will include.
  • filter information 56 may identify a fixed polarity, e.g., anode, cathode, or off, for one or more of electrodes 32 within set 30.
  • Filter information 56 may also include information that describes relational characteristic, e.g., contiguous or guarded cathode, for the active electrodes 32 of a valid combination.
  • the clinician interacts with processor 50 via the GUI and user interface 52 in order to provide processor 50 with at least a portion of filter information 56.
  • Memory 54 may also store configuration information 58 that relates to the configuration of electrode set 30.
  • Configuration information 58 may include information describing the number of leads 16 coupled to IMD 14, the number of electrodes 32 per lead 16, the type of leads 16, the position of electrodes 32 on leads 16, and/or the position of electrodes 32 within patient 12.
  • the clinician interacts with processor 50 via the GUI and user interface 52 in order to provide processor 50 with configuration information 58.
  • Processor 50 may generate information that describes potential combinations of electrodes 32 to be compared to filter information 56 based on configuration information 58. Specifically, processor 50 may use configuration information 58 that indicates the number of electrodes 32 within set 30 to iteratively generate combinations of the electrodes 32, and may use other configuration information 58 to generate the information that describes the combinations of electrodes 32. Further, processor 50 may determine at least a portion of filter information 56 based on configuration information. For example, processor 50 may use configuration information 58 that indicates the position of electrodes 32 within set 30 to determine that some of electrodes 32 are unsuitable for combination with each other.
  • Processor 50 compares the information that describes combinations of electrodes 32 to filter information 56 to identify one or more subsets 60 of the potential combinations of electrodes 32 within electrode set 30.
  • Processor 50 may store electrode combination subsets 60 in memory 54.
  • Processor 50 may also present a list of the identified combinations that stored as a subset 60 of combinations to a user, such as the clinician, via user interface 52, e.g., via display 22.
  • the clinician may use the list of combinations to generate programs for testing on patient 12 during programming of IMD 14.
  • processor 50 may incorporate the combinations identified as a subset 60 into programs for sequential testing on patient 12. Such programs may be approved by the clinician before presentation to patient 12.
  • processor 50 may, in some embodiments, randomize the order of combinations within a subset 60. Randomized presentation of electrode combinations may, for example, reduce the possibility that selection of combinations and programs by the clinician for programming of IMD 14 will be biased by the order of presentation or testing.
  • Programs 62 selected by the clinician from among those tested on patient 12 are transmitted to IMD 14 via telemetry circuit 64.
  • the selected programs 62 may also be stored in memory 54, along with the one or more of combination subsets 60, configuration information 56 and filter information 58, as part of a record for patient 12.
  • FIG. 4 is a conceptual diagram illustrating an example graphical user interface (GUI) 70 that may be provided by clinician programmer 20 to allow a user, e.g., a clinician, to provide filter information 56 to programmer 20.
  • GUI 70 graphical user interface
  • the configuration of GUI 70 illustrated in FIG. 4 is merely exemplary, and is provided for purposes of illustration. Any of a variety of types of fields, e.g., text-boxes, dropdown menus, checkboxes, or the like, arranged in any fashion may be used to collect any of a variety of types of filter information 56.
  • exemplary filter information 56 includes information indicating a number of electrodes 32 that a valid combination of electrodes 32 must contain for inclusion in a subset 60. As illustrated in FIG. 4 , such filter information 56 may be provided to processor 50 by the clinician by clicking one or more of fields 72A-G. Filter information 56 may also include information indicating a fixed polarity for one or more of electrodes 32, which may be entered by toggling the appropriate one or more of fields 74A-P. Each of fields 74 corresponds to one of electrodes 32. The layout of fields 74 within GUI 70 may reflect configuration of electrode set 30, as shown in FIG. 4 , and may be determined by processor 50 based on configuration information 58 received from the clinician.
  • a configuration of sixteen electrodes 32 carried in groups of eight on each of two leads 16 corresponding to the electrode set illustrated in FIG. 2 the clinician has specified to test only electrode pairs that contain an anode in the upper right contact position, and wherein the lowest electrode positions remain off.
  • the clinician may also indicate relational characteristics of electrodes 32 within valid combinations as additional filter information 56. For example, the clinician may indicate that only combinations that include contiguous electrodes 32, and/or that include guarded cathode configurations of electrodes 32 are desired. The clinician may indicate such filter information 56 by clicking on one or both of fields 76 of the illustrated example GUI 70.
  • FIG. 5 is a flow chart illustrating an example method that may be employed by clinician programmer 20 to identify combinations of electrodes 32 based on filter information 56.
  • Clinician programmer 20 receives electrode configuration information 58 and filter information 56 from a clinician (80,82). Additional filter information 56 may be generated based on configuration information 58.
  • processor 50 may identify electrodes 32 that cannot be combined with each other due to the configuration of electrode set 30 as indicated by configuration information 58.
  • Processor 50 generates information that describes each of a number of possible combinations of the electrodes 32 within electrode set 30 based on the configuration information 58 (84), and compares the generated information to filter information 56 (86). Processor 50 identifies a subset 60 of the possible combinations of electrodes 32 based on comparison (88), e.g., identifies combinations of electrodes 32 that meet the requirements indicated by the clinician and inherent in the configuration of electrode set 30.
  • processor 50 orders the identified electrode combinations in a order that is different from the order that resulted from the generation and comparison process (90) for presentation to a user (92).
  • the order may be random.
  • Processor 50 may present a listing of the subset 60 of electrode combinations to a clinician via user interface 52, and/or may automatically generate programs that include the electrode combinations within the subset 90 and sequentially direct IMD 14 to deliver neurostimulation according to the programs for testing of the electrode combinations on patient 12, as described above.
  • the configuration information 58 and filter information 56 may be stored in memory 54 of the clinician programmer 20 as a compact description of the tested subset 60 of electrode combinations (94).
  • FIG. 6 is a flowchart illustrating another example method that may be employed by clinician programmer 20 to identify combinations of electrodes 32 based on filter information 58.
  • FIG. 6 illustrates an iterative method that may be employed by clinician programmer 20 to generate information that describes combinations of electrodes for comparison to filter information 56.
  • Processor 50 builds filters according to filter information 56 received via user interface 52 and determined based on configuration information 58 (100), and generates information that identifies a first combination of electrodes 32 within electrode set 30 (102).
  • memory 54 stores information that associates electrode configurations 58 and filter information 56 with a first valid electrode combination. By retrieving a previously identified first valid combination, processor 50 may avoid testing unusable combinations of electrodes 32, and may consequently reduce the total amount of iterations, and therefore time, required to compare each potential combination of electrodes 32 to the filters.
  • the first combination is compared to the filters (104). If a first valid combination is pre-identified, the next combination is identified via iteration, e.g., an electrode combination with the polarity of one or more electrodes toggled from that of the first valid combination, and the next combination is compared to the filters.
  • the processor 50 determines whether the combination meets the filter requirements (106). If the combination meets the filter requirements, processor 50 adds the combination to subset 90 (108).
  • processor 50 identifies the next combination to test (112).
  • Processor 50 may identify the next combination to test as, for example, an electrode combination with the polarity of one of the active electrodes toggled from the previously tested electrode combination, with the position of one of the active electrodes moved from the previously tested electrode combination, or with an active electrode in addition to those of the previously tested electrode combination.
  • additional filters may be applied to the subset 90 (114). For example, a filter limiting the total number of electrode combinations within a subset 90 may be applied to further reduce the size of subset 90. If application of filter information 56 leads to identification of no valid combinations of electrodes, clinician programmer 20 may alert the user so that the user can amend filter information 56 or take other appropriate action.
  • Filter information may include a plurality of filters, and each of the plurality of filters may be iteratively applied to the potential combinations of electrodes, e.g., potential states of the electrode set, either simultaneously or sequentially. Moreover, where multiple filters are applied sequentially, they may be applied in any order.
  • a first filter is constructed based on filter information provided by the user. Such a filter may be applied during a first sequencing through potential combinations of electrodes of the set to, for example, identify combinations where one particular electrode is an anode.
  • a second filter may be constructed based on the inherent limitations on electrode combinations to, for example, identify whether combinations include at least one anode and cathode.
  • a third filter may be constructed based on physical limitations on electrode combinations, e.g., configuration information, to identify whether electrodes are spatially suited for combination. The second and third filters may be applied to each potential combination of electrodes from within the set during separate second and third iterations through potential combinations, or simultaneously with the first filter during the first sequencing through potential combinations.
  • system 10 includes a patient programmer that patient 12 may use to control delivery of therapy by IMD 14.
  • Patient 12 may activate or adjust delivery of therapy by IMD 14, and may select from among a plurality of programs used by IMD 14 to deliver neurostimulation therapy via the patient programmer.
  • the patient programmer stores the programs used by IMD 14, and transmits a selected program to IMD 14 via device telemetry.
  • system 10 is a radio-frequency (RF) neurostimulation system, wherein IMD 14 receives both programs and operating power from the patient programmer.
  • RF radio-frequency
  • an electrode set may be external to a patient, e.g., the electrodes may be placed on the skin of the patient, and used to deliver transcutaneous electrical nerve stimulation (TENS) to the patient.
  • TENS transcutaneous electrical nerve stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Human Computer Interaction (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Electrotherapy Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Image Analysis (AREA)

Claims (18)

  1. Procédé comportant les étapes consistant à :
    recevoir, en provenance de l'utilisateur, des informations de configuration qui décrivent une configuration d'un ensemble d'électrodes ;
    générer de manière itérative des informations qui identifient des combinaisons d'électrodes à partir de l'ensemble d'électrodes sur la base des informations de configuration ;
    comparer les informations générées pour chacune des combinaisons identifiées d'électrodes à des informations de filtrage qui décrivent au moins une caractéristique de combinaisons d'électrodes valides ; et
    identifier un sous-ensemble des combinaisons d'électrodes identifiées sur la base de la comparaison.
  2. Procédé selon la revendication 1, comportant en outre l'étape consistant à recevoir au moins certaines des informations de filtrage en provenance d'un utilisateur.
  3. Procédé selon la revendication 1 ou 2, comportant en outre l'étape consistant à :
    déterminer au moins certaines des informations de filtrage sur la base de la configuration.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les informations de filtrage identifient un certain nombre d'électrodes pour des combinaisons d'électrodes valides.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les informations de filtrage identifient une polarité fixe de l'une des électrodes de l'ensemble d'électrodes pour des combinaisons d'électrodes valides.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les informations de filtrage identifient une caractéristique relationnelle d'électrodes dans des combinaisons d'électrodes valides.
  7. Procédé selon la revendication 1, dans lequel la génération de manière itérative d'informations qui identifient des combinaisons d'électrodes comportent les étapes consistant à :
    identifier une première combinaison valide d'électrodes sur la base des informations de filtrage ; et
    commencer la génération itérative d'informations qui identifient des combinaisons d'électrodes au niveau de la première combinaison valide d'électrodes.
  8. Procédé selon l'une quelconque des revendications 1 à 7, comportant en outre l'étape consistant à présenter une liste des combinaisons d'électrodes dans le sous-ensemble à un utilisateur.
  9. Procédé selon la revendication 8, dans lequel les combinaisons d'électrodes dans le sous-ensemble sont présentées à l'utilisateur dans un ordre aléatoire.
  10. Procédé selon l'une quelconque des revendications 1 à 9, comportant en outre l'étape consistant à configurer séquentiellement les électrodes dans l'ensemble d'électrodes conformément aux combinaisons d'électrodes dans le sous-ensemble pour tester les combinaisons d'électrodes dans le sous-ensemble sur un patient.
  11. Procédé selon la revendication 10, dans lequel l'étape consistant à configurer séquentiellement les électrodes de l'ensemble d'électrodes comporte de configurer séquentiellement les électrodes de l'ensemble d'électrodes conformément à un ordre réparti au hasard des combinaisons d'électrodes dans le sous-ensemble.
  12. Procédé selon l'une quelconque des revendications 1 à 11, comportant en outre l'étape consistant à mémoriser des informations de filtrage en tant que description du sous-ensemble de combinaisons d'électrodes.
  13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel l'ensemble d'électrodes est implantable dans un patient.
  14. Dispositif comportant :
    une interface utilisateur ; et
    un processeur configuré pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 13,
    dans lequel le processeur est en outre configuré pour recevoir au moins certaines des informations de configuration en provenance d'un utilisateur via l'interface utilisateur.
  15. Dispositif selon la revendication 14, dans lequel le processeur est en outre configuré pour recevoir au moins certaines des informations de filtrage en provenance d'un utilisateur via l'interface utilisateur.
  16. Dispositif selon la revendication 14, dans lequel le dispositif comporte un dispositif de programmation.
  17. Dispositif selon la revendication 14, dans lequel le dispositif comporte un ordinateur portable.
  18. Support lisible par ordinateur comportant des instructions qui amènent le processeur du dispositif de la revendication 14 à mettre en oeuvre l'un quelconque des procédés des revendications 1 à 13.
EP03810806A 2002-10-31 2003-10-29 Procede et dispositif pour l'application d'information filtre permettant d'identifier des combinaisons d'electrodes Expired - Lifetime EP1572292B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42226202P 2002-10-31 2002-10-31
US422262P 2002-10-31
US50321703P 2003-09-15 2003-09-15
US503217P 2003-09-15
PCT/US2003/034170 WO2004041351A1 (fr) 2002-10-31 2003-10-29 Procede et dispositif pour l'application d'information filtre permettant d'identifier des combinaisons d'electrodes

Publications (2)

Publication Number Publication Date
EP1572292A1 EP1572292A1 (fr) 2005-09-14
EP1572292B1 true EP1572292B1 (fr) 2010-09-29

Family

ID=32314447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03810806A Expired - Lifetime EP1572292B1 (fr) 2002-10-31 2003-10-29 Procede et dispositif pour l'application d'information filtre permettant d'identifier des combinaisons d'electrodes

Country Status (6)

Country Link
US (2) US7146219B2 (fr)
EP (1) EP1572292B1 (fr)
AT (1) ATE482743T1 (fr)
AU (1) AU2003301818A1 (fr)
DE (1) DE60334399D1 (fr)
WO (1) WO2004041351A1 (fr)

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993384B2 (en) * 2001-12-04 2006-01-31 Advanced Bionics Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US7853330B2 (en) * 2001-12-04 2010-12-14 Boston Scientific Neuromodulation Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US7146223B1 (en) 2002-02-04 2006-12-05 Advanced Bionics Corporation Method for optimizing search for spinal cord stimulation parameter settings
US7991482B2 (en) 2002-02-04 2011-08-02 Boston Scientific Neuromodulation Corporation Method for optimizing search for spinal cord stimulation parameter setting
US8233991B2 (en) 2002-02-04 2012-07-31 Boston Scientific Neuromodulation Corporation Method for programming implantable device
US7881805B2 (en) 2002-02-04 2011-02-01 Boston Scientific Neuromodulation Corporation Method for optimizing search for spinal cord stimulation parameter settings
AU2003285078A1 (en) * 2002-10-31 2004-06-07 Medtronic, Inc. Distributed system for neurostimulation therapy programming
US7933655B2 (en) * 2002-10-31 2011-04-26 Medtronic, Inc. Neurostimulation therapy manipulation
US7035690B2 (en) 2002-11-15 2006-04-25 Medtronic, Inc. Human-implantable-neurostimulator user interface having multiple levels of abstraction
US7742821B1 (en) 2003-06-11 2010-06-22 Boston Scientific Neutomodulation Corporation Remote control for implantable medical device
US7463928B2 (en) * 2003-04-25 2008-12-09 Medtronic, Inc. Identifying combinations of electrodes for neurostimulation therapy
US7206632B2 (en) 2003-10-02 2007-04-17 Medtronic, Inc. Patient sensory response evaluation for neuromodulation efficacy rating
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
US8180601B2 (en) 2006-03-09 2012-05-15 The Cleveland Clinic Foundation Systems and methods for determining volume of activation for deep brain stimulation
US8209027B2 (en) 2004-07-07 2012-06-26 The Cleveland Clinic Foundation System and method to design structure for delivering electrical energy to tissue
JP5253156B2 (ja) * 2005-06-07 2013-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 患者モニタリングシステム及び方法
WO2010065888A2 (fr) * 2008-12-04 2010-06-10 The Cleveland Clinic Foundation Système et procédé pour définir un volume cible pour une stimulation dans le cerveau
US20090306746A1 (en) * 2006-02-07 2009-12-10 Brian Blischak System and method for programming an implantable neurostimulator
US8380321B2 (en) 2006-02-24 2013-02-19 Medtronic, Inc. Programming interface with a cross-sectional view of a stimulation lead with complex electrode array geometry
US8612024B2 (en) 2006-02-24 2013-12-17 Medtronic, Inc. User interface with 3D environment for configuring stimulation therapy
US8606360B2 (en) * 2006-03-09 2013-12-10 The Cleveland Clinic Foundation Systems and methods for determining volume of activation for spinal cord and peripheral nerve stimulation
EP2043729B1 (fr) * 2006-06-30 2013-01-02 Medtronic, Inc. Selection de combinaison d'electrodes pour therapie de stimulation
WO2008027885A1 (fr) * 2006-08-28 2008-03-06 Medtronic, Inc. mesure d'impédance d'électrode opérationnelle pour stimulateur médical implantable
US8644930B2 (en) 2006-08-28 2014-02-04 Medtronic, Inc. Operational electrode impedance measurement for an implantable medical stimulator
US20080103572A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical lead with threaded fixation
EP2102772A2 (fr) * 2006-12-06 2009-09-23 Medtronic, Inc. Sécurité de la programmation d'un dispositif médical
EP2101873A2 (fr) 2006-12-06 2009-09-23 Medtronic, Inc. Interface utilisateur ayant une barre d'outils pour programmer une thérapie de stimulation électrique
EP2101871B1 (fr) * 2006-12-06 2015-05-27 Medtronic, Inc. Programmation d'un dispositif médical avec un instrument universel
US8082034B2 (en) * 2007-01-26 2011-12-20 Medtronic, Inc. Graphical configuration of electrodes for electrical stimulation
GB0709542D0 (en) * 2007-05-17 2007-06-27 Imp Innovations Ltd Method and apparatus for stimulating activity in the peripheral nervous system
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US8447413B2 (en) * 2008-04-29 2013-05-21 Medtronic, Inc. Configuring stimulation therapy using stimulation intensity
US8838242B2 (en) * 2008-04-30 2014-09-16 Medtronic, Inc. Pre-configuration of electrode measurement of an implantable medical device, system and method therefore
US8195294B2 (en) * 2008-04-30 2012-06-05 Medtronic, Inc. Multi-stage testing of electrodes of implantable medical device, system and method
US9238135B2 (en) * 2008-04-30 2016-01-19 Medtronic, Inc. Flagging of electrodes of an implantable medical device, controller, system and method therefore
EP2321004B1 (fr) 2008-05-15 2016-06-22 Intelect Medical Inc. Système et procédé de programmateur clinicien destiné à générer des modèles d'interface et des visualisations de volumes d'activation
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US8788042B2 (en) 2008-07-30 2014-07-22 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and method for optimized stimulation of a neurological target
CA2743575C (fr) 2008-11-12 2017-01-31 Ecole Polytechnique Federale De Lausanne Dispositif de neurostimulation microfabrique
US20110130809A1 (en) * 2008-11-13 2011-06-02 Proteus Biomedical, Inc. Pacing and Stimulation Apparatus and Methods
US8644919B2 (en) 2008-11-13 2014-02-04 Proteus Digital Health, Inc. Shielded stimulation and sensing system and method
JP2012508624A (ja) 2008-11-13 2012-04-12 プロテウス バイオメディカル インコーポレイテッド 多重化複数電極神経刺激装置
US9764147B2 (en) * 2009-04-24 2017-09-19 Medtronic, Inc. Charge-based stimulation intensity programming with pulse amplitude and width adjusted according to a function
JP5734295B2 (ja) 2009-08-27 2015-06-17 ザ クリーブランド クリニック ファウンデーション 組織活性の部位を推定するためのシステムおよび方法
US10369358B2 (en) * 2009-09-24 2019-08-06 Sergio Lara Pereira Monteiro Method and means to improve the effects of electrical cell and neuron stimulation with random stimulation in both location and time
JP2013512062A (ja) 2009-12-01 2013-04-11 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ 微細加工表面神経刺激デバイスならびにそれを作製および使用する方法
WO2011121089A1 (fr) 2010-04-01 2011-10-06 Ecole Polytechnique Federale De Lausanne (Epfl) Dispositif d'interaction avec un tissu neurologique et procédés de fabrication et d'utilisation de celui-ci
AU2011267853B2 (en) 2010-06-14 2016-12-08 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
WO2012003451A2 (fr) 2010-07-01 2012-01-05 Stimdesigns Llc Système universel de stimulation électrique en boucle fermée
US8700165B2 (en) * 2010-07-16 2014-04-15 Boston Scientific Neuromodulation Corporation System and method for estimating lead configuration from neighboring relationship between electrodes
US8750986B2 (en) 2010-07-16 2014-06-10 Boston Scientific Neuromodulation Corporation System and method for estimating clustering of electrodes in neurostimulation system
US9750945B2 (en) 2010-08-02 2017-09-05 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. Neurostimulation programmers with improved RF antenna radiation patterns
WO2012112178A1 (fr) 2011-02-18 2012-08-23 Medtronic,Inc Programmateur de dispositif médical modulaire
US8352034B2 (en) 2011-02-18 2013-01-08 Medtronic, Inc. Medical device programmer with adjustable kickstand
JP2014518516A (ja) 2011-03-29 2014-07-31 ボストン サイエンティフィック ニューロモデュレイション コーポレイション アトラス位置合わせのためのシステムおよび方法
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
WO2013023076A2 (fr) 2011-08-09 2013-02-14 Boston Scientific Neuromodulation Corporation Commande et/ou quantification de chevauchement de volume de stimulation de cible et son/leur interface
EP2742482B1 (fr) 2011-08-09 2018-01-17 Boston Scientific Neuromodulation Corporation Système et procédé pour génération d'atlas pondéré
EP2741818B1 (fr) 2011-08-09 2019-11-20 Boston Scientific Neuromodulation Corporation Système et procédé de génération de volume d'activation (voa) à l'aide d'une analyse spécifique à une fibre
EP2742450A2 (fr) 2011-08-09 2014-06-18 Boston Scientific Neuromodulation Corporation Systèmes et procédés permettant un partage, une création et une analyse de volumes relatifs à une stimulation
EP2750758B1 (fr) 2011-09-01 2020-06-17 Boston Scientific Neuromodulation Corporation Système de stimulation ciblée du cerveau utilisant des cartes de paramètres électriques
US9081488B2 (en) 2011-10-19 2015-07-14 Boston Scientific Neuromodulation Corporation Stimulation leadwire and volume of activation control and display interface
EP2879757B1 (fr) 2012-08-04 2019-06-26 Boston Scientific Neuromodulation Corporation Systèmes et procédés de stockage et de transfert d'informations d'enregistrement, d'atlas et de dérivation entre des dispositifs médicaux
AU2013308910B2 (en) 2012-08-28 2016-10-06 Boston Scientific Neuromodulation Corporation Parameter visualization, selection, and annotation interface
AU2013308541B2 (en) 2012-08-31 2016-05-05 Alfred E. Mann Foundation For Scientific Research Feedback controlled coil driver for inductive power transfer
US9792412B2 (en) 2012-11-01 2017-10-17 Boston Scientific Neuromodulation Corporation Systems and methods for VOA model generation and use
WO2014144029A2 (fr) 2013-03-15 2014-09-18 Boston Scientific Neuromodulation Corporation Mappage des données de réponse clinique
CA2903860C (fr) 2013-03-15 2018-04-03 Alfred E. Mann Foundation For Scientific Research Convertisseur analogique-numerique par approximations successives avec surveillance haute tension
US9852262B2 (en) * 2013-03-15 2017-12-26 Empi, Inc. Personalized image-based guidance for energy-based therapeutic devices
EP2974016B1 (fr) 2013-03-15 2019-03-06 Alfred E. Mann Foundation for Scientific Research Stimulateurs de courant à sorties multiples, détection de courant et allumage rapide
WO2014179816A2 (fr) 2013-05-03 2014-11-06 Alfred E. Mann Foundation For Scientific Research Soudure de fil à fiabilité élevée pour dispositifs implantables
WO2014179813A1 (fr) 2013-05-03 2014-11-06 Alfred E. Mann Foundtion For Scientific Research Système et procédé d'établissement de liaison de chargeur d'implant
WO2014179811A1 (fr) 2013-05-03 2014-11-06 Alfred E. Mann Foundation For Scientific Research Electrode de stimulation à plusieurs branches pour stimulation en champ sous-cutané
JP6503351B2 (ja) 2013-07-29 2019-04-17 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ 埋め込み可能なデバイス用の高効率磁気リンク
US9780596B2 (en) 2013-07-29 2017-10-03 Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
US9586053B2 (en) 2013-11-14 2017-03-07 Boston Scientific Neuromodulation Corporation Systems, methods, and visualization tools for stimulation and sensing of neural systems with system-level interaction models
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
EP3142745B1 (fr) 2014-05-16 2018-12-26 Aleva Neurotherapeutics SA Dispositif pour l'interaction avec un tissu neurologique
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
CA2958197C (fr) 2014-08-15 2023-09-26 Axonics Modulation Technologies, Inc. Dispositif de generateur d'impulsion externe et procedes associes pour une stimulation nerveuse d'essai
CN106659882A (zh) 2014-08-15 2017-05-10 艾克索尼克斯调制技术股份有限公司 用于进行神经刺激以减轻膀胱功能障碍和其他适应症的可植入引线附着结构
CA2958210C (fr) 2014-08-15 2023-09-26 Axonics Modulation Technologies, Inc. Programmateur clinicien electromyographique integre destine a etre utilise avec un neurostimulateur implantable
US10682521B2 (en) 2014-08-15 2020-06-16 Axonics Modulation Technologies, Inc. Attachment devices and associated methods of use with a nerve stimulation charging device
US9555246B2 (en) 2014-08-15 2017-01-31 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US9855423B2 (en) 2014-08-15 2018-01-02 Axonics Modulation Technologies, Inc. Systems and methods for neurostimulation electrode configurations based on neural localization
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
EP3204112A1 (fr) 2014-10-07 2017-08-16 Boston Scientific Neuromodulation Corporation Systèmes, dispositifs et procédés de stimulation électrique à l'aide d'une rétroaction pour régler des paramètres de stimulation
EP3242721B1 (fr) 2015-01-09 2019-09-18 Axonics Modulation Technologies, Inc. Dispositifs de fixation et procédés associés d'utilisation avec un chargeur pour neurostimulation
EP3242712B1 (fr) 2015-01-09 2019-04-10 Axonics Modulation Technologies, Inc. Patient distant et procédés associés d'utilisation avec un système de stimulation nerveuse
EP3242718B1 (fr) 2015-01-09 2019-05-08 Axonics Modulation Technologies, Inc. Antenne améliorée et procédés d'utilisation pour un stimulateur nerveux implantable
US9984209B2 (en) 2015-02-13 2018-05-29 Medtronic, Inc. Graphical controls for programming medical device operation
JP6481051B2 (ja) 2015-05-26 2019-03-13 ボストン サイエンティフィック ニューロモデュレイション コーポレイション 電気刺激を分析し活性化容積を選択又は操作するシステム及び方法
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
WO2017003946A1 (fr) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systèmes et procédés de sélection de paramètres de stimulation sur la base de région cible de stimulation, d'effets ou d'effets secondaires
ES2940303T3 (es) 2015-06-29 2023-05-05 Boston Scient Neuromodulation Corp Sistemas de selección de parámetros de estimulación por uso de dianas y direccionamiento
WO2017011305A1 (fr) 2015-07-10 2017-01-19 Axonics Modulation Technologies, Inc. Stimulateur de nerf implantable possédant une électronique interne sans circuit intégré spécifique et procédés d'utilisation
US10071249B2 (en) 2015-10-09 2018-09-11 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulation leads
US10195423B2 (en) 2016-01-19 2019-02-05 Axonics Modulation Technologies, Inc. Multichannel clip device and methods of use
US9517338B1 (en) 2016-01-19 2016-12-13 Axonics Modulation Technologies, Inc. Multichannel clip device and methods of use
CA3012828C (fr) 2016-01-29 2024-04-30 Axonics Modulation Technologies, Inc. Procedes et systemes pour ajustement de frequence pour optimiser la charge d'un neurostimulateur implantable
EP3411111A1 (fr) 2016-02-02 2018-12-12 Aleva Neurotherapeutics SA Traitement de maladies auto-immunes par stimulation cérébrale profonde
US10376704B2 (en) 2016-02-12 2019-08-13 Axonics Modulation Technologies, Inc. External pulse generator device and associated methods for trial nerve stimulation
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
CN109416937A (zh) 2016-06-24 2019-03-01 波士顿科学神经调制公司 用于临床效果的视觉分析的系统和方法
WO2018044881A1 (fr) 2016-09-02 2018-03-08 Boston Scientific Neuromodulation Corporation Systèmes et procédés de visualisation et d'orientation de la stimulation d'éléments neuronaux
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
JP6828149B2 (ja) 2016-10-14 2021-02-10 ボストン サイエンティフィック ニューロモデュレイション コーポレイション 電気刺激システムに対する刺激パラメータ設定の閉ループ決定のためのシステム及び方法
AU2017391436B2 (en) 2017-01-03 2020-06-18 Boston Scientific Neuromodulation Corporation Systems and methods for selecting MRI-compatible stimulation parameters
US10589104B2 (en) 2017-01-10 2020-03-17 Boston Scientific Neuromodulation Corporation Systems and methods for creating stimulation programs based on user-defined areas or volumes
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
WO2018187090A1 (fr) 2017-04-03 2018-10-11 Boston Scientific Neuromodulation Corporation Systèmes et procédés d'estimation d'un volume d'activation en utilisant une base de données compressées de valeurs seuils
US10716505B2 (en) 2017-07-14 2020-07-21 Boston Scientific Neuromodulation Corporation Systems and methods for estimating clinical effects of electrical stimulation
US11975196B2 (en) 2017-08-11 2024-05-07 Boston Scientific Neuromodulation Corporation Tools to assist spinal cord stimulation self-reprogramming
CN118022178A (zh) 2017-08-11 2024-05-14 波士顿科学神经调制公司 无感觉异常的脊髓刺激系统
US11951314B2 (en) 2017-08-11 2024-04-09 Boston Scientific Neuromodulation Corporation Fitting algorithm to determine best stimulation parameter from a patient model in a spinal cord stimulation system
US11338127B2 (en) 2017-08-11 2022-05-24 Boston Scientific Neuromodulation Corporation Stimulation modes to adapt customized stimulation parameters for use in a spinal cord stimulation system
US11844947B2 (en) 2017-08-11 2023-12-19 Boston Scientific Neuromodulation Corporation Spinal cord stimulation occurring using monophasic pulses of alternating polarities and passive charge recovery
US11612751B2 (en) 2017-08-11 2023-03-28 Boston Scientific Neuromodulation Corporation Stimulation configuration variation to control evoked temporal patterns
EP3634569A1 (fr) 2017-08-15 2020-04-15 Boston Scientific Neuromodulation Corporation Systèmes et procédés de commande de stimulation électrique utilisant de multiples champs de stimulation
JP2021513902A (ja) 2018-02-22 2021-06-03 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド 試験的神経刺激のための神経刺激リードおよび使用方法
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
US11298553B2 (en) 2018-04-27 2022-04-12 Boston Scientific Neuromodulation Corporation Multi-mode electrical stimulation systems and methods of making and using
WO2019210214A1 (fr) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Systèmes de visualisation et de programmation d'une stimulation électrique
EP4218913A1 (fr) * 2018-07-03 2023-08-02 Boston Scientific Neuromodulation Corporation Système de stimulation de moelle épinière avec modes de stimulation pour adapter des paramètres de stimulation personnalisés
US11890480B2 (en) 2018-07-03 2024-02-06 Boston Scientific Neuromodulation Corporation Therapy implemented using different sub-perception neuromodulation types
WO2020185902A1 (fr) 2019-03-11 2020-09-17 Axonics Modulation Technologies, Inc. Dispositif de charge doté de bobine décentrée
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1160336A (en) * 1914-11-11 1915-11-16 Edward William Meredith Construction of resilient wheels.
JP2614691B2 (ja) * 1992-01-23 1997-05-28 旭化成工業株式会社 型紙の組立形状視覚化方法および装置
US5370672A (en) * 1992-10-30 1994-12-06 The Johns Hopkins University Computer-controlled neurological stimulation system
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US6052624A (en) * 1999-01-07 2000-04-18 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6393325B1 (en) * 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6308102B1 (en) * 1999-09-29 2001-10-23 Stimsoft, Inc. Patient interactive neurostimulation system and method
US6659968B1 (en) * 2000-06-01 2003-12-09 Advanced Bionics Corporation Activity monitor for pain management efficacy measurement
US6748276B1 (en) 2000-06-05 2004-06-08 Advanced Neuromodulation Systems, Inc. Neuromodulation therapy system
US6654027B1 (en) * 2000-06-09 2003-11-25 Dassault Systemes Tool for three-dimensional analysis of a drawing
DE10048438A1 (de) * 2000-09-29 2002-04-18 Siemens Ag Referenzbilddrehung
US20070118043A1 (en) * 2005-11-23 2007-05-24 Microsoft Corporation Algorithms for computing heart rate and movement speed of a user from sensor data

Also Published As

Publication number Publication date
ATE482743T1 (de) 2010-10-15
US20040143303A1 (en) 2004-07-22
WO2004041351B1 (fr) 2004-07-08
US20080058899A1 (en) 2008-03-06
AU2003301818A1 (en) 2004-06-07
WO2004041351A1 (fr) 2004-05-21
EP1572292A1 (fr) 2005-09-14
US7146219B2 (en) 2006-12-05
DE60334399D1 (de) 2010-11-11
US7603177B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
EP1572292B1 (fr) Procede et dispositif pour l'application d'information filtre permettant d'identifier des combinaisons d'electrodes
EP1617897B1 (fr) Appareil permettant d'identifier des combinaisons d'electrodes a des fins de therapie de neurostimulation
US8694115B2 (en) Therapy programming guidance based on stored programming history
US7489970B2 (en) Management of neurostimulation therapy using parameter sets
US7774067B2 (en) Autogeneration of neurostimulation therapy program groups
EP1670546B1 (fr) Selection de configurations de parametres de neurostimulateur utilisant des algorithmes genetiques
US7853323B2 (en) Selection of neurostimulator parameter configurations using neural networks
US7894908B2 (en) Neurostimulation therapy optimization based on a rated session log
US7548786B2 (en) Library for management of neurostimulation therapy programs
WO2004093983A1 (fr) Recueil d'informations d'utilisation sur des programmes de therapie par neurostimulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080331

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60334399

Country of ref document: DE

Date of ref document: 20101111

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

26N No opposition filed

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60334399

Country of ref document: DE

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111028

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200917

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60334399

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503