EP1571136B1 - Verfahren zur Herstellung eines hochviskosen Emulsionssprengstoffes sowie Verfahren zum Verbringen desselben - Google Patents

Verfahren zur Herstellung eines hochviskosen Emulsionssprengstoffes sowie Verfahren zum Verbringen desselben Download PDF

Info

Publication number
EP1571136B1
EP1571136B1 EP05004452.8A EP05004452A EP1571136B1 EP 1571136 B1 EP1571136 B1 EP 1571136B1 EP 05004452 A EP05004452 A EP 05004452A EP 1571136 B1 EP1571136 B1 EP 1571136B1
Authority
EP
European Patent Office
Prior art keywords
emulsion
emulsion matrix
explosive
matrix
lubrication medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05004452.8A
Other languages
English (en)
French (fr)
Other versions
EP1571136A2 (de
EP1571136A3 (de
Inventor
Johann Kasperski
Martin Bischopink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAXAM DEUTSCHLAND GmbH
Original Assignee
MAXAM Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAXAM Deutschland GmbH filed Critical MAXAM Deutschland GmbH
Priority to PL05004452T priority Critical patent/PL1571136T4/pl
Publication of EP1571136A2 publication Critical patent/EP1571136A2/de
Publication of EP1571136A3 publication Critical patent/EP1571136A3/de
Application granted granted Critical
Publication of EP1571136B1 publication Critical patent/EP1571136B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • F42D1/10Feeding explosives in granular or slurry form; Feeding explosives by pneumatic or hydraulic pressure
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0008Compounding the ingredient
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/002Sensitisers or density reducing agents, foam stabilisers, crystal habit modifiers
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • C06B47/145Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase

Definitions

  • the invention relates to a process for producing a high-viscosity emulsion explosive and to a process for introducing this high-viscosity emulsion explosive into cavities, in particular boreholes.
  • the invention relates to a method for loading boreholes with the high-viscosity emulsion explosive according to the invention above and below ground and for loose use in a density range of 0.5 to 1.3 kg / l.
  • GB-A-2 204 343 For example, a method and apparatus for loading a liquid bulk explosive into a well is described.
  • US-A-5972137 discloses a process for sensitizing a water-in-oil type base emulsion and a sensitized emulsion explosive having a water-in-type emulsion when prepared by the process.
  • US-A-5,437,542 discloses a system and method for delivering emulsion explosive compositions into a well by an oversized membrane pump that provides a relatively constant flow rate for the pumped emulsion composition by minimizing flow pulsations.
  • Emulsion explosives belong to the explosive-free, water-containing nitrate explosives. It is based on a water-in-oil emulsion, which is produced by emulsifying a highly concentrated nitrate salt solution with mineral oil. The salt solution is broken down into very finely distributed droplets - of the order of magnitude of about 10 -6 m diameter - and surrounded by an even thinner oil film of about 10 -8 m thickness. This fine emulsion matrix is the essential prerequisite for the special properties of emulsion explosives. Despite the extremely intimate contact sensitization by in the emulsion matrix finely distributed gas bubbles as reaction centers for the introduction and forwarding of a detonative reaction is required. Emulsion explosives are sensitized either by the introduction of hollow microspheres or by chemically formed gas bubbles (chemical gassing) by a so-called gasing agent.
  • the emulsion explosive is sensitized only after the sensitization, ie the formation of the gas hollow body within the emulsion matrix and thus detonationsdoc. It finds application especially in the overground mining of rock in quarries.
  • the emulsion explosive can be mixed either locally or the matrix can be premixed in a stationary manner and only applied on site Gas bubbles are sensitized and filled by charging hose in prefabricated holes.
  • the gasing agent is added and thereby the gas bubble formation takes place within the emulsion matrix, ie the sensitization of the explosive, during pumping or in the borehole.
  • the mixing charger used for this purpose can safely transport the individual non-sensitized components to the blasting site, as there is no detonatable mixture at this moment.
  • liquid-pulpy consistency of most emulsion explosives when sensitized by chemical gas bubble formation, allows only a limited reduction in density to about 1.1 kg / l, because in this consistency, the non-trapped gas bubbles can coagulate or escape from the matrix.
  • sensitivity of emulsion explosives increases with decreasing density, this is the major reason why emulsion pulps with liquid pulp consistency and chemical sensitization are often insufficiently detonatable or even capsule sensitive for small diameters of 40 mm and less.
  • the conventional emulsion explosives often have the problem of the critical diameter underground. This is even with cartridges emulsion explosives due to a gerigen density of about 1.1 +/- 0.1 kg / l at about 25 mm.
  • the critical diameter is usually 40 mm or more. Underground, however, are used blasting holes with mostly smaller diameter.
  • pumpable emulsion explosives of the conventional type are not always sensitive to capsules after sensitization, so that boosters are used.
  • the object of the present invention was therefore to overcome the disadvantages of the prior art and in particular to provide a process for producing an emulsion explosive of high viscosity.
  • the emulsion explosive thus prepared also meets the requirements for underground use in terms of critical diameter, ignition sensitivity and consistency.
  • Another object of the invention was to provide a method for bringing this explosive into boreholes, in particular obliquely upwardly extending boreholes.
  • a further object of the present invention was to provide a device with which this emulsion explosive according to the invention can be produced and / or brought into boreholes.
  • the object of the present invention is achieved by a method for the handling-safe production of highly viscous emulsion explosive (1) by means of the gasification process, comprising the steps: preparing a high viscosity emulsion matrix (10) conveying the high viscosity emulsion matrix (10) through a conveyor system (30) Use of a lubrication medium (15), wherein the lubrication medium (15) has a gas agent (16); Mixing the high viscosity emulsion matrix (10) with the lubrication medium (15) at the end of the conveyor system (30) or loading tube; Post-emulsifying the discharged mixture of high viscosity emulsion matrix (10) and Lubr ceremoniessmedium (15) to the high viscosity emulsion explosive (1).
  • Emulsion explosives produced by the gas method are produced according to the invention from an emulsion matrix of high viscosity, and the mixture with a gasing agent.
  • a gasing agent By mixing the emulsion matrix with the gasing agent, the required gas bubbles are introduced into the emulsion matrix, with which it is then sensitized.
  • the high viscosity emulsion matrix is preferably made from an emulsifier, an oil phase and an oxidizer phase.
  • the emulsifier is preferably chosen so that the finished emulsion matrix has a low tendency to post-emulsification at low shear stress and post-emulsified at higher shear stress.
  • the amount of water used in the compositions is between 1 and 30 weight percent.
  • the amount used is between 10 and 25 percent by weight, more preferably between 10 and 15 percent by weight based on the emulsion phase.
  • the continuously water-immiscible organic phase (oil phase) of the water-in-oil emulsion contains between 2 and 15 percent by weight, preferably between 4 and 8 percent by weight based on the emulsion phase.
  • the emulsifier component of the high viscosity emulsion matrix composition preferably contains between 0.5 and 5 weight percent of the emulsion phase.
  • the emulsifier component preferably consists of a PIBSA-type emulsifier and a sorbitan ester in any mixing ratio. It is also possible to use a pure PIBSA emulsifier.
  • the mass fraction of the emulsifier is preferably chosen so that, on the one hand, the highest possible stability reserve is achieved and, on the other hand, the subsequent emulsification, which is accompanied by an increase in viscosity of the emulsion, can be purposefully influenced.
  • a mixture (blend) consisting of pure emulsifier (active phase) and oil can be used.
  • the emulsion matrix of high viscosity when using an emulsifier of two emulsifier already a first, already activated in the emulsion matrix of the emulsifier phase of the emulsifier and a further excess of not yet activated emulsifiers, which only in the step of Nachemulgierens the discharged mixture of Emulsion emulsion of high viscosity and Lubr ceremoniessmedium post-emulsified to high viscosity emulsion explosive.
  • the Oxidizerphase is preferably selected so that the oxygen balance of the high-viscosity emulsion explosive at 0 to + 2.5%, preferably at + 0.5 to 1.5%.
  • the excess of oxygen due to the inorganic phase of the product allows the addition of other high-energy components, such as metal powder, preferably Al, Mg, graphite, carbon black, carbon, etc. or a mixture of these components, in Concentrations of preferably up to 2%.
  • the energy content and other thermodynamic data of the high-viscosity emulsion explosive can be optimized for different applications.
  • a particularly gentle promotion of the not yet sensitized emulsion matrix of high viscosity is made possible by the conveyor system. Due to the set, laminar flow profile within the conveyor system and the special supply of Lubr ceremoniessmediums with the gasing agent contained therein preferably in the form of a concentric, surrounding the emulsion sliding film, no pre-mixing of emulsion matrix high viscosity and lubrication medium or gasing agent instead, so that sensitization of the high viscosity emulsion matrix within the technical (delivery) system is excluded.
  • the component emulsion matrix and surrounding lubrication film present in the system do not form a sensitized explosive which would detonate.
  • This innovation in the safety concept according to the method of avoiding the formation of explosives in all subsections of the technical (conveying) system was therefore not possible in the prior art emulsion explosives of the prior art, since the emulsion matrix already mixes with the gasing agent within the delivery system This has led to a (partial) and gradual sensitization of the matrix or to the formation of a detonable explosive during pumping through the charging hose.
  • it has been found in the present invention that the mixing of an emulsion matrix of high viscosity and a corresponding promotion does not take place in the delivery system, even though the lubrication medium already comprises the gasing agent.
  • an emulsion explosive or a process for its preparation has been provided, which can now also be loaded against gravity into a borehole which was drilled obliquely or even vertically upwards due to the high-viscosity property. Due to the high viscosity of the explosive produced in the manner described flows this no longer from the borehole but there remains against gravity.
  • a laminar flow in this sense means that, in particular, no shear forces occur between the lubrication medium and the emulsion matrix and thus also no mixing. There is thus no turbulence or mixing. In this way, it is possible to transport the gasing agent until the emulsion matrix is mixed at the end of the delivery system, without any mixing or reaction of the gasing agent with the emulsion matrix taking place beforehand.
  • the Gassing Agent is mixed in the lubricant or Lubrberichtsmedium only at the end of the tube with the matrix, the final composition, in particular the desired final viscosity of the explosive only after the static mixer, ie after the components have escaped from the hose.
  • the emulsion matrix (10) has a viscosity of more than 60,000 mPas, preferably more than 80,000 mPas, more preferably more than 100,000 mPas.
  • the viscosity of a conventional emulsion matrix is up to 50,000 mPas (measured by the method Brookfield, spindle 7, 10 rpm, 20 ° C).
  • the emulsion matrix prepared by the process according to the invention now has a much higher viscosity. This has been avoided in the prior art so far, because it could no longer be effectively represented mixing with the gasing agent.
  • the laminar flow can thus be very well maintained when conveying the emulsion matrix together with the lubrication medium containing the gasing agents within the delivery system.
  • the emulsifier consists of at least two emulsifier components which are different Emulsify shear stress.
  • the emulsifier present in the emulsion matrix of high viscosity has already been activated for the preparation of this matrix, ie partially emulsified to produce the matrix. As a result, the emulsion matrix is first given this viscosity.
  • a second phase of emulsifier (an emulsifier excess) before nachemulgiert only after application of the emulsion matrix by mixing at the end and so gives the emulsion matrix of high density by activation of this second phase in the emulsifier a significantly higher viscosity
  • the final explosive then has a viscosity above 200,000 mPas, preferably 250,000 to 350,000 mPas and higher.
  • the emulsion matrix of high viscosity has a viscosity of more than 60,000 mPas, preferably more than 80,000 mPas, particularly preferably more than 100,000 mPas.
  • the lubrication medium (15) comprises a mixture of water and gasing agent (16).
  • the lubrication medium also contains water in addition to the gasing agent, the lubricating properties of the lubrication medium can be improved.
  • a high viscosity emulsion explosive is obtained having a density of at least 0.5 kg / l to 1.2 kg / l, preferably 0.9 kg / l.
  • the described manufacturing method it is possible to adjust the density of the emulsion explosive obtained by the choice of various parameters.
  • the manner of mixing at the end may contribute to a change in density.
  • Particular preference is given to setting densities of from 0.6 to 1.5 kg / l, particularly preferably from 0.8 to 1.15 kg / l.
  • the viscosity of the emulsion explosive obtained is determined mainly by the shear forces, the prevailing temperature and the sustained pressure, the density is determined by the composition of the emulsion matrix (proportion of SN (sodium nitrate) in the solution), temperature and pressure, and the extent of Gas bubble formation determined.
  • the conveyor system (30) for conveying the emulsion matrix (10) as conveying means (32) comprises a Progressive cavity pump.
  • the more gentle the delivery of the emulsion matrix in the delivery system using the lubricant medium the more reliable the laminar flow between matrix and lubricant can be maintained.
  • the laminar flow is ensured by the high viscosity of the emulsion matrix associated with moderate flow rates. These parameters lead to the smallest Reynolds number and thus to the formation of laminar flow.
  • the (mechanically) gentle delivery is thereby promoted essentially by the pump and injector technology, but also the static mixing elements in comparison to theoretically conceivable dynamic mixers. It has preferably been found according to the invention that a particularly gentle conveying process can be carried out using progressing cavity pumps.
  • An eccentric screw is in particular a positive displacement pump of simple design.
  • the metallic rotor rotates eccentrically in a stator made of elastic material.
  • the medium is continuously, d. H. almost pulsation-free, conveyed in the axial direction.
  • the flow rate is approximately proportional to the speed.
  • the conveyor system (30) for conveying the emulsion matrix (10) comprises a conveyor line (34) having an inside diameter of less than 25 mm, preferably less than 22 mm, more preferably less than 19 mm.
  • the emulsion matrix (10) and the lubrication medium (15) are mixed by means of a static mixer (35) to the high-viscosity emulsion explosive (1).
  • a static mixer By using a static mixer, more preferably by a series of preferably different static mixers, the emulsion matrix and the lubrication medium are mixed together, so that it comes to the optimal gasification as well as preferably for subsequent emulsification of the explosive.
  • a static mixer would not be sufficient to produce adequate adequate mixing between the gasing agent and the emulsion matrix. It is particularly preferred to use several static mixers in succession, depending on the application.
  • the static mixer (35) is provided in the mouthpiece at the end of a delivery line (34.4) of the delivery system (32).
  • the free cross sections or the length of the integrated mixing section can be varied in order to influence the flow rate, mixing quality and final viscosity of the emulsion.
  • the geometry of the mouthpiece is varied to adjust a directional beam, a side stream, etc. and always to ensure optimal filling of the holes.
  • different recording systems for detonators or boosters of various kinds within the mouthpiece can be realized, so that together with the emulsion explosive equal matching ignition means for initiation can be safely introduced into the wellbore deepest.
  • the mouthpieces are designed so that an exchange within a very short time is possible by means of a quick-change system.
  • the object of the invention is also achieved by a method for introducing a high-viscosity emulsion explosive (1) into a cavity (5), in particular a borehole, comprising the steps of conveying a non-sensitized high viscosity emulsion matrix (10) through a conduit system (33), injecting a lubrication medium (15) into the conduit system, the lubrication medium (15) containing a gas entraining agent (16) and between the emulsion matrix and the inner wall of the line system forms a lubricating film, mixing the emulsion matrix (10) with the gas agent (16) at the transition from the line system into the cavity to be filled (5).
  • the conduit system in particular a hose, is introduced into the borehole and slowly withdrawn during the filling process in accordance with the fill level of the borehole or pushed out by the recoil. In this way, the well can be optimally filled with high-viscosity emulsion explosive, even if the well is oriented obliquely upwards.
  • the lubricating film is formed so as not to mix the lubricating medium (15) containing the gas agent (16) with the emulsion matrix (10) within the conduit system (10). 33) comes.
  • An emulsion explosive is produced by the process according to the invention.
  • the emulsion explosive thus obtained is characterized in particular by the fact that it has a viscosity of more than 200,000 mPas, preferably more than 250,000 mPas, more preferably more than 300,000 mPas and thus has an extremely high viscosity.
  • This high viscosity allows the explosive to remain in the cavities once pumped there also and not to drain like the conventional pumped explosives against gravity again. Since the high viscosity achieved can preferably also be combined with a correspondingly low density according to the invention, the explosive thus obtained is ideally suited for use underground or in tunneling.
  • this high viscosity emulsion based explosive delivery system (30) comprises a conduit system (33) having an emulsion matrix supply and a lubrification media supply, wherein the lubrification media supply is connected to the emulsion matrix supply via an injector (36) and at or near the end of the conveyor system (30) a static mixer (35) is provided.
  • a supply for gasing agent is connected via the injector.
  • the gasing agent can be introduced into the conduit system and form a lubricating film around the emulsion matrix to be conveyed together with the lubrication medium.
  • the supply for the lubrication medium and the supply for the gasing agent is at least partially identical, most preferably identical.
  • a conveyor system or mixer 30 suitable for use in the present invention.
  • the conveyor system 30 consists of containers for holding mixed loading components namely the emulsion matrix EM10, the lubrication medium LM15 and optionally a component for adjusting the pH.
  • the storage container of the emulsion matrix EM10 is connected to the conveying means or the pump 32 via a first conveying line 34.1.
  • a means for adjusting the pH within the emulsion matrix EM10 may also be connected to the pump 32 via a delivery line 34.1 '(shown in phantom).
  • the pump 32 Via a delivery line 34.2, the pump 32 is then connected to an injector 39.
  • the stored Lubrischensmedium LM15 is connected via a feed line 34.3.
  • the injector 39 is then connected via a delivery line 34.4, in particular a hose 34.4 with a static mixer 35.
  • Emulsion matrix 10 is now fed to pump 32 via delivery line 34.
  • the pump 32 is preferably an eccentric screw pump.
  • the pH of the emulsion matrix 10 can be adjusted. This is done by adding a pH-regulating component such as acetic or citric acid or another acid suitable for lowering the pH of the emulsion matrix.
  • the thus modified emulsion matrix EM10 is conveyed by the pump 32 via the delivery line 34.2 to the injector 39. At this moment there is an unsensitized emulsion matrix EM10 with set pH value. Via the injector 39 is now injected from the reservoir LM15 Lubrischensmedium via the feed 34.3 in the flow of the emulsion matrix EM10.
  • the LM15 Lubrication Medium contains the gasing agent required to sensitize the explosive.
  • a concentric, the emulsion matrix surrounding lubricating film is formed consisting of the Lubrtechnischsmedium LM15, which then surrounds the feed line 34.4, the emulsion matrix without mixing a high viscosity emulsion matrix 10 and lubrication medium or gasing agent 15th takes place. In this way, sensitization of the explosive in the delivery line 34.4 is prevented.
  • the hitherto present as an annular companion film portion of Lubrberichtsmedium with the gasing agent is then mixed with the emulsion matrix EM10, so that emerges behind the mixer 35 highly viscous emulsion explosive ES1.
  • a subsequent emulsification of the emulsifier remaining as an excess in the emulsion matrix is effected so that the viscosity of the emulsifier is again increased by up to 100% and more.
  • the then present emulsion explosive ES1 is highly viscous at low density, which is adjustable by the nature of the mixing and the sensitization by the gasing agent at selected temperature and pressure.
  • a conveyor system 30 which does not comprise any sensitized explosive until the mixture from the static mixer 35 leaves. Even when the conveyor system is switched off, no sensitized explosive forms even in the supply line 34.4. In this way, a particularly safe mixing apparatus or conveyor system 30 has been provided.
  • Fig. 2 is again in detail an embodiment of the route behind the injector 39 (not shown) shown.
  • the emulsion matrix 10 of the lubrication medium 15, which includes the gasing agent is enclosed in a ring.
  • the exemplary static mixer 35 consists of two sections 35.1 and 35.2. While in Section 35.1 a slight premixing is provided by a corresponding geometry in the edge region of the hose, in section 35.2 by means of corresponding channel systems a mixing of the emulsion matrix 10 with the lubrication medium 15 is made possible.
  • the emulsion matrix 10 surrounding by the lubrication medium 15 is conveyed via the supply line 34.4 into the static mixer section 35.1, where premixing of the lubrification medium 15 with the emulsion matrix 10 takes place.
  • the mixer section 35.2 shearing forces then occur on this premix, which causes intensive mixing of the two components.
  • this happens Sensitization of the explosive by mixing the emulsion matrix with the gasing agent and simultaneously to a subsequent emulsification of the emulsion matrix with activation of the second phase of the emulsifier, which is still unconsumed, ie not activated, present in the emulsion matrix.
  • a high-viscosity emulsion explosive produced by the process according to the invention is compared with an ANC explosive.
  • comparative blasting is carried out between an ANC explosive and an emulsion explosive according to the invention.
  • the ANC explosive consists of porous ammonium nitrate with a weight fraction of 94.3% and a mineral oil with one Weight share of 5.7%.
  • the explosive density is 0.78 kg / l.
  • the emulsion explosive consists of 93.5% oxidizer solution and a fuel phase of mineral oil and emulsifier of 6.5% by weight.
  • the density of the emulsion matrix is 1.44 kg / l, that of the sensitized explosive is between 0.8 and 1.15 kg / l.
  • the levels of toxic components are in all cases - average of 5 experiments - lower in the emulsion explosive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Colloid Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines hochviskosen Emulsionssprengstoffes sowie ein Verfahren zum Verbringen dieses hochviskosen Emulsionssprengstoffes in Hohlräume, insbesondere Bohrlöcher. Insbesondere betrifft die Erfindung ein Verfahren zum Laden von Bohrlöchern mit dem erfindungsgemäßen hochviskosen Emulsionssprengstoff über Tage und unter Tage sowie zur losen Verwendung in einem Dichtebereich von 0,5 bis 1,3 kg/l.
  • In US-A-5524523 werden ein Verfahren zum Laden eines flüssigen Sprengstoffs in eine Bohrung und eine Lanze, die zum Gebrauch bei diesem Verfahren geeignet ist, beschrieben.
  • In GB-A-2 204 343 werden ein Verfahren und eine Vorrichtung zum Laden eines flüssigen Massensprengstoffs in eine Bohrung beschrieben.
  • In US-A-5841055 wird eine Vorrichtung zum gesteuerten Verfeinern einer Emulsionssprengstoff-Zusammensetzung gezeigt.
  • In WO 99/14554 wird ein Verfahren zum Laden und sensibilisieren eines wässrigen Sprengstoffs in eine Bohrung oder eine Patrone beschrieben.
  • US-A-5972137 wird ein Verfahren zum Sensibilisieren einer Basisemulsion eines Wasser-in-Öl Typs und einen sensibilisierten Emulsionssprengstoff, der eine Emulsion des Wasser-in-Typs aufweist, wenn dieser durch das Verfahren hergestellt worden ist.
  • In US-A-4273147 werden ein Verfahren und eine Vorrichtung zum platzieren von Emulsionssprenstoff-Zusammensetzungen bereitgestellt, die den Arbeitsumfang, der aufgewandt werden muss, um den Emulsionssprengstoff durch eine Leitung und an einen Detonationsplatz zu pumpen reduzieren.
  • In US-A-5322576 wird ein Verfahren zum Erhöhen der Viskosität und der Festigkeit gegenüber durch hohe Scherkräfte hervorgerufene Kristallisation eines pumpbaren Emulsionssprengstoffs bereitgestellt.
  • In EP-A-1126234 werden ein System und ein Verfahren zum Fördern von Emulsionssprengstoffzusammensetzungen in eine Bohrung durch Mittel einer überdimensionierten Membranpumpe, die eine relativ konstante Durchflussrate für die gepumpte Emulsionszusammensetzung durch Minimieren von Durchfluss-Pulsationen liefert.
  • Emulsionssprengstoffe gehören zu den explosivstofffreien, wasserhaltigen Nitratsprengstoffen. Basis ist eine Wasser-in-Öl-Emulsion, die durch Emulgieren einer hochkonzentrierten Nitratsalzlösung mit Mineralöl entsteht. Dabei wird die Salzlösung in feinst verteilte Tröpfchen - Größenordnung etwa 10-6 m Durchmesser - zerlegt und von einem noch dünneren Ölfilm von etwa 10-8 m Dicke umhüllt. Diese feine Emulsionsmatrix ist die wesentliche Voraussetzung für die besonderen Eigenschaften der Emulsionssprengstoffe. Trotz des extrem innigen Kontaktes ist eine Sensibilisierung durch in der Emulsionsmatrix feinst verteilte Gasbläschen als Reaktionszentren zur Ein- und Weiterleitung einer detonativen Umsetzung erforderlich. Emulsionssprengstoffe werden entweder durch das Einbringen von Mikrohohlkügelchen oder durch chemisch gebildete Gasbläschen (chemical gassing) durch ein sogenanntes Gassing Agent sensibilisiert.
  • Der Emulsionssprengstoff ist erst nach der Sensibilisierung, d. h. der Ausbildung der Gashohlkörper innerhalb der Emulsionsmatrix sensibilisiert und damit detonationsfähig. Er findet Anwendung insbesondere im Übertagebau bei der Gesteinsgewinnung in Steinbrüchen. Hierzu kann der Emulsionssprengstoff entwedervor Ort" gemischt oder die Matrix stationär vorgemischt und vor Ort nur noch durch Gasblasen sensibilisiert und per Ladeschlauch in vorgefertigte Bohrlöcher eingefüllt werden. Beim Verbringen in das Bohrloch wird das Gassing Agent hinzugegeben und dadurch findet die Gasbläschenbildung innerhalb der Emulsionsmatrix, d. h. die Sensibilisierung des Sprengstoffes, beim Verpumpen bzw. im Bohrloch statt. Das hierfür eingesetzte Mischladegerät kann die einzelnen nicht sensibilisierten Komponenten gefahrlos zur Sprengstelle transportieren, da in diesem Augenblick noch keine detonationsfähige Mischung vorliegt.
  • Aufgrund der flüssig-breiigen Konsistenz des Emulsionssprengstoffes kann dieser bei Übertageanwendungen sehr gut in die meist mehr oder weniger geneigt nach unten in das Gebirge gebohrten Bohrlöcher von oben befüllt werden. Sollen jedoch Bohrlöcher befüllt werden, die waagerecht oder (schräg nach oben) gebohrt sind, so besteht die Gefahr, dass dieser Emulsionssprengstoff aufgrund der Schwerkraft und der quasi-flüssigen Konsistenz dazu neigt , aus dem Bohrloch heraus zu fließen. Aus diesem Grund werden insbesondere unter Tage patronierte Sprengstoffe eingesetzt, da hier sehr oft die Anforderung besteht, dass Bohrlöcher waagerecht oder von unten nach oben gebohrt sind und dann befüllt werden müssen.
  • Die flüssig-breiige Konsistenz der meisten Emulsionssprengstoffe erlaubt bei Sensibilisierung durch chemische Gasblasenbildung nur eine begrenzte Dichtereduzierung auf etwa 1,1 kg/l, da bei dieser Konsistenz die nicht eingeschlossenen Gasblasen coagulieren oder aus der Matrix entweichen können. Da die Sensibilität der Emulsionssprengstoffe mit abnehmender Dichte ansteigt, ist dies der Hauptgrund, warum Emulsionsprengstoffe mit flüssig breiiger Konsistenz und chemischer Sensibilisierung bei Kleindurchmessern von 40 mm und weniger häufig nicht ausreichend detonatiosfähig oder gar kapselempfindlich sind.
  • Darüber hinaus besteht bei den herkömmlichen Emulsionssprengstoffen unter Tage öfter das Problem des kritischen Durchmessers. Dieser liegt selbst bei patronierten Emulsionssprengstoffen aufgrund einer gerigen Dichte von ca. 1,1 +/- 0,1 kg/l bei ca. 25 mm. Bei pumpfähigen Emulsionen beträgt der kritische Durchmesser meist 40 mm und mehr. Unter Tage werden aber Sprenglöcher mit meistens geringerem Durchmesser eingesetzt. Darüber hinaus sind insbesondere pumpfähige Emulsionssprengstoffe herkömmlicher Art nach der Sensibilisierung nicht immer kapselempfindlich, so dass Booster eingesetzt werden.
  • Aufgabe der vorliegenden Erfindung war es daher, die Nachteile des Standes der Technik zu überwinden und insbesondere ein Verfahren zur Herstellung eines Emulsionssprengstoffes hoher Viskosität bereit zu stellen. Der so hergestellte Emulsionssprengstoff erfüllt auch die Anforderungen für die Verwendung unter Tage hinsichtlich kritischem Durchmesser, Zünd- bzw. Kapselempfindlichkeit und Konsistenz. Weitere Aufgabe der Erfindung war es, ein Verfahren zum Verbringen dieses Sprengstoffes in Bohrlöcher, insbesondere schräg nach oben verlaufenden Bohrlöchern, bereit zu stellen. Eine weitere Aufgabe der vorliegenden Erfindung bestand darin, eine Vorrichtung bereit zu stellen, mit der dieser erfindungsgemäße Emulsionssprengstoff hergestellt und/oder in Bohrlöcher verbracht werden kann.
  • Die Aufgabe der vorliegenden Erfindung wird gelöst durch ein Verfahren zur handhabungssicheren Herstellung von hochviskosem Emulsionssprengstoff (1) mittels des Gassingverfahrens, umfassend die Schritte: Herstellen einer Emulsionsmatrix hoher Viskosität (10) Fördern der Emulsionsmatrix hoher Viskosität (10) durch ein Fördersystem (30) unter Verwendung eines Lubrifikationsmediums (15), wobei das Lubrifikationsmedium (15) einen Gassingagenten (16) aufweist; Vermischen der Emulsionsmatrix hoher Viskosität (10) mit dem Lubrifikationsmedium (15) am Ende des Fördersystems (30) bzw. Ladeschlauches ; Nachemulgieren der ausgeförderten Mischung von Emulsionsmatrix hoher Viskosität (10) und Lubrifikationsmedium (15) zum hochviskosen Emulsionssprengstoff (1).
  • Mittels des Gassingverfahrens hergestellte Emulsionssprengstoffe werden erfindungsgemäß aus einer Emulsionsmatrix hoher Viskosität, und der Vermischung mit einem Gassing Agenten hergestellt. Durch die Vermischung der Emulsionsmatrix mit dem Gassing Agenten werden die erforderlichen Gasbläschen in die Emulsionsmatrix eingebracht, mit der diese dann sensibilisiert wird.
  • Die Emulsionsmatrix hoher Viskosität ist bevorzugt aus einem Emulgator, einer Ölphase und einer Oxidizerphase hergestellt. Der Emulgator wird dabei bevorzugt so gewählt, dass die fertige Emulsionsmatrix bei geringer Scherbeanspruchung zunächst eine geringe Neigung zur Nachemulgierung aufweist und bei höherer Scherbeanspruchung nachemulgiert.
  • Bevorzugt liegen bei der Emulsionsmatrix hoher Viskosität sämtliche sauerstofffreisetzenden Salze in der restlichen Lösung vor. Typischer Weise liegt die in den Zusammensetzungen verwendete Wassermenge zwischen 1 und 30 Gewichtsprozent. Vorzugsweise liegt die verwendete Menge zwischen 10 und 25 Gewichtsprozent, besonders bevorzugt zwischen 10 und 15 Gewichtsprozent bezogen auf die Emulsionsphase. Die kontinuierlich mit Wasser unvermischbare organische Phase (Ölphase) der Wasser-in-Öl-Emulsion enthält zwischen 2 und 15 Gewichtsprozent, bevorzugt zwischen 4 und 8 Gewichtsprozent bezogen auf die Emulsionsphase.
  • Die Emulgatorkomponente der Zusammensetzung der Emulsionsmatrix hoher Viskosität enthält bevorzugt zwischen 0,5 und 5 Gewichtsprozent der Emulsionsphase. Die Emulgatorkomponente besteht bevorzugt aus einem Emulgator vom PIBSA-Typ und aus einem Sorbitanester in jedem beliebigen Mischungsverhältnis. Es kann auch ein reiner PIBSA-Emulgator eingesetzt werden. Der Massenanteil des Emulgators wird bevorzugt so gewählt, dass einerseits eine möglichst hohe Stabilitätsreserve erreicht wird und andererseits die Nachemulgierung, die mit einer Viskositätserhöhung der Emulsion einhergeht, zielgerichtet beeinflusst werden kann. Als Emulgator kann auch ein Gemisch (Blend) bestehend aus reinem Emulgator (Aktive Phase) und Öl eingesetzt werden.
  • Besonders bevorzugt liegt in der Emulsionsmatrix hoher Viskosität bei Verwendung eines Emulgators aus zwei Emulgatorkomponenten bereits eine erste, in der Emulsionsmatrix hoher Viskosität bereits aktivierte Phase des Emulgators vor und ein weiterer Überschuss an noch nicht aktivierten Emulgatoren, die erst im Schritt des Nachemulgierens der ausgeförderten Mischung von Emulsionsmatrix hoher Viskosität und Lubrifikationsmedium zum hochviskosen Emulsionssprengstoff nachemulgiert.
  • Die Oxidizerphase wird bevorzugt so gewählt, dass die Sauerstoffbilanz des hochviskosen Emulsionssprengstoffes bei 0 bis + 2,5 %, bevorzugt bei + 0,5 bis 1,5 % liegt. Der durch die anorganische Phase bedingte Sauerstoffüberschuss des Produkts ermöglicht die Zugabe von weiteren energiereichen Komponenten, wie Metallpulver, vorzugsweise Al, Mg, Grafit, Ruß, Kohle, etc. oder eine Mischung dieser Komponenten, in Konzentrationen von bevorzugt bis zu 2 %. Hierdurch können der Energiegehalt und weitere thermodynamische Daten des hochviskosen Emulsionssprengstoffes für unterschiedliche Einsatzfälle optimiert werden.
  • Durch die Verwendung eines Lubrifikationsmediums bei der Förderung der Emulsionsmatrix hoher Viskosität durch das Fördersystem wird eine besonders schonende Förderung der noch nicht sensibilisierten Emulsionsmatrix hoher Viskosität durch das Fördersystem ermöglicht. Aufgrund des eingestellten, laminaren Strömungsprofiles innerhalb des Fördersystemes und der speziellen Zuführung des Lubrifikationsmediums mit dem darin enthaltenen Gassing Agent bevorzugt in Form eines konzentrischen, die Emulsion umgebenden Gleitfilmes, findet keine Vorab-Vermischung von Emulsionsmatrix hoher Viskosität und Lubrifikationsmediums bzw. Gassing Agent statt, so dass eine Sensibilisierung der Emulsionsmatrix hoher Viskosität innerhalb des technischen (Förder-)Systems ausgeschlossen ist. Die im System vorliegenden Komponenten Emulsionsmatrix und umgebender Lubrifikationsfilm bilden für sich genommen keinen sensibilisierten Sprengstoff, der detonationsfähig wäre. Diese Neuerung in der verfahrensgemäßen Sicherheitskonzeption, die Bildung von Sprengstoff in allen Teilbereichen des technischen (Förder-)Systems zu vermeiden, war bei den bisherigen Emulsionssprengstoffen des Standes der Technik deshalb nicht möglich, da die Emulsionsmatrix sich bereits innerhalb des Fördersystems mit dem Gassing Agent vermischt hat und es damit zu einer (teilweisen) und allmählichen Sensibilisierung der Matrix bzw. zur Ausbildung einer detonationsfähigen Sprengstoffes beim Pumpen bzw. Transport durch den Ladeschlauch gekommen war. Überraschend ist in der vorliegenden Erfindung gefunden worden, dass bei der Verwendung einer Emulsionsmatrix hoher Viskosität und einer entsprechenden Förderung eine Vermischung nicht im Fördersystem stattfindet, obwohl das Lubrifikationsmedium bereits den Gassing Agenten umfasst ist.
  • Erst am Ende des Fördersystems wird nun die Emulsionsmatrix hoher Viskosität mit dem sie umgebenden Lubrifikationsmedium und damit mit dem Gassing Agenten vermischt. Damit wird erst am Ende des Fördersystems, d. h. am Austritt des Sprengstoffes aus dem Schlauchsystem die Emulsionsmatrix sensibilisiert und damit detonationsfähiger Sprengstoff hergestellt.
  • Nach der Vermischung der Emulsionsmatrix mit dem Lubrifikationsmedium bzw. dem Gassing Agenten, bevorzugt in einem Statikmischer, kommt es zu einer Nachemulgierung der ausgeförderten Mischung von Emulsionsmatrix und Lubrifikationsmedium und damit zur Herstellung des hochviskosen Emulsionssprengstoff gemäß der vorliegenden Erfindung. Dadurch findet nochmals eine entscheidende Erhöhung der Viskosität des Emulsionssprengstoffes bei bzw. nach der Sensibilisierung statt.
  • Auf diese Weise wurde ein Emulsionssprengstoff bzw. ein Verfahren zu dessen Herstellung bereitgestellt, der aufgrund der hochviskosen Eigenschaft nun gegen die Schwerkraft auch in ein Bohrloch ladbar ist, das schräg oder sogar senkrecht nach oben gebohrt wurde. Aufgrund der hohen Viskosität des auf die beschriebene Weise hergestellten Sprengstoffes fließt dieser nicht mehr aus dem Bohrloch sondern verbleibt dort gegen die Schwerkraft.
  • In einem weiteren bevorzugten Verfahren der vorliegenden Erfindung wird beim Fördern der Emulsionsmatrix hoher Viskosität (10) zwischen dieser und dem Lubrifikationsmedium (15) keine turbulente, sondern eine weitgehend laminare Strömung aufrechterhalten, insbesondere eine laminare Strömung mit einer Reynoldszahl von weniger als 2300, bevorzugt von weniger als 2000, besonders bevorzugt von weniger als 1500.
  • Durch die Wahl der Emulsionsmatrix hoher Viskosität kann nun innerhalb des Fördersystems zwischen dieser und dem Lubrifikationsmedium eine laminare Strömung aufrecht erhalten werden. Eine laminare Strömung in diesem Sinne bedeutet, dass insbesondere keine Scherkräfte zwischen dem Lubrifikationsmedium und der Emulsionsmatrix auftreten und damit auch keine Vermischungen. Es treten somit keine Verwirbelungen oder Vermischungen auf. Auf diese Weise ist es möglich, den Gassing Agent bis zur Vermischung der Emulsionsmatrix am Ende des Fördersystems zu transportieren, ohne dass vorher schon eine Vermischung bzw. eine Reaktion des Gassing Agenten mit der Emulsionsmatrix stattfinden kann. Da der Gassing Agent im Schmiermittel bzw. Lubrifikationsmedium erst am Schlauchende mit der Matrix vermischt wird, entsteht die endgültige Zusammensetzung, insbesondere die gewünschte endgültige Viskosität, des Sprengstoffes erst hinter dem Statikmischer, d. h. nachdem die Komponenten aus dem Schlauch ausgetreten sind.
  • Bei dem weiteren bevorzugten Verfahren der vorliegenden Erfindung weist die Emulsionsmatrix (10) eine Viskosität von mehr als 60.000 mPas, bevorzugt mehr als 80.000 mPas, besonders bevorzugt mehr als 100.000 mPas auf.
  • Die Viskosität einer herkömmlichen Emulsionsmatrix beträgt bis zu 50.000 mPas (gemessen nach dem Verfahren Brookfield, Spindel 7, 10 rpm, 20° C). Die nach dem erfindungsgemäßen Verfahren hergestellte Emulsionsmatrix weist nun eine viel höhere Viskosität auf. Dies war im Stand der Technik bisher deshalb vermieden worden, weil dadurch eine Vermischung mit dem Gassing Agent nicht mehr effektiv dargestellt werden konnte. Überraschend wurde erfindungsgemäß gefunden, dass auch bei einer Emulsionsmatrix mit einer weit höheren Viskosität, besonders bevorzugt von über 100.000 mPas eine Vermischung mit dem Gassing Agenten sehr wohl zur erforderlichen Vermischung und Nachemulgierung bzw. Sensibilisierung des Endprodukts führen kann. Aus diesem Grund wurde entgegen den Vorurteilen aus dem Stand der Technik erfindungsgemäß eine Emulsionsmatrix hoher Viskosität gewählt.
  • Durch die hohe Viskosität der Emulsionsmatrix kann damit bei der Förderung der Emulsionsmatrix zusammen mit dem Gassing Agenten enthaltenden Lubrifikationsmedium innerhalb des Fördersystems die laminare Strömung sehr gut aufrecht erhalten werden.
  • In einem weiteren bevorzugten Verfahren der vorliegenden Erfindung besteht der Emulgator aus mindestens zwei Emulgatorkomponenten, die bei unterschiedlicher Scherbeanspruchung emulgieren. Der in der Emulsionsmatrix hoher Viskosität vorliegende Emulgator ist zur Herstellung dieser Matrix bereits aktiviert worden, d. h. zur Herstellung der Matrix teilweise emulgiert. Dadurch wird der Emulsionsmatrix diese Viskosität erst verliehen. Bevorzugt liegt in dieser vorgemischten Emulsionsmatrix hoher Viskosität eine zweite Phase an Emulgator (ein Emulgatorüberschuss) vor, der erst nach Ausbringen der Emulsionsmatrix durch eine Vermischung am Ende nachemulgiert und so die Emulsionsmatrix hoher Dichte durch Aktivierung dieser zweiten Phase im Emulgator eine nochmals entscheidend höhere Viskosität verleiht. Der endgültig erhaltene Sprengstoff weist dann eine Viskosität über 200.000 mPas auf, bevorzugt 250.000 bis 350.000 mPas und höher. Die Emulsionsmatrix hoher Viskosität weist eine Viskosität von mehr als 60.000 mPas, bevorzugt mehr als 80.000 mPas, besonders bevorzugt mehr als 100.000 mPas auf. Durch den Einsatz eines Emulgators aus mindestens zwei Komponenten ist es damit möglich, die Emulsionsmatrix selbst in einem hohen Viskositätsbereich herzustellen, und diese dann bei Vermischung zum endgültigen Emulsionssprengsstoff nochmals entscheidend in ihrer Viskosität zu erhöhen.
  • Bei einem weiteren bevorzugten Verfahren der vorliegenden Erfindung umfasst das Lubrifikationsmedium (15) eine Mischung von Wasser und Gassingagent (16).
  • Dadurch, dass das Lubrifikationsmedium neben dem Gassing Agent auch noch Wasser enthält, können die Lubrifikationseigenschaften des Lubrifikationsmediums verbessert werden.
  • Bei einem weiteren bevorzugten Verfahren der vorliegenden Erfindung wird ein hochviskoser Emulsionssprengstoff erhalten, der eine Dichte von mindestens 0,5 kg/l bis 1,2 kg/l, bevorzugt 0,9 kg/l aufweist.
  • Durch das beschriebene Herstellungsverfahren ist es möglich, die Dichte des erhaltenen Emulsionssprengstoffes durch die Wahl von verschiedenen Parametern einzustellen. Neben der Zusammensetzung der Emulsionsmatrix kann insbesondere die Art und Weise der Vermischung am Ende zu einer Änderung der Dichte beitragen. Durch eine besonders intensive Vermischung ist es damit möglich, niedrige Dichten zu erzeugen. Besonders bevorzugt werden Dichten von 0,6 bis 1,5 kg/l besonders bevorzugt von 0,8 bis 1,15 kg/l eingestellt.
  • Während die Viskosität des erhaltenen Emulsionsprengstoffes vor allen Dingen durch die Scherkräfte, die herrschende Temperatur und den anhaltenden Druck bestimmt wird, wird die Dichte durch die Zusammensetzung der Emulsionsmatrix (Anteil von SN (Natriumnitrat) in der Lösung), Temperatur und Druck sowie den Umfang der Gasbläschenbildung bestimmt.
  • Bei einem besonders bevorzugten Verfahren der vorliegenden Erfindung umfasst das Fördersystem (30) zum Fördern der Emulsionsmatrix (10) als Fördermittel (32) eine Exzenterschneckenpumpe.
  • Um so schonender die Förderung der Emulsionsmatrix in dem Fördersystem unter Einsatz des Lubrifikationsmediums erfolgen kann, um so zuverlässiger kann die laminare Strömung zwischen Matrix und Lubrifikationsmittel aufrechterhalten werden. Besonders vorteilhaft wird die laminare Strömung auch durch die hohe Viskosität der Emulsionsmatrix verbunden mit moderaten Strömungsgeschwindigkeiten sichergestellt. Diese Parameter führen zu kleinster Reynoldszahl und somit zur Bildung laminarer Strömung. Die (mechanisch) schonende Förderung wird dadurch im Wesentlichen durch die Pumpen- und Injektortechnik, aber auch die statischen Mischelemente im Vergleich zu theoretisch denkbaren dynamischen Mischern gefördert. Bevorzugt wurde gemäß der Erfindung gefunden, dass ein besonders schonender Fördervorgang unter Einsatz von Exzenterschneckenpumpen durchgeführt werden kann. Eine Exzenterschneckenpumpe ist dabei insbesondere eine Verdrängerpumpe einfacher Bauart. Sie arbeitet ohne Ventile und besitzt nur zwei Förderelemente, die rotierende Exzenterschnecke und den statischen Gehäuseeinsatz. Der metallische Rotor dreht sich exzentrisch in einem Stator aus elastischem Material. Dabei wird das Medium kontinuierlich, d. h. annähernd pulsationsfrei, in axialer Richtung gefördert. Der Förderstrom ist in etwa proportional zur Drehzahl.
  • Bei einem weiteren bevorzugten Verfahren der vorliegenden Erfindung umfasst das Fördersystem (30) zum Fördern der Emulsionsmatrix (10) eine Förderleitung (34) mit einem Innendurchmesser von weniger als 25 mm, bevorzugt von weniger als 22 mm, besonders bevorzugt von weniger als 19 mm.
  • Durch die Wahl des Innendurchmessers von weniger als 25 mm wird nochmals die Sicherheit des Herstellungsverfahrens erhöht, da durch eine entsprechend geringe Wahl des Innendurchmessers der Durchmesser unterschritten wird, bei dem selbst der fertig sensibilisierte Sprengstoff durchdetonieren könnte. Wird nun ein entsprechend geringer Innendurchmesser in dem Fördersystem verwendet, so kann nicht einmal theoretisch ein sensibilisierter Sprengstoff in diesen Abmessungen zur Detonation kommen.
  • Beim weiteren bevorzugten Verfahren der vorliegenden Erfindung werden die Emulsionsmatrix (10) und das Lubrifikationsmedium (15) mittels eines statischen Mischers (35) zum hochviskosen Emulsionssprengstoff (1) vermischt.
  • Durch die Verwendung eines statischen Mischers, besonders bevorzugt durch eine Reihe von bevorzugt verschiedenen statischen Mischern werden die Emulsionsmatrix und das Lubrifikationsmedium miteinander vermischt, so dass es zur optimalen Gassingbildung als auch bevorzugt zur Nachemulgierung des Sprengstoffes kommt. Bisher war im Stand der Technik davon ausgegangen worden, dass die Verwendung eines statischen Mischers nicht ausreichen würde, um eine entsprechende ausreichende Vermischung zwischen dem Gassing Agenten und der Emulsionsmatrix herzustellen. Es ist besonders bevorzugt, mehrere statische Mischer je nach Einsatzgebiet hintereinander einzusetzen.
  • Besonders bevorzugt ist der statische Mischer (35) im Mundstück am Ende einer Förderleitung (34.4) des Fördersystems (32vorgesehen.
  • Bei der Ausbildung des statischen Mischers im Mundstück am Ende der Förderleitung ist es möglich, verschiedene Mundstücke wechselweise einzusetzen, um eine Anpassung insbesondere der Viskosität des Emulsionssprengstoffes an dem jeweiligen Anwendungsfall vorzunehmen. Bevorzugt können die freien Querschnitte bzw. die Länge der integrierten Mischstrecke variiert werden, um Strömungsgeschwindigkeit, Mischgüte und Endviskosität der Emulsion zu beeinflussen. Bevorzugt wird auch die Geometrie des Mundstückes variiert, um einen Richtungsstrahl, einen Seitenstrahl, etc. einzustellen und stets eine optimale Füllung der Bohrlöcher zu gewährleisten. Gleichzeitig sind unterschiedliche Aufnahmesysteme für Zünder oder Booster verschiedenster Art innerhalb des Mundstücks realisierbar, so dass zusammen mit dem Emulsionssprengstoff gleich passende Zündmittel zur Initiierung sicher in das Bohrlochtiefste eingebracht werden können. Bevorzugt sind die Mundstücke so konzipiert, dass mittels eines Schnellwechselsystems ein Austausch innerhalb kürzester Zeit möglich ist.
  • Die Aufgabe der Erfindung wird außerdem gelöst durch ein Verfahren zum Verbringen eines hochviskosen Emulsionssprengstoffes (1)in einen Hohlraum (5), insbesondere ein Bohrloch, umfassend die Schritte Fördern einer nicht sensibilisierten Emulsionsmatrix hoher Viskosität (10) durch ein Leitungssystem (33), Injizieren eines Lubrifikationsmediums (15) in das Leitungssystem, wobei das Lubrifikationsmedium (15) einen Gassingagenten (16) enthält und zwischen der Emulsionsmatrix und der Innenwand des Leitungssystems einen Schmierfilm bildet, Durchmischen der Emulsionsmatrix (10) mit dem Gassingagenten (16) am Übergang vom Leitungssystem in den zu befüllenden Hohlraum (5).
  • Durch dieses erfindungsgemäße Verfahren zum Verbringen eines hochviskosen Emulsionssprengstoffes ist es möglich, den Emulsionssprengstoff in einen Hohlraum, insbesondere ein Bohrloch zu verbringen, ohne dass vor Austritt des Sprengstoffes in das Bohrloch fertig gemischter Sprengstoff vorliegt.Der hochviskose Emulsionssprengstoffes wird erst nach dem Austritt aus dem Fördersystem, d. h. am Schlauchende gebildet. Besonders bevorzugt wird das Leitungssystem, insbesondere ein Schlauch, in das Bohrloch eingeführt und während des Befüllvorgangs entsprechend dem Füllstand des Bohrloches langsam wieder herausgezogen bzw. durch den Rückstoss herausgedrückt. Auf diese Weise kann das Bohrloch optimal mit hochviskosem Emulsionssprengstoff befüllt werden, auch wenn das Bohrloch schräg nach oben ausgerichtet ist.
  • Bei einem weiteren bevorzugten Verfahren zum Verbringen eines hochviskosen Emulsionssprengstoffes laut der vorliegenden Erfindung wird der Schmierfilm bzw. Lubrifikationsfilm derart ausgebildet, dass es nicht zu einer Vermischung des den Gassingagenten (16) enthaltenden Lubrifikationsmediums (15) und der Emulsionsmatrix (10) innerhalb des Leitungssystems (33) kommt.
  • Nach dem erfindungsgemäßen Verfahren wird ein Emulsionssprengstoff hergestellt.
  • Der so erhaltene Emulsionssprengstoff zeichnet sich insbesondere dadurch aus, dass er eine Viskosität von mehr als 200.000 mPas, bevorzugt mehr als 250.000 mPas, besonders bevorzugt mehr als 300.000 mPas aufweist und damit eine extrem hohe Viskosität hat. Diese hohe Viskosität ermöglicht es dem Sprengstoff, in die Hohlräume einmal verpumpt dort auch haften zu bleiben und nicht wie der herkömmliche verpumpte Sprengstoff gegen die Schwerkraft wieder abzufließen. Da die erreichte hohe Viskosität erfindungsgemäß bevorzugt auch mit einer entsprechend niedrigen Dichte kombiniert werden kann, ist der so erhaltene Sprengstoff ideal geeignet, um unter Tage bzw. im Tunnelbau zum Einsatz zu kommen.
  • In den erfindungsgemäßen Verfahren zur Herstellung eines hoch viskosen Emulsionssprengstoffes sowie zum Verbringen dieses hoch viskosen Emulsionssprengstoffes wird ein Fördersystem verwendet. Bevorzugt umfasst dieses Fördersystem (30) für hochviskose, emulsionsbasierte Sprengstoffe (1) ein Leitungssystem (33) mit einer Emulsionsmatrixzuführung und einer Lubrifikationsmediumszuführung, wobei die Lubrifikationsmediumszuführung über einen Injektor (36) mit der Emulsionsmatrixzuführung verbunden ist, und am oder nahe am Ende des Fördersystems (30) ein statischer Mischer (35) vorgesehen ist.
  • Besonders bevorzugt ist bei dem Fördersystem eine Zuführung für Gasing Agent über den Injektor verbunden. Auf diese Weise kann der Gasing Agent in das Leitungssystem eingebracht werden und um die zu fördernde Emulsionsmatrix herum zusammen mit dem Lubrifikationsmedium einen Gleitfilm bilden.
  • Besonders bevorzugt ist die Zuführung für das Lubrifikationsmedium und die Zuführung für den Gasing Agent zumindestens teilweise identisch, ganz besonders bevorzugt identisch.
  • Die Erfindung soll anhand der folgenden Figuren beispielhaft erläutert werden. Hierbei wird in den Figuren gezeigt:
  • Fig. 1
    zeigt eine schematische Darstellung eines Fördersystems bzw. Mischgeräts geeignet für die Verwendung in der vorliegenden Erfindung und
    Fig. 2
    zeigt eine schematische Darstellung des Ausschnitts des Fördersystems im Bereich des Endes der Förderleitung.
  • In Fig. 1 wird schematisch ein für die Verwendung in der vorliegenden Erfindung geeignetes Fördersystem bzw. Mischgerät 30 dargestellt. Das Fördersystem 30 besteht aus Behältern zur Aufnahme von Mischladekomponenten nämlich der Emulsionsmatrix EM10, den Lubrifikationsmedium LM15 sowie optional einer Komponente zum Einstellen des pH-Wertes. Der Vorratsbehälter der Emulsionsmatrix EM10 ist über eine erste Förderleitung 34.1 mit dem Fördermittel bzw. der Pumpe 32 verbunden. Optional kann ein Mittel zum Einstellen des pH-Wertes innerhalb der Emulsionsmatrix EM10 über eine Förderleitung 34.1' ebenfalls mit der Pumpe 32 verbunden sein (gestrichelt dargestellt). Über eine Förderleitung 34.2 ist die Pumpe 32 dann mit einem Injektor 39 verbunden. Auf diesen Injektor 39 wird auch das bevorratete Lubrifikationsmedium LM15 über eine Förderleitung 34.3 verbunden. Der Injektor 39 ist dann über eine Förderleitung 34.4, insbesondere einen Schlauch 34.4 mit einem statischen Mischer 35 verbunden.
  • Es wird nun Emulsionsmatrix 10 über die Förderleitung 34.1 der Pumpe 32 zugeführt. Bei der Pumpe 32 handelt es sich bevorzugt um einen Exzenterschneckenpumpe. Optional kann hier - wenn nicht bereits vorher geschehen - der pH-Wert der Emulsionsmatrix 10 eingestellt werden. Dies geschieht durch Zugabe einer pH-regulierenden Komponente wie beispielsweise Essig- oder Zitronensäure oder einer anderen Säure, die sich zur pH-Wert Absenkung der Emulsionsmatrix eignet. Die so modifizierte Emulsionsmatrix EM10 wird durch die Pumpe 32 über die Förderleitung 34.2 zum Injektor 39 gefördert. In diesem Augenblick liegt eine unsensibilisierte Emulsionsmatrix EM10 mit eingestellten pH-Wert vor. Über den Injektor 39 wird nun aus dem Vorratsbehälter LM15 Lubrifikationsmedium über die Zuführleitung 34.3 in den Förderstrom der Emulsionsmatrix EM10 injiziert. Das Lubrifikationsmedium LM15 umfasst den für die Sensibilisierung des Sprengstoffs erforderlichen Gassing Agenten. Durch das Injizieren des Lubrifikationsmediums über den Injektor 39 wird ein konzentrischer, die Emulsionsmatrix umgebender Gleitfilm bestehend aus dem Lubrifikationsmedium LM15 gebildet, der dann in der Zuführleitung 34.4 die Emulsionsmatrix umgibt, ohne dass eine Vermischung von Emulsionsmatrix hoher Viskosität 10 und Lubrifikationsmedium bzw. Gassing Agent 15 stattfindet. Auf diese Weise wird eine Sensibilisierung des Sprengstoffs in der Förderleitung 34.4 unterbunden. Im Mischer 35 wird dann der bis dahin als ringförmiger Begleitfilm vorliegende Anteil an Lubrifikationsmedium mit dem Gassing Agenten mit der Emulsionsmatrix EM10 vermischt, so dass hinter dem Mischer 35 hochviskoser Emulsionssprengstoff ES1 austritt. Durch die Verwendung des Mischers 35 wird eine Nachemulgierung des als Überschuss in der Emulsionsmatrix noch vorhandenen Emulgators bewirkt, so dass die Viskosität des Emulgators nochmals bis zu 100% und mehr erhöht wird. Der dann vorliegende Emulsionssprengstoff ES1 ist hochviskos bei geringer Dichte, die durch die Art der Vermischung und die Sensibilisierung durch das Gassingmittel bei gewählter Temperatur und Druck einstellbar ist.
  • Durch diese Anordnung eines Mischgeräts ist ein Fördersystem 30 bereitgestellt worden, das bis zum Austritt der Mischung aus dem statischen Mischer 35 keinen sensibilisierten Sprengstoff umfasst. Auch bei Abschalten des Fördersystems bildet sich selbst in der Zuführleitung 34.4 kein sensibilisierter Sprengstoff. Auf diese Weise ist ein besonders sicheres Mischgerät bzw. Fördersystem 30 bereitgestellt worden.
  • In Fig. 2 ist nochmals im Detail ein Ausführungsbeispiel für die Strecke hinter dem Injektor 39 (nicht abgebildet) dargestellt. In der Zuführleitung 34.4 wird die Emulsionsmatrix 10 von Lubrifikationsmedium 15, das den Gassing Agenten beinhaltet, ringförmig umschlossen. In der Querschnittsdarstellung in der Fig. 2 ist dies durch die schwarze Farbe im Randbereich der Zuführleitung 34.4 dargestellt. Der beispielhaft dargestellte statische Mischer 35 besteht aus zwei Abschnitten 35.1 und 35.2. Während im Abschnitt 35.1 eine leichte Vormischung durch eine entsprechende Geometrie im Randbereich des Schlauches vorgesehen ist, wird im Abschnitt 35.2 durch entsprechende Kanalsysteme eine Vermischung der Emulsionsmatrix 10 mit dem Lubrifikationsmedium 15 ermöglicht.
  • Die vom Lubrifikationsmedium 15 umgebenden Emulsionsmatrix 10 wird über die Zuführleitung 34.4 in den statischen Mischerabschnitt 35.1 gefördert, wo es zu einer Vorvermischung des Lubrifikationsmediums 15 mit der Emulsionsmatrix 10 kommt. Im Mischerabschnitt 35.2 kommt es dann zum Auftreten von Scherkräften auf dieses Vorgemisch, wodurch eine intensive Durchmischung der beiden Komponenten bewirkt wird. Auf diese Art und Weise kommt es einerseits zur Sensibilisierung des Sprengstoffes durch Vermischung der Emulsionsmatrix mit dem Gasing Agenten und gleichzeitig zu einer Nachemulgierung der Emulsionsmatrix unter Aktivierung der zweiten Phase des Emulgators, der noch unverbraucht, d. h. nicht aktiviert, in der Emulsionsmatrix vorliegt. Durch die Verwendung dieses Emulgatorüberschusses in der Emulsionsmatrix kann auf diese Weise eine Nachemulgierung durchgeführt werden, die zu einer erhöhten Viskosität des im Ende erzeugten Emulsionssprengstoffs 1 führt. Dieser wird auch erst nach Austritt aus dem Mischabschnitt 35.2 endgültig sensibilisiert und damit detonationsfähig.
  • Auf diese Weise ist ein neuartiges Mischgerät aufgefunden worden, das einen noch sichereren Umgang bei Verpumpung und Förderung von Emulsionssprengstoff zulässt und zu einem deutlich höherviskosen Sprengstoff führt. Dieser ist gleichzeitig bei entsprechend geringer Dichte sprengkapselempfindlich und damit nach dem Erreichen der Enddichte besonders gut detonationsfähig.
  • Im folgenden Referenzbeispiel wird ein nach dem erfindungsgemäßen Verfahren hergestellten hoch viskoser Emulsionssprengstoff mit einem ANC-Sprengstoff verglichen.
  • Beispiele 1) Vergleichssprengungen eines hoch viskosen Emulsionssprengstoffes zu ANC-Sprengstoff
  • In einem untertägigen Steinsalzbetrieb werden Vergleichssprengungen zwischen einem ANC-Sprengstoff und einem erfindungsgemäßen Emulsionssprengstoff durchgeführt.
  • Der ANC-Sprengstoff besteht aus porösem Ammoniumnitrat mit einem Gewichtsanteil von 94,3 % und einem Mineralöl mit einem Gewichtsanteil von 5,7 %. Die Sprengstoffdichte liegt bei 0,78 kg/l.
  • Der Emulsionssprengstoff besteht aus 93,5 % Oxidizerlösung und einer Brennstoffphase aus Mineralöl und Emulgator von 6,5 Gewichtsprozent. Die Dichte der Emulsionsmatrix liegt bei 1,44 kg/l, die des sensibilisierten Sprengstoffes zwischen 0,8 und 1,15 kg/l.
  • Bei gleichem Wirkungsgrad des jeweiligen Sprengstoffes in den Abschlägen können beim Einsatz des Emulsionssprengstoffes bis zu 27 % der Sprengbohrlöcher eingespart und der spezifische Sprengstoffaufwand bis zu 15 % reduziert werden, wie aus folgender Tabelle ersichtlich ist:
    ANC-Sprengstoff Emulsionssprengstoff
    Bohrlochanzahl 70 51
    Sprengstoffmenge 322,2 kg 266,7 kg
    gesamt
    Haufwerk 541 t 541 t
    Spezifischer Sprengstoffaufwand 596 g/t 493 g/t
    Toxische Schwadenbestandteile
    NOx 1,4 l/kg 0,6 l/kg
    CO 6,5 l/kg 1,9 l/kg
  • Auch im Bereich der toxischen Schwadenbestandteile schneidet
    der Emulsionssprengstoff deutlich besser ab.
  • 2) Schwadenmessungen der toxischen Bestandteile in einer Sprengkammer mit definiertem Volumen, Vergleich von ANC-Sprengstoff zu einem Emulsionssprengstoff
  • In einem definierten Volumen einer Sprengkammer wurden mit den aus Beispiel 1 beschriebenen Sprengstoffen Schwadenmessungen der toxischen Bestandteile durchgeführt. Die Sprengstoffe wurden in Stahlrohre von 35 mm Innendurchmesser und 600 mm Länge gefüllt. Die Zündung erfolgte jeweils mit einer 100g-Patrone eines kapselempfindlichen Emulsionssprengstoffes und einem Momentzünder. Die Ergebnisse sind in folgender Tabelle dargestellt:
    Schwadenbestande (l/kg) Detonationsgeschwindigkeit (m/s) Dichte (kg/l)
    NOx NO2 NO CO
    Emulsionssprengstoff 1,0 0,0 1,0 5,4 4490 0,96
    ANC-Sprengstoff 3,1 0,1 3,0 12,7 3600 0,77
  • Die Anteile an toxischen Bestandteilen sind in allen Fällen - Mittelwert aus 5 Versuchen - bei dem Emulsionssprengstoff geringer.
  • Bezugszeichenliste
  • 1
    hochviskoser Emulsionssprengstoff
    5
    zu füllender Hohlraum/ Bohrloch
    10
    Emulsionsmatrix hoher Viskosität
    15
    Lubrifikationsmedium
    16
    Gassingagent
    30
    Fördersystem/Mischgerät
    32
    Fördermittel/ Exzenterschnecke
    34
    Förderleitung/ Schlauch
    35
    statischer Mischer
    39
    Injektor

Claims (14)

  1. Verfahren zur handhabungssicheren Herstellung von hochviskosem Emulsionssprengstoff (1) mittels des Gassingverfahrens, umfassend die Schritte
    Herstellen einer Emulsionsmatrix hoher Viskosität (10), wobei die Emulsionsmatrix (10) eine Viskosität von mehr als 60.000 mPas, bevorzugt mehr als 80.000 mPas, besonders bevorzugt mehr als 100.000 mPas aufweist;
    Fördern der Emulsionsmatrix hoher Viskosität (10) durch ein Fördersystem (30) unter Verwendung eines Lubrifikationsmediums (15), wobei das Lubrifikationsmedium (15) einen Gassingagenten (16) aufweist;
    Vermischen der Emulsionsmatrix hoher Viskosität (10) mit dem Lubrifikationsmedium (15) am Ende des Fördersystems (30);
    Nachemulgieren der geförderten Mischung von Emulsionsmatrix hoher Viskosität (10) und Lubrifikationsmedium (15) zum hochviskosen Emulsionssprengstoff (1).
  2. Verfahren nach Anspruch 1
    wobei
    beim Fördern der Emulsionsmatrix hoher Viskosität (10) zwischen dieser und dem Lubrifikationsmedium (15) eine laminare Strömung aufrechterhalten wird, insbesondere eine laminare Strömung mit einer Reynoldszahl von weniger als 2300, bevorzugt von weniger als 1500; besonders bevorzugt von weniger als 1000.
  3. Verfahren nach einem der vorhergehenden Verfahrensansprüchen
    wobei
    die Emulsionsmatrix (10) aus einem Emulgator, einer Ölphase und einer Oxidizerphase hergestellt ist.
  4. Verfahren nach Anspruch 3
    dadurch gekennzeichnet, dass
    der Emulgator aus mindestens zwei Komponenten besteht, die bei unterschiedlicher Scherbeanspruchung emulgieren.
  5. Verfahren nach einem der beiden vorhergehenden Verfahrensansprüche
    wobei
    die Oxidizerphase so gewählt wird, dass die Sauerstoffbilanz des hochviskosen Emulsionssprengstoff (1) bei 0 bis + 2,5 %, bevorzugt bei + 0,5 bis + 1,5 % liegt.
  6. Verfahren nach einem der vorhergehenden Verfahrensansprüche
    wobei das Lubrifikationsmedium (15) eine Mischung von Wasser und Gassingagent (16) umfasst.
  7. Verfahren nach einem der vorhergehenden Verfahrensansprüche
    wobei
    der erhaltene hochviskose Emulsionssprengstoff (1) eine Dichte von 0,5 kg/l bis 1,2 kg/l, bevorzugt 0,9 kg/l, aufweist.
  8. Verfahren nach einem der vorhergehenden Verfahrensansprüche
    wobei
    das Fördersystem (30) zum Fördern der Emulsionsmatrix (10) als Fördermittel (32) eine Exzenterschneckenpumpe umfasst.
  9. Verfahren nach einem der vorhergehenden Verfahrensansprüche
    wobei
    das Fördersystem (30) zum Fördern der Emulsionsmatrix (10) eine Förderleitung (34) mit einem Innendurchmesser von weniger als 25 mm, bevorzugt von weniger als 22 mm, besonders bevorzugt von weniger als 19 mm umfasst.
  10. Verfahren nach einem der vorhergehenden Verfahrensansprüche
    wobei
    die Emulsionsmatrix (10) und das Lubrifikationsmedium (15) mittels eines statischen Mischers (35) zum
    hochviskosen Emulsionssprengstoff (1) vermischt werden.
  11. Verfahren nach dem vorhergehenden Verfahrensanspruch
    wobei
    der statische Mischer (35) im Mundstück am Ende einer Förderleitung (34) des Fördersystems (32) vorgesehen ist.
  12. Verfahren nach dem vorhergehenden Verfahrensanspruch
    wobei
    das Mundstück eine Geometrie aufweist, die einen Strahl als Richtungs- und Seitenstrahl derart definiert, dass ein Hohlraum durch den hochviskosen Emulsionssprengstoff (1) optimal gefüllt wird.
  13. Verfahren zum Verbringen eines hochviskosen Emulsionssprengstoffes (1) in einen Hohlraum (5), insbesondere ein Bohrloch, umfassend die Schritte
    Fördern einer nicht sensibilisierten Emulsionsmatrix hoher Viskosität (10) wobei die Emulsionsmatrix (10) eine Viskosität von mehr als 60.000 mPas, bevorzugt mehr als 80.000 mPas, besonders bevorzugt mehr als 100.000 mPas aufweist durch ein Leitungssystem (33)
    Injizieren eines Lubrifikationsmediums (15) in das Leitungssystem, wobei das Lubrifikationsmedium (15) einen Gassingagenten (16) enthält und zwischen der Emulsionsmatrix und der Innenwand des Leitungssystems einen Schmierfilm bildet;
    Durchmischen der Emulsionsmatrix hoher Viskosität (10) mit dem Gassingagenten (16) am Übergang vom Leitungssystem (33) in den zu befüllenden Hohlraum (5).
  14. Verfahren zum Verbringen eines hochviskosen Emulsionssprengstoffes (1) nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass
    der Schmierfilm derart ausgebildet wird, dass es nicht zu einer Vermischung des den Gassingagenten (16) enthaltenden Lubrifikationsmediums (15) und der Emulsionsmatrix (10) innerhalb des Leitungssystems (33) kommt.
EP05004452.8A 2004-03-02 2005-03-01 Verfahren zur Herstellung eines hochviskosen Emulsionssprengstoffes sowie Verfahren zum Verbringen desselben Active EP1571136B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05004452T PL1571136T4 (pl) 2004-03-02 2005-03-01 Sposób wytwarzania materiału wybuchowego emulsyjnego o wysokiej lepkości jak również sposób do jego transportowania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004010130.2A DE102004010130B4 (de) 2004-03-02 2004-03-02 Verfahren zur Herstellung sowie Verfahren zum Verbringen eines hochviskosen Emulsionssprengstoffs
DE102004010130 2004-03-02

Publications (3)

Publication Number Publication Date
EP1571136A2 EP1571136A2 (de) 2005-09-07
EP1571136A3 EP1571136A3 (de) 2006-05-17
EP1571136B1 true EP1571136B1 (de) 2015-01-14

Family

ID=34745342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05004452.8A Active EP1571136B1 (de) 2004-03-02 2005-03-01 Verfahren zur Herstellung eines hochviskosen Emulsionssprengstoffes sowie Verfahren zum Verbringen desselben

Country Status (4)

Country Link
EP (1) EP1571136B1 (de)
DE (1) DE102004010130B4 (de)
PL (1) PL1571136T4 (de)
UA (1) UA85825C2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791389B2 (en) 2006-01-25 2014-07-29 Lincoln Global, Inc. Electric arc welding wire
PE20080896A1 (es) * 2006-08-29 2008-08-21 African Explosives Ltd Sistema explosivo que tiene una emulsion basica y una solucion sensibilizante
AU2012350355B2 (en) 2011-12-16 2016-08-04 Orica International Pte Ltd Explosive composition
BR112014014391A2 (pt) 2011-12-16 2017-06-13 Orica Int Pte Ltd método para caracterizar a estrutura de um material energético líquido sensibilizado com vazios, função de distribuição para material energético líquido sensibilizado com vazios, e, composição explosiva
WO2014201526A1 (en) 2013-06-20 2014-12-24 Orica International Pte Ltd A method of producing an explosive emulsion composition
CA2916095A1 (en) 2013-06-20 2014-12-24 Orica International Pte Ltd Explosive composition manufacturing and delivery platform, and blasting method
EP3199509B1 (de) * 2014-09-26 2020-07-08 Shijiazhuang Success Machinery Electrical Co., Ltd. Lastkraftwagen zum laden von sprengstoff vor ort für intrinsisch sicheren emulsionssprengstoff
CN107966080A (zh) * 2017-12-20 2018-04-27 北方爆破科技有限公司 一种井下用乳化基质箱
CN111925260A (zh) * 2020-07-31 2020-11-13 宜兴市阳生化工有限公司 一种高粘合度胶状炸药
CN115468468A (zh) * 2022-10-17 2022-12-13 湖南金石智造科技有限公司 一种智能混装车及装药方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273147A (en) * 1979-04-16 1981-06-16 Atlas Powder Company Transportation and placement of water-in-oil explosive emulsions
AU1505388A (en) * 1987-05-05 1988-11-10 Aeci Limited Method and apparatus for loading explosives into boreholes
ZA888819B (en) * 1987-12-02 1990-07-25 Ici Australia Operations Process for preparing explosive
CA2049628C (en) * 1991-08-21 2002-02-26 Clare T. Aitken Vegetable oil emulsion explosive
ZA942276B (en) * 1993-04-08 1994-10-11 Aeci Ltd Loading of boreholes with flowable explosive
ZA962552B (en) * 1995-04-05 1996-10-07 Aeci Explosives Ltd Explosive
US5841055A (en) * 1995-10-26 1998-11-24 Eti Explosives Technologies International (Canada) Ltd. Method for controlled refining of explosive compositions
AUPN737395A0 (en) * 1995-12-29 1996-01-25 Ici Australia Operations Proprietary Limited Process and apparatus for the manufacture of emulsion explosive compositions
NO307717B1 (no) * 1997-09-12 2000-05-15 Dyno Ind Asa Fremgangsmåte for lading og sensitivisering av et slurrysprengstoff i et borhull
US6401588B1 (en) * 2000-02-17 2002-06-11 Dyno Nobel Inc. Delivery of emulsion explosive compositions through an oversized diaphragm pump
NO315902B1 (no) * 2001-12-27 2003-11-10 Dyno Nobel Asa Fremgangsmåte for fremstilling av et sensitivisert emulsjonssprengstoff

Also Published As

Publication number Publication date
EP1571136A2 (de) 2005-09-07
PL1571136T3 (pl) 2015-11-30
EP1571136A3 (de) 2006-05-17
DE102004010130A1 (de) 2005-09-22
UA85825C2 (uk) 2009-03-10
PL1571136T4 (pl) 2015-11-30
DE102004010130B4 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
EP1571136B1 (de) Verfahren zur Herstellung eines hochviskosen Emulsionssprengstoffes sowie Verfahren zum Verbringen desselben
EP1990503B1 (de) Vorrichtung und Verfahren zum Explosionsbohren
DE2202246A1 (de) Verfahren und Vorrichtung zum Fuellen von Luecken wie Bohrloechern mit einem viskosen Produkt sowie Verwendung der Vorrichtung
AU2022201304A1 (en) Systems for delivering explosives and methods related thereto
DE69816837T2 (de) Methode zum füllen von sprenglöchern oder kartuschen mit aufgeschlämmten sprengstoffen
DE19625897A1 (de) Geformte Sprengladungen und Füllstück hierfür
DE2263626A1 (de) Verfahren und vorrichtung zum laden von borloechern mit sprengstoff
DE2239644A1 (de) Verfahren und vorrichtung fuer die herstellung und benutzung von explosiven aufschlaemmungen im bergbaubetrieb
DE1945491A1 (de) Sprengmittel von geregelter Dichte und Verfahren zu seiner Herstellung
DE2602924A1 (de) Verfahren und vorrichtung zur herstellung von sprengschlamm
DE2020490B2 (de) Schlammfoermiger sprengstoff
DE1646318B1 (de) Verfahren und Vorrichtung zum Laden eines wasserhaltigen Bohrlochs mit einem Slurry-Sprengstoff
DE69925514T2 (de) Verfahren und anlage zur in-situ herstellung von explosivstoffen aus oxidierenden produkten auf wasserbasis
DE1949711C3 (de) Flussiger Sprengstoff und seine An wendung zum Aufbrechen von geologischen Formationen
EP3880890B1 (de) Verfahren und vorrichtung zur bildung von bindemittel-boden-gemisch-körpern
DE2219249A1 (de) Explosivmischungen mit einem Gehalt an Calciumnitrat
EP0151389A1 (de) Verfahren und Vorrichtung zum Herstellen von Bauelementen im Baugrund, wie Pfählen, Injektionsankern, Schlitzwänden oder dergleichen
DE102007023736B4 (de) Schnellabbindende HDI
DE2052146A1 (de) Gießfahiger Sprengstoff
EP1360456B1 (de) Verfahren und vorrichtung zum füllen eines hohlraums mit breiförmigem sprengstoff
DE19503177C1 (de) Verfahren zur Herstellung von Bohrpfählen
US20230159407A1 (en) Mechanically gassed emulsion explosives and related methods and systems
DE1646271C (de) Eingedickte SprengstofTaufschlämmung aus anorganischem Oxydationsmittel, Alkoholbrennmaterial und Wasser
AT294651B (de) Verfahren und Vorrichtung zum Herstellen von Slurrysprengstoffen geregelter Dichte
DE1932579C3 (de) Verfahren zum Regeln der Dichte von schlammförmigen Sprengstoffmischungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: C06B 47/14 20060101ALI20060330BHEP

Ipc: C06B 21/00 20060101AFI20050628BHEP

Ipc: C01B 31/02 20060101ALI20060330BHEP

Ipc: C06B 23/00 20060101ALI20060330BHEP

Ipc: F42D 1/10 20060101ALI20060330BHEP

17P Request for examination filed

Effective date: 20060510

17Q First examination report despatched

Effective date: 20060719

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: HR

Payment date: 20060925

Extension state: YU

Payment date: 20060925

Extension state: LV

Payment date: 20060925

Extension state: AL

Payment date: 20060925

Extension state: MK

Payment date: 20060925

Extension state: BA

Payment date: 20060925

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAXAM DEUTSCHLAND GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140812

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 706953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014655

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150514

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014655

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: PL

Ref legal event code: T4

Ref country code: PL

Ref legal event code: T3

26N No opposition filed

Effective date: 20151015

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150414

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005014655

Country of ref document: DE

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005014655

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005014655

Country of ref document: DE

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210329

Year of fee payment: 17

Ref country code: AT

Payment date: 20210219

Year of fee payment: 17

Ref country code: PL

Payment date: 20210219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210331

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005014655

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 706953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301