EP1570884B1 - Skitunnel - Google Patents

Skitunnel Download PDF

Info

Publication number
EP1570884B1
EP1570884B1 EP05004805A EP05004805A EP1570884B1 EP 1570884 B1 EP1570884 B1 EP 1570884B1 EP 05004805 A EP05004805 A EP 05004805A EP 05004805 A EP05004805 A EP 05004805A EP 1570884 B1 EP1570884 B1 EP 1570884B1
Authority
EP
European Patent Office
Prior art keywords
tunnel
ski
accordance
superstructure
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05004805A
Other languages
German (de)
French (fr)
Other versions
EP1570884A1 (en
Inventor
Peter Riedel
Original Assignee
Riedel Peter Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riedel Peter Dipl-Ing filed Critical Riedel Peter Dipl-Ing
Publication of EP1570884A1 publication Critical patent/EP1570884A1/en
Application granted granted Critical
Publication of EP1570884B1 publication Critical patent/EP1570884B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C19/00Design or layout of playing courts, rinks, bowling greens or areas for water-skiing; Covers therefor
    • A63C19/10Ice-skating or roller-skating rinks; Slopes or trails for skiing, ski-jumping or tobogganing

Definitions

  • the invention relates to a ski tunnel for operating cross-country skiing on natural or artificial snow.
  • Such ski tunnels make cross-country skiing possible regardless of the prevailing weather conditions, especially in the case of weather conditions or during seasons where snow is usually not found outdoors.
  • ski tunnels and ski halls for practicing alpine skiing and Nordic cross-country skiing. They regularly have a floor and a superstructure, which form a relative to the outside world in a substantially climatically sealed interior.
  • ski tunnels and ski halls is regularly a cooling floor, which is traversed by a suitable coolant. On this chilled floor, the snow is applied for practicing the skiing and cooled on the bottom side.
  • the DE-OS 102 61 716 A1 discloses a ski tunnel in which further cooling elements are mounted above the cooling floor. Cooling floor and cooling elements are controllable depending on the conditions in the building to produce desired snow conditions or to preserve the snow in its consistency.
  • a ski hall is known, which forms a substantially closed thermally insulated space. By suitable design of the roof as well as convenient arrangement of air coolers and Schneerzeugern the production of artificial snow better quality is to be made possible.
  • the US 5,327,738 discloses methods of making and maintaining an artificial snow layer in a ski hall in which the humidity is controlled by means of an air conditioning system. From the US Pat. No. 6,079,161 a ski hall is known in which layers of different air temperature are built up by a suitable ventilation system above the snow surface.
  • the previously known ski tunnels or ski halls have a number of disadvantages. Firstly, the snow can not be obtained in good quality over a longer period in them. Rather, it comes in the previously known ski tunnels or ski halls to a relatively rapid metamorphosis of snow to ice. This snow metamorphosis is also known from nature. Examples from nature are the formation of harsch or ice formation in glaciers. The snow metamorphism, which is detrimental to the snow quality, is accelerated by variations in the snow temperature, by a temperature gradient in the snow cover, by warmer air over the snow compared with the snow temperature and by air flow (wind) over the snow. In the known ski halls or ski tunnels, it is not possible to control the aforementioned factors such that the snow metamorphism is delayed as much as possible.
  • ski tunnel or ski halls have the disadvantage that it is not possible to produce exactly defined snow and climatic conditions. However, this is desirable in order to be able to simulate in the ski tunnel the snow and climatic conditions of a particular competition destination.
  • a ski tunnel is proposed, which does not have the aforementioned disadvantages.
  • the aim is therefore a ski tunnel in which the snow is kept as long as possible in the best possible quality.
  • individual areas or parts of the ski tunnel, in particular of the superstructure assume uncontrolled undesirable temperatures.
  • the ski tunnel according to the invention should make it possible to produce certain, well-defined snow and climatic conditions in order, for example, to simulate the competition conditions of a certain competition location.
  • the object is achieved in that an inner surface cooling is provided for cooling the interior surfaces of the superstructure facing the interior of the tunnel.
  • This inner surface cooling is designed so that it cools the inner surfaces of the superstructure substantially over the entire surface.
  • the object is achieved in that the temperature and humidity of the indoor air by means of the air conditioner are independently adjustable.
  • the inner surface of the superstructure can be tempered over the entire surface, that is largely brought in its full surface to a preselected temperature or cooled down.
  • the inner surface of the superstructure over the entire surface can be brought to the same temperature as the indoor air.
  • condensate and ice formation on the inner wall of the superstructure is largely avoided.
  • the heating of the air located in the vicinity of the inner wall is avoided. Due to the full-surface cooling of the floor with the cooling floor and the full-surface cooling means of the réelle viekühlung all relevant to the interior climate of the ski tunnel components are thermally activated, that is, they can be brought to a preselected temperature.
  • the complete thermal activation of the relevant components allows the avoidance of unwanted climatic effects, since the boundary conditions of the climate system in the tunnel interior can be specified almost completely. In particular, the air temperature and humidity values generated by the air conditioning system in the interior of the tunnel can be better maintained. Furthermore, the complete thermal activation of the components in combination with the air conditioning system allows a targeted and exact adjustment of the temperature of the air above the snow. By regulating the cooling floor, the snow temperature can also be controlled.
  • the thermal activation of the components in combination with the air conditioning system thus allows the desired climatic conditions and the desired snow temperature in the interior to actually achieve and maintain for a long time, even if - for example, seasonally - the outdoor climate is fundamentally different.
  • constant conditions can be achieved over the entire tunnel length.
  • the snow metamorphosis can be significantly delayed by influencing the responsible factors.
  • the snow and climatic conditions of certain competition forums can be simulated.
  • the cooling floor, the réelle vomkühlung and the air conditioning are independently adjustable.
  • specifically defined snow and climatic conditions can be more easily produced.
  • the conditions of a particular competition location with respect to snow temperature, air temperature and humidity can be better adjusted.
  • the ski tunnel comprises a ventilation system, which is designed such that conditioned air can be supplied to the greatest possible extent avoiding air flow over the surface of the snow in the tunnel space.
  • this embodiment is another Factor of snow metamorphosis, namely draft across the snow surface, diminished.
  • the insulating layer can also be formed by a vacuum.
  • Such a thermal insulating layer reduces the loss of cooling power in the substructure and in the subjacent subsoil. Furthermore, the impairment of the regulation of the cooling floor is reduced by heat or Kältefluß from the substrate or from the substructure. This makes more efficient and cost-effective operation of the ski tunnel possible.
  • a heatable layer and / or a heatable and / or externally ventilated cavity is provided below the insulating layer.
  • the heating of the heatable layer can be done for example by an electric heater.
  • the heating of the cavity can be made for example by blowing heated air.
  • the same effect can be achieved in that a cavity located below the insulating layer is vented from the outside at outside temperatures above 0 ° C. In this way, frequent or permanent freezing of the foundation of the tunnel is prevented. As a result, the durability of the ski tunnel can be increased because frost damages the substructure and foundation.
  • the inner surface cooling is integrated into the superstructure for cooling the inner surfaces of the superstructure. This can be done, for example, by laying all-over cooling tubes in the superstructure or in an inner layer of the superstructure, through which a suitable coolant flows.
  • the inner surface cooling is applied to the inner wall of the superstructure. This can for example be done in such a way that cooling mats are attached to the inner walls of the superstructure. In this way, the inside surface cooling is easily accessible for maintenance.
  • the superstructure has a plurality of layers, of which at least one is designed as an inner surface cooling.
  • the innermost layer is formed as an internal surface cooling.
  • the closest outer layer can be configured, for example, as an insulating layer. Even in the superstructure, the insulating layer can be formed by a vacuum. The outermost layer or jacket may receive the supporting structure. Also in the superstructure, a heatable layer and / or a ventilated and / or heated cavity may be provided to prevent a permanent or frequent freezing of the outer shell of the superstructure.
  • the ventilation system is connected to the air conditioning system and serves to supply the conditioned air and its distribution in the tunnel interior.
  • the ventilation system is guided along the longitudinal direction of the tunnel and has a plurality of outlets distributed over the length of the tunnel. These outlets are distributed in such a way that an air flow or a draft across the surface of the introduced snow is avoided as far as possible by supplying the conditioned air. This can be achieved, in particular, by setting the outlets in the tunnel longitudinal direction at sufficiently tight intervals.
  • the ventilation system is designed as a pipe system, which is guided along the tunnel, preferably over the entire length.
  • outlets are designed as pipe end pieces, which have in all spatial direction, small holes, so that the exiting air flows as evenly as possible in several directions in space.
  • the ventilation system is insulated from the tunnel space. This prevents a thermal exchange between the air in the interior of the tunnel and the still in the ventilation system air conditioned air comes before the conditioned air passes through the outlets in the tunnel interior. In this way it is achieved that the conditioned air reaches the temperature or humidity values generated by the air conditioning system to the outlets of the ventilation system.
  • a further preferred embodiment provides in the tunnel interior sensors for detecting the air and / or snow temperature and / or the humidity and / or for detecting the heat radiation of the user. With these sensors, the actual snow and climatic conditions inside the tunnel can be detected. The detection of the heat radiation of the users can be used to better control the cooling performance.
  • a control unit is provided with which the cooling floor, the inner surface cooling and / or the air conditioning system are controlled as a function of the conditions in the interior of the tunnel.
  • the control may be performed by the control unit using the values measured by the sensors.
  • a control program is coded in the control unit. With this control program, the chilled floor, the inside surface cooling, the air conditioning system and the ventilation system are controlled in dependence on the values measured by the sensors.
  • the cooling floor in a temperature range of -15 ° C to 0 ° C
  • the internal surface cooling in a temperature range of -15 ° C to + 15 ° C
  • the air temperature adjustable in the range of -15 ° C to + 15 ° C
  • the humidity in the range 45% to 98%.
  • At least one drainage channel is provided in the floor, the floor having a slight gradient towards the at least one drainage channel.
  • the cooling bottom is designed so that it can be charged in the cooling phase with a coolant and in the defrosting phase with water.
  • This configuration makes it possible to accelerate the defrosting when the tunnel, for example, for maintenance purposes, must be defrosted.
  • the chilled bottom can be charged with warm water, resulting in accelerated defrosting of the snow applied to the chilled floor.
  • the superstructure of the ski tunnel consists of several superstructure elements, for example, two side walls, two oblique elements and a ceiling.
  • the interior surfaces of the components facing the interior of the tunnel can be cooled substantially over their entire area by internal surface cooling.
  • the inner surface cooling is formed so that the inner surface cooling of individual superstructure elements are independently adjustable. This allows even better production of defined snow and climatic conditions in the tunnel interior. In particular, a state can be produced in the interior in this way, in which the air temperature varies with the height.
  • the ski tunnel is divided longitudinally into several tunnel sections.
  • Such tunnel sections can be prefabricated and then to a Skitunnel be assembled.
  • the prefabrication of standardized tunnel sections, which can then be assembled to a ski tunnel according to the kit principle, is possible.
  • each tunnel section has a cooling bottom and an inner surface cooling.
  • the cooling floors and / or the inner surface cooling of different tunnel sections are preferably independently adjustable.
  • the cooling floors and internal surface cooling in the respective tunnel sections can be controlled in a targeted manner. This makes it easier and more efficient to produce uniform snow and climate conditions over the entire length of the tunnel.
  • Fig. 1 and Fig. 2 show a schematic representation of the basic structure of the ski tunnel according to the invention 1.
  • Fig. 1 is a cross section through the ski tunnel 1 shown.
  • the superstructure 20 Above the floor 10 is the superstructure 20.
  • the floor 10 and superstructure 20 are sealingly connected to each other and form a relative to the outside world in a substantially climatically sealed tunnel tube.
  • On the ground 10 of the required for cross-country skiing natural or artificial snow 2 is applied.
  • the ventilation system 40 On the ceiling of the superstructure 20, the ventilation system 40 is suspended.
  • a venting system 40 formed from ventilation pipes is shown, wherein the ventilation pipes are attached by means of suspensions 44 to the superstructure belonging to the ceiling of the ski tunnel.
  • Fig. 2 the ski tunnel 1 according to the invention is shown schematically in plan view. In the plan view belonging to the superstructure 20 side walls of the ski tunnel 1 are visible. Shown is in FIG. 2 also the air conditioning system 30, to which the ventilation system 40 is connected. The ventilation system 40 serves to supply the air conditioned by the air conditioning system and its distribution in the tunnel interior. The ventilation system 40 is in Fig. 2 designed as a pipe system. Further shows Fig. 2 a cooling system 50. In the cooling system, the coolant required for cooling the thermal activated components of the ski tunnel is cooled. About coolant lines 52, the cooling system is connected to the thermally activated components, so that closed cooling circuits are formed through which a suitable coolant circulates. In the ski tunnel according to the invention, both the floor and the inner surfaces of the superstructure are thermally activated over the whole area, that is to say in particular they can be cooled over the whole area.
  • air conditioning system 30 allows to produce air in the temperature range of -15 ° C to + 15 ° C and in the humidity range of 45% to 98%.
  • air temperature and humidity in the aforementioned areas are independently adjustable.
  • the conditioned by means of the air conditioner 30 air is supplied via the ventilation system 40 to the tunnel interior and distributed in this.
  • the ventilation system 40 is designed such that air flows or air circulation over the surface of the snow are largely avoided when supplying the conditioned air.
  • control unit 8 cooling system 50 and air conditioning system 30 can be controlled independently.
  • Fig. 3 shows in a cross section through the ski tunnel the full-area component activation according to the invention.
  • a layer of the bottom 10 is formed as a cooling bottom 12.
  • the cooling floor 12 is connected by means of cooling lines 52 to the cooling system 50, so that a cooling circuit is formed, in which a coolant circulates.
  • the cooling floor 12 cools the snow 2 applied to it over its entire surface.
  • Under the cooling floor 12 is the substructure 18, so that the bottom 10 in this embodiment includes the cooling floor 12 and the substructure 18.
  • the interior surfaces 22 of the superstructure 20 facing the interior of the ski tunnel 1 are cooled substantially over their entire area by the inner surface cooling 24.
  • the superstructure consists of several layers, of which the innermost layer 24 is formed as an internal surface cooling 24.
  • the inner surface cooling 24 is also connected via coolant lines 52 to the cooling system 50 for forming one or more cooling circuits in which coolant circulates.
  • the inner surface cooling 24 substantially cools the entire inner surface 22 of the tunnel superstructure so that complete thermal activation of the superstructure is achieved.
  • FIG. 4 shows a cross section through a ski tunnel with a preferably designed bottom 10 and with a preferably designed superstructure 20th
  • FIGS. 5 and 6 show detailed cross sections through preferred embodiments of the floor 10
  • FIGS. 7 and 8 show detailed cross sections through preferred embodiments of the superstructure 20th
  • Fig. 4 is located below the cooling floor 12, an insulating layer 14 for thermal insulation of the cooling floor 12 relative to the substructure 18.
  • a heatable layer 16 may be provided under the insulating layer 14.
  • a heatable and / or ventilated from the outside cavity 17 may be provided below the insulating layer.
  • FIGS. 5 and 6 also shown are supports 19 which support the cooling floor 12 on the substructure 18.
  • the cooling floor 12 is designed to be load-bearing. He has to withstand the loads acting on him, even the load of a conventional piste grooming device. Insulating layer and / or cavity can not wear these loads regularly, so that the supports 19 are required to pass the load on the substructure.
  • FIGS. 7 and 8 possible configurations of the layer structure of the superstructure are shown.
  • the tunnel interior is located on the left, the outside world on the right.
  • Fig. 7 is provided as the innermost layer, the inner surface cooling 24.
  • the next layer is followed by an insulating layer 26.
  • the next layer is followed by a cavity 27, which may be heated or ventilated, which should prevent the outermost supporting layer 29 from freezing through.
  • Fig. 8 a configuration shown in which there is a heater 28 between the insulating layer 26 and the supporting outer layer 29, which is also to prevent frequent or repeated freezing of the supporting outer layer.
  • Fig. 9 shows in a longitudinal section through a ski tunnel according to the invention. Shown is a composite of several tunnel sections 4 ski tunnel. To form the ski tunnel, the tunnel sections 4 are sealed together. In the in Fig. 9 As shown embodiment, the layers of superstructure and ground are interrupted at the seams. Thus, each tunnel section 4 has an independently adjustable cooling floor 12 and an independently adjustable internal surface cooling 24. Further shows FIG. 9 a possible embodiment of the ventilation system 40.
  • the ventilation system 40 is suspended as a pipe system by means of suspensions 44 on the ceiling of the ski tunnel 1 and guided along the longitudinal direction of the ski tunnel.
  • the ventilation system has outlets 42 distributed throughout the length of the tunnel.
  • the distances between the outlets 42 are chosen so close that it does not come to air flows or air circulation over the snow surface in the supply of conditioned air. It is particularly advantageous if the outlets 42 are configured as sieve-like pipe end pieces with a multiplicity of holes pointing in different spatial directions. In this way, the conditioned air is expelled in different spatial directions, which reduces air circulation in the supply of the conditioned air.
  • Fig. 10 shows a cross section through the ski tunnel with sensors 7 for detecting the air temperature, the snow temperature, the humidity and for detecting the heat radiation of the users of the tunnel.
  • Other sensors can be used in the ventilation system 40 and in the outlets 42 may be mounted, for example, to obtain measured values for the control of the air conditioner.
  • Further sensors may be provided in the cooling floor in the insulating layer and in the substructure, with which in particular a freezing of the substructure can be monitored and prevented.
  • Fig. 4 shows that in the bottom 10, a drainage channel 11 can be provided.
  • the drainage channel 11 can be arranged in the middle of the cooling floor.
  • the cooling floor 12 advantageously has a slope to the drainage channel out.
  • FIG. 12 are shown detailed views of the drainage channel 11 and provided for discharging the water drainage system.
  • Fig. 11 shows the drainage channel at a bottom 10 with insulating layer 14 and cavity 16. The water collected in the drainage channel 11 is passed to the drainage pipe 62.
  • the drainage pipe 62 is insulated in the region of the passage through the insulating layer 14 and the cavity 16 with insulating material 64 so that no heat is conducted to the cooling floor 12 via the drainage pipe 62.
  • the drain pipe in the region of the insulating layer by a slide 68 can be closed thermally insulating, so that heat flow from the sewer to the cooling floor and in the snow layer is prevented.
  • the slide is closed during the operating phase of the ski tunnel and opened during defrosting. Dewatered water is introduced through the drainpipe into the sewage system.
  • Fig. 12 shows the formation of the drainage channel at a bottom 10 with insulating layer 12 and heating layer.
  • an insulation of the drain pipe is provided with insulating material 64.
  • this embodiment also has a slide 68 for closing the drainage pipe 62 with respect to the sewer system.
  • Fig. 13 shows a subdivision of the internal surface cooling in several partial surface cooling.
  • wall surface cooling 241 and 245, inclined surface cooling 242 and 244 and a ceiling surface cooling 243 are provided.
  • the aforementioned area cooling 241, 242, 243, 244, 245 are designed so that in turn the entire inner surface of the tunnel space substantially over the entire surface is coolable.
  • the individual surface cooling units 201, 202, 203, 204, 205 can be cooled independently of one another. This allows a better and more differentiated control of the climate in the tunnel interior. In particular, a temperature gradient can be adjusted in height.
  • Fig. 14 shows a subdivision of the tunnel in tunnel sections 4 in plan view.
  • the tunnel sections can be prefabricated as tunnel elements and allow a construction of the tunnel in the kit principle.
  • the individual tunnel sections 4 have cooling floors 12 and inner surface cooling 24, each with its own cooling circuits, so that the cooling floors and the mecanickühlept the various tunnel sections are independently adjustable.
  • a particularly efficient cooling over the entire length of the tunnel can be achieved.
  • constant climatic conditions over the entire length of the tunnel are easier and more efficient to produce.
  • the ski tunnel described above achieves a number of advantages.
  • the snow introduced into the ski tunnel can be maintained longer in consistency than in the prior art because the snow metamorphism can be delayed from snow to ice over the prior art.
  • defined snow and climatic conditions are adjustable in the ski tunnel according to the invention, so that the conditions can be simulated at a certain competition.
  • the inventive layer structure of soil and superstructure, in particular with insulating and heating layer the load-bearing structures of permanent and repeated freezing can be protected, which significantly increases the durability of the ski tunnel.
  • With the specially designed ventilation system air circulation and draft over the snow surface are reduced as much as possible in order to reduce as much as possible another cause of the snow metamorphosis.
  • By subdividing the interior surface cooling which cools the entire area over the entire surface a particularly efficient control of the cooling device can be achieved.
  • an appropriate control which also controls the air conditioning and the ventilation system can constant snow and climate conditions can be set over the entire length of the tunnel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ventilation (AREA)
  • Tires In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Graft Or Block Polymers (AREA)
  • Road Paving Structures (AREA)
  • Greenhouses (AREA)
  • Building Environments (AREA)

Abstract

The ski tunnel (1) has a base (10) and superstructure connected together to form a climate-controlled tunnel shut off from the outside world. The inside faces (22) of the superstructure facing the inside of the tunnel are essentially refrigerated over their entire surface through an inner cooling system (24) whereby the temperature and humidity of the air inside the tunnel can be regulated independently of each other through the climate-control system. The refrigerated floor, internal cooling system and climate control system can all be regulated independently.

Description

Die Erfindung betrifft einen Skitunnel zum Betreiben von Skilanglauf auf Natur- oder Kunstschnee. Derartige Skitunnel ermöglichen den Skilanglauf unabhängig von den jeweiligen Witterungsverhältnissen, insbesondere auch bei Witterungsverhältnissen oder zu Jahreszeiten, bei denen im Freien üblicherweise kein Schnee vorgefunden wird.The invention relates to a ski tunnel for operating cross-country skiing on natural or artificial snow. Such ski tunnels make cross-country skiing possible regardless of the prevailing weather conditions, especially in the case of weather conditions or during seasons where snow is usually not found outdoors.

Vorbekannt sind Skitunnel und Skihallen zum Praktizieren von alpinem Skilauf und nordischem Skilanglauf. Sie weisen regelmäßig einen Boden und einen Überbau auf, die einen gegenüber der Außenwelt im wesentlichen klimatisch abgeschlossenen Innenraum bilden. In den vorbekannten Skitunneln und Skihallen befindet sich regelmäßig ein Kühlboden, der von einem geeigneten Kühlmittel durchströmt wird. Auf diesen Kühlboden wird der Schnee zum Praktizieren des Skilaufs aufgebracht und bodenseitig gekühlt. Weiterhin ist es bekannt, Skihallen mit Klimaanlagen und/oder Belüftungssystemen zur Aufbereitung der Innenraumluft zu versehen.Previously known ski tunnels and ski halls for practicing alpine skiing and Nordic cross-country skiing. They regularly have a floor and a superstructure, which form a relative to the outside world in a substantially climatically sealed interior. In the prior art ski tunnels and ski halls is regularly a cooling floor, which is traversed by a suitable coolant. On this chilled floor, the snow is applied for practicing the skiing and cooled on the bottom side. Furthermore, it is known to provide ski halls with air conditioning and / or ventilation systems for the treatment of indoor air.

Die DE-OS 102 61 716 A1 offenbart einen Skitunnel, bei dem über dem Kühlboden weitere Kühlelemente angebracht sind. Kühlboden und Kühlelemente sind abhängig von den Bedingungen im Bauwerk steuerbar um gewünschte Schneebedingungen herzustellen bzw. um den Schnee in seiner Konsistenz zu erhalten. Aus der DE 201 09 268 U1 ist eine Skihalle bekannt, die einen im wesentlichen geschlossenen thermisch isolierten Raum bildet. Durch geeignete Ausgestaltung des Daches sowie zweckmäßige Anordnung von Luftkühlern und Schneerzeugern soll die Herstellung von Kunstschnee besserer Qualität ermöglicht werden. Die US 5 327 738 offenbart Verfahren zur Herstellung und Erhaltung einer künstlichen Schneeschicht in einer Skihalle, bei denen die Luftfeuchtigkeit mittels einer Klimaanlage gesteuert wird. Aus der US 6 079 161 ist eine Skihalle bekannt, in der durch ein geeignetes Belüftungssystem über der Schneeoberfläche Schichten unterschiedlicher Lufttemperatur aufgebaut werden.The DE-OS 102 61 716 A1 discloses a ski tunnel in which further cooling elements are mounted above the cooling floor. Cooling floor and cooling elements are controllable depending on the conditions in the building to produce desired snow conditions or to preserve the snow in its consistency. From the DE 201 09 268 U1 a ski hall is known, which forms a substantially closed thermally insulated space. By suitable design of the roof as well as convenient arrangement of air coolers and Schneerzeugern the production of artificial snow better quality is to be made possible. The US 5,327,738 discloses methods of making and maintaining an artificial snow layer in a ski hall in which the humidity is controlled by means of an air conditioning system. From the US Pat. No. 6,079,161 a ski hall is known in which layers of different air temperature are built up by a suitable ventilation system above the snow surface.

Die vorbekannten Skitunnel bzw. Skihallen weisen eine Reihe von Nachteilen auf. Zum einen kann in ihnen der Schnee nicht über einen längeren Zeitraum in guter Qualität erhalten werden. Vielmehr kommt es in den vorbekannten Skitunneln bzw. Skihallen zu einer vergleichsweise schnellen Metamorphose des Schnees zu Eis. Diese Schneemetamorphose ist auch aus der Natur bekannt. Beispiele aus der Natur sind die Bildung von Harsch oder die Eisbildung in Gletschern. Beschleunigt wird die für die Schneequalität nachteilige Schneemetamorphose durch Schwankungen der Schneetemperatur, durch einen Temperaturgradienten in der Schneeauflage, durch gegenüber der Schneetemperatur wärmere Luft über dem Schnee sowie durch Luftströmung (Wind) über dem Schnee. In den vorbekannten Skihallen bzw. Skitunneln ist es nicht möglich, die vorgenannten Faktoren derart zu steuern, daß die Schneemetamorphose soweit wie möglich verzögert wird.The previously known ski tunnels or ski halls have a number of disadvantages. Firstly, the snow can not be obtained in good quality over a longer period in them. Rather, it comes in the previously known ski tunnels or ski halls to a relatively rapid metamorphosis of snow to ice. This snow metamorphosis is also known from nature. Examples from nature are the formation of harsch or ice formation in glaciers. The snow metamorphism, which is detrimental to the snow quality, is accelerated by variations in the snow temperature, by a temperature gradient in the snow cover, by warmer air over the snow compared with the snow temperature and by air flow (wind) over the snow. In the known ski halls or ski tunnels, it is not possible to control the aforementioned factors such that the snow metamorphism is delayed as much as possible.

Zudem weisen bei den vorbekannten Skihallen bzw. Skitunneln verschiedene Bereiche des Überbaus verschiedene und häufig unerwünschte Temperaturen auf, die zudem von der Lufttemperatur verschieden sein können. Dadurch kommt es einerseits zu Niederschlag von Kondenswasser sowie zu Vereisung von Oberflächen im Bereich des Überbaus, andererseits zu lokaler Erwärmung der Luft und Feuchtigkeitsaufnahme.In addition, in the case of the previously known ski halls or ski tunnels, different areas of the superstructure have different and often undesirable temperatures, which in addition may differ from the air temperature. On the one hand precipitation of condensation and icing of surfaces in the area of the superstructure, on the other hand local heating of the air and moisture absorption.

Weiterhin weisen die vorbekannten Skitunnel bzw. Skihallen den Nachteil auf, daß es nicht möglich ist, exakt definierte Schnee- und Klimabedingungen herzustellen. Dies ist jedoch wünschenswert, um in dem Skitunnel die Schnee- und Klimabedingungen eines bestimmten Wettkampfortes simulieren zu können.Furthermore, the previously known ski tunnel or ski halls have the disadvantage that it is not possible to produce exactly defined snow and climatic conditions. However, this is desirable in order to be able to simulate in the ski tunnel the snow and climatic conditions of a particular competition destination.

Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, einen verbesserten Skitunnel vorzuschlagen. Insbesondere soll ein Skitunnel vorgeschlagen werden, der die vorgenannten Nachteile nicht aufweist. Angestrebt ist daher ein Skitunnel, bei dem der eingebrachte Schnee möglichst lange in möglichst guter Qualität erhalten wird. Weiterhin soll vermieden werden, daß einzelnen Bereiche oder Teile des Skitunnels, insbesondere des Überbaus, unkontrolliert unerwünschte Temperaturen annehmen. Schließlich soll es der erfindungsgemäße Skitunnel ermöglichen, bestimmte, wohl definierte Schnee- und Klimabedingungen herzustellen, um beispielsweise die Wettkampfbedingungen eines bestimmen Wettkampfortes zu simulieren.Against this background, it is an object of the present invention to propose an improved ski tunnel. In particular, a ski tunnel is proposed, which does not have the aforementioned disadvantages. The aim is therefore a ski tunnel in which the snow is kept as long as possible in the best possible quality. Furthermore, it should be avoided that individual areas or parts of the ski tunnel, in particular of the superstructure, assume uncontrolled undesirable temperatures. Finally, the ski tunnel according to the invention should make it possible to produce certain, well-defined snow and climatic conditions in order, for example, to simulate the competition conditions of a certain competition location.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß eine Innenflächenkühlung zur Kühlung der zum Innenraum des Tunnels gewandten Innenflächen des Überbaus vorgesehen ist. Diese Innenflächenkühlung ist so ausgebildet, daß sie die Innenflächen des Überbaus im wesentlichen vollflächig kühlt. Weiterhin wird die Aufgabe dadurch gelöst, daß die Temperatur und die Feuchtigkeit der Innenraumluft mit Hilfe der Klimaanlage unabhängig voneinander regulierbar sind.According to the invention the object is achieved in that an inner surface cooling is provided for cooling the interior surfaces of the superstructure facing the interior of the tunnel. This inner surface cooling is designed so that it cools the inner surfaces of the superstructure substantially over the entire surface. Furthermore, the object is achieved in that the temperature and humidity of the indoor air by means of the air conditioner are independently adjustable.

Auf diese Weise werden die gewünschten Vorteile erreicht. Durch die Innenflächenkühlung kann die Innenfläche des Überbaus vollflächig temperiert werden, das heißt weitgehend in ihrer vollen Fläche auf eine vorgewählte Temperatur gebracht bzw. heruntergekühlt werden. Insbesondere kann die Innenfläche des Überbaus vollflächig auf die gleiche Temperatur wie die Innenraumluft gebracht werden. Dadurch wird einerseits die Kondensat- und Eisbildung an der Innenwand des Überbaus weitgehend vermieden. Andererseits wird die Erwärmung der in der Nähe der Innenwand befindlichen Luft vermieden. Durch die vollflächige Kühlung des Bodens mit dem Kühlboden und die vollflächige Kühlung mittels der Innenflächenkühlung sind alle für das Innenraumklima des Skitunnels relevanten Bauteile thermisch aktiviert, das heißt sie können auf eine vorgewählte Temperatur gebracht werden.In this way, the desired benefits are achieved. Due to the inner surface cooling, the inner surface of the superstructure can be tempered over the entire surface, that is largely brought in its full surface to a preselected temperature or cooled down. In particular, the inner surface of the superstructure over the entire surface can be brought to the same temperature as the indoor air. As a result, on the one hand condensate and ice formation on the inner wall of the superstructure is largely avoided. On the other hand, the heating of the air located in the vicinity of the inner wall is avoided. Due to the full-surface cooling of the floor with the cooling floor and the full-surface cooling means of the Innenflächenkühlung all relevant to the interior climate of the ski tunnel components are thermally activated, that is, they can be brought to a preselected temperature.

Durch die Kombination der vollständigen thermischen Aktivierung der Bauteile mit der regulierbaren Klimaanlage werden die angestrebten besonderen Vorteile erreicht. Die vollständige thermische Aktivierung der relevanten Bauteile erlaubt die Vermeidung von unerwünschten klimatischen Effekten, da die Randbedingungen des Klimasystems im Tunnelinnenraum nahezu lückenlos vorgegeben werden können. So können insbesondere die von der Klimaanlage erzeugten Lufttemperatur- und Luftfeuchtigkeitswerte im Tunnelinnenraum besser aufrechterhalten werden. Weiterhin erlaubt die vollständige thermische Aktivierung der Bauteile in Kombination mit der Klimaanlage eine gezielte und exakte Einstellung der Temperatur der über dem Schnee befindlichen Luft. Durch Regulierung des Kühlbodens kann zudem die Schneetemperatur gesteuert werden. Die thermische Aktivierung der Bauteile in Kombination mit der Klimaanlage erlaubt also die gewünschten Klimabedingungen und die gewünschte Schneetemperatur im Innenraum tatsächlich zu erreichen und über lange Zeit aufrechtzuerhalten, und zwar selbst dann, wenn - zum Beispiel jahreszeitbedingt - das Außenklima grundlegend verschieden ist. Zudem können über die gesamte Tunnellänge konstante Bedingungen erreicht werden. So kann insbesondere die für Schneemetamorphose durch Beeinflussen der verantwortlichen Faktoren maßgeblich verzögert werden. Weiterhin können die Schnee- und Klimabedingungen bestimmter Wettkampforte simuliert werden.By combining the complete thermal activation of the components with the adjustable air conditioning system, the desired special advantages are achieved. The complete thermal activation of the relevant components allows the avoidance of unwanted climatic effects, since the boundary conditions of the climate system in the tunnel interior can be specified almost completely. In particular, the air temperature and humidity values generated by the air conditioning system in the interior of the tunnel can be better maintained. Furthermore, the complete thermal activation of the components in combination with the air conditioning system allows a targeted and exact adjustment of the temperature of the air above the snow. By regulating the cooling floor, the snow temperature can also be controlled. The thermal activation of the components in combination with the air conditioning system thus allows the desired climatic conditions and the desired snow temperature in the interior to actually achieve and maintain for a long time, even if - for example, seasonally - the outdoor climate is fundamentally different. In addition, constant conditions can be achieved over the entire tunnel length. Thus, in particular, the snow metamorphosis can be significantly delayed by influencing the responsible factors. Furthermore, the snow and climatic conditions of certain competition forums can be simulated.

In einer bevorzugten Ausgestaltung sind der Kühlboden, die Innenflächenkühlung und die Klimaanlage unabhängig voneinander regulierbar. Durch diese Ausgestaltung können gezielt definierte Schnee- und Klimabedingungen leichter hergestellt werden. Beispielsweise können die Bedingungen eines bestimmten Wettkampfortes hinsichtlich Schneetemperatur, Lufttemperatur und Luftfeuchtigkeit besser eingestellt werden.In a preferred embodiment, the cooling floor, the Innenflächenkühlung and the air conditioning are independently adjustable. By means of this embodiment, specifically defined snow and climatic conditions can be more easily produced. For example, the conditions of a particular competition location with respect to snow temperature, air temperature and humidity can be better adjusted.

In einer weiter bevorzugten Ausgestaltung umfaßt der Skitunnel ein Belüftungssystem, das derart ausgebildet ist, daß klimatisierte Luft unter möglichst weitgehender Vermeidung von Luftströmung über der Oberfläche des Schnees in den Tunnelraum zugeführt werden kann. Damit wird durch diese Ausgestaltung ein weiterer Faktor der Schneemetamorphose, nämlich Luftzug über der Schneeoberfläche, vermindert.In a further preferred embodiment, the ski tunnel comprises a ventilation system, which is designed such that conditioned air can be supplied to the greatest possible extent avoiding air flow over the surface of the snow in the tunnel space. Thus, this embodiment is another Factor of snow metamorphosis, namely draft across the snow surface, diminished.

Vorteilhaft ist es, unter dem Kühlboden eine Isolierschicht zur thermischen Isolierung des Kühlbodens gegenüber dem Unterbau vorzusehen. Die Isolierschicht kann auch durch ein Vakuum gebildet werden. Durch eine solche thermische Isolierschicht wird der Verlust von Kühlleistung in den Unterbau und in den darunter befindlichen Untergrund vermindert. Weiterhin wird die Beeinträchtigung der Regulierung des Kühlbodens durch Wärme- bzw. Kältefluß aus dem Untergrund bzw. aus dem Unterbau vermindert. Dadurch wird ein effizienterer und kostengünstiger Betrieb des Skitunnels möglich.It is advantageous to provide an insulating layer for thermal insulation of the cooling base in relation to the substructure below the cooling floor. The insulating layer can also be formed by a vacuum. Such a thermal insulating layer reduces the loss of cooling power in the substructure and in the subjacent subsoil. Furthermore, the impairment of the regulation of the cooling floor is reduced by heat or Kältefluß from the substrate or from the substructure. This makes more efficient and cost-effective operation of the ski tunnel possible.

Nach einer weiteren Verbesserung ist unterhalb der Isolierschicht eine beheizbare Schicht und/oder ein beheizbarer und/oder von außen belüfteter Hohlraum vorgesehen. Die Beheizung der beheizbaren Schicht kann beispielsweise durch eine Elektroheizung erfolgen. Die Beheizung des Hohlraumes kann beispielsweise durch Einblasen von geheizter Luft vorgenommen werden. Mit dieser Verbesserung wird ein dauerhaftes Durchfrieren des Unterbaus bzw. Fundamentes des Skitunnels verhindert. Die unter dem Kühlboden befindliche thermische Isolierschicht kann den Wärme- bzw. Kältefluß nämlich nicht vollständig verhindern, sondern nur verzögern. Dies kann dazu führen, daß der vom Kühlboden hergestellte Frostbereich unter bestimmten Bedingungen durch die gesamte Isolierschicht hindurchreicht, so daß sich die Frostgrenze im Unterbau bzw. im Fundament des Skitunnels befindet. Durch eine unterhalb der Isolierschicht befindliche Heizung kann die Frostgrenze im Bereich der Isolierschicht gehalten werden. Der gleiche Effekt kann dadurch erreicht werden, daß ein unterhalb der Isolierschicht befindlicher Hohlraum bei Außentemperaturen über 0°C von außen belüftet wird. Auf diese Weise wird ein häufiges oder dauerhaftes Gefrieren des Unterbaus bzw. Fundaments des Tunnels verhindert. Dadurch kann die Haltbarkeit des Skitunnels erhöht werden, da Frost Unterbau und Fundament beschädigt.After a further improvement, a heatable layer and / or a heatable and / or externally ventilated cavity is provided below the insulating layer. The heating of the heatable layer can be done for example by an electric heater. The heating of the cavity can be made for example by blowing heated air. With this improvement, a permanent freezing of the base or foundation of the ski tunnel is prevented. The thermal insulation layer located under the cooling floor can not completely prevent the heat or cold flow, but only delay it. This can cause the frost area made by the cooling floor under certain conditions extends through the entire insulating layer, so that the frost limit is located in the substructure or in the foundation of the ski tunnel. By a heater located below the insulating layer, the frost limit can be kept in the region of the insulating layer. The same effect can be achieved in that a cavity located below the insulating layer is vented from the outside at outside temperatures above 0 ° C. In this way, frequent or permanent freezing of the foundation of the tunnel is prevented. As a result, the durability of the ski tunnel can be increased because frost damages the substructure and foundation.

In einer weiter bevorzugten Ausgestaltung ist die Innenflächenkühlung zur Kühlung der Innenflächen des Überbaus in den Überbau integriert. Dies kann beispielsweise dadurch erfolgen, daß im Überbau bzw. in einer inneren Schicht des Überbaus vollflächig Kühlrohre verlegt werden, die von einem geeigneten Kühlmittel durchströmt werden.In a further preferred embodiment, the inner surface cooling is integrated into the superstructure for cooling the inner surfaces of the superstructure. This can be done, for example, by laying all-over cooling tubes in the superstructure or in an inner layer of the superstructure, through which a suitable coolant flows.

In einer anderen Ausgestaltung wird die Innenflächenkühlung auf die Innenwand des Überbaus aufgebracht. Dies kann zum Beispiel in der Weise geschehen, daß Kühlmatten an den Innenwänden des Überbaus befestigt werden. Auf diese Weise ist die Innenflächenkühlung leicht für Wartungsarbeiten zugänglich.In another embodiment, the inner surface cooling is applied to the inner wall of the superstructure. This can for example be done in such a way that cooling mats are attached to the inner walls of the superstructure. In this way, the inside surface cooling is easily accessible for maintenance.

In einer weiter bevorzugten Ausgestaltung weist der Überbau mehrere Schichten auf, von denen mindestens eine als Innenflächenkühlung ausgebildet ist. Zweckmäßigerweise wird die innerste Schicht als Innenflächenkühlung ausgebildet. Die nächstliegende äußere Schicht kann beispielsweise als Isolierschicht ausgestaltet werden. Auch im Überbau kann die Isolierschicht durch ein Vakuum gebildet werden. Die äußerste Schicht bzw. der äußere Mantel kann die tragende Konstruktion aufnehmen. Auch im Überbau kann eine beheizbare Schicht und/oder ein belüfteter und/oder beheizter Hohlraum vorgesehen werden, um ein dauerhaftes oder häufiges Durchfrieren des äußeren Mantels des Überbaus zu verhindern.In a further preferred embodiment, the superstructure has a plurality of layers, of which at least one is designed as an inner surface cooling. Conveniently, the innermost layer is formed as an internal surface cooling. The closest outer layer can be configured, for example, as an insulating layer. Even in the superstructure, the insulating layer can be formed by a vacuum. The outermost layer or jacket may receive the supporting structure. Also in the superstructure, a heatable layer and / or a ventilated and / or heated cavity may be provided to prevent a permanent or frequent freezing of the outer shell of the superstructure.

Eine weitere Verbesserung betrifft die Ausgestaltung des Belüftungssystems. Das Belüftungssystem ist an die Klimaanlage angeschlossen und dient der Zuführung der klimatisierten Luft und ihrer Verteilung im Tunnelinnenraum. Vorteilhafterweise ist das Belüftungssystem entlang der Längsrichtung des Tunnels geführt und weist mehrere, über die Länge des Tunnels verteilte Auslässe auf. Diese Auslässe sind derart verteilt, daß durch die Zuführung der klimatisierten Luft eine Luftströmung bzw. ein Luftzug über die Oberfläche des eingebrachten Schnees möglichst weitgehend vermieden wird. Dies kann insbesondere dadurch erreicht werden, daß die Auslässe in Tunnellängsrichtung in hinreichend dichten Abständen gesetzt werden. Vorteilhafterweise ist das Belüftungssystem als Rohrsystem ausgestaltet, das entlang des Tunnels, vorzugsweise über die gesamte Länge, geführt ist. Eine zusätzliche Verminderung von Luftzirkulationen kann dadurch erreicht werden, daß die Auslässe als Rohrendstücke ausgestaltet sind, die in alle Raumrichtung gewandte, kleine Löcher aufweisen, so daß die austretende Luft möglichst gleichmäßig in mehrere Raumrichtungen strömt. Durch die vorgenannten Verbesserungen des Belüftungssystems wird die Metamorphose des Schnees zu Eis durch Luftzug über der Schneeoberfläche verringert.Another improvement relates to the design of the ventilation system. The ventilation system is connected to the air conditioning system and serves to supply the conditioned air and its distribution in the tunnel interior. Advantageously, the ventilation system is guided along the longitudinal direction of the tunnel and has a plurality of outlets distributed over the length of the tunnel. These outlets are distributed in such a way that an air flow or a draft across the surface of the introduced snow is avoided as far as possible by supplying the conditioned air. This can be achieved, in particular, by setting the outlets in the tunnel longitudinal direction at sufficiently tight intervals. Advantageously, the ventilation system is designed as a pipe system, which is guided along the tunnel, preferably over the entire length. An additional Reduction of air circulation can be achieved in that the outlets are designed as pipe end pieces, which have in all spatial direction, small holes, so that the exiting air flows as evenly as possible in several directions in space. The above-mentioned improvements to the ventilation system reduce snow metamorphosis to ice by draft across the snow surface.

In einer weiter bevorzugten Ausgestaltung ist das Belüftungssystem gegenüber dem Tunnelraum isoliert. Dadurch wird verhindert, daß es zu einem thermischen Austausch zwischen der Luft im Innenraum des Tunnels und der noch im Belüftungssystem befindlichen klimatisierten Luft kommt, bevor die klimatisierte Luft durch die Auslässe in den Tunnelinnenraum gelangt. Auf diese Weise wird erreicht, daß die klimatisierte Luft mit den von der Klimaanlage erzeugten Temperatur- bzw. Feuchtigkeitswerten zu den Auslässen des Belüftungssystems gelangt.In a further preferred embodiment, the ventilation system is insulated from the tunnel space. This prevents a thermal exchange between the air in the interior of the tunnel and the still in the ventilation system air conditioned air comes before the conditioned air passes through the outlets in the tunnel interior. In this way it is achieved that the conditioned air reaches the temperature or humidity values generated by the air conditioning system to the outlets of the ventilation system.

Eine weitere bevorzugte Ausgestaltung sieht im Tunnelinnenraum Sensoren zur Erfassung der Luft- und/oder Schneetemperatur und/oder der Luftfeuchtigkeit und/oder zur Erfassung der Wärmeabstrahlung der Nutzer vor. Mit diesen Sensoren können die tatsächlichen Schnee- und Klimabedingungen im Tunnelinneren erfaßt werden. Die Erfassung der Wärmeabstrahlung der Nutzer kann verwendet werden, um die Kühlleistung besser zu steuern.A further preferred embodiment provides in the tunnel interior sensors for detecting the air and / or snow temperature and / or the humidity and / or for detecting the heat radiation of the user. With these sensors, the actual snow and climatic conditions inside the tunnel can be detected. The detection of the heat radiation of the users can be used to better control the cooling performance.

In einer weiteren Verbesserung ist eine Steuereinheit vorgesehen, mit der der Kühlboden, die Innenflächenkühlung und/oder die Klimaanlage in Abhängigkeit von den Bedingungen im Tunnelinnenraum gesteuert werden. Insbesondere kann die Steuerung durch die Steuereinheit unter Verwendung der von den Sensoren gemessenen Werte erfolgen. In einer weiteren Verbesserung ist in der Steuereinheit ein Steuerprogramm codiert. Mit diesem Steuerprogramm werden der Kühlboden, die Innenflächenkühlung, die Klimaanlage und das Belüftungssystem in Abhängigkeit von den von den Sensoren gemessenen Werten gesteuert. Zweckmäßigerweise ist der Kühlboden in einem Temperaturbereich von -15°C bis 0°C, die Innenflächenkühlung in einem Temperaturbereich von -15°C bis +15°C, die Lufttemperatur im Bereich von -15°C bis +15°C und die Luftfeuchtigkeit im Bereich 45% bis 98% regulierbar.In a further improvement, a control unit is provided with which the cooling floor, the inner surface cooling and / or the air conditioning system are controlled as a function of the conditions in the interior of the tunnel. In particular, the control may be performed by the control unit using the values measured by the sensors. In a further improvement, a control program is coded in the control unit. With this control program, the chilled floor, the inside surface cooling, the air conditioning system and the ventilation system are controlled in dependence on the values measured by the sensors. Conveniently, the cooling floor in a temperature range of -15 ° C to 0 ° C, the internal surface cooling in a temperature range of -15 ° C to + 15 ° C, the air temperature adjustable in the range of -15 ° C to + 15 ° C and the humidity in the range 45% to 98%.

In einem weiter verbesserten Skitunnel ist im Boden mindestens ein Entwässerungskanal vorgesehen, wobei der Boden zu dem mindestens einen Entwässerungskanal hin ein leichtes Gefälle aufweist. Durch diese Ausgestaltung wird erreicht, daß das beim Abtauen der Schneeauflage entstehende Wasser in den mindestens einen Entwässerungskanal hineinläuft und über diesen abgeführt wird. So wird verhindert, daß sich das Tauwasser beim Abtauen des Tunnels in der Abtauphase unkontrolliert über den Tunnelboden verteilt oder in den Unterbau bzw. in das Fundament hineinläuft.In a further improved ski tunnel, at least one drainage channel is provided in the floor, the floor having a slight gradient towards the at least one drainage channel. By this configuration it is achieved that the water formed during defrosting of the snow pad runs into the at least one drainage channel and is discharged via this. This prevents the condensation on defrosting of the tunnel in the defrosting phase is distributed uncontrollably over the tunnel floor or runs into the substructure or in the foundation.

Vorteilhafterweise ist der Kühlboden so ausgestaltet, daß er in der Kühlphase mit einem Kühlmittel und in der Abtauphase mit Wasser beschickt werden kann. Diese Ausgestaltung erlaubt es, den Abtauvorgang zu beschleunigen, wenn der Tunnel, beispielsweise zu Wartungszwecken, abgetaut werden muß. In diesem Fall kann der Kühlboden mit warmem Wasser beschickt werden, was zu einem beschleunigten Abtauen des auf den Kühlboden aufgebrachten Schnees führt.Advantageously, the cooling bottom is designed so that it can be charged in the cooling phase with a coolant and in the defrosting phase with water. This configuration makes it possible to accelerate the defrosting when the tunnel, for example, for maintenance purposes, must be defrosted. In this case, the chilled bottom can be charged with warm water, resulting in accelerated defrosting of the snow applied to the chilled floor.

In einer anderen vorteilhaften Ausgestaltung besteht der Überbau des Skitunnels aus mehreren Überbauelementen, beispielsweise aus zwei Seitenwänden, zwei Schrägelementen und einer Decke. Auch bei dieser Ausgestaltung sind die zum Innenraum des Tunnels gewandten Innenflächen der Bestandteile durch Innenflächenkühlungen im wesentlichen vollflächig kühlbar. Dabei sind die Innenflächenkühlungen so ausbildet, daß die Innenflächenkühlung einzelner Überbauelemente unabhängig voneinander regulierbar sind. Dies ermöglicht eine noch bessere Herstellung von definierten Schnee- und Klimabedingungen in dem Tunnelinnenraum. Insbesondere kann im Innenraum auf diese Weise ein Zustand hergestellt werden, bei dem die Lufttemperatur mit der Höhe variiert.In another advantageous embodiment, the superstructure of the ski tunnel consists of several superstructure elements, for example, two side walls, two oblique elements and a ceiling. Also in this embodiment, the interior surfaces of the components facing the interior of the tunnel can be cooled substantially over their entire area by internal surface cooling. The inner surface cooling is formed so that the inner surface cooling of individual superstructure elements are independently adjustable. This allows even better production of defined snow and climatic conditions in the tunnel interior. In particular, a state can be produced in the interior in this way, in which the air temperature varies with the height.

Vorteilhafterweise ist der Skitunnel in Längsrichtung in mehrere Tunnelabschnitte unterteilt. Derartige Tunnelabschnitte können vorgefertigt werden und dann zu einem Skitunnel zusammengesetzt werden. Möglich ist insbesondere die Vorfertigung standardisierter Tunnelabschnitte, die dann nach dem Bausatzprinzip zu einem Skitunnel zusammengesetzt werden können. In dieser Ausgestaltung weist jeder Tunnelabschnitt einen Kühlboden und eine Innenflächenkühlung auf. Die Kühlböden und/oder die Innenflächenkühlungen verschiedener Tunnelabschnitte sind vorzugsweise unabhängig voneinander regulierbar. Dadurch können die Kühlböden und Innenflächenkühlungen in den jeweiligen Tunnelabschnitten gezielt gesteuert werden. Damit wird die Herstellung von einheitlichen Schnee- und Klimabedingungen über die Gesamtlänge des Tunnels leichter und effizienter möglich.Advantageously, the ski tunnel is divided longitudinally into several tunnel sections. Such tunnel sections can be prefabricated and then to a Skitunnel be assembled. In particular, the prefabrication of standardized tunnel sections, which can then be assembled to a ski tunnel according to the kit principle, is possible. In this embodiment, each tunnel section has a cooling bottom and an inner surface cooling. The cooling floors and / or the inner surface cooling of different tunnel sections are preferably independently adjustable. As a result, the cooling floors and internal surface cooling in the respective tunnel sections can be controlled in a targeted manner. This makes it easier and more efficient to produce uniform snow and climate conditions over the entire length of the tunnel.

Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der beigefügten Zeichnungen im einzelnen erläutert. Dabei zeigt:

Fig. 1
Querschnitt durch einen Skitunnel in schematischer Darstellung
Fig. 2
Draufsicht auf einen Skitunnel mit Klimaanlage, Belüftungssystem, Kühlanlage und Steuereinheit
Fig. 3
Querschnitt durch einen erfindungsgemäßen Skitunnel mit Klimaanlage
Fig. 4
Querschnitt durch einen erfindungsgemäßen Skitunnel mit bevorzugter Ausgestaltung des Bodens
Fig. 5
Detaillierter Querschnitt durch den Boden mit Isolierschicht und beheizter Schicht
Fig. 6
Detaillierter Querschnitt durch den Boden mit Isolierschicht und Hohlraum
Fig. 7
Detaillierter Querschnitt durch die Wandung des Ãœberbaus mit Hohlraum
Fig. 8
Detaillierter Querschnitt durch die Wandung des Ãœberbaus mit beheizter Schicht
Fig. 9
Längsschnitt durch einen Skitunnel mit Nahtstelle zwischen zwei Tunnelabschnitten
Fig. 10
Querschnitt durch den Skitunnel mit Sensoren
Fig. 11
Detailansicht des Entwässerungskanals bei Boden mit Hohlraum
Fig. 12
Detailansicht des Entwässerungskanals bei Boden mit beheizter Schicht
Fig. 13
Querschnitt durch Skitunnel mit mehreren Ãœberbauelementen
Fig. 14
Draufsicht auf den Skitunnel bestehend aus mehreren Tunnelabschnitten
An embodiment of the invention will be explained below with reference to the accompanying drawings. Showing:
Fig. 1
Cross section through a ski tunnel in a schematic representation
Fig. 2
Top view of a ski tunnel with air conditioning, ventilation system, cooling system and control unit
Fig. 3
Cross section through a ski tunnel according to the invention with air conditioning
Fig. 4
Cross section through a ski tunnel according to the invention with a preferred embodiment of the floor
Fig. 5
Detailed cross section through the floor with insulating layer and heated layer
Fig. 6
Detailed cross section through the floor with insulating layer and cavity
Fig. 7
Detailed cross section through the wall of the superstructure with cavity
Fig. 8
Detailed cross section through the wall of the superstructure with heated layer
Fig. 9
Longitudinal section through a ski tunnel with an interface between two tunnel sections
Fig. 10
Cross section through the ski tunnel with sensors
Fig. 11
Detail view of the drainage channel at floor with cavity
Fig. 12
Detail view of the drainage channel at floor with heated layer
Fig. 13
Cross section through ski tunnel with several superstructure elements
Fig. 14
Top view of the ski tunnel consisting of several tunnel sections

Fig. 1 und Fig. 2 zeigen in schematischer Darstellung den Grundaufbau des erfindungsgemäßen Skitunnels 1. In Fig. 1 ist ein Querschnitt durch den Skitunnel 1 dargestellt. Über dem Boden 10 befindet sich der Überbau 20. Boden 10 und Überbau 20 sind dichtend miteinander verbunden und bilden eine gegenüber der Außenwelt im wesentlichen klimatisch abgeschlossene Tunnelröhre. Auf den Boden 10 wird der für den Skilanglauf erforderliche Natur- oder Kunstschnee 2 aufgebracht. An der Decke des Überbaus 20 ist das Belüftungssystem 40 aufgehängt. In Fig. 1 ist ein aus Belüftungsrohren gebildetes Belüftungssystem 40 dargestellt, wobei die Belüftungsrohre mittels Aufhängungen 44 an der zum Überbau gehörigen Decke des Skitunnels befestigt sind. Fig. 1 and Fig. 2 show a schematic representation of the basic structure of the ski tunnel according to the invention 1. In Fig. 1 is a cross section through the ski tunnel 1 shown. Above the floor 10 is the superstructure 20. The floor 10 and superstructure 20 are sealingly connected to each other and form a relative to the outside world in a substantially climatically sealed tunnel tube. On the ground 10 of the required for cross-country skiing natural or artificial snow 2 is applied. On the ceiling of the superstructure 20, the ventilation system 40 is suspended. In Fig. 1 a venting system 40 formed from ventilation pipes is shown, wherein the ventilation pipes are attached by means of suspensions 44 to the superstructure belonging to the ceiling of the ski tunnel.

In Fig. 2 ist der erfindungsgemäße Skitunnel 1 in Draufsicht schematisch dargestellt. In der Draufsicht sind die zum Überbau 20 gehörigen Seitenwände des Skitunnels 1 sichtbar. Gezeigt ist in Figur 2 außerdem die Klimaanlage 30, an die das Belüftungssystem 40 angeschlossen ist. Das Belüftungssystem 40 dient der Zuführung der von der Klimaanlage klimatisierten Luft und ihrer Verteilung im Tunnelinnenraum. Das Belüftungssystem 40 ist in Fig. 2 als Rohrsystem ausgestaltet. Weiterhin zeigt Fig. 2 eine Kühlanlage 50. In der Kühlanlage wird das zur Kühlung der thermischen aktivierten Bauteile des Skitunnels erforderliche Kühlmittel gekühlt. Über Kühlmittelleitungen 52 ist die Kühlanlage mit dem thermisch aktivierten Bauteilen verbunden, so daß geschlossene Kühlkreisläufe gebildet werden, durch die ein geeignetes Kühlmittel zirkuliert. Im erfindungsgemäßen Skitunnel sind sowohl der Boden als auch die Innenflächen des Überbaus vollflächig thermisch aktiviert, das heißt insbesondere vollflächig kühlbar.In Fig. 2 the ski tunnel 1 according to the invention is shown schematically in plan view. In the plan view belonging to the superstructure 20 side walls of the ski tunnel 1 are visible. Shown is in FIG. 2 also the air conditioning system 30, to which the ventilation system 40 is connected. The ventilation system 40 serves to supply the air conditioned by the air conditioning system and its distribution in the tunnel interior. The ventilation system 40 is in Fig. 2 designed as a pipe system. Further shows Fig. 2 a cooling system 50. In the cooling system, the coolant required for cooling the thermal activated components of the ski tunnel is cooled. About coolant lines 52, the cooling system is connected to the thermally activated components, so that closed cooling circuits are formed through which a suitable coolant circulates. In the ski tunnel according to the invention, both the floor and the inner surfaces of the superstructure are thermally activated over the whole area, that is to say in particular they can be cooled over the whole area.

Die in Fig. 2 dargestellte Klimaanlage 30 erlaubt es, Luft im Temperaturbereich von -15°C bis +15°C und im Feuchtigkeitsbereich von 45% bis 98% zu erzeugen. Bei dieser Klimaanlage sind Lufttemperatur und Luftfeuchtigkeit in den vorgenannten Bereichen unabhängig voneinander regulierbar. Die mit Hilfe der Klimaanlage 30 klimatisierte Luft wird über das Belüftungssystem 40 dem Tunnelinnenraum zugeführt und in diesem verteilt. Dabei ist das Belüftungssystem 40 derart ausgestaltet, daß bei der Zuführung der klimatisierten Luft Luftströmungen oder Luftzirkulationen über der Oberfläche des Schnees weitgehend vermieden werden. Mit der in Fig. 2 weiterhin gezeigten Steuereinheit 8 können Kühlanlage 50 und Klimananlage 30 unabhängig voneinander gesteuert werden.In the Fig. 2 illustrated air conditioning system 30 allows to produce air in the temperature range of -15 ° C to + 15 ° C and in the humidity range of 45% to 98%. In this air conditioner air temperature and humidity in the aforementioned areas are independently adjustable. The conditioned by means of the air conditioner 30 air is supplied via the ventilation system 40 to the tunnel interior and distributed in this. In this case, the ventilation system 40 is designed such that air flows or air circulation over the surface of the snow are largely avoided when supplying the conditioned air. With the in Fig. 2 Further shown control unit 8 cooling system 50 and air conditioning system 30 can be controlled independently.

Fig. 3 zeigt in einem Querschnitt durch die Skitunnel die erfindungsgemäße vollflächige Bauteilaktivierung. Eine Schicht des Bodens 10 ist als Kühlboden 12 ausgebildet. Der Kühlboden 12 ist mittels Kühlleitungen 52 mit der Kühlanlage 50 verbunden, so daß ein Kühlkreislauf gebildet wird, in dem ein Kühlmittel zirkuliert. Der Kühlboden 12 kühlt den darauf aufgebrachten Schnee 2 vollflächig. Unter dem Kühlboden 12 befindet sich der Unterbau 18, so daß der Boden 10 in dieser Ausgestaltung den Kühlboden 12 und den Unterbau 18 umfaßt. Die zum Innenraum des Skitunnels 1 gewandten Innenflächen 22 des Überbaus 20 werden durch die Innenflächenkühlung 24 im wesentlichen vollflächig gekühlt. In der in Fig. 3 gezeigten Ausgestaltung des Skitunnels besteht der Überbau aus mehreren Schichten, von denen die innerste Schicht 24 als Innenflächenkühlung 24 ausgebildet ist. Ebenso wie der Kühlboden 12 ist auch die Innenflächenkühlung 24 über Kühlmittelleitungen 52 mit der Kühlanlage 50 zur Bildung von einem oder mehreren Kühlkreisläufen, in denen Kühlmittel zirkuliert, verbunden. Die Innenflächenkühlung 24 kühlt weitgehend die gesamte innere Oberfläche 22 des Tunnelüberbaus, so daß eine vollständige thermische Aktivierung des Überbaus erreicht wird. Fig. 3 shows in a cross section through the ski tunnel the full-area component activation according to the invention. A layer of the bottom 10 is formed as a cooling bottom 12. The cooling floor 12 is connected by means of cooling lines 52 to the cooling system 50, so that a cooling circuit is formed, in which a coolant circulates. The cooling floor 12 cools the snow 2 applied to it over its entire surface. Under the cooling floor 12 is the substructure 18, so that the bottom 10 in this embodiment includes the cooling floor 12 and the substructure 18. The interior surfaces 22 of the superstructure 20 facing the interior of the ski tunnel 1 are cooled substantially over their entire area by the inner surface cooling 24. In the in Fig. 3 As shown embodiment of the ski tunnel, the superstructure consists of several layers, of which the innermost layer 24 is formed as an internal surface cooling 24. Like the cooling floor 12, the inner surface cooling 24 is also connected via coolant lines 52 to the cooling system 50 for forming one or more cooling circuits in which coolant circulates. The inner surface cooling 24 substantially cools the entire inner surface 22 of the tunnel superstructure so that complete thermal activation of the superstructure is achieved.

Fig. 4 zeigt einen Querschnitt durch einen Skitunnel mit einem bevorzugt ausgestalteten Boden 10 und mit einem bevorzugt ausgestalteten Ãœberbau 20. Fig. 5 und 6 zeigen detaillierte Querschnitte durch bevorzugte Ausgestaltungen des Bodens 10, Fig. 7 und 8 zeigen detaillierte Querschnitte durch bevorzugte Ausgestaltungen des Ãœberbaus 20. Fig. 4 shows a cross section through a ski tunnel with a preferably designed bottom 10 and with a preferably designed superstructure 20th FIGS. 5 and 6 show detailed cross sections through preferred embodiments of the floor 10, FIGS. 7 and 8 show detailed cross sections through preferred embodiments of the superstructure 20th

In Fig. 4 befindet sich unter dem Kühlboden 12 eine Isolierschicht 14 zur thermischen Isolierung des Kühlbodens 12 gegenüber dem Unterbau 18. Wie in Figur 5 gezeigt, kann unter der Isolierschicht 14 eine beheizbare Schicht 16 vorgesehen werden. Alternativ oder zusätzlich kann wie in Fig. 6 gezeigt unter der Isolierschicht ein beheizbarer und/oder von außen belüfteter Hohlraum 17 vorgesehen sein. Durch diese bevorzugten Ausgestaltungen kann ein dauerhaftes oder wiederholtes Gefrieren des Unterbaus 18 verhindert werden. Dies wirkt sich positiv auf die Haltbarkeit des Skitunnels aus, da dauerhaftes oder wiederholtes Durchfrieren den Unterbau 18 schädigt. In Fig. 5 und 6 außerdem gezeigt sind Stützen 19, die den Kühlboden 12 auf dem Unterbau 18 abstützen. In den Ausgestaltungen gemäß Fig. 5 und Fig. 6 ist der Kühlboden 12 tragend ausgebildet. Er muß den auf ihn wirkenden Lasten standhalten, auch der Last eines üblichen Pistenpräpariergerätes. Isolierschicht und/oder Hohlraum können diese Lasten regelmäßig nicht tragen, so daß die Stützen 19 erforderlich sind, um die Last auf den Unterbau überzuleiten.In Fig. 4 is located below the cooling floor 12, an insulating layer 14 for thermal insulation of the cooling floor 12 relative to the substructure 18. As in FIG. 5 a heatable layer 16 may be provided under the insulating layer 14. Alternatively or additionally, as in Fig. 6 a heatable and / or ventilated from the outside cavity 17 may be provided below the insulating layer. By these preferred embodiments, a permanent or repeated freezing of the substructure 18 can be prevented. This has a positive effect on the durability of the ski tunnel, as permanent or repeated freezing damages the substructure 18. In FIGS. 5 and 6 also shown are supports 19 which support the cooling floor 12 on the substructure 18. In the embodiments according to Fig. 5 and Fig. 6 the cooling floor 12 is designed to be load-bearing. He has to withstand the loads acting on him, even the load of a conventional piste grooming device. Insulating layer and / or cavity can not wear these loads regularly, so that the supports 19 are required to pass the load on the substructure.

In Fig. 7 und Fig. 8 sind mögliche Ausgestaltungen des Schichtaufbaus des Überbaus dargestellt. Links befindet sich jeweils der Tunnelinnenraum, rechts die Außenwelt. In Fig. 7 ist als innerste Schicht die Innenflächenkühlung 24 vorgesehen. Als nächstäußere Schicht folgt eine Isolierschicht 26. Als nächste Schicht folgt ein - gegebenenfalls beheizter oder belüfteter - Hohlraum 27, der ein Durchfrieren der äußersten tragenden Schicht 29 verhindern solle. Alternativ ist in Fig. 8 eine Ausgestaltung gezeigt, bei der sich zwischen Isolierschicht 26 und tragender Außenschicht 29 eine Heizung 28 befindet, die ebenfalls ein häufiges oder wiederholtes Durchfrieren der tragenden Außenschicht verhindern soll.In FIGS. 7 and 8 possible configurations of the layer structure of the superstructure are shown. The tunnel interior is located on the left, the outside world on the right. In Fig. 7 is provided as the innermost layer, the inner surface cooling 24. The next layer is followed by an insulating layer 26. The next layer is followed by a cavity 27, which may be heated or ventilated, which should prevent the outermost supporting layer 29 from freezing through. Alternatively, in Fig. 8 a configuration shown in which there is a heater 28 between the insulating layer 26 and the supporting outer layer 29, which is also to prevent frequent or repeated freezing of the supporting outer layer.

Fig. 9 zeigt in einem Längsschnitt durch einen erfindungsgemäßen Skitunnel. Dargestellt ist ein aus mehreren Tunnelabschnitten 4 zusammengesetzter Skitunnel. Zur Bildung des Skitunnels werden die Tunnelabschnitte 4 dichtend miteinander verbunden. In der in Fig. 9 gezeigten Ausgestaltung sind die Schichten von Überbau und Boden an den Nahtstellen unterbrochen. So hat jeder Tunnelabschnitt 4 einen unabhängig regulierbaren Kühlboden 12 und eine unabhängig regulierbare Innenflächenkühlung 24. Weiterhin zeigt Figur 9 eine mögliche Ausgestaltung des Belüftungssystems 40. Das Belüftungssystem 40 ist als Rohrsystem mittels Aufhängungen 44 an der Decke des Skitunnels 1 aufgehängt und entlang der Längsrichtung des Skitunnels geführt. Das Belüftungssystem verfügt über Auslässe 42, die über die Länge des Tunnels verteilt sind. Die Abstände zwischen den Auslässen 42 werden so dicht gewählt, daß es bei der Zuführung der klimatisierten Luft nicht zu Luftströmungen oder Luftzirkulationen über der Schneeoberfläche kommt. Besonders vorteilhaft ist es, wenn die Auslässe 42 als siebartige Rohrendstücke mit einer Vielzahl von Löchern, die in verschiedene Raumrichtungen weisen, ausgestaltet sind. Auf diese Weise wird die klimatisierte Luft in verschiedene Raumrichtungen ausgestoßen, was Luftzirkulationen bei der Zuführung der klimatisierten Luft vermindert. Fig. 9 shows in a longitudinal section through a ski tunnel according to the invention. Shown is a composite of several tunnel sections 4 ski tunnel. To form the ski tunnel, the tunnel sections 4 are sealed together. In the in Fig. 9 As shown embodiment, the layers of superstructure and ground are interrupted at the seams. Thus, each tunnel section 4 has an independently adjustable cooling floor 12 and an independently adjustable internal surface cooling 24. Further shows FIG. 9 a possible embodiment of the ventilation system 40. The ventilation system 40 is suspended as a pipe system by means of suspensions 44 on the ceiling of the ski tunnel 1 and guided along the longitudinal direction of the ski tunnel. The ventilation system has outlets 42 distributed throughout the length of the tunnel. The distances between the outlets 42 are chosen so close that it does not come to air flows or air circulation over the snow surface in the supply of conditioned air. It is particularly advantageous if the outlets 42 are configured as sieve-like pipe end pieces with a multiplicity of holes pointing in different spatial directions. In this way, the conditioned air is expelled in different spatial directions, which reduces air circulation in the supply of the conditioned air.

Fig. 10 zeigt einen Querschnitt durch den Skitunnel mit Sensoren 7 zur Erfassung der Lufttemperatur, der Schneetemperatur, der Luftfeuchtigkeit sowie zur Erfassung der Wärmeabstrahlung der Nutzer des Tunnels. Weitere Sensoren können im Belüftungssystem 40 und in den Auslässen 42 angebracht sein, um beispielsweise Meßwerte für die Steuerung der Klimaanlage zu gewinnen. Weitere Sensoren können im Kühlboden in der Isolierschicht und im Unterbau vorgesehen sein, mit denen insbesondere ein Durchfrieren des Unterbaus überwacht und verhindert werden kann. Fig. 10 shows a cross section through the ski tunnel with sensors 7 for detecting the air temperature, the snow temperature, the humidity and for detecting the heat radiation of the users of the tunnel. Other sensors can be used in the ventilation system 40 and in the outlets 42 may be mounted, for example, to obtain measured values for the control of the air conditioner. Further sensors may be provided in the cooling floor in the insulating layer and in the substructure, with which in particular a freezing of the substructure can be monitored and prevented.

Fig. 4 zeigt, daß im Boden 10 ein Entwässerungskanal 11 vorgesehen werden kann. Vorzugsweise kann der Entwässerungskanal 11 in der Mitte des Kühlbodens angeordnet werden. Dabei weist der Kühlboden 12 vorteilhafterweise ein Gefälle zum Entwässerungskanal hin auf. In Fig. 11 und Fig. 12 sind Detailansichten des Entwässerungskanals 11 sowie der zur Abführung des Wassers vorgesehenen Abflußsystems gezeigt. Fig. 11 zeigt den Entwässerungskanal bei einem Boden 10 mit Isolierschicht 14 und Hohlraum 16. Das im Entwässerungskanal 11 aufgefangene Wasser wird zum Abflußrohr 62 geleitet. Das Abflußrohr 62 ist im Bereich des Durchgangs durch die Isolierschicht 14 und den Hohlraum 16 mit Isoliermaterial 64 isoliert, damit über das Abflußrohr 62 keine Wärme zum Kühlboden 12 geleitet wird. Weiterhin ist das Abflußrohr im Bereich der Isolierschicht durch einen Schieber 68 wärmeisolierend verschließbar, damit ein Wärmefluß von der Kanalisation zum Kühlboden und in die Schneeauflage verhindert wird. Der Schieber ist während der Betriebsphase des Skitunnels verschlossen und während der Abtauphase geöffnet. Abgetautes Wasser wird durch das Abflußrohr in die Kanalisation eingeleitet. Fig. 12 zeigt die Ausbildung des Entwässerungskanals bei einem Boden 10 mit Isolierschicht 12 und Heizschicht. Auch bei dieser Ausgestaltung ist eine Isolierung des Abflußrohres mit Isoliermaterial 64 vorgesehen. Weiterhin weist auch diese Ausgestaltung einen Schieber 68 zum Verschließen des Abflußrohres 62 gegenüber der Kanalisation auf. Fig. 4 shows that in the bottom 10, a drainage channel 11 can be provided. Preferably, the drainage channel 11 can be arranged in the middle of the cooling floor. In this case, the cooling floor 12 advantageously has a slope to the drainage channel out. In 11 and FIG. 12 are shown detailed views of the drainage channel 11 and provided for discharging the water drainage system. Fig. 11 shows the drainage channel at a bottom 10 with insulating layer 14 and cavity 16. The water collected in the drainage channel 11 is passed to the drainage pipe 62. The drainage pipe 62 is insulated in the region of the passage through the insulating layer 14 and the cavity 16 with insulating material 64 so that no heat is conducted to the cooling floor 12 via the drainage pipe 62. Furthermore, the drain pipe in the region of the insulating layer by a slide 68 can be closed thermally insulating, so that heat flow from the sewer to the cooling floor and in the snow layer is prevented. The slide is closed during the operating phase of the ski tunnel and opened during defrosting. Dewatered water is introduced through the drainpipe into the sewage system. Fig. 12 shows the formation of the drainage channel at a bottom 10 with insulating layer 12 and heating layer. In this embodiment, an insulation of the drain pipe is provided with insulating material 64. Furthermore, this embodiment also has a slide 68 for closing the drainage pipe 62 with respect to the sewer system.

Fig. 13 zeigt eine Unterteilung der Innenflächenkühlung in mehrere Teilflächenkühlungen. In dieser Ausgestaltung sind Wandflächenkühlungen 241 und 245, Schrägflächenkühlungen 242 und 244 sowie eine Deckenflächenkühlung 243 vorgesehen. Die vorgenannten Flächenkühlungen 241, 242, 243, 244, 245 sind so ausgestaltet, daß wiederum die gesamte Innenfläche des Tunnelraums im wesentlichen vollflächig kühlbar ist. Bei dieser bevorzugten Ausgestaltung sind die einzelnen Flächenkühlungen 201, 202, 203, 204, 205 unabhängig voneinander kühlbar. Dies ermöglicht eine bessere und differenziertere Steuerung des Klimas im Tunnelinnenraum. Insbesondere kann in der Höhe ein Temperaturgefälle eingestellt werden. Fig. 13 shows a subdivision of the internal surface cooling in several partial surface cooling. In this embodiment, wall surface cooling 241 and 245, inclined surface cooling 242 and 244 and a ceiling surface cooling 243 are provided. The aforementioned area cooling 241, 242, 243, 244, 245 are designed so that in turn the entire inner surface of the tunnel space substantially over the entire surface is coolable. In this preferred embodiment, the individual surface cooling units 201, 202, 203, 204, 205 can be cooled independently of one another. This allows a better and more differentiated control of the climate in the tunnel interior. In particular, a temperature gradient can be adjusted in height.

Fig. 14 zeigt eine Unterteilung des Tunnels in Tunnelabschnitte 4 in Draufsicht. Die Tunnelabschnitte können als Tunnelelemente vorgefertigt werden und ermöglichen einen Aufbau des Tunnels im Bausatzprinzip. Die einzelnen Tunnelabschnitte 4 weisen Kühlböden 12 und Innenflächenkühlungen 24 mit jeweils eigenen Kühlkreisläufen auf, so daß die Kühlböden und die Innenflächenkühlungen der verschiedenen Tunnelabschnitte unabhängig voneinander regulierbar sind. Durch diese bevorzugte Ausgestaltung kann eine besonders effiziente Kühlung über die Gesamtlänge des Tunnels erreicht werden. Zudem sind konstante Klimabedingungen über die Gesamtlänge des Tunnels einfacher und effizienter herstellbar. Fig. 14 shows a subdivision of the tunnel in tunnel sections 4 in plan view. The tunnel sections can be prefabricated as tunnel elements and allow a construction of the tunnel in the kit principle. The individual tunnel sections 4 have cooling floors 12 and inner surface cooling 24, each with its own cooling circuits, so that the cooling floors and the Innenflächenkühlungen the various tunnel sections are independently adjustable. By this preferred embodiment, a particularly efficient cooling over the entire length of the tunnel can be achieved. In addition, constant climatic conditions over the entire length of the tunnel are easier and more efficient to produce.

Mit dem vorstehend beschriebenen Skitunnel werden eine Reihe von Vorteilen erreicht. Der in den Skitunnel eingebrachte Schnee kann gegenüber dem Stand der Technik länger in seiner Konsistenz erhalten werden, da die Schneemetamorphose von Schnee zu Eis gegenüber dem Stand der Technik verzögert werden kann. Weiterhin sind in dem erfindungsgemäßen Skitunnel definierte Schnee- und Klimabedingungen einstellbar, so daß die Bedingungen an einem bestimmten Wettkampfort simuliert werden können. Durch den erfindungsgemäßen Schichtaufbau von Boden und Überbau, insbesondere mit lsolier- und Heizschicht, können die tragenden Konstruktionen von dauerhaftem und wiederholtem Durchfrieren geschützt werden, was die Haltbarkeit des Skitunnels deutlich erhöht. Mit dem besonders ausgestalteten Belüftungssystem werden Luftzirkulationen und Luftzug über der Schneeoberfläche soweit wie möglich verringert, um eine weitere Ursache der Schneemetamorphose möglichst weitgehend zu reduzieren. Durch die Unterteilung der den Innenraum vollflächig kühlenden Innenflächenkühlungen kann eine besonders effiziente Steuerung der Kühleinrichtung erreicht werden. Durch eine entsprechende Steuerung, die auch die Klimaanlage und das Belüftungssystem mitsteuert, können über die Gesamtlänge des Tunnels konstante Schnee- und Klimabedingungen eingestellt werden.The ski tunnel described above achieves a number of advantages. The snow introduced into the ski tunnel can be maintained longer in consistency than in the prior art because the snow metamorphism can be delayed from snow to ice over the prior art. Furthermore, defined snow and climatic conditions are adjustable in the ski tunnel according to the invention, so that the conditions can be simulated at a certain competition. The inventive layer structure of soil and superstructure, in particular with insulating and heating layer, the load-bearing structures of permanent and repeated freezing can be protected, which significantly increases the durability of the ski tunnel. With the specially designed ventilation system air circulation and draft over the snow surface are reduced as much as possible in order to reduce as much as possible another cause of the snow metamorphosis. By subdividing the interior surface cooling which cools the entire area over the entire surface, a particularly efficient control of the cooling device can be achieved. By an appropriate control, which also controls the air conditioning and the ventilation system can constant snow and climate conditions can be set over the entire length of the tunnel.

Claims (20)

  1. A ski tunnel (1) for pursuing cross-country skiing on natural snow or artificial snow (2) comprising a base (10), a superstructure (20) and a climate control unit (30), wherein
    - the base (10) and the superstructure (20) are connected to one another while forming a tunnel climatically shut off from the outside world;
    - the base (10) comprises one or more layers (12, 14, 16, 18); and
    - at least one of the one or more layers (12, 14, 16, 18) of the base (10) is designed as a cooled base (12) for the full-area cooling of snow (2) applied to the base (10),
    characterised in that
    - the inner faces (22) of the superstructure (20) facing the inner space of the tunnel (1) can be cooled over the whole area by an inner face cooling system (24); and
    - the temperature and the humidity of the air in the inner space of the tunnel (1) can be regulated independently of one another by the climate control system (30).
  2. A ski tunnel in accordance with claim 1, characterised in that the cooled base (12), the inner face cooling system (24) and the climate control system (30) can be regulated independently of one another.
  3. A ski tunnel in accordance with any one of the preceding claims, characterised in that the ski tunnel comprises a ventilation system (40) adapted such that air-conditioned air can be supplied into the inner tunnel space while avoiding air flow over the surface of the snow (2).
  4. A ski tunnel in accordance with any one of the preceding claims, characterised in that an insulating layer (14) is provided under the cooled base (12) for the thermal insulation of the cooled base (12) with respect to the superstructure (18).
  5. A ski tunnel in accordance with claim 4, characterised in that a heatable layer (16) and/or a heatable hollow space (17) and/or a hollow space ventilated from the outside is/are located beneath the insulating layer (14).
  6. A ski tunnel in accordance with any one of the preceding claims, characterised in that the inner face cooling system (24) is integrated into the superstructure (20).
  7. A ski tunnel in accordance with any one of the claims 1 to 5, characterised in that the inner face cooling system (24) is attached to the inner wall of the superstructure (20).
  8. A ski tunnel in accordance with any one of the preceding claims, characterised in that the superstructure (20) has one or more layers (24, 26, 27, 28, 29) and at least one of the one or more layers (24, 26, 27, 28, 29) is designed as an inner face cooling system (24).
  9. A ski tunnel in accordance with claim 8, characterised in that a layer of the superstructure (20) is designed as an insulating layer (26) for the thermal insulation of the inner face cooling system (24) with respect to the layers (27, 28, 29) of the superstructure (20) disposed further outwardly.
  10. A ski tunnel in accordance with claim 9, characterised in that a heatable layer (27) and/or a heatable hollow space (28) and/or a hollow space ventilated from the outside is/are located outside the insulating layer (26) of the superstructure (20).
  11. A ski tunnel in accordance with any one of the preceding claims, characterised in that the ventilation system (40)
    - is guided along the longitudinal direction of the ski tunnel; and
    - has a plurality of outlets (42) distributed over the length of the tunnel, with the distribution of the outlets (42) being such that an air flow over the surface of the snow (2) is largely avoided on the supply of air-conditioned air.
  12. A ski tunnel in accordance with any one of the preceding claims, characterised in that the ventilation system (40) is designed as a tube system guided along the ski tunnel (1).
  13. A ski tunnel in accordance with any one of the preceding claims, characterised in that the ventilation system (40) is insulated with respect to the inner tunnel space.
  14. A ski tunnel in accordance with any one of the preceding claims, characterised in that sensors (7) for the detecting of the snow temperature and/or the air temperature and/or the humidity and/or for the detection of the heat emission of the users are attached in the inner tunnel space.
  15. A ski tunnel in accordance with any one of the preceding claims, characterised in that a control unit (8) is provided with which the cooled base (12), the inner face cooling system (24) and/or the climate control system (30) can be controlled in dependence on the conditions in the inner space of the tunnel.
  16. A ski tunnel in accordance with claim 15, characterised in that a control program is encoded in the control unit (8) for the control of the cooled base (12), the inner face cooling system (24), the climate control system (30) and/or the ventilation system (40) in dependence on the values measured by the sensors (7).
  17. A ski tunnel in accordance with any one of the preceding claims, characterised in that the base (10) has at least one dewatering passage (11); and in that the base (10) has a slight incline towards the at least one dewatering passage (11).
  18. A ski tunnel in accordance with any one of the preceding claims, characterised in that the cooled base (12) can be charged with a refrigerant in the cooling phase and with water in the defrosting phase.
  19. A ski tunnel in accordance with any one of the preceding claims, characterised in that the superstructure (20) comprises a plurality of superstructure elements (201, 202, 203, 204, 205), with the inner faces (221, 222, 223, 224, 225) of the superstructure elements (201, 202, 203, 204, 205) facing the inner space of the tunnel being able to be cooled over the whole area by inner face cooling systems (241, 242, 243, 244, 245) and with the inner face cooling systems (241, 242, 243, 244, 245) being able to be regulated independently of one another.
  20. A ski tunnel in accordance with any one of the preceding claims, characterised in that the ski tunnel is divided into tunnel sections (4) in the longitudinal direction and the cooled bases (12) and/or the inner face cooling systems (24) of the different tunnel sections (4) can be regulated independently of one another.
EP05004805A 2004-03-05 2005-03-04 Skitunnel Not-in-force EP1570884B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004010880A DE102004010880B3 (en) 2004-03-05 2004-03-05 Skitunnel
DE102004010880 2004-03-05

Publications (2)

Publication Number Publication Date
EP1570884A1 EP1570884A1 (en) 2005-09-07
EP1570884B1 true EP1570884B1 (en) 2008-05-14

Family

ID=34745413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05004805A Not-in-force EP1570884B1 (en) 2004-03-05 2005-03-04 Skitunnel

Country Status (3)

Country Link
EP (1) EP1570884B1 (en)
AT (1) ATE395119T1 (en)
DE (2) DE102004010880B3 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250530A (en) * 1964-02-10 1966-05-10 Lawrence M Dean Year-around ski run
EP0508752B1 (en) * 1991-04-11 1996-02-14 Taikisha, Ltd. Method of forming an artificial snow layer
US6079161A (en) * 1997-05-16 2000-06-27 Mitsubishi Heavy Industries, Ltd. Indoor type skiing ground, and method and controller for indoor type skiing ground
DE20109268U1 (en) * 2001-06-05 2001-09-20 Allrounder Winter World Gmbh Indoor ski area
DE20209008U1 (en) * 2002-06-11 2002-11-07 Riedel Peter Weatherproof, buildable ski route
DE20314846U1 (en) * 2003-09-25 2004-04-01 Wurster, Christoph, Dipl.-Ing. Arch. All-weather ski track for cross-country skiing with a low height, a panoramic view system and central snow production is a closed, flat, all-round heat-insulated tube having an interior

Also Published As

Publication number Publication date
ATE395119T1 (en) 2008-05-15
DE102004010880B3 (en) 2005-11-10
EP1570884A1 (en) 2005-09-07
DE502005004070D1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
DE69827146T2 (en) Process for a layered construction and heating of a grass pitch, in particular a football field, as well as such produced Grass field
EP0800638B1 (en) Process and device for cooling a space
EP1760447B1 (en) Mobile climate chamber
DE102006015994A1 (en) Refrigerating appliance with defrost heating
EP1570884B1 (en) Skitunnel
DE102008017126A1 (en) Ski jump for creating ice crusts on its in-runs has a track body with two in-run tracks, an insulating device and a freezer device with cooling pipes containing a refrigerant
DE2937071C2 (en)
DE4443403C2 (en) Sports field with a dry sports field area that can be converted into an artificial ice rink
EP0246179A2 (en) Cold chamber for use in a sauna bath
DE102014110897A1 (en) Drop-off slope and spout of a ski jumping facility
DE10261716B4 (en) Weatherproof overbuilt ski lot
DE102006039865A1 (en) Climatic chamber for subjecting e.g. rail vehicle, with climatic conditions, has air conditioner for bringing air into chamber and circulating air in chamber, and heat exchanger for guiding air to adjust different climatic conditions
EP1600711A2 (en) Indoor snow plant
EP1260778B1 (en) Indoor skiing ground
EP1260779B1 (en) Indoor skiing ground
DE857504C (en) Method and device for ventilating cold room walls
DE4031614A1 (en) BUILDING
DE2161119A1 (en) PIPE TO LAY IN A FLOOR, WALL OR CEILING
DE102004060818B4 (en) Floor construction for indoor ski halls
DE4215847C2 (en) Process and plant for composting
DE893575C (en) Device to prevent ice formation on roofs
DE10210991A1 (en) Winter sports hall operation for snow-covered sloping floors specifies incoming air temperature and humidity and proposes incoming air mix with outside air and cooled by crushed snow input.
DD233604A1 (en) DEVICE OF DAECHERS AND BLANKETS INSBES. FOR AIR-CONDITIONING NEXT WATER TREATMENT
DE579733C (en) Upper ice cooling system with forced air circulation
DE102010007440A1 (en) Ski jump has jump body which is extended along start-up and jump-off platform of ski jump, where cooling device is arranged for cooling jump body over its total length

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060119

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005004070

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080825

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090324

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090331

Year of fee payment: 5

BERE Be: lapsed

Owner name: RIEDEL, PETER

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090304

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514