EP1560285B1 - Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible - Google Patents

Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible Download PDF

Info

Publication number
EP1560285B1
EP1560285B1 EP04002188.3A EP04002188A EP1560285B1 EP 1560285 B1 EP1560285 B1 EP 1560285B1 EP 04002188 A EP04002188 A EP 04002188A EP 1560285 B1 EP1560285 B1 EP 1560285B1
Authority
EP
European Patent Office
Prior art keywords
fuel
determined
value
fuel cell
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04002188.3A
Other languages
German (de)
English (en)
Other versions
EP1560285A1 (fr
Inventor
Christian Böhm
Volker Harbusch
Markus Huber
Christoph Sonntag
Jens Dr. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SFC Energy AG
Original Assignee
SFC Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SFC Energy AG filed Critical SFC Energy AG
Priority to EP04002188.3A priority Critical patent/EP1560285B1/fr
Publication of EP1560285A1 publication Critical patent/EP1560285A1/fr
Application granted granted Critical
Publication of EP1560285B1 publication Critical patent/EP1560285B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to methods for controlling the fuel supply in fuel cell systems, especially the metered addition of fuel into an anode-side fuel mixture.
  • anode fluid In the case of direct power generation of a fuel in a fuel cell system, it is necessary for a number of reasons that the fuel in the anode-side fuel mixture (anode fluid) is not present in a pure form but diluted, as a rule in water.
  • the transport properties of known electrolyte materials require a high dilution of the fuel.
  • the optimum methanol concentration is in the range of about 0.2 to 2 mol / L, which corresponds to a level of only about 0.65 to 6.5 weight percent of methanol in water.
  • methanol in a direct methanol fuel cell (DMFC), methanol must be supplied so that the methanol concentration of the fuel mixture that is supplied to the fuel cell on the anode side remains in an optimum range depending on various operating conditions and system parameters.
  • DMFC direct methanol fuel cell
  • the EP1321995 proposes a method in which the methanol concentration is not measured directly, but indirectly: it is calculated by empirical models from measured system parameters. These system parameters are the fuel cell current I, the temperature T F of the anode fluid outside the fuel cell stack and the temperature T S of the fuel cell stack. The methanol feed to the anode loop is then controlled by comparing the calculated actual value of the methanol concentration with a predetermined target value.
  • a first, particularly simple, exemplary method for controlling the fuel supply to a fuel cell system with a fuel cell stack comprises the following steps: determining an input value by measuring a characteristic that is representative of the electric current generated by the fuel cell stack; Determining a fueling control value in dependence on the determined input value; and supplying fuel in accordance with the determined fueling control value.
  • the electric current generated by the fuel cell stack or a measurable quantity that is in clear and known relationship with this electric current is measured.
  • it has already been determined in advance at which current values which amount of fuel has to be added so that the system remains within the optimum range of effectiveness.
  • a look-up table or a functional relationship between current values and fuel metering is created so that each current value is assigned a fuel supply control value which serves to set the required fuel metering, for example by activation a feed pump.
  • the table or functional relationship can be stored in electronic form in a memory accessible to the control panel.
  • the knowledge of the fuel concentrations actually present on the anode side is neither necessary nor helpful in the method according to the invention. Therefore, the fuel concentration does not have to be measured directly, nor calculated (measured indirectly) from other parameters. By eliminating the need to measure the fuel concentration directly or indirectly, the process of the present invention achieves a considerable simplification of the fuel supply control.
  • the fuel supply control value can be determined as a function of the determined input value and further parameters which are related to the characteristic, for example their time development (increase or decrease).
  • the fueling control value depends only on the one (single) input value, i. the fueling control value does not depend on any other measurands so that the feed is determined by a single measurand, e.g. a single current value, can be controlled.
  • the inventive method for controlling the fuel supply in a fuel cell system with a fuel cell stack comprises the following further steps: determining a second input value by measuring a second parameter of the fuel cell system; Determining a fueling control value in dependence on the two determined input values; and supplying fuel in accordance with the determined fueling control value.
  • two parameters are measured during operation: on the one hand the electric current or a measured variable which is in clear and known relationship with this electric current, on the other hand a second measured variable, for example a temperature at a predetermined position of the fuel cell system.
  • a table look-up table or a functional relationship between the two parameters and the fuel metering is also created here, so that each value pair is assigned a fuel supply control value which is used to set the required Brennstoffzudostechnik serves, for example by controlling a feed pump.
  • the table or functional relationship can be stored in electronic form in a memory accessible to the control panel.
  • the second characteristic (i.d.R. temperature) generally has a much smaller influence on the fuel supply control value than the current or the first characteristic representing the current and can therefore be considered as a correction.
  • an even more precise optimization of the efficiency can thus be achieved by the use of a second parameter.
  • the second characteristic of the fuel cell system is a quantity that is representative of the temperature of the fuel cell stack (stack temperature) of the fuel cell system.
  • the second characteristic of the fuel cell system is a size representative of the temperature of the anode fluid of the fuel cell system.
  • This temperature can also be measured outside the fuel cell stack in the anode circuit.
  • Particularly suitable for temperature measurement are positions directly at the outlet of the fuel cell stack or directly at the inlet to the fuel cell stack.
  • Another exemplary method of controlling fuel delivery into a fuel cell stack with a fuel cell stack includes the steps of: determining an input value by determining a current demand, determining a fueling setpoint in response to the detected input value, and supplying fuel in accordance with the determined fueling setpoint.
  • the power requirement is set, so that a measurement of the current is not required.
  • the system must be designed so that there is only a limited load range in which a preset addition is made.
  • the system can be configured for a single load point, with the amount of fuel required for that load point is supplied, and in a deviation from this load point, the system goes into a stand-by mode.
  • the method according to the invention can be expanded and supplemented in a wide variety of ways.
  • hysteresis effects can be taken into account by determining a fuel supply control value not only as a function of the currently determined input value but also taking into account its time evolution, e.g. by taking into account the input value determined immediately before.
  • different fuel supply control values can be determined for one and the same current value, depending on whether an increase in the current or a decrease in the current was last determined.
  • the fuel concentration actually present on the anode side does not have to be determined at any time. It is for carrying out the method thus neither a fuel concentration sensor required (as for example in the WO02 / 49132 is the case), nor is a method (with associated hardware and software components) required, with the help of which on the basis of other parameters, the calculation of the fuel concentration is carried out (as in the example EP1321995 is proposed). Since the fuel concentration does not have to be measured or calculated, a considerable simplification of the control of the fuel supply is achieved by the method according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Claims (3)

  1. Procédé pour commander l'alimentation en combustible dans un système de pile à combustible avec un groupement de cellules de pile à combustible, comprenant :
    la détermination d'une première valeur d'entrée par mesure d'une grandeur caractéristique représentative du courant électrique produit par le groupement de cellules de pile à combustible,
    la détermination d'une valeur de réglage d'alimentation de combustible en fonction de la première valeur d'entrée déterminée, par une association déterminée au préalable entre la grandeur caractéristique mesurée et la valeur de réglage d'alimentation de combustible, et l'alimentation en combustible conformément à la valeur de réglage d'alimentation de combustible ayant été déterminée ;
    procédé
    (i) d'après lequel avant la détermination de la première valeur d'entrée, on vérifie si l'on est en présence d'une indication de durée de vie du groupement de cellules de pile à combustible, et si cela est le cas :
    on détermine une valeur de correction de durée de vie en fonction de la durée de vie ayant été déterminée, et
    on détermine la valeur de réglage d'alimentation de combustible en fonction de la première valeur d'entrée ayant été déterminée et de la valeur de correction de durée de vie ; ou bien
    (ii) d'après lequel avant la détermination de la première valeur d'entrée, on vérifie si un changement de réservoir, avec un intervalle de temps pendant lequel l'alimentation en combustible était interrompue, a été effectué, et si cela est le cas :
    on détermine une valeur de correction de changement de réservoir en fonction de l'intervalle de temps ayant été déterminé, et
    on détermine la valeur de réglage d'alimentation de combustible en fonction de la première valeur d'entrée ayant été déterminée et de la valeur de correction de changement de réservoir.
  2. Procédé selon la revendication 1, d'après lequel la valeur de réglage d'alimentation de combustible est déterminée à partir d'une seule valeur d'entrée.
  3. Procédé selon la revendication 1, comprenant en outre :
    la détermination d'une deuxième valeur d'entrée par mesure d'une deuxième grandeur caractéristique du système de pile à combustible, la deuxième grandeur caractéristique du système de pile à combustible étant une grandeur représentative de la température du groupement de cellules de pile à combustible ou de la température du fluide d'anode du système de pile à combustible,
    la détermination de la valeur de réglage d'alimentation de combustible en fonction des deux valeurs d'entrée déterminées, par une association déterminée au préalable entre les deux grandeurs caractéristiques mesurées et la valeur de réglage d'alimentation de combustible ;
    procédé
    (i) d'après lequel avant la détermination des deux premières valeurs d'entrée, on vérifie si l'on est en présence d'une indication de durée de vie du groupement de cellules de pile à combustible, et d'après lequel on détermine la valeur de réglage d'alimentation de combustible en fonction des deux valeurs d'entrée ayant été déterminées et de la valeur de correction de durée de vie ; ou bien
    (ii) d'après lequel avant la détermination des deux premières valeurs d'entrée, on vérifie si un changement de réservoir, avec un intervalle de temps pendant lequel l'alimentation en combustible était interrompue, a été effectué, et d'après lequel on détermine la valeur de réglage d'alimentation de combustible en fonction des deux valeurs d'entrée ayant été déterminées et de la valeur de correction de changement de réservoir.
EP04002188.3A 2004-01-30 2004-01-30 Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible Expired - Lifetime EP1560285B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04002188.3A EP1560285B1 (fr) 2004-01-30 2004-01-30 Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04002188.3A EP1560285B1 (fr) 2004-01-30 2004-01-30 Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible

Publications (2)

Publication Number Publication Date
EP1560285A1 EP1560285A1 (fr) 2005-08-03
EP1560285B1 true EP1560285B1 (fr) 2017-05-03

Family

ID=34639433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04002188.3A Expired - Lifetime EP1560285B1 (fr) 2004-01-30 2004-01-30 Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible

Country Status (1)

Country Link
EP (1) EP1560285B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142120A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 燃料電池システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280218A1 (fr) * 2001-07-27 2003-01-29 Abb Research Ltd. Méthode pour régler la concentration de methanol dans des piles à combustible directes au méthanol
EP1321995A2 (fr) * 2001-12-19 2003-06-25 Ballard Power Systems Inc. Mesure indirecte de la concentration en combustible dans un système de pile à combustible à alimentation liquide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771476A (en) * 1995-12-29 1998-06-23 Dbb Fuel Cell Engines Gmbh Power control system for a fuel cell powered vehicle
JP3662872B2 (ja) * 2000-11-17 2005-06-22 本田技研工業株式会社 燃料電池電源装置
JP4308479B2 (ja) * 2001-05-10 2009-08-05 本田技研工業株式会社 燃料電池電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280218A1 (fr) * 2001-07-27 2003-01-29 Abb Research Ltd. Méthode pour régler la concentration de methanol dans des piles à combustible directes au méthanol
EP1321995A2 (fr) * 2001-12-19 2003-06-25 Ballard Power Systems Inc. Mesure indirecte de la concentration en combustible dans un système de pile à combustible à alimentation liquide

Also Published As

Publication number Publication date
EP1560285A1 (fr) 2005-08-03

Similar Documents

Publication Publication Date Title
DE19620458B4 (de) Verfahren und System zur Steuerung einer Ausgangsgröße eines Brennstoffzellen-Strom- oder Spannungsgenerators
DE102008006734B4 (de) Verfahren zur berechnung einer polarisationskurve eines brennstoffzellenstapels sowie brennstoffzellensystem
WO2018050547A1 (fr) Détermination de l'état de charge d'une batterie redox vanadium à l'aide d'une mesure uv/vis
DE102017103056A1 (de) Brennstoffzellensystem und Steuerverfahren für selbiges
DE10161965B4 (de) Verfahren zum Betreiben eines Brennstoffzellenstapels und Brennstoffzellensystem
DE102015119429B4 (de) Brennstoffzellensystem und Steuerverfahren für ein Brennstoffzellensystem
DE102009020225B4 (de) Verfahren zum Verringern und Steuern der Stromabgabe eines Brennstoffzellenstapels
DE10161234A1 (de) Technik zum Regeln der Effizienz eines Brennstoffzellensystems
WO2003012904A2 (fr) Procede de regulation de la concentration en methanol dans des piles a combustible directes au methanol
DE10009931A1 (de) Brennstoffzellen-Energieerzeugungssystem
EP1560285B1 (fr) Procédé de côntrole d'alimentation en carburant dans un système de piles à combustible
DE102013112519B4 (de) Verfahren zur Diagnose von Brennstoffzellenbefeuchtungsproblemen
DE102011013566A1 (de) Adaptive method for conversion of external power request to current setpoint to a fuel cell system based on stack performance
DE102008043740A1 (de) Brennstoffzellensystem
WO2023110609A1 (fr) Système de pile à combustible et procédé de fonctionnement d'un système de pile à combustible
DE102012110558B4 (de) Anodeninjektorsteueralgorithmus mit einem niedrigen frequenzdiskreten Ausgang
DE112012000730B4 (de) Direktoxidations-Brennstoffzellen-System
EP2657193B1 (fr) Installation d'électrolyse et son procédé de fonctionnement
DE102020215558A1 (de) Verfahren zur Optimierung der Purgestrategie eines Brennstoffzellensystems
DE102005038455B4 (de) Verfahren zur Ermittlung und/oder Einstellung des Oxidator-Volumenstroms bei einem Brennstoffzellensystem
DE102006030612A1 (de) Brennstoffzellenanlage und Verfahren zum Betreiben einer Brennstoffzellenanlage
DE10258496B4 (de) Verfahren zur Regelung der Brennstoffzufuhr zu einem Brennstoffzellensystem
DE102009018881B3 (de) Steuereinrichtung zum Bestimmen eines tatsächlichen Brennstoffumsatzes für eine Brennstoffzellenanordnung, Verfahren zur Ermittlung eines Brennstoffumsatzes einer Brennstoffzellenanordnung und Brennstoffzellenanordnung
EP1739778A2 (fr) Pile à combustible et procédé pour déterminer la consommation de carburant, et sa méthode d'opération.
DE102014210833A1 (de) Kraft-Wärme-Kopplungsanlage sowie Verfahren zum Betreiben einer Kraft-Wärme-Kopplungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060119

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SFC ENERGY AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015520

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0008040000

Ipc: H01M0008049920

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/04537 20160101ALI20161010BHEP

Ipc: H01M 8/1011 20160101ALI20161010BHEP

Ipc: H01M 8/04746 20160101ALI20161010BHEP

Ipc: H01M 8/04082 20160101ALI20161010BHEP

Ipc: H01M 8/0432 20160101ALI20161010BHEP

Ipc: H01M 8/04992 20160101AFI20161010BHEP

Ipc: H01M 8/04186 20160101ALI20161010BHEP

INTG Intention to grant announced

Effective date: 20161114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015520

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015520

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230126

Year of fee payment: 20

Ref country code: DE

Payment date: 20230126

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004015520

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240129