EP1558886B1 - Management system for the thermal energy generated by a thermal engine in an automobile vehicle - Google Patents

Management system for the thermal energy generated by a thermal engine in an automobile vehicle Download PDF

Info

Publication number
EP1558886B1
EP1558886B1 EP03811007A EP03811007A EP1558886B1 EP 1558886 B1 EP1558886 B1 EP 1558886B1 EP 03811007 A EP03811007 A EP 03811007A EP 03811007 A EP03811007 A EP 03811007A EP 1558886 B1 EP1558886 B1 EP 1558886B1
Authority
EP
European Patent Office
Prior art keywords
main
exchanger
exchangers
heat
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03811007A
Other languages
German (de)
French (fr)
Other versions
EP1558886A1 (en
Inventor
Pascal Guerrero
Carlos Martins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermique Moteur SA
Original Assignee
Valeo Thermique Moteur SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32309755&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1558886(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/FR2002/003851 external-priority patent/WO2003042619A1/en
Application filed by Valeo Thermique Moteur SA filed Critical Valeo Thermique Moteur SA
Publication of EP1558886A1 publication Critical patent/EP1558886A1/en
Application granted granted Critical
Publication of EP1558886B1 publication Critical patent/EP1558886B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/187Arrangements or mounting of liquid-to-air heat-exchangers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the invention relates to the field of thermal energy management systems developed by a motor vehicle engine.
  • Motor vehicle heat exchangers are generally in the form of a bundle of fluid circulation tubes and heat exchange surfaces with the external medium, such as fins or corrugated inserts.
  • the beam is interposed between two manifolds that distribute the fluid in the circulation tubes.
  • the exchanger has a single header divided into an inlet section and an outlet section.
  • the secondary exchanger is most often an engine cooler air cooler, an air conditioning condenser or an oil cooler.
  • each exchanger has its own fluid circulation circuit in which circulates a particular heat transfer fluid. This results in a multiplication of the necessary pipelines. In addition, it is necessary to bring the different cooling fluids to the front of the vehicle to achieve a heat exchange with ambient atmospheric air. The exchangers are therefore frequently removed from the equipment they cool, which results in a significant length of pipes and difficulties to arrange a passage under the hood of the vehicle for these pipes, given the limited space available.
  • each exchanger is fixed. It corresponds to the beam surface of the exchanger.
  • the only possibility of adjusting the cooling of the exchanger is the starting or stopping of the circulation pump of the cooling fluid. Such a system therefore offers little adaptability to the load conditions of the engine.
  • the present invention therefore relates to a thermal energy management system developed by the vehicle engine that overcomes these disadvantages.
  • multi-exchanger which comprises three heat exchangers forming a unitary mechanical unit, for example through common manifolds, common dividers, common cheeks or other means connection between the respective beams of the exchangers.
  • the module has the particularity that it is the same coolant circulating in the three heat exchangers, said fluid being able to be at two different temperatures because coming, for example, from two distinct fluid circulation loops, as evoked more far.
  • each exchanger may have at least one inlet and at least one outlet for the fluid.
  • the tubes of one of the beams may furthermore be of identical characteristics from one exchanger to the other, at least as regards the tubes of the exchangers in which the same fluid.
  • the air exchange surfaces also called beams, will be substantially identical from one exchanger to the other, at least as regards the exchangers in which the same fluid circulates.
  • the outlet manifold of the main exchanger communicates with the inlet manifold of at least one secondary exchanger through a through hole.
  • the heat exchange module comprises a partition wall which divides the outlet manifold of the main exchanger into a main outlet chamber and a secondary outlet chamber, the main exchanger beam tubes. connected to the main outlet chamber, as well as the portion of the main heat exchanger inlet manifold connected to these same tubes constituting a main radiator, the tubes of the main heat exchanger bundle connected to the secondary outlet chamber , as well as the portion of the inlet manifold of the main heat exchanger connected to these same tubes and at least one of the secondary heat exchangers constituting a secondary radiator.
  • the invention also makes it possible to produce various configurations of the thermal energy management system that adapt to the different load conditions of the vehicle engine.
  • the exchange surface of the secondary radiator can be increased by that portion of the main radiator beam that communicates with the secondary heat exchangers. This gives a secondary radiator of larger size without increase the facial bulk of the exchange module since the exchangers can be superimposed on each other.
  • the module comprises switching means that open and close the passage opening between the outlet manifold of the main exchanger and the inlet manifold of at least one secondary exchanger.
  • the switching means make it possible to vary the surface area of the heat exchanger bundle, and consequently its cooling capacity.
  • the switching means consist of a piston connected by a rod to a control member.
  • the controller can pull or push the piston to close the passage opening.
  • the module comprises an inlet pipe connected to the inlet manifold of the main heat exchanger, this single pipe serving for the common inlet of the coolant in the main radiator and in the secondary radiator.
  • the module comprises a partition wall located between the portion of the inlet header box forming part of the main radiator and the portion of the inlet manifold part of the secondary radiator, this partition dividing the manifold of the main heat exchanger into a main inlet chamber and a secondary inlet chamber, an inlet manifold being connected to the main inlet chamber for the coolant inlet into the main radiator and another manifold inlet is connected to the secondary inlet chamber for the entry of the coolant into the secondary radiator.
  • the heat exchange module may comprise at least one fourth exchanger belonging to a separate cooling circuit in which circulates a different cycle fluid of the heat transfer fluid of the main radiator and the secondary radiator, in particular, the main exchanger and the two secondary exchangers.
  • the module may retain the structure of a "multi-exchanger", that is to say, a module comprising a plurality of heat exchangers forming a unitary mechanical unit, for example by means of common manifolds, common spacers, common cheeks or other means of connection between the respective beams of the exchangers.
  • a multi-exchanger that is to say, a module comprising a plurality of heat exchangers forming a unitary mechanical unit, for example by means of common manifolds, common spacers, common cheeks or other means of connection between the respective beams of the exchangers.
  • the manifolds of the main exchanger and / or the secondary exchangers are divided into several chambers by partition walls, so as to define a series of passes for the coolant.
  • the exchange surfaces may be constituted by cooling fins common to the exchangers of the module.
  • the exchange surfaces may also be constituted by corrugated inserts common to the exchangers of the module.
  • they may be equipped with means for breaking the thermal bridge between the exchangers, in order to avoid the difficulties that may arise from the circulation therein of a fluid at different temperature levels. from one exchanger to another.
  • the exchange surfaces can be assembled to the tubes of the exchangers by soldering. They can also be mechanically assembled to the tubes of the exchangers.
  • the manifolds of the exchangers consist of a collector plate and a lid assembled by brazing.
  • the manifolds of the exchangers consist of a header plate and a cover, in particular plastic, mechanically fixed on the header plate.
  • the invention relates to a thermal energy management system developed by a motor vehicle engine comprising a main network equipped with a main pump for circulating a coolant cycle fluid between the engine and a heat pump.
  • main cooling radiator exchanging heat with atmospheric air
  • the main network further comprising a short circuit line and a heating line comprising a heater
  • a secondary network including a secondary radiator and a secondary pump, in which the main network and the secondary network are connected by intercommunication means which make it possible to circulate in a controlled manner the coolant between the main network and the secondary network or to prohibit this circulation as a function of the state of charge of the engine, and in which the main radiator and the secondary radiator are part of a heat exchange module as defined above.
  • the invention also relates to a thermal energy management system developed by a motor vehicle engine, comprising a high temperature circuit equipped with a main pump for circulating a coolant between the heat engine and a main heat exchanger. high temperature exchanging heat with the outside atmospheric air, the high temperature circuit further comprising a heating pipe having a heater, and a low temperature circuit including a secondary heat exchanger and a secondary pump, wherein the main heat exchanger at high temperature and the secondary exchanger are part of a heat exchange module, as defined above.
  • one of the secondary heat exchangers is connected in series with a condenser forming part of a air conditioning circuit of the passenger compartment of the motor vehicle.
  • One of the secondary heat exchangers is connected in series with a charge air cooler.
  • the secondary heat exchanger connected in series with the charge air cooler and the charge air cooler itself are part of the high temperature circuit.
  • a heat exchange module designated by the general reference 2. It consists of two exchangers, namely a main heat exchanger, designated by the general reference 4, and a secondary heat exchanger, designated by the general reference 6
  • the main heat exchanger 4 consists of an inlet manifold 8, an outlet manifold 10 and a circulation tube bundle 12 interposed between the inlet manifold 8 and the can outlet manifold 10.
  • the inlet manifold 8 has a partition wall 14 which divides it into a main inlet chamber 16 and a secondary inlet chamber 18.
  • the outlet manifold 10 has a partition wall 20 which divides it into a main outlet chamber 22 and a secondary outlet chamber 24.
  • An inlet manifold 26 is connected to the main inlet chamber 16 and an inlet manifold 28 is t connected to the secondary entrance chamber 18.
  • the tubing 26 distributes the coolant in the tubes of the bundle 12 connected to the main inlet chamber and the inlet pipe 28 distributes the coolant in the tubes of the bundle 12 connected to the secondary inlet chamber 18.
  • the main outlet chamber 22 comprises an outlet pipe 30 which allows the outlet of the coolant entered by the pipe of the 26 of the main outlet chamber 22.
  • the secondary outlet chamber 24 has no outlet pipe, but a through orifice 32 which communicates with an inlet manifold 34 of the secondary heat exchanger 6.
  • the latter also has an outlet manifold 36 and a bundle of tubes 38 interposed between the inlet manifold 34 and the outlet manifold 36.
  • An outlet manifold 40 is connected to the outlet manifold 36
  • the passage opening 32 can be opened or closed by means of switching means which will be described later.
  • the bundle of tubes 12 of the main heat exchanger 4 and the bundle of tubes 38 of the secondary heat exchanger 6 are traversed by a same air flow schematized by the arrow 42.
  • the two heat exchangers are arranged in such a way that The secondary heat exchanger 6 is cooled firstly by the air flow 42.
  • the tubes of the bundle 12 are thus cooled by a stream of air which has already warmed up in contact with the tubes of the bundle 38 of the secondary heat exchanger 6.
  • the portion of the tubes of the bundle 12 of the main heat exchanger 4 connected to the main inlet chamber 16 and to the main outlet chamber 22 constitutes, in what follows, a main radiator 196 (see FIG. Figures 15 - 18 ).
  • BT Low temperature radiator
  • HT radiator main radiator at high temperature
  • the heat exchange module 2 can thus generate two temperature levels, for example a high temperature equal to about 100 ° C and a low temperature equal to about 60 ° C.
  • the high temperature radiator is intended to be part of a high temperature circuit and to cool the engine of the motor vehicle, as well as equipment that does not need to be cooled down to a low temperature.
  • the low temperature radiator is connected to a so-called low temperature network and is intended for fluid cooling for which the temperature level of the engine cooling circuit is too high.
  • the circulation of the coolant in the heat exchange module 2 of the Figure 1 is carried out as follows.
  • the hot fluid of the main circuit, or high temperature circuit enters the main radiator 196 through the inlet pipe 26 of the main inlet chamber, as shown schematically by the arrow 44, passes through the tubes 12 of the bundle connected to the main inlet chamber 16 and enters the main outlet chamber 22.
  • the cooled heat transfer fluid exits the main outlet chamber 22 through the pipe 30, as shown by the arrow 46.
  • the hot heat transfer fluid of the secondary circuit enters the secondary inlet chamber 18 through the inlet pipe 28, as shown by the arrow 48. It traverses the part of the tubes of the bundle 12 connected to the secondary entry chamber 18 and the secondary outlet chamber 24. It enters the secondary outlet chamber 24 and passes into the inlet manifold 34 through the passage opening 32, as shown by the arrows 50. fluid then travels the tubes of the beam 38, from left to right according to the figure, to enter the outlet manifold 36. The cooled heat transfer fluid exits through the outlet pipe 40, as shown schematically by the arrow 52. This is the same heat transfer fluid circulating in the main radiator and in the secondary radiator.
  • the inlet manifold 8 of the main heat exchanger 4 comprises a single inlet pipe 26 instead of the pipes 26 and 28 of the embodiment of the Figure 1 .
  • the inlet manifold 8 has no partition wall 14. Its volume is therefore not divided into a main inlet chamber 16 and a secondary inlet chamber 18.
  • the inlet manifold 26 serves both for the inlet of the heat transfer fluid of the main network or high temperature network and the heat transfer fluid of the secondary network or low temperature network, as shown schematically by the arrow 44.
  • a part of the fluid enters the bundle tubes 12 connected to the main outlet chamber 22, and the remainder of the fluid enters the part of the bundle tubes 12 connected to the secondary outlet chamber 24.
  • the outlet manifold 10 is divided into a main exit chamber 22 and a secondary exit chamber by a partition wall 20, in the same manner as in the embodiment of the figure 1 .
  • the figure 3 an alternative embodiment of the heat exchange module shown in the figure 2 .
  • the latter comprises a single inlet pipe 26 connected to the inlet manifold 8 of the main heat exchanger 2.
  • the difference between the two embodiments is due to the fact that the inlet manifold 34 of the secondary heat exchanger 6 comprises a partition 58 which divides it into a lower chamber 60 and an upper chamber 62.
  • the outlet manifold 36 of the secondary exchanger 6 has a partition wall 64 which divides it into a lower chamber 66 and a superior room 68.
  • the heat transfer fluid circulates in the tubes of the beam 38 of the secondary exchanger 6 by performing a series of trips back and forth between the inlet manifold 34 and the outlet manifold 36. These trips and returns are called passes. In the example shown, there are three passes. After entering the lower chamber 60 through the passage opening 32, as shown by the arrow 70, the fluid flows from right to left, according to the figure, to enter the lower chamber 66 of the outlet manifold 36. It is distributed in this chamber and circulates, from left to right according to the figure, in the tubes of the bundle 38 to reach the upper chamber 62 of the inlet manifold 34, then flows again from right to left according to FIG. , as shown schematically by the arrow 74, to enter the upper chamber 68 of the outlet manifold 36. The cold heat transfer fluid then leaves the upper chamber 68 through the outlet pipe 40, as shown schematically by the arrow 52.
  • the circulation of the coolant in the main radiator or radiator at high temperature is carried out in a single pass.
  • the main radiator could also include partition walls similar to the partitions 58 and 64 so that the circulation of the fluid takes place in several passes.
  • the secondary radiator could have more partition walls to increase the number of passes.
  • FIG 4 another alternative embodiment of a heat exchange module 2. It differs from the previous ones, illustrated and described with reference to the Figures 1 to 3 in that the outlet manifold 10 of the main heat exchanger 4 does not have a partition wall which divides its interior volume into two chambers. As a result, the main radiator, or high-temperature radiator 196, merges with the main heat exchanger or high-temperature exchanger 4. in the same way, the secondary radiator 200 merges with the secondary heat exchanger 6.
  • the circulation of the fluid in this heat exchange module is carried out as follows.
  • the heat transfer fluid of the main circuit enters the inlet manifold 8 of the main heat exchanger 4 through the inlet manifold 80, as shown by the arrow 82. It traverses the tubes of the bundle 12, from left to right according to the figure, to reach the outlet manifold 10 from which it is cooled by the outlet pipe 84, as shown schematically by the arrow 86.
  • the secondary circuit fluid, or circuit at low temperature enters the manifold 36 of the secondary radiator through the tubing 88, as shown schematically by the arrow 90. It traverses the tubes of the beam 38, from left to right according to the figure, to enter the outlet manifold 34 and out through the manifold 92, as shown schematically by the arrow 94.
  • the heat exchange module 2 of the Figure 4 may also include a through hole 32 communicating the outlet manifold 10 of the main heat exchanger with the inlet manifold 34 of the secondary heat exchanger, as shown.
  • the passage opening 32 may be opened or closed by switching means which will be described later. This arrangement makes it possible to vary the exchange capacity of the exchanger by circulating the fluid in all or part of the latter.
  • FIG. 5 a fifth variant embodiment of a heat exchange module 2.
  • This embodiment is similar to the embodiment of the Figure 4 in the sense that the outlet manifold of the main heat exchanger 4 does not have a partition partition that divides it into a main exit chamber and a secondary exit chamber. The interior volume of this box is therefore one piece. The circulation of the coolant in the main heat exchanger 4 is therefore carried out in the same manner as in the embodiment shown in FIG. Figure 4 .
  • the outlet manifold 36 of the main heat exchanger 6 has a partition wall 96 which divides it into a lower chamber 98 and an upper chamber 100.
  • the heat transfer fluid of the low temperature circuit enters the upper chamber 100 through the inlet tubing 102, as shown by the arrow 104. It traverses the upper part of the tubes of the beam, located above the partition wall 96, from left to right according to the figure, to reach the manifold 34 and distributed in the latter, as shown schematically by the arrow 106, then it travels the lower part of the tubes of the beam 38, located below the partition wall 96, from right to left according to the Figure 5 , to return to the lower chamber 98 of the manifold 36.
  • the cooled secondary fluid leaves the lower chamber 98 through the outlet pipe 110, as shown schematically by the arrow 112.
  • the secondary radiator thus comprises two passes. However, it could include more, for example three or four.
  • the heat exchange module of the figure 5 is further distinguished by the fact that the exchange surfaces 114 in heat exchange relationship with the tubes of the bundle 12 of the main heat exchanger 4 and 38 of the secondary heat exchanger 6 are constituted by corrugated inserts.
  • the passage opening 32 between the header box 10 of the main heat exchanger 4 and the manifold 34 of the secondary heat exchanger 6 can be opened and closed by switching means. .
  • a control member 120 integral with a wall of the inlet manifold 34 of the secondary heat exchanger 6 actuates a rod 122 which carries a piston 124.
  • the piston 124 which comprises a seal, is attracted towards the inlet of the passage opening 32 constituted for example by a tubular spacer 126 and it closes this orifice.
  • the piston 124 deviates from the opening of the passage opening 32, which allows the circulation of the fluid, as shown schematically by the arrows 128.
  • the embodiment of the control means is identical, except that the piston 124 is located inside the outlet manifold 34 of the secondary heat exchanger 6 instead of being located inside the the outlet manifold 10 of the main heat exchanger 4.
  • the piston 124 deviates from the tubular spacer 126, which opens the through hole 32 and allows the passage of the fluid, as shown schematically by the arrows 128 .
  • the exchangers are assembled in a single operation by soldering.
  • the exchangers are assembled partly by brazing and partly by mechanical means.
  • the heat exchange surfaces in heat exchange relationship with the tubes of the bundle which may be constituted by corrugated spacers or by flat and thin fins, are then assembled by soldering to the tubes, while the cover of the manifolds is mechanically assembled to the header plate of the exchanger.
  • the figure 8 represents a thin fin 130 for a module of heat exchange such as those described and represented on the Figures 1 to 5 .
  • the vane 130 is in the form of a very elongated rectangle having two long sides 132 in which are provided elongated cutouts 134 ending in a rounded end for receiving the tubes of the beam 12 of the main heat exchanger 4 and the tubes of the bundle 38 of the secondary heat exchanger 6.
  • the fin 130 has square perforations 136 arranged between the two rows of tubes and intended to limit the thermal bridge between the bundle of tubes 12 and the bundle of tubes 38.
  • Collector boxes 8 and 36 are made using a single piece 140 having a partition wall 142.
  • the tubes of the bundles 12 and 38 are assembled by soldering in a single operation to the header plate 144.
  • Seals 146 are interposed between the manifold plate 144 and the part 140.
  • the collector plate 144 has a crimped rim 148 folded over the end of the part 140 in order to maintain it sealingly applied against the seals 142.
  • FIG 10 a sectional view along line X of the figure 8 .
  • This view is identical to the figure 9 , except that the cutting plane does not pass through the indentations 136, so that the surface of the fins 130 is continuous.
  • the sectional plane shows the uninterrupted section of the collector plate 144.
  • the constituent parts of the exchanger can be assembled exclusively by means of mechanical means such as crimping.
  • the fin 150 ( figure 11 ) comprises two elongate sides 152 having elliptical perforations 154 flattened for the introduction of the tubes of the beam 12 of the main heat exchanger 4 and the tubes of the bundle 38 of the secondary heat exchanger 6. These perforations are completely closed because it is necessary to make thermal contact between the outer wall of the tubes of the bundles 12 and 38 and the fins 150 by flaring the tubes by means of an olive.
  • the fin 150 also has perforations 156 of square shape facing the tubes in order to avoid a thermal bridge between the two exchangers.
  • the manifold plate 158 comprises a seal 160 which makes it possible to form a tight junction with the part 140 in which the manifolds 8 and 36 are formed.
  • the tubes of the bundles 12 and 38 are flared to make thermal contact with the slip plate 158.
  • the heat exchange module shown comprises a third heat exchanger designated by the general reference 164.
  • This additional heat exchanger is crossed by the same flow air 42 that the secondary heat exchanger 6 and the main heat exchanger 4. In addition, it is located in front of the secondary heat exchanger 6, so that it is cooled first.
  • An additional exchanger such as exchanger 164 is integrated in the heat exchange module 2 when it is desired to cool fluids other than the heat transfer fluid of the main and secondary networks by the ambient air, for example the circulating fluid of the circuit air conditioning if a water condenser is not available in the cooling system.
  • the exchanger 164 could also be a radiator for cooling the lubricating oil of the gearbox or the engine.
  • the additional exchanger 164 may be provided in any embodiment of a heat module, in particular, in the embodiment of the invention described with reference to FIG. figure 23 where the heat exchange module comprises a main exchanger and two secondary exchangers.
  • the fin 166 is in the form of a very elongated rectangle having two long sides 168 in which are provided elongated cuts and rounded at their ends. However, these cuts are of two types.
  • the cutouts 170 are provided to receive a single row of tubes, namely the tubes of the beam 12 of the main heat exchanger 4.
  • the cutouts 172 are deeper. They are designed to receive two rows of tubes, namely the tubes of the bundle 38 of the secondary heat exchanger 6, and the tubes 174 of the additional exchanger 164.
  • the fin 166 is common to the three exchangers. It will be noted, moreover, that it comprises square perforations 176 disposed opposite the notches 170 and 172, and intended to avoid, as already explained, a thermal bridge between the rows of tubes.
  • the heat exchange modules shown in Figures 1 to 14 have only two heat exchangers, namely a main heat exchanger and a secondary heat exchanger while the system according to the invention comprises three, namely a main heat exchanger and two secondary heat exchangers.
  • the structure and operation of the main heat exchanger and the structure and operation of the secondary heat exchangers of the system according to the invention may be operating the main and secondary heat exchangers of the preceding heat exchange modules, as developed later in relationship with the figure 23 .
  • the main network 180 comprises an internal combustion engine 186 and a main pump 188 which circulates the heat transfer fluid in the main network, particularly in the engine 186.
  • the main network also comprises a branch on which is mounted a heating radiator 190, also called heater .
  • it may also include a bypass on which are mounted heat exchangers which exchange heat with the heat transfer fluid of the main network and which are intended for the cooling of vehicle equipment such as a gas cooler.
  • the main network finally comprises a branch on which is mounted the main radiator 196, and a branch pipe 198 which allows to bypass the main radiator 196.
  • the secondary network 182 consists of a circulation pump 199 which circulates the coolant in the secondary radiator or radiator at low temperature 200.
  • the low temperature network may also optionally include equipment exchangers which serve to cool optional equipment of the vehicle such as a charge air cooler 202 and an air conditioning condenser 204.
  • the passage opening 32 between the radiator 196 and the secondary radiator 200 has been schematized by an arrow.
  • references 196 and 200 here designate the main radiator and the secondary radiator, and not the main exchanger 4 and the secondary heat exchanger 6. Indeed, as has been explained above, the main radiator may coincide with the main radiator. main exchanger and likewise the secondary radiator may coincide with the secondary exchangers. However, the secondary radiator 200 is most often constituted by secondary heat exchangers and a heat exchanger. more or less important part of the beam of the main heat exchanger 4, while the main radiator 196 occupies only part of the main heat exchanger 4.
  • the secondary exchangers can communicate with each other, for example, thanks to switching means such as those shown in Figures 6 and 7 .
  • Interconnection means make it possible to connect the main network 180 and the secondary network 182.
  • these interconnection means consist of a four-way valve 206 and a three-way valve 208.
  • the heat exchange module 2 used in the thermal energy management system of the figure 15 has a single entry common to the main and secondary networks and two outputs.
  • main radiator 196 constitutes a common part to the main network 180 and the secondary network 182.
  • the valve 206 makes it possible to manage the circulation of the coolant in the fan heater 190, in the bypass pipe 198 and the radiator 196.
  • the main radiator 196 and the secondary radiator 200 produce cold water to supply the exchangers of the air conditioning condenser type in order to obtain a temperature rise as fast as possible of the heat engine 186, the heat transfer fluid of the circuit. 180 main borrows the bypass line 198 so as to avoid cooling in the main radiator 196.
  • the figure 17 represents a low load configuration of the thermal motor.
  • the main radiator 196 and the secondary radiator 200 produce cold water to supply the exchangers of the type air conditioning condenser 204 and charge air cooler 202.
  • the heat transfer fluid passes through the two radiators one after the other.
  • the valve 206 regulates the temperature of the engine 186. When the temperature of the latter is lower than a threshold value, for example 100 ° C., the fluid flows through the branch pipe 198. When the engine temperature rises above above this temperature, a certain portion, for example 10 or 20%, of the amount of coolant flowing through the main radiator is introduced into the main network 180 to cool the engine.
  • the figure 18 represents a high-load configuration of the engine 186.
  • the valve 206 is positioned such that the main radiator 196 produces cold water to cool the engine 186, and the secondary radiator 200 produces cold water to cool the exchangers 202 and 204. It is the four-way valve 206 which regulates the engine temperature by distributing the heat transfer fluid flow rates between the branch pipe 198 and the main radiator 196.
  • This configuration corresponds to a strong engine load in which it is necessary to circulate a large amount of heat transfer fluid to evacuate the thermal power rejected by the latter.
  • This configuration can also be a vehicle that runs in winter with the air conditioning off and when, moreover, we do not want to cool the charge air.
  • FIGS. 19 to 22 illustrate other thermal energy management systems developed by a combustion engine, which are similar to those of the figure 15 .
  • the elements common with those of the figure 15 are designated by the same reference numerals. These different systems have loops that can interact with each other, but these systems could also have loops that do not interact.
  • the system of figure 19 differs from that of the Figure 15 in that the radiators 196 and 200 do not communicate with each other through a through hole 32.
  • the locations of the valves 206 and 208 and the pump 199 are different, and another valve 210 is interposed on a pipe between the oil cooler 194 and the main radiator 196.
  • the system of figure 20 is very close to that of the figure 15 . Also, the radiators 196 and 200 do not communicate with each other.
  • the radiator 200 is connected to the pump 199 by a pipe 212 into which a pipe 214 leads to the valve 208.
  • the system of figure 21 is close to that of the Figure 15 , but the loops associated with the radiators 196 and 200 are connected to each other only by a common expansion vessel 216. This is connected to the two loops by two lines 218 and 220 which open respectively upstream of the pumps 188 and 199. in the case of Figures 19 and 20 , the radiators 196 and 200 do not communicate with each other through a passage opening 32.
  • the system of figure 22 is close to that of the figure 21 . But the radiators 196 and 200 communicate with each other through a passage orifice, as symbolized by the arrow. In addition, the common expansion vessel is removed.
  • the module of the figure 23 differs from the modules described above in that it comprises a second secondary exchanger. It therefore consists of three exchangers, namely a main heat exchanger, designated by the general reference 256, and two secondary heat exchangers, designated by the references 252 and 254.
  • Each heat exchanger has an inlet manifold 261 , an outlet manifold 263 and a circulating tube bundle interposed between the inlet manifold 261 and the outlet manifold 263.
  • the exchangers 252, 254 and 256 may be identical and / or presented 165 common dividers of which only a portion is represented at the figure 23 .
  • the other construction details of the module of the figure 23 are similar to those of the previously described modules.
  • FIG. 24 We have shown on the figure 24 an embodiment of a thermal energy management system developed by a heat engine comprising a heat exchange module 250 according to the present invention.
  • This management system consists of a high temperature circuit 230, shown schematically by a dotted line rectangle, and a low temperature circuit schematized by a dotted line rectangle 240.
  • the heat exchange module 250 consists of three rows of tubes, namely a first row of tubes 252, a second row of tubes 254 and a third row of tubes 256.
  • the rank order of tubes 252, 254, 256 is determined relative to the direction of the air flow, shown schematically by the arrow 258, which passes through them.
  • the row of tubes 252 is located upstream with respect to the flow of the air flow. He is crossed first and enjoys the lowest air temperature.
  • the row of tubes 254 is traversed by the flow of air which has heated in contact with the tubes of the first row 252. It is therefore less well cooled than the first row.
  • the third row of tubes (256) is the most badly cooled since the air has already passed through the first two rows 254 and 256 and has therefore warmed to their contact.
  • the cooling fluid circulating in the first row of tubes 252 will be better cooled than the fluid flowing in the second row of tubes 254, which itself will be better cooled than the coolant passing through the third row of tubes. 256.
  • each of the rows of tubes 252, 254 and 256 constitutes a exchanger.
  • These three references thus designate both an exchanger and a row of tubes. Consequently, the heat exchange module 250 consists of three superimposed exchangers, through which the same airflow passes.
  • the exchangers may have fins or common tabs 165 that make the module is physically linked.
  • the same cooling fluid, namely the engine coolant, circulates in the three exchangers 252, 254 and 256.
  • Part of the exchange module 250 is part of the high temperature circuit 230, namely the exchangers 254 and 256, while the exchanger 252 is part of the low temperature circuit 240.
  • the high temperature circuit 230 further comprises, as previously described, an internal combustion engine 186 and a main pump 188 which circulates a coolant in the high temperature circuit. It also comprises a bypass on which is mounted a heater 188. It further comprises a four-way valve 260. An inlet channel is connected to the output of the engine 186, an outlet channel to the heater 190, a second output channel to the exchanger 254 and a fourth channel, constituting a third output channel, is connected to the exchanger 256. A charge air cooler 202 is connected in series with the second-row heat exchanger 254.
  • the low temperature circuit 240 includes an electric circulation pump 199 which circulates the coolant coolant of the engine in the exchanger 252 which thus constitutes a radiator at low temperature.
  • the low temperature radiator 252 is connected in series with a condenser 204 forming part of an air conditioning circuit of the passenger compartment of the motor vehicle.
  • the exchangers 254 and 256 are permanently part of the high temperature circuit, while the exchanger 252 is permanently part of the low temperature circuit.
  • FIG. 25 An alternative embodiment not in accordance with the invention of the thermal energy management system shown in FIG. figure 23 .
  • This system is constituted, like that of the figure 23 , a high temperature circuit, designated by the reference 270, and a low temperature circuit, designated by the reference 280.
  • the heat exchange module 290 like the module 250, consists of three rows of tubes, designated by the references 252, 254 and 256, constituting three superimposed heat exchangers and traversed by the same air stream 258.
  • the exchangers of ranks 1 and 2 namely the exchangers 252 and 254 are part of the low temperature circuit 280, while the rank exchanger 3, in other words the exchanger 256, is only part of the high temperature cooling circuit 270.
  • the high temperature circuit 256 comprises a three-way valve 262.
  • the inlet is connected to the output of the engine coolant 186.
  • An output of the valve 262 is directed on the heater 188, while than the other exit brings the fluid to the inlet of the exchanger 256.
  • the exchanger 252 of rank 1 is connected in series with a condenser 204, forming part of the air conditioning circuit d the cabin of a motor vehicle, while the exchanger 254 of rank 2 is connected in series with a cooler d ' Charge air 202.
  • the exchangers 252 and 254 and the equipment with which they are connected in series form part of the low temperature cooling circuit.
  • the links are fixed.
  • the exchanger 254 is still part of the low temperature circuit 280, without being attributable to the high temperature circuit 270.

Abstract

The invention relates to a heat exchange module, comprising a principal heat exchanger (256) and two secondary heat exchangers (252, 254) each having an inlet collector box (261), an outlet collector box (263), a bundle of tubes (12, 38, 39) and exchange surfaces (165) for exchange with the tubes in the bindle. The same flux of air (258) flows through the three exchangers, whilst the same fluid flows through the principal exchanger (256) and the two secondary exchangers (252, 254). The invention further relates to a management system for the thermal energy generated by a thermal engine in an automobile vehicle comprising said module.

Description

L'invention se rapporte au domaine des systèmes de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile.The invention relates to the field of thermal energy management systems developed by a motor vehicle engine.

Le document DE 19854544 montre un tel système.The document From 19854544 shows such a system.

Les échangeurs de chaleur pour véhicules automobiles se présentent généralement sous la forme d'un faisceau de tubes de circulation de fluide et de surfaces d'échange de chaleur avec le milieu extérieur, telles que des ailettes ou des intercalaires ondulés. Le faisceau est interposé entre deux boîtes collectrices qui distribuent le fluide dans les tubes de circulation. Ou bien, en variante, l'échangeur comporte une boîte collectrice unique divisée en une section d'entrée et une section de sortie.Motor vehicle heat exchangers are generally in the form of a bundle of fluid circulation tubes and heat exchange surfaces with the external medium, such as fins or corrugated inserts. The beam is interposed between two manifolds that distribute the fluid in the circulation tubes. Alternatively, the exchanger has a single header divided into an inlet section and an outlet section.

Il est connu d'assembler sur un échangeur principal, tel qu'un radiateur de refroidissement d'un moteur de véhicule automobile, un ou plusieurs échangeurs secondaires afin de constituer un ensemble, appelé encore module, prêt à être installé dans le véhicule, les surfaces d'échange de chaleur du module pouvant être communes aux différents échangeurs. L'échangeur secondaire est constitué le plus souvent d'un refroidisseur d'air de suralimentation du moteur, d'un condenseur de climatisation ou d'un radiateur d'huile.It is known to assemble on one main exchanger, such as a cooling radiator of a motor vehicle engine, one or more secondary exchangers to form an assembly, called still module, ready to be installed in the vehicle, the heat exchange surfaces of the module that can be common to the different exchangers. The secondary exchanger is most often an engine cooler air cooler, an air conditioning condenser or an oil cooler.

Dans les modules d'échange de chaleur de ce type, chaque échangeur possède son propre circuit de circulation de fluide dans lequel circule un fluide caloporteur particulier. Ceci se traduit par une multiplication des canalisations nécessaires. En outre, il est nécessaire d'amener les différents fluides de refroidissement en face avant du véhicule pour réaliser un échange de chaleur avec l'air atmosphérique ambiant. Les échangeurs sont donc fréquemment éloignés des équipements qu'ils refroidissent, ce qui se traduit par une longueur importante des canalisations et des difficultés pour aménager un passage sous le capot du véhicule pour ces canalisations, compte tenu de l'espace limité disponible.In heat exchange modules of this type, each exchanger has its own fluid circulation circuit in which circulates a particular heat transfer fluid. This results in a multiplication of the necessary pipelines. In addition, it is necessary to bring the different cooling fluids to the front of the vehicle to achieve a heat exchange with ambient atmospheric air. The exchangers are therefore frequently removed from the equipment they cool, which results in a significant length of pipes and difficulties to arrange a passage under the hood of the vehicle for these pipes, given the limited space available.

En outre, la surface d'échange de chaleur de chaque échangeur est fixe. Elle correspond à la surface du faisceau de l'échangeur. La seule possibilité d'ajustement du refroidissement de l'échangeur est la mise en marche ou l'arrêt de la pompe de circulation du fluide de refroidissement. Un tel système offre donc peu d'adaptabilité aux conditions de charge du moteur.In addition, the heat exchange surface of each exchanger is fixed. It corresponds to the beam surface of the exchanger. The only possibility of adjusting the cooling of the exchanger is the starting or stopping of the circulation pump of the cooling fluid. Such a system therefore offers little adaptability to the load conditions of the engine.

La présente invention a par conséquent pour objet un système de gestion de l'énergie thermique développée par le moteur du véhicule qui remédie à ces inconvénients.The present invention therefore relates to a thermal energy management system developed by the vehicle engine that overcomes these disadvantages.

Ces buts sont atteints, conformément à l'invention, par un système selon les caractéristiques de la revendication 1.These objects are achieved according to the invention by a system according to the features of claim 1.

On obtient ainsi un système comportant un composant que l'on peut appeler "multi-échangeur" qui comporte trois échangeurs de chaleur formant un ensemble mécanique unitaire, par exemple grâce à des boîtes collectrices communes, des intercalaires communs, des joues communes ou autres moyens de connexion entre les faisceaux respectifs des échangeurs. Toutefois, le module a cette particularité que c'est le même fluide caloporteur qui circule dans les trois échangeurs de chaleur, ledit fluide pouvant être à deux températures différentes car provenant, par exemple, de deux boucles de circulation de fluide distinctes, comme évoqué plus loin.This gives a system comprising a component that can be called "multi-exchanger" which comprises three heat exchangers forming a unitary mechanical unit, for example through common manifolds, common dividers, common cheeks or other means connection between the respective beams of the exchangers. However, the module has the particularity that it is the same coolant circulating in the three heat exchangers, said fluid being able to be at two different temperatures because coming, for example, from two distinct fluid circulation loops, as evoked more far.

Ainsi, chaque échangeur pourra présenter au moins une entrée et au moins une sortie pour le fluide. Les tubes de l'un des faisceaux pourront par ailleurs être de caractéristiques identiques d'un échangeur à l'autre, au moins en ce qui concerne les tubes des échangeurs dans lesquels circulent le même fluide.Thus, each exchanger may have at least one inlet and at least one outlet for the fluid. The tubes of one of the beams may furthermore be of identical characteristics from one exchanger to the other, at least as regards the tubes of the exchangers in which the same fluid.

Selon un mode de réalisation particulier, les surfaces d'échanges avec l'air, aussi appelées faisceaux, seront sensiblement identiques d'un échangeur à l'autre, au moins en ce qui concerne les échangeurs dans lesquels circulent le même fluide.According to a particular embodiment, the air exchange surfaces, also called beams, will be substantially identical from one exchanger to the other, at least as regards the exchangers in which the same fluid circulates.

Dans une forme de réalisation préférentielle, la boîte collectrice de sortie de l'échangeur principal communique avec la boîte collectrice d'entrée d'au moins un échangeur secondaire par un orifice de passage.In a preferred embodiment, the outlet manifold of the main exchanger communicates with the inlet manifold of at least one secondary exchanger through a through hole.

De préférence, le module d'échange de chaleur comporte une cloison de partition qui divise la boîte collectrice de sortie de l'échangeur principal en une chambre de sortie principale et en une chambre de sortie secondaire, les tubes du faisceau de l'échangeur principal raccordés à la chambre de sortie principale, ainsi que la partie de la boîte collectrice d'entrée de l'échangeur principal raccordée à ces mêmes tubes constituant un radiateur principal, les tubes du faisceau de l'échangeur principal raccordés à la chambre de sortie secondaire, ainsi que la partie de la boîte collectrice d'entrée de l'échangeur principal raccordée à ces mêmes tubes et au moins l'un des échangeurs secondaires constituant un radiateur secondaire.Preferably, the heat exchange module comprises a partition wall which divides the outlet manifold of the main exchanger into a main outlet chamber and a secondary outlet chamber, the main exchanger beam tubes. connected to the main outlet chamber, as well as the portion of the main heat exchanger inlet manifold connected to these same tubes constituting a main radiator, the tubes of the main heat exchanger bundle connected to the secondary outlet chamber , as well as the portion of the inlet manifold of the main heat exchanger connected to these same tubes and at least one of the secondary heat exchangers constituting a secondary radiator.

Grâce à ces caractéristiques, on peut faire circuler le même fluide caloporteur dans tout ou partie des échangeurs. Il est possible de sélectionner la partie du faisceau dans laquelle circule le fluide. L'invention permet également de réaliser différentes configurations du système de gestion de l'énergie thermique qui s'adaptent aux différentes conditions de charge du moteur du véhicule.Thanks to these characteristics, it is possible to circulate the same coolant in all or part of the exchangers. It is possible to select the part of the beam in which the fluid flows. The invention also makes it possible to produce various configurations of the thermal energy management system that adapt to the different load conditions of the vehicle engine.

La surface d'échange du radiateur secondaire peut être augmentée de la partie du faisceau du radiateur principal qui communique avec les échangeurs secondaires. On obtient ainsi un radiateur secondaire de plus grande dimension, sans augmentation de l'encombrement facial du module d'échange puisque les échangeurs peuvent être superposés les uns aux autres.The exchange surface of the secondary radiator can be increased by that portion of the main radiator beam that communicates with the secondary heat exchangers. This gives a secondary radiator of larger size without increase the facial bulk of the exchange module since the exchangers can be superimposed on each other.

De préférence, le module comporte des moyens de commutation qui permettent d'ouvrir et de fermer l'orifice de passage entre la boîte collectrice de sortie de l'échangeur principal et la boîte collectrice d'entrée d'au moins un échangeur secondaire.Preferably, the module comprises switching means that open and close the passage opening between the outlet manifold of the main exchanger and the inlet manifold of at least one secondary exchanger.

La mise en oeuvre de ces moyens de commutation permet de faire varier la surface du faisceau de l'échangeur, et par conséquent sa capacité de refroidissement. Dans une réalisation particulière, les moyens de commutation sont constitués par un piston relié par une tige à un organe de commande.The implementation of these switching means makes it possible to vary the surface area of the heat exchanger bundle, and consequently its cooling capacity. In a particular embodiment, the switching means consist of a piston connected by a rod to a control member.

L'organe de commande peut tirer ou pousser le piston pour fermer l'orifice de passage.The controller can pull or push the piston to close the passage opening.

Dans une réalisation particulière, le module comporte une tubulure d'entrée raccordée à la boîte collectrice d'entrée de l'échangeur principal, cette tubulure unique servant à l'entrée commune du fluide caloporteur dans le radiateur principal et dans le radiateur secondaire.In a particular embodiment, the module comprises an inlet pipe connected to the inlet manifold of the main heat exchanger, this single pipe serving for the common inlet of the coolant in the main radiator and in the secondary radiator.

Selon une autre réalisation, le module comporte une cloison de partition située entre la partie de la boîte collectrice d'entrée faisant partie du radiateur principal et la partie de la boîte collectrice d'entrée faisant partie du radiateur secondaire, cette cloison divisant la boîte collectrice de l'échangeur principal en une chambre d'entrée principale et en une chambre d'entrée secondaire, une tubulure d'entrée étant raccordée à la chambre d'entrée principale pour l'entrée du fluide caloporteur dans le radiateur principal et une autre tubulure d'entrée étant raccordée à la chambre d'entrée secondaire pour l'entrée du fluide caloporteur dans le radiateur secondaire.In another embodiment, the module comprises a partition wall located between the portion of the inlet header box forming part of the main radiator and the portion of the inlet manifold part of the secondary radiator, this partition dividing the manifold of the main heat exchanger into a main inlet chamber and a secondary inlet chamber, an inlet manifold being connected to the main inlet chamber for the coolant inlet into the main radiator and another manifold inlet is connected to the secondary inlet chamber for the entry of the coolant into the secondary radiator.

Le module d'échange de chaleur peut comporter au moins un quatrième échangeur appartenant à un circuit de refroidissement séparé dans lequel circule un fluide de cycle différent du fluide caloporteur du radiateur principal et du radiateur secondaire, notamment, de l'échangeur principal et des deux échangeurs secondaires.The heat exchange module may comprise at least one fourth exchanger belonging to a separate cooling circuit in which circulates a different cycle fluid of the heat transfer fluid of the main radiator and the secondary radiator, in particular, the main exchanger and the two secondary exchangers.

Dans une telle configuration, le module pourra conserver la structure d'un "multi-échangeur", c'est-à-dire, un module comportant plusieurs échangeurs de chaleur formant un ensemble mécanique unitaire, par exemple grâce à des boîtes collectrices communes, des intercalaires communs, des joue communes ou autres moyens de connexion entre les faisceaux respectifs des échangeurs.In such a configuration, the module may retain the structure of a "multi-exchanger", that is to say, a module comprising a plurality of heat exchangers forming a unitary mechanical unit, for example by means of common manifolds, common spacers, common cheeks or other means of connection between the respective beams of the exchangers.

Dans une réalisation particulière, les boîtes collectrices de l'échangeur principal et/ou des échangeurs secondaires sont divisées en plusieurs chambres par des cloisons de séparation, de manière à définir une série de passes pour le fluide caloporteur.In a particular embodiment, the manifolds of the main exchanger and / or the secondary exchangers are divided into several chambers by partition walls, so as to define a series of passes for the coolant.

Les surfaces d'échange peuvent être constituées par des ailettes de refroidissement communes aux échangeurs du module. Les surfaces d'échange peuvent également être constituées par des intercalaires ondulés communs aux échangeurs du module.The exchange surfaces may be constituted by cooling fins common to the exchangers of the module. The exchange surfaces may also be constituted by corrugated inserts common to the exchangers of the module.

Dans l'un comme l'autre cas, elles pourront être équipées de moyens de rupture du pont thermique entre les échangeurs, ceci afin d'éviter les difficultés pouvant provenir de la circulation dans ceux-ci d'un fluide à différents niveaux de température d'un échangeur à l'autre.In either case, they may be equipped with means for breaking the thermal bridge between the exchangers, in order to avoid the difficulties that may arise from the circulation therein of a fluid at different temperature levels. from one exchanger to another.

Les surfaces d'échange peuvent être assemblées aux tubes des échangeurs par brasage. Elles peuvent également être assemblées mécaniquement aux tubes des échangeurs.The exchange surfaces can be assembled to the tubes of the exchangers by soldering. They can also be mechanically assembled to the tubes of the exchangers.

Dans une réalisation particulière, les boîtes collectrices des échangeurs sont constituées d'une plaque collectrice et d'un couvercle assemblés par brasage. Dans une autre réalisation, les boîtes collectrices des échangeurs sont constituées d'une plaque collectrice et d'un couvercle, notamment en matière plastique, fixé mécaniquement sur la plaque collectrice.In a particular embodiment, the manifolds of the exchangers consist of a collector plate and a lid assembled by brazing. In another embodiment, the manifolds of the exchangers consist of a header plate and a cover, in particular plastic, mechanically fixed on the header plate.

D'autre part, l'invention concerne un système de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile comprenant un réseau principal équipé d'une pompe principale pour faire circuler un fluide de cycle caloporteur entre le moteur thermique et un radiateur de refroidissement principal échangeant de la chaleur avec l'air atmosphérique, le réseau principal comprenant, en outre, une canalisation de court-circuit et une canalisation de chauffage comprenant un aérotherme, et un réseau secondaire incluant un radiateur secondaire et une pompe secondaire, dans lequel le réseau principal et le réseau secondaire sont reliés par des moyens d'intercommunication qui permettent de faire circuler de manière contrôlée le fluide caloporteur entre le réseau principal et le réseau secondaire ou d'interdire cette circulation en fonction de l'état de charge du moteur thermique, et dans lequel le radiateur principal et le radiateur secondaire font partie d'un module d'échange de chaleur tel que défini ci-dessus.On the other hand, the invention relates to a thermal energy management system developed by a motor vehicle engine comprising a main network equipped with a main pump for circulating a coolant cycle fluid between the engine and a heat pump. main cooling radiator exchanging heat with atmospheric air, the main network further comprising a short circuit line and a heating line comprising a heater, and a secondary network including a secondary radiator and a secondary pump, in which the main network and the secondary network are connected by intercommunication means which make it possible to circulate in a controlled manner the coolant between the main network and the secondary network or to prohibit this circulation as a function of the state of charge of the engine, and in which the main radiator and the secondary radiator are part of a heat exchange module as defined above.

L'invention concerne aussi un système de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile, comprenant un circuit à haute température équipé d'une pompe principale pour faire circuler un fluide caloporteur entre le moteur thermique et un échangeur principal à haute température échangeant de la chaleur avec l'air atmosphérique extérieur, le circuit à haute température comprenant en outre une canalisation de chauffage comportant un aérotherme, et un circuit à basse température incluant un échangeur secondaire et une pompe secondaire, dans lequel l'échangeur principal à haute température et l'échangeur secondaire font partie d'un module d'échange de chaleur, tel que défini précédemment.The invention also relates to a thermal energy management system developed by a motor vehicle engine, comprising a high temperature circuit equipped with a main pump for circulating a coolant between the heat engine and a main heat exchanger. high temperature exchanging heat with the outside atmospheric air, the high temperature circuit further comprising a heating pipe having a heater, and a low temperature circuit including a secondary heat exchanger and a secondary pump, wherein the main heat exchanger at high temperature and the secondary exchanger are part of a heat exchange module, as defined above.

Dans une forme de réalisation, l'un des échangeurs secondaires est monté en série avec un condenseur faisant partie d'un circuit de climatisation de l'habitacle du véhicule automobile.In one embodiment, one of the secondary heat exchangers is connected in series with a condenser forming part of a air conditioning circuit of the passenger compartment of the motor vehicle.

L'un des échangeurs secondaires est monté en série avec un refroidisseur d'air de suralimentation.One of the secondary heat exchangers is connected in series with a charge air cooler.

L'échangeur secondaire monté en série avec le refroidisseur d'air de suralimentation et le refroidisseur d'air de suralimentation lui-même font partie du circuit à haute température.The secondary heat exchanger connected in series with the charge air cooler and the charge air cooler itself are part of the high temperature circuit.

D'autres caractéristiques et avantages de la présente invention apparaîtront encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :

  • la figure 1 est une vue en perspective d'une première variante d'un module d'échange de chaleur comprenant un seul échangeur secondaire ;
  • la figure 2 est une vue en perspective d'une deuxième variante de réalisation d'un module d'échange de chaleur comprenant un seul échangeur secondaire ;
  • la figure 3 est une vue en perspective d'une troisième variante d'un module d'échange de chaleur comprenant un seul échangeur secondaire ;
  • la figure 4 est une vue en perspective d'une quatrième variante d'un module d'échange de chaleur comprenant un seul échangeur secondaire ;
  • la figure 5 est une vue en perspective d'une cinquième variante d'un module d'échange de chaleur comprenant un seul échangeur secondaire ;
  • la figure 6 illustre une première variante de moyens de commutation pour un module d'échange de chaleur selon l'une des figures 1 à 5 ;
  • la figure 7 illustre une deuxième variante de moyens de commutation pour un module d'échange de chaleur selon l'une des figures 1 à 5 ;
  • la figure 8 est une vue en plan d'une ailette brasée destinée au module d'échange de chaleur représenté aux figures 1 à 5 ;
  • la figure 9 est une vue en coupe selon la ligne IX de la figure 8 ;
  • la figure 10 est une vue en coupe selon la ligne X de la figure 8 ;
  • les figures 11 et 12 illustrent un assemblage entièrement mécanique d'un module d'échange de chaleur comprenant un seul échangeur secondaire ;
  • la figure 13 représente un module d'échange de chaleur comprenant un échangeur principal, un seul échangeur secondaire et un troisième échangeur ;
  • la figure 14 est une vue en plan d'une ailette destinée au module d'échange de chaleur de la figure 13 ;
  • la figure 15 illustre schématiquement un système de gestion de l'énergie thermique développée par un moteur thermique comprenant un seul échangeur secondaire ;
  • la figure 16 représente la configuration du système de la figure 15 en cas de démarrage à froid ;
  • La figure 17 représente le système de gestion de l'énergie thermique de la figure 15 en configuration de faible charge ;
  • la figure 18 illustre le système de gestion de l'énergie thermique de la figure 15 en configuration de forte charge ;
  • les figures 19 à 22 illustrent schématiquement d'autres systèmes de gestion de l'énergie thermique comprenant un seul échangeur secondaire ;
  • la figure 23 est une vue en perspective d'un module d'échange de chaleur comprenant un échangeur principal et deux échangeurs secondaires conforme à la présente invention ;
  • la figure 24 illustre schématiquement un mode de réalisation d'un système de gestion de l'énergie thermique développé par un moteur comprenant un échangeur principal et deux échangeurs secondaires conforme à la présente invention ;
  • la figure 25 illustre schématiquement un mode de réalisation d'un système de gestion de l'énergie thermique développé par un moteur comprenant un échangeur principal et deux échangeurs secondaires.
Other features and advantages of the present invention will become apparent upon reading the following description of exemplary embodiments given by way of illustration with reference to the appended figures. In these figures:
  • the figure 1 is a perspective view of a first variant of a heat exchange module comprising a single secondary heat exchanger;
  • the figure 2 is a perspective view of a second alternative embodiment of a heat exchange module comprising a single secondary heat exchanger;
  • the figure 3 is a perspective view of a third variant of a heat exchange module comprising a single secondary heat exchanger;
  • the figure 4 is a perspective view of a fourth variant of a heat exchange module comprising a single secondary heat exchanger;
  • the figure 5 is a perspective view of a fifth variant of a heat exchange module comprising a single secondary heat exchanger;
  • the figure 6 illustrates a first variant of switching means for a heat exchange module according to one of the Figures 1 to 5 ;
  • the figure 7 illustrates a second variant of switching means for a heat exchange module according to one of the Figures 1 to 5 ;
  • the figure 8 is a plan view of a brazed fin for the heat exchange module shown in FIGS. Figures 1 to 5 ;
  • the figure 9 is a sectional view along line IX of the figure 8 ;
  • the figure 10 is a sectional view along line X of the figure 8 ;
  • the Figures 11 and 12 illustrate a fully mechanical assembly of a heat exchange module comprising a single secondary heat exchanger;
  • the figure 13 represents a heat exchange module comprising a main exchanger, a single secondary exchanger and a third exchanger;
  • the figure 14 is a plan view of a fin for the heat exchange module of the figure 13 ;
  • the figure 15 schematically illustrates a thermal energy management system developed by a heat engine comprising a single secondary heat exchanger;
  • the figure 16 represents the system configuration of the figure 15 in case of cold start;
  • The figure 17 represents the thermal energy management system of the figure 15 in low load configuration;
  • the figure 18 illustrates the thermal energy management system of the figure 15 in high load configuration;
  • the Figures 19 to 22 schematically illustrate others thermal energy management systems comprising a single secondary heat exchanger;
  • the figure 23 is a perspective view of a heat exchange module comprising a main heat exchanger and two secondary heat exchangers according to the present invention;
  • the figure 24 schematically illustrates an embodiment of a thermal energy management system developed by an engine comprising a main heat exchanger and two secondary heat exchangers according to the present invention;
  • the figure 25 schematically illustrates an embodiment of a thermal energy management system developed by a motor comprising a main heat exchanger and two secondary heat exchangers.

On a représenté sur la figure 1 un module d'échange de chaleur, désigné par la référence générale 2. Il est constitué de deux échangeurs, à savoir un échangeur de chaleur principal, désigné par la référence générale 4, et un échangeur de chaleur secondaire, désigné par la référence générale 6. L'échangeur de chaleur principal 4 est constitué d'une boîte collectrice d'entrée 8, d'une boîte collectrice de sortie 10 et d'un faisceau de tubes de circulation 12 interposé entre la boîte collectrice d'entrée 8 et la boîte collectrice de sortie 10. La boîte collectrice d'entrée 8 comporte une cloison de partition 14 qui la divise en une chambre d'entrée principale 16 et en une chambre d'entrée secondaire 18. De même, la boîte collectrice de sortie 10 comporte une cloison de partition 20 qui la divise en une chambre de sortie principale 22 et une chambre de sortie secondaire 24. Une tubulure d'entrée 26 est raccordée à la chambre d'entrée principale 16 et une tubulure d'entrée 28 est raccordée à la chambre d'entrée secondaire 18.We have shown on the figure 1 a heat exchange module, designated by the general reference 2. It consists of two exchangers, namely a main heat exchanger, designated by the general reference 4, and a secondary heat exchanger, designated by the general reference 6 The main heat exchanger 4 consists of an inlet manifold 8, an outlet manifold 10 and a circulation tube bundle 12 interposed between the inlet manifold 8 and the can outlet manifold 10. The inlet manifold 8 has a partition wall 14 which divides it into a main inlet chamber 16 and a secondary inlet chamber 18. Similarly, the outlet manifold 10 has a partition wall 20 which divides it into a main outlet chamber 22 and a secondary outlet chamber 24. An inlet manifold 26 is connected to the main inlet chamber 16 and an inlet manifold 28 is t connected to the secondary entrance chamber 18.

La tubulure 26 distribue le fluide caloporteur dans les tubes du faisceau 12 raccordés à la chambre d'entrée principale et la tubulure d'entrée 28 distribue le fluide caloporteur dans les tubes du faisceau 12 raccordés à la chambre d'entrée secondaire 18. La chambre de sortie principale 22 comporte une tubulure de sortie 30 qui permet la sortie du fluide caloporteur entré par la tubulure d'entrée 26 hors de la chambre de sortie principale 22. La chambre de sortie secondaire 24 ne comporte pas de tubulure de sortie, mais un orifice de passage 32 qui la met en communication avec une boîte collectrice d'entrée 34 de l'échangeur secondaire 6. Ce dernier possède par ailleurs une boîte collectrice de sortie 36 et un faisceau de tubes 38 interposé entre la boîte collectrice d'entrée 34 et la boîte collectrice de sortie 36. Une tubulure de sortie 40 est raccordée à la boîte collectrice de sortie 36. L'orifice de passage 32 peut être ouvert ou fermé à l'aide de moyens de commutation qui seront décrits ultérieurement.The tubing 26 distributes the coolant in the tubes of the bundle 12 connected to the main inlet chamber and the inlet pipe 28 distributes the coolant in the tubes of the bundle 12 connected to the secondary inlet chamber 18. The main outlet chamber 22 comprises an outlet pipe 30 which allows the outlet of the coolant entered by the pipe of the 26 of the main outlet chamber 22. The secondary outlet chamber 24 has no outlet pipe, but a through orifice 32 which communicates with an inlet manifold 34 of the secondary heat exchanger 6. The latter also has an outlet manifold 36 and a bundle of tubes 38 interposed between the inlet manifold 34 and the outlet manifold 36. An outlet manifold 40 is connected to the outlet manifold 36 The passage opening 32 can be opened or closed by means of switching means which will be described later.

Le faisceau de tubes 12 de l'échangeur de chaleur principal 4 et le faisceau de tubes 38 de l'échangeur secondaire 6 sont traversés par un même flux d'air schématisé par la flèche 42. Les deux échangeurs sont disposés de telle manière que l'échangeur secondaire 6 est refroidi en premier par le flux d'air 42. Les tubes du faisceau 12 sont donc refroidis par un flux d'air qui s'est déjà réchauffé au contact des tubes du faisceau 38 de l'échangeur secondaire 6.The bundle of tubes 12 of the main heat exchanger 4 and the bundle of tubes 38 of the secondary heat exchanger 6 are traversed by a same air flow schematized by the arrow 42. The two heat exchangers are arranged in such a way that The secondary heat exchanger 6 is cooled firstly by the air flow 42. The tubes of the bundle 12 are thus cooled by a stream of air which has already warmed up in contact with the tubes of the bundle 38 of the secondary heat exchanger 6.

La partie des tubes du faisceau 12 de l'échangeur principal 4 raccordée à la chambre principale d'entrée 16 et à la chambre de sortie principale 22 constitue, dans ce qui suit, un radiateur principal 196 (voir Figures 15 - 18). La partie des tubes du faisceau 12 de l'échangeur principal 4 raccordée à la chambre d'entrée secondaire 18 et à la chambre de sortie secondaire 24, en série avec le faisceau de tubes 38 de l'échangeur secondaire, constitue, dans ce qui suit, un radiateur secondaire 200 (voir Figures 15 - 18). Etant donné que la température du fluide caloporteur à la sortie du radiateur secondaire 200 est plus basse que la température de sortie de ce même fluide à la sortie du radiateur principal 196, le radiateur secondaire est également appelé dans ce qui suit radiateur à basse température (B.T.) et le radiateur principal radiateur à haute température (H.T.). Le module d'échange de chaleur 2 peut ainsi générer deux niveaux de température, par exemple une haute température égale à environ 100°C et une basse température égale à environ 60°C. Le radiateur à haute température est destiné à faire partie d'un circuit à haute température et à refroidir le moteur thermique du véhicule automobile, ainsi que des équipements qui ne nécessitent pas d'être refroidis jusqu'à une température basse. Au contraire, le radiateur basse température est raccordé à un réseau dit à basse température et il est destiné au refroidissement de fluide pour lequel le niveau de température du circuit de refroidissement du moteur est trop élevé.The portion of the tubes of the bundle 12 of the main heat exchanger 4 connected to the main inlet chamber 16 and to the main outlet chamber 22 constitutes, in what follows, a main radiator 196 (see FIG. Figures 15 - 18 ). The part of the tubes of the bundle 12 of the main heat exchanger 4 connected to the secondary inlet chamber 18 and to the secondary outlet chamber 24, in series with the bundle of tubes 38 of the secondary exchanger, constitutes, in what follows, a secondary radiator 200 (see Figures 15 - 18 ). Since the temperature of the coolant at the outlet of the secondary radiator 200 is lower than the outlet temperature of the same fluid at the outlet of the main radiator 196, the secondary radiator is also called in what Low temperature radiator (BT) and radiator main radiator at high temperature (HT). The heat exchange module 2 can thus generate two temperature levels, for example a high temperature equal to about 100 ° C and a low temperature equal to about 60 ° C. The high temperature radiator is intended to be part of a high temperature circuit and to cool the engine of the motor vehicle, as well as equipment that does not need to be cooled down to a low temperature. In contrast, the low temperature radiator is connected to a so-called low temperature network and is intended for fluid cooling for which the temperature level of the engine cooling circuit is too high.

La circulation du fluide caloporteur dans le module d'échange de chaleur 2 de la Figure 1 s'effectue de la manière suivante. Le fluide chaud du circuit principal, ou circuit à haute température, pénètre dans le radiateur principal 196 par la tubulure d'entrée 26 de la chambre d'entrée principale, comme schématisé par la flèche 44, traverse les tubes 12 du faisceau raccordé à la chambre d'entrée principale 16 et pénètre dans la chambre de sortie principale 22. Le fluide caloporteur refroidi sort de la chambre de sortie principale 22 par la tubulure 30, comme schématisé par la flèche 46.The circulation of the coolant in the heat exchange module 2 of the Figure 1 is carried out as follows. The hot fluid of the main circuit, or high temperature circuit, enters the main radiator 196 through the inlet pipe 26 of the main inlet chamber, as shown schematically by the arrow 44, passes through the tubes 12 of the bundle connected to the main inlet chamber 16 and enters the main outlet chamber 22. The cooled heat transfer fluid exits the main outlet chamber 22 through the pipe 30, as shown by the arrow 46.

Le fluide caloporteur chaud du circuit secondaire, ou circuit à basse température, pénètre dans la chambre d'entrée secondaire 18 par la tubulure d'entrée 28, comme schématisé par la flèche 48. Il parcourt la partie des tubes du faisceau 12 raccordée à la chambre d'entrée secondaire 18 et à la chambre de sortie secondaire 24. Il pénètre dans la chambre de sortie secondaire 24 et passe dans la boîte collectrice d'entrée 34 par l'orifice de passage 32, comme schématisé par les flèches 50. Le fluide parcourt alors les tubes du faisceau 38, de gauche à droite selon la figure, pour pénétrer dans la boîte collectrice de sortie 36. Le fluide caloporteur refroidi ressort par la tubulure de sortie 40, comme schématisé par la flèche 52. C'est le même fluide caloporteur qui circule dans le radiateur principal et dans le radiateur secondaire.The hot heat transfer fluid of the secondary circuit, or circuit at low temperature, enters the secondary inlet chamber 18 through the inlet pipe 28, as shown by the arrow 48. It traverses the part of the tubes of the bundle 12 connected to the secondary entry chamber 18 and the secondary outlet chamber 24. It enters the secondary outlet chamber 24 and passes into the inlet manifold 34 through the passage opening 32, as shown by the arrows 50. fluid then travels the tubes of the beam 38, from left to right according to the figure, to enter the outlet manifold 36. The cooled heat transfer fluid exits through the outlet pipe 40, as shown schematically by the arrow 52. This is the same heat transfer fluid circulating in the main radiator and in the secondary radiator.

On a représenté sur la figure 2 une vue en perspective d'une variante de réalisation du module d'échange de chaleur 2 de la Figure 1. Elle s'en distingue par le fait que la boîte collectrice d'entrée 8 de l'échangeur principal 4 comporte une tubulure d'entrée unique 26 au lieu des tubulures 26 et 28 du mode de réalisation de la Figure 1. En outre, la boîte collectrice d'entrée 8 ne comporte pas de cloison de partition 14. Son volume n'est par conséquent pas divisé en une chambre d'entrée principale 16 et une chambre d'entrée secondaire 18. La tubulure d'entrée 26 sert à la fois pour l'entrée du fluide caloporteur du réseau principal ou réseau à haute température et du fluide caloporteur du réseau secondaire ou réseau à basse température, comme schématisé par la flèche 44. Dans la boîte collectrice d'entrée 8, une partie du fluide pénètre dans les tubes du faisceau 12 raccordés à la chambre de sortie principale 22, et le reste du fluide pénètre dans la partie des tubes du faisceau 12 raccordée à la chambre de sortie secondaire 24.We have shown on the figure 2 a perspective view of an alternative embodiment of the heat exchange module 2 of the Figure 1 . It is distinguished by the fact that the inlet manifold 8 of the main heat exchanger 4 comprises a single inlet pipe 26 instead of the pipes 26 and 28 of the embodiment of the Figure 1 . In addition, the inlet manifold 8 has no partition wall 14. Its volume is therefore not divided into a main inlet chamber 16 and a secondary inlet chamber 18. The inlet manifold 26 serves both for the inlet of the heat transfer fluid of the main network or high temperature network and the heat transfer fluid of the secondary network or low temperature network, as shown schematically by the arrow 44. In the inlet manifold 8, a part of the fluid enters the bundle tubes 12 connected to the main outlet chamber 22, and the remainder of the fluid enters the part of the bundle tubes 12 connected to the secondary outlet chamber 24.

En revanche, la boîte collectrice de sortie 10 est divisée en une chambre de sortie principale 22 et une chambre de sortie secondaire par une cloison de partition 20, de la même manière que dans le mode de réalisation de la figure 1.On the other hand, the outlet manifold 10 is divided into a main exit chamber 22 and a secondary exit chamber by a partition wall 20, in the same manner as in the embodiment of the figure 1 .

On a représenté sur la figure 3 une variante de réalisation du module d'échange de chaleur représenté sur la figure 2. Comme le mode de réalisation de la Figure 2, ce dernier comporte une tubulure d'entrée unique 26 raccordée à la boîte collectrice d'entrée 8 de l'échangeur principal 2. La différence entre les deux réalisations tient au fait que la boîte collectrice d'entrée 34 de l'échangeur secondaire 6 comporte une cloison de séparation 58 qui la divise en une chambre inférieure 60 et une chambre supérieure 62. De la même manière, la boîte collectrice de sortie 36 de l'échangeur secondaire 6 comporte une cloison de séparation 64 qui la divise en une chambre inférieure 66 et une chambre supérieure 68.We have shown on the figure 3 an alternative embodiment of the heat exchange module shown in the figure 2 . As the embodiment of the Figure 2 , the latter comprises a single inlet pipe 26 connected to the inlet manifold 8 of the main heat exchanger 2. The difference between the two embodiments is due to the fact that the inlet manifold 34 of the secondary heat exchanger 6 comprises a partition 58 which divides it into a lower chamber 60 and an upper chamber 62. In the same manner, the outlet manifold 36 of the secondary exchanger 6 has a partition wall 64 which divides it into a lower chamber 66 and a superior room 68.

De la sorte, le fluide caloporteur circule dans les tubes du faisceau 38 de l'échangeur secondaire 6 en effectuant une série d'allers et retours entre la boîte collectrice d'entrée 34 et la boîte collectrice de sortie 36. Ces allers et retours sont appelés passes. Dans l'exemple représenté, il y a trois passes. Après avoir pénétré dans la chambre inférieure 60 par l'orifice de passage 32, comme schématisé par la flèche 70, le fluide circule de droite à gauche, selon la figure, pour pénétrer dans la chambre inférieure 66 de la boîte collectrice de sortie 36. Il se répartit dans cette chambre et circule, de gauche à droite selon la figure, dans les tubes du faisceau 38 pour parvenir dans la chambre supérieure 62 de la boîte collectrice d'entrée 34, puis circule à nouveau de droite à gauche selon la figure, comme schématisé par la flèche 74, pour pénétrer dans la chambre supérieure 68 de la boîte collectrice de sortie 36. Le fluide caloporteur froid quitte ensuite la chambre supérieure 68 par la tubulure de sortie 40, comme schématisé par la flèche 52.In this way, the heat transfer fluid circulates in the tubes of the beam 38 of the secondary exchanger 6 by performing a series of trips back and forth between the inlet manifold 34 and the outlet manifold 36. These trips and returns are called passes. In the example shown, there are three passes. After entering the lower chamber 60 through the passage opening 32, as shown by the arrow 70, the fluid flows from right to left, according to the figure, to enter the lower chamber 66 of the outlet manifold 36. It is distributed in this chamber and circulates, from left to right according to the figure, in the tubes of the bundle 38 to reach the upper chamber 62 of the inlet manifold 34, then flows again from right to left according to FIG. , as shown schematically by the arrow 74, to enter the upper chamber 68 of the outlet manifold 36. The cold heat transfer fluid then leaves the upper chamber 68 through the outlet pipe 40, as shown schematically by the arrow 52.

Dans l'exemple représenté, la circulation du fluide caloporteur dans le radiateur principal ou radiateur à haute température s'effectue en une seule passe. Toutefois, il va de soi que le radiateur principal pourrait également comporter des cloisons de séparation semblables aux cloisons 58 et 64 afin que la circulation du fluide s'effectue en plusieurs passes. De même, le radiateur secondaire pourrait comporter davantage de cloisons de séparation afin d'augmenter le nombre de passes.In the example shown, the circulation of the coolant in the main radiator or radiator at high temperature is carried out in a single pass. However, it goes without saying that the main radiator could also include partition walls similar to the partitions 58 and 64 so that the circulation of the fluid takes place in several passes. Similarly, the secondary radiator could have more partition walls to increase the number of passes.

On a représenté sur la figure 4 une autre variante de réalisation d'un module d'échange de chaleur 2. Il se distingue des précédents, illustrés et décrits en référence aux figures 1 à 3, par le fait que la boîte collectrice de sortie 10 de l'échangeur de chaleur principal 4 ne comporte pas de cloison de partition qui divise son volume intérieur en deux chambres. En conséquence, le radiateur principal, ou radiateur à haute température 196, se confond avec l'échangeur de chaleur principal ou échangeur à haute température 4. De la même manière, le radiateur secondaire 200 se confond avec l'échangeur de chaleur secondaire 6.We have shown on the figure 4 another alternative embodiment of a heat exchange module 2. It differs from the previous ones, illustrated and described with reference to the Figures 1 to 3 in that the outlet manifold 10 of the main heat exchanger 4 does not have a partition wall which divides its interior volume into two chambers. As a result, the main radiator, or high-temperature radiator 196, merges with the main heat exchanger or high-temperature exchanger 4. in the same way, the secondary radiator 200 merges with the secondary heat exchanger 6.

La circulation du fluide dans ce module d'échange de chaleur s'effectue de la manière suivante. Le fluide caloporteur du circuit principal pénètre dans la boîte collectrice d'entrée 8 de l'échangeur de chaleur principal 4 par la tubulure d'entrée 80, comme schématisé par la flèche 82. Il parcourt les tubes du faisceau 12, de gauche à droite selon la figure, pour parvenir dans la boîte collectrice de sortie 10 dont il ressort refroidi par la tubulure de sortie 84, comme schématisé par la flèche 86. Le fluide du circuit secondaire, ou circuit à basse température, pénètre dans la boîte collectrice 36 du radiateur secondaire par la tubulure 88, comme schématisé par la flèche 90. Il parcourt les tubes du faisceau 38, de gauche à droite selon la figure, pour pénétrer dans la boîte collectrice de sortie 34 et ressortir par la tubulure 92, comme schématisé par la flèche 94.The circulation of the fluid in this heat exchange module is carried out as follows. The heat transfer fluid of the main circuit enters the inlet manifold 8 of the main heat exchanger 4 through the inlet manifold 80, as shown by the arrow 82. It traverses the tubes of the bundle 12, from left to right according to the figure, to reach the outlet manifold 10 from which it is cooled by the outlet pipe 84, as shown schematically by the arrow 86. The secondary circuit fluid, or circuit at low temperature, enters the manifold 36 of the secondary radiator through the tubing 88, as shown schematically by the arrow 90. It traverses the tubes of the beam 38, from left to right according to the figure, to enter the outlet manifold 34 and out through the manifold 92, as shown schematically by the arrow 94.

Il peut ne pas y avoir d'orifice de passage entre le radiateur principal et le radiateur secondaire. Dans ce cas, la circulation de fluide entre le réseau principal et le réseau secondaire s'effectue par des moyens de communication externes au module d'échange de chaleur, comme des vannes. Le module d'échange de chaleur 2 de la Figure 4 peut également comporter un orifice de passage 32 mettant en communication la boîte collectrice de sortie 10 de l'échangeur de chaleur principal avec la boîte collectrice d'entrée 34 de l'échangeur de chaleur secondaire, comme représenté. L'orifice de passage 32 peut être ouvert ou fermé par des moyens de commutation qui seront décrits ultérieurement. Cette disposition permet de faire varier la capacité d'échange de l'échangeur en faisant circuler le fluide dans tout ou partie de ce dernier.There may be no through hole between the main radiator and the secondary radiator. In this case, the flow of fluid between the main network and the secondary network is effected by means of communication external to the heat exchange module, such as valves. The heat exchange module 2 of the Figure 4 may also include a through hole 32 communicating the outlet manifold 10 of the main heat exchanger with the inlet manifold 34 of the secondary heat exchanger, as shown. The passage opening 32 may be opened or closed by switching means which will be described later. This arrangement makes it possible to vary the exchange capacity of the exchanger by circulating the fluid in all or part of the latter.

On a représenté sur la figure 5 une cinquième variante de réalisation d'un module d'échange de chaleur 2. Ce mode de réalisation est semblable au mode de réalisation de la Figure 4 dans le sens où la boîte collectrice de sortie de l'échangeur de chaleur principal 4 ne comporte pas de cloison de partition qui la divise en une chambre de sortie principale et une chambre de sortie secondaire. Le volume intérieur de cette boîte est donc d'une seule pièce. La circulation du fluide caloporteur dans l'échangeur de chaleur principal 4 s'effectue par conséquent de la même manière que dans le mode de réalisation représenté sur la Figure 4.We have shown on the figure 5 a fifth variant embodiment of a heat exchange module 2. This embodiment is similar to the embodiment of the Figure 4 in the sense that the outlet manifold of the main heat exchanger 4 does not have a partition partition that divides it into a main exit chamber and a secondary exit chamber. The interior volume of this box is therefore one piece. The circulation of the coolant in the main heat exchanger 4 is therefore carried out in the same manner as in the embodiment shown in FIG. Figure 4 .

La boîte collectrice de sortie 36 de l'échangeur de chaleur principal 6 comporte une cloison de séparation 96 qui la divise en une chambre inférieure 98 et une chambre supérieure 100. Le fluide caloporteur du circuit à basse température pénètre dans la chambre supérieure 100 par la tubulure d'entrée 102, comme représenté par la flèche 104. Il parcourt la partie supérieure des tubes du faisceau, située au-dessus de la cloison de séparation 96, de gauche à droite selon la figure, pour parvenir dans la boîte collectrice 34 et se répartir dans cette dernière, comme schématisé par la flèche 106, puis il parcourt la partie inférieure des tubes du faisceau 38, située en dessous de la cloison de séparation 96, de droite à gauche selon la Figure 5, pour revenir vers la chambre inférieure 98 de la boîte collectrice 36. Le fluide secondaire refroidi quitte la chambre inférieure 98 par la tubulure de sortie 110, comme schématisé par la flèche 112. Le radiateur secondaire comporte ainsi deux passes. Toutefois, il pourrait en comporter davantage, par exemple trois ou quatre.The outlet manifold 36 of the main heat exchanger 6 has a partition wall 96 which divides it into a lower chamber 98 and an upper chamber 100. The heat transfer fluid of the low temperature circuit enters the upper chamber 100 through the inlet tubing 102, as shown by the arrow 104. It traverses the upper part of the tubes of the beam, located above the partition wall 96, from left to right according to the figure, to reach the manifold 34 and distributed in the latter, as shown schematically by the arrow 106, then it travels the lower part of the tubes of the beam 38, located below the partition wall 96, from right to left according to the Figure 5 , to return to the lower chamber 98 of the manifold 36. The cooled secondary fluid leaves the lower chamber 98 through the outlet pipe 110, as shown schematically by the arrow 112. The secondary radiator thus comprises two passes. However, it could include more, for example three or four.

Le module d'échange de chaleur de la figure 5 se distingue, en outre, par le fait que les surfaces d'échange 114 en relation d'échange thermique avec les tubes du faisceau 12 de l'échangeur de chaleur principal 4 et 38 de l'échangeur de chaleur secondaire 6 sont constituées par des intercalaires ondulés.The heat exchange module of the figure 5 is further distinguished by the fact that the exchange surfaces 114 in heat exchange relationship with the tubes of the bundle 12 of the main heat exchanger 4 and 38 of the secondary heat exchanger 6 are constituted by corrugated inserts.

Comme on l'a exposé précédemment, l'orifice de passage 32 entre la boîte collectrice 10 de l'échangeur de chaleur principal 4 et la boîte collectrice 34 de l'échangeur de chaleur secondaire 6 peut être ouvert et fermé par des moyens de commutation. On a représenté sur les figures 6 et 7 deux exemples de réalisation de tels moyens de commutation. Un organe de commande 120 solidaire d'une paroi de la boîte collectrice d'entrée 34 de l'échangeur de chaleur secondaire 6 actionne une tige 122 qui porte un piston 124. Lorsque l'organe de commande 120 tire la tige 122, le piston 124, qui comporte un joint d'étanchéité, est attiré vers l'entrée de l'orifice de passage 32 constitué par exemple par une entretoise tubulaire 126 et il obture cet orifice. Au contraire, lorsque l'organe de commande 120 repousse la tige 122, le piston 124 s'écarte de l'ouverture de l'orifice de passage 32, ce qui permet la circulation du fluide, comme schématisé par les flèches 128.As previously discussed, the passage opening 32 between the header box 10 of the main heat exchanger 4 and the manifold 34 of the secondary heat exchanger 6 can be opened and closed by switching means. . We have shown on Figures 6 and 7 two embodiments of such switching means. A control member 120 integral with a wall of the inlet manifold 34 of the secondary heat exchanger 6 actuates a rod 122 which carries a piston 124. When the control member 120 pulls the rod 122, the piston 124 , which comprises a seal, is attracted towards the inlet of the passage opening 32 constituted for example by a tubular spacer 126 and it closes this orifice. On the contrary, when the control member 120 pushes the rod 122, the piston 124 deviates from the opening of the passage opening 32, which allows the circulation of the fluid, as shown schematically by the arrows 128.

Sur la figure 7, la réalisation des moyens de commande est identique, à l'exception du fait que le piston 124 est situé à l'intérieur de la boîte collectrice de sortie 34 de l'échangeur secondaire 6 au lieu d'être situé à l'intérieur de la boîte collectrice de sortie 10 de l'échangeur principal 4. Ainsi, lorsque l'organe de commande pousse le piston 124 vers l'entretoise tubulaire 126, l'orifice de passage 32 est fermé. Inversement, lorsque l'organe de commande 120 tire sur la tige 122, le piston 124 s'écarte de l'entretoise tubulaire 126, ce qui ouvre l'orifice de passage 32 et permet le passage du fluide, comme schématisé par les flèches 128.On the figure 7 , the embodiment of the control means is identical, except that the piston 124 is located inside the outlet manifold 34 of the secondary heat exchanger 6 instead of being located inside the the outlet manifold 10 of the main heat exchanger 4. Thus, when the control member pushes the piston 124 towards the tubular spacer 126, the through hole 32 is closed. Conversely, when the control member 120 pulls on the rod 122, the piston 124 deviates from the tubular spacer 126, which opens the through hole 32 and allows the passage of the fluid, as shown schematically by the arrows 128 .

Il existe différentes technologies de réalisation des échangeurs de chaleur pour véhicules automobiles. Selon une première technologie, les échangeurs sont assemblés en une seule opération par brasage. Selon une autre technologie, les échangeurs sont assemblés en partie par brasage et en partie par des moyens mécaniques. Les surfaces d'échange de chaleur en relation d'échange thermique avec les tubes du faisceau, qui peuvent être constituées par des intercalaires ondulés ou par des ailettes planes et fines, sont alors assemblées par brasage aux tubes, tandis que le couvercle des boîtes collectrices est assemblé mécaniquement à la plaque collectrice de l'échangeur. On a illustré un mode d'assemblage mixte de ce type sur les figures 8 à 10.There are various technologies for producing heat exchangers for motor vehicles. According to a first technology, the exchangers are assembled in a single operation by soldering. According to another technology, the exchangers are assembled partly by brazing and partly by mechanical means. The heat exchange surfaces in heat exchange relationship with the tubes of the bundle, which may be constituted by corrugated spacers or by flat and thin fins, are then assembled by soldering to the tubes, while the cover of the manifolds is mechanically assembled to the header plate of the exchanger. We have illustrated a mixed assembly mode of this type on Figures 8 to 10 .

La figure 8 représente une ailette fine 130 pour un module d'échange de chaleur tel que ceux qui ont été décrits et représentés sur les figures 1 à 5. L'ailette 130 se présente sous la forme d'un rectangle très allongé comportant deux grands côtés 132 dans lesquels sont prévues des découpes allongées 134 se terminant par une extrémité arrondie destinée à recevoir les tubes du faisceau 12 de l'échangeur de chaleur principal 4 et les tubes du faisceau 38 de l'échangeur de chaleur secondaire 6. En outre, l'ailette 130 comporte des perforations carrées 136 disposées entre les deux rangs de tubes et destinées à limiter le pont thermique entre le faisceau de tubes 12 et le faisceau de tubes 38.The figure 8 represents a thin fin 130 for a module of heat exchange such as those described and represented on the Figures 1 to 5 . The vane 130 is in the form of a very elongated rectangle having two long sides 132 in which are provided elongated cutouts 134 ending in a rounded end for receiving the tubes of the beam 12 of the main heat exchanger 4 and the tubes of the bundle 38 of the secondary heat exchanger 6. In addition, the fin 130 has square perforations 136 arranged between the two rows of tubes and intended to limit the thermal bridge between the bundle of tubes 12 and the bundle of tubes 38.

On a représenté sur la figure 9 une vue en coupe selon la ligne IX de la figure 8. Les boîtes collectrices 8 et 36 (voir figures 1 à 5) sont réalisées à l'aide d'une pièce unique 140 comportant une cloison de séparation 142. Les tubes des faisceaux 12 et 38 sont assemblés par brasage en une seule opération à la plaque collectrice 144. Des joints d'étanchéité 146 sont interposés entre la plaque collectrice 144 et la pièce 140. La plaque collectrice 144 possède un rebord serti 148 replié sur l'extrémité de la pièce 140 afin de la maintenir appliquée de manière étanche contre les joints d'étanchéité 142. On réalise ainsi un assemblage mécanique des boîtes collectrices 8 et 36 sur la plaque collectrice 144.We have shown on the figure 9 a sectional view along line IX of the figure 8 . Collector boxes 8 and 36 (see Figures 1 to 5 ) are made using a single piece 140 having a partition wall 142. The tubes of the bundles 12 and 38 are assembled by soldering in a single operation to the header plate 144. Seals 146 are interposed between the manifold plate 144 and the part 140. The collector plate 144 has a crimped rim 148 folded over the end of the part 140 in order to maintain it sealingly applied against the seals 142. A mechanical assembly of the slip boxes 8 and 36 on the header plate 144.

On remarque également sur cette figure l'interruption de la surface des ailettes 130 au niveau des perforations 136. On notera également la présence des tubulures 26 et 40.Note also in this figure the interruption of the surface of the fins 130 at the perforations 136. Note also the presence of the tubes 26 and 40.

On a représenté sur la figure 10 une vue en coupe selon la ligne X de la figure 8. Cette vue est identique à la figure 9, à l'exception du fait que le plan de coupe ne passe pas par les échancrures 136, de telle sorte que la surface des ailettes 130 est continue. D'autre part, le plan de coupe montre la section non interrompue de la plaque collectrice 144.We have shown on the figure 10 a sectional view along line X of the figure 8 . This view is identical to the figure 9 , except that the cutting plane does not pass through the indentations 136, so that the surface of the fins 130 is continuous. On the other hand, the sectional plane shows the uninterrupted section of the collector plate 144.

Selon encore une autre technologie, les pièces constitutives de l'échangeur peuvent être assemblées exclusivement par des moyens mécaniques tels que le sertissage. On a illustré une telle réalisation sur les figures 11 et 12. L'ailette 150 (figure 11) comporte deux côtés allongés 152 comportant des perforations en forme d'ellipses 154 aplaties pour l'introduction des tubes du faisceau 12 de l'échangeur de chaleur principal 4 et des tubes du faisceau 38 de l'échangeur de chaleur secondaire 6. Ces perforations sont entièrement fermées parce qu'il est nécessaire de réaliser un contact thermique entre la paroi extérieure des tubes des faisceaux 12 et 38 et les ailettes 150 en évasant les tubes au moyen d'une olive. L'ailette 150 comporte également des perforations 156 de forme carrée situées en regard des tubes afin d'éviter un pont thermique entre les deux échangeurs.According to yet another technology, the constituent parts of the exchanger can be assembled exclusively by means of mechanical means such as crimping. Such an achievement has been illustrated Figures 11 and 12 . The fin 150 ( figure 11 ) comprises two elongate sides 152 having elliptical perforations 154 flattened for the introduction of the tubes of the beam 12 of the main heat exchanger 4 and the tubes of the bundle 38 of the secondary heat exchanger 6. These perforations are completely closed because it is necessary to make thermal contact between the outer wall of the tubes of the bundles 12 and 38 and the fins 150 by flaring the tubes by means of an olive. The fin 150 also has perforations 156 of square shape facing the tubes in order to avoid a thermal bridge between the two exchangers.

Sur la figure 12, la plaque collectrice 158 comporte un joint d'étanchéité 160 qui permet de réaliser une jonction étanche avec la pièce 140 dans laquelle sont formées les boîtes collectrices 8 et 36. Les tubes des faisceaux 12 et 38 sont évasés pour réaliser un contact thermique avec la plaque collectrice 158.On the figure 12 , the manifold plate 158 comprises a seal 160 which makes it possible to form a tight junction with the part 140 in which the manifolds 8 and 36 are formed. The tubes of the bundles 12 and 38 are flared to make thermal contact with the slip plate 158.

On a représenté sur la figure 13 une vue en perspective d'un sixième mode de réalisation d'un module d'échange de chaleur 2. Le module d'échange de chaleur représenté comporte un troisième échangeur désigné par la référence générale 164. Cet échangeur supplémentaire est traversé par le même flux d'air 42 que l'échangeur secondaire 6 et l'échangeur principal 4. En outre, il est situé devant l'échangeur secondaire 6, de telle sorte qu'il est refroidi en premier. Un échangeur supplémentaire tel que l'échangeur 164 est intégré au module d'échange de chaleur 2 lorsque l'on souhaite refroidir des fluides autres que le fluide caloporteur des réseaux principaux et secondaires par l'air ambiant, par exemple le fluide calorigène du circuit de climatisation si on ne dispose pas un condenseur à eau dans le système de refroidissement. L'échangeur 164 pourrait être également un radiateur de refroidissement de l'huile de lubrification de la boîte de vitesse ou du moteur.We have shown on the figure 13 a perspective view of a sixth embodiment of a heat exchange module 2. The heat exchange module shown comprises a third heat exchanger designated by the general reference 164. This additional heat exchanger is crossed by the same flow air 42 that the secondary heat exchanger 6 and the main heat exchanger 4. In addition, it is located in front of the secondary heat exchanger 6, so that it is cooled first. An additional exchanger such as exchanger 164 is integrated in the heat exchange module 2 when it is desired to cool fluids other than the heat transfer fluid of the main and secondary networks by the ambient air, for example the circulating fluid of the circuit air conditioning if a water condenser is not available in the cooling system. The exchanger 164 could also be a radiator for cooling the lubricating oil of the gearbox or the engine.

L'échangeur supplémentaire 164 peut être prévu dans un mode de réalisation quelconque d'un module de chaleur, en particulier, dans le mode de réalisation de l'invention décrit en référence à la figure 23 où le module d'échange de chaleur comprend un échangeur principal et deux échangeurs secondaires.The additional exchanger 164 may be provided in any embodiment of a heat module, in particular, in the embodiment of the invention described with reference to FIG. figure 23 where the heat exchange module comprises a main exchanger and two secondary exchangers.

On a représenté sur la figure 14 une ailette plane fine 166 de type brasé, similaire à l'ailette 130 représentée sur la figure 8. L'ailette 166 se présente sous la forme d'un rectangle très allongé comportant deux grands côtés 168 dans lesquels sont prévues des découpes allongées et arrondies à leur extrémité. Toutefois, ces découpes sont de deux types. Les découpes 170 sont prévues pour recevoir une seule rangée de tubes, à savoir les tubes du faisceau 12 de l'échangeur principal 4. Au contraire, les découpes 172 sont plus profondes. Elles sont prévues pour recevoir deux rangées de tubes, à savoir les tubes du faisceau 38 de l'échangeur de chaleur secondaire 6, et les tubes 174 de l'échangeur supplémentaire 164. Ainsi, l'ailette 166 est commune aux trois échangeurs. On notera, en outre, qu'elle comporte des perforations carrées 176 disposées en regard des échancrures 170 et 172, et destinées à éviter, comme on l'a déjà exposé, un pont thermique entre les rangées de tubes.We have shown on the figure 14 a thin planar fin 166 of the brazed type, similar to the fin 130 shown in FIG. figure 8 . The fin 166 is in the form of a very elongated rectangle having two long sides 168 in which are provided elongated cuts and rounded at their ends. However, these cuts are of two types. The cutouts 170 are provided to receive a single row of tubes, namely the tubes of the beam 12 of the main heat exchanger 4. On the contrary, the cutouts 172 are deeper. They are designed to receive two rows of tubes, namely the tubes of the bundle 38 of the secondary heat exchanger 6, and the tubes 174 of the additional exchanger 164. Thus, the fin 166 is common to the three exchangers. It will be noted, moreover, that it comprises square perforations 176 disposed opposite the notches 170 and 172, and intended to avoid, as already explained, a thermal bridge between the rows of tubes.

Les modules d'échange de chaleur représentés aux figures 1 à 14 ne présentent que deux échangeurs de chaleur, à savoir un échangeur principal et un échangeur secondaire alors que le système conforme à l'invention en comprend trois, à savoir un échangeur principal et deux échangeurs secondaires. Toutefois, la structure et le fonctionnement de l'échangeur principal ainsi que la structure et le fonctionnement des échangeurs secondaires du système selon l'invention pourront être fonctionnement des échangeurs principal et secondaire des modules d'échange de chaleur précédents, comme développé plus loin en relation avec la figure 23.The heat exchange modules shown in Figures 1 to 14 have only two heat exchangers, namely a main heat exchanger and a secondary heat exchanger while the system according to the invention comprises three, namely a main heat exchanger and two secondary heat exchangers. However, the structure and operation of the main heat exchanger and the structure and operation of the secondary heat exchangers of the system according to the invention may be operating the main and secondary heat exchangers of the preceding heat exchange modules, as developed later in relationship with the figure 23 .

On a représenté sur la figure 15 un système de gestion de l'énergie thermique développée par un moteur thermique comportant un module d'échange de chaleur 2. Ce système de gestion est constitué d'un réseau principal, schématisé par le rectangle en traits mixtes 180, et d'un réseau secondaire, schématisé par le rectangle en traits mixtes 182. Le réseau principal 180 comporte un moteur à combustion interne 186 et une pompe principale 188 qui fait circuler le fluide caloporteur dans le réseau principal, particulièrement dans le moteur 186. Le réseau principal comporte également une dérivation sur laquelle est monté un radiateur de chauffage 190, également appelé aérotherme. De manière facultative, il peut encore comporter une dérivation sur laquelle sont montés des échangeurs de chaleur qui échangent de la chaleur avec le fluide caloporteur du réseau principal et qui sont destinés au refroidissement d'équipements du véhicule tels qu'un refroidisseur de gaz d'échappement 192 ou un refroidisseur d'huile de lubrification moteur 194. Le réseau principal comporte enfin une dérivation sur laquelle est monté le radiateur principal 196, et une canalisation de dérivation 198 qui permet de court-circuiter le radiateur principal 196.We have shown on the figure 15 a thermal energy management system developed by a thermal engine comprising a heat exchange module 2. This management system consists of a main network, shown schematically by the rectangle in phantom lines 180, and a secondary network, shown schematically by the rectangle in phantom lines 182. The main network 180 comprises an internal combustion engine 186 and a main pump 188 which circulates the heat transfer fluid in the main network, particularly in the engine 186. The main network also comprises a branch on which is mounted a heating radiator 190, also called heater . Optionally, it may also include a bypass on which are mounted heat exchangers which exchange heat with the heat transfer fluid of the main network and which are intended for the cooling of vehicle equipment such as a gas cooler. Exhaust 192 or engine lubricating oil cooler 194. The main network finally comprises a branch on which is mounted the main radiator 196, and a branch pipe 198 which allows to bypass the main radiator 196.

Le réseau secondaire 182 est constitué d'une pompe de circulation 199 qui fait circuler le fluide caloporteur dans le radiateur secondaire ou radiateur à basse température 200. Le réseau à basse température peut également comporter, de manière optionnelle, des échangeurs d'équipement qui servent à refroidir des équipements optionnels du véhicule tels qu'un refroidisseur d'air de suralimentation 202 et un condenseur de climatisation 204. L'orifice de passage 32 entre le radiateur 196 et le radiateur secondaire 200 a été schématisé par une flèche.The secondary network 182 consists of a circulation pump 199 which circulates the coolant in the secondary radiator or radiator at low temperature 200. The low temperature network may also optionally include equipment exchangers which serve to cool optional equipment of the vehicle such as a charge air cooler 202 and an air conditioning condenser 204. The passage opening 32 between the radiator 196 and the secondary radiator 200 has been schematized by an arrow.

On notera que les références 196 et 200 désignent ici le radiateur principal et le radiateur secondaire, et non l'échangeur principal 4 et l'échangeur secondaire 6. En effet, comme on l'a exposé précédemment, le radiateur principal peut coïncider avec l'échangeur principal et, de même, le radiateur secondaire peut coïncider avec les échangeurs secondaires. Cependant, le radiateur secondaire 200 est le plus souvent constitué des échangeurs de chaleur secondaires et d'une partie plus ou moins importante du faisceau de l'échangeur de chaleur principal 4, tandis que le radiateur principal 196 n'occupe qu'une partie de l'échangeur principal 4. Les échangeurs secondaires pourront communiquer entre eux, par exemple, grâce à des moyens de commutation tels que ceux représentés aux figures 6 et 7.It will be noted that the references 196 and 200 here designate the main radiator and the secondary radiator, and not the main exchanger 4 and the secondary heat exchanger 6. Indeed, as has been explained above, the main radiator may coincide with the main radiator. main exchanger and likewise the secondary radiator may coincide with the secondary exchangers. However, the secondary radiator 200 is most often constituted by secondary heat exchangers and a heat exchanger. more or less important part of the beam of the main heat exchanger 4, while the main radiator 196 occupies only part of the main heat exchanger 4. The secondary exchangers can communicate with each other, for example, thanks to switching means such as those shown in Figures 6 and 7 .

Des moyens d'interconnexion permettent de mettre en communication le réseau principal 180 et le réseau secondaire 182. Dans l'exemple représenté, ces moyens d'interconnexion sont constitués par une vanne à quatre voies 206 et par une vanne à trois voies 208.Interconnection means make it possible to connect the main network 180 and the secondary network 182. In the example shown, these interconnection means consist of a four-way valve 206 and a three-way valve 208.

Le module d'échange de chaleur 2 utilisé dans le système de gestion de l'énergie thermique de la figure 15 comporte une entrée unique commune au réseau principal et au réseau secondaire et deux sorties.The heat exchange module 2 used in the thermal energy management system of the figure 15 has a single entry common to the main and secondary networks and two outputs.

On notera, en outre, que le radiateur principal 196 constitue une partie commune au réseau principal 180 et au réseau secondaire 182.It will be noted, in addition, that the main radiator 196 constitutes a common part to the main network 180 and the secondary network 182.

La vanne 206 permet de gérer la circulation du fluide caloporteur dans l'aérotherme 190, dans la canalisation de dérivation 198 et le radiateur 196.The valve 206 makes it possible to manage the circulation of the coolant in the fan heater 190, in the bypass pipe 198 and the radiator 196.

On a représenté sur la figure 16 la configuration du système de gestion de l'énergie thermique de la figure 15 dans une configuration de démarrage à froid avec chauffage de l'habitacle du véhicule. Dans cette configuration, le radiateur principal 196 et le radiateur secondaire 200 produisent de l'eau froide pour alimenter les échangeurs du type condenseur de climatisation afin d'obtenir une montée en température aussi rapide que possible du moteur thermique 186, le fluide caloporteur du circuit principal 180 emprunte la canalisation de dérivation 198 de manière à éviter de se refroidir dans le radiateur principal 196.We have shown on the figure 16 the configuration of the thermal energy management system of the figure 15 in a cold start configuration with heating of the vehicle cabin. In this configuration, the main radiator 196 and the secondary radiator 200 produce cold water to supply the exchangers of the air conditioning condenser type in order to obtain a temperature rise as fast as possible of the heat engine 186, the heat transfer fluid of the circuit. 180 main borrows the bypass line 198 so as to avoid cooling in the main radiator 196.

La figure 17 représente une configuration de faible charge du moteur thermique. Le radiateur principal 196 et le radiateur secondaire 200 produisent de l'eau froide pour alimenter les échangeurs du type condenseur de climatisation 204 et refroidisseur d'air de suralimentation 202. Le fluide caloporteur traverse les deux radiateurs l'un après l'autre. La vanne 206 assure une régulation de la température du moteur 186. Lorsque la température de ce dernier est inférieure à une valeur de seuil, par exemple 100°C, le fluide emprunte la canalisation de dérivation 198. Lorsque la température du moteur monte au-dessus de cette température, une certaine partie, par exemple 10 ou 20 %, de la quantité de fluide caloporteur qui traverse le radiateur principal est introduite dans le réseau principal 180 afin de refroidir le moteur.The figure 17 represents a low load configuration of the thermal motor. The main radiator 196 and the secondary radiator 200 produce cold water to supply the exchangers of the type air conditioning condenser 204 and charge air cooler 202. The heat transfer fluid passes through the two radiators one after the other. The valve 206 regulates the temperature of the engine 186. When the temperature of the latter is lower than a threshold value, for example 100 ° C., the fluid flows through the branch pipe 198. When the engine temperature rises above above this temperature, a certain portion, for example 10 or 20%, of the amount of coolant flowing through the main radiator is introduced into the main network 180 to cool the engine.

La figure 18 représente une configuration de forte charge du moteur 186. La vanne 206 est positionnée de telle sorte que le radiateur principal 196 produit de l'eau froide pour refroidir le moteur 186, et le radiateur secondaire 200 produit de l'eau froide pour refroidir les échangeurs d'équipement 202 et 204. C'est la vanne à quatre voies 206 qui assure la régulation de la température du moteur en répartissant les débits de fluide caloporteur entre la canalisation de dérivation 198 et le radiateur principal 196. Cette configuration correspond à une forte charge du moteur dans laquelle il est nécessaire de faire circuler une quantité importante de fluide caloporteur pour évacuer la puissance thermique rejetée par ce dernier. Cette configuration peut également correspondre à un véhicule qui roule en hiver avec la climatisation éteinte et lorsque, de plus, on ne souhaite pas refroidir l'air de suralimentation.The figure 18 represents a high-load configuration of the engine 186. The valve 206 is positioned such that the main radiator 196 produces cold water to cool the engine 186, and the secondary radiator 200 produces cold water to cool the exchangers 202 and 204. It is the four-way valve 206 which regulates the engine temperature by distributing the heat transfer fluid flow rates between the branch pipe 198 and the main radiator 196. This configuration corresponds to a strong engine load in which it is necessary to circulate a large amount of heat transfer fluid to evacuate the thermal power rejected by the latter. This configuration can also be a vehicle that runs in winter with the air conditioning off and when, moreover, we do not want to cool the charge air.

Les figures 19 à 22 illustrent d'autres systèmes de gestion de l'énergie thermique développée par un moteur thermique, qui s'apparentent à celui de la figure 15. Les éléments communs avec ceux de la figure 15 sont désignés par les mêmes références numériques. Ces différents systèmes ont des boucles pouvant interagir entre elles, mais ces systèmes pourraient aussi avoir des boucles qui n'interagissent pas.The Figures 19 to 22 illustrate other thermal energy management systems developed by a combustion engine, which are similar to those of the figure 15 . The elements common with those of the figure 15 are designated by the same reference numerals. These different systems have loops that can interact with each other, but these systems could also have loops that do not interact.

Le système de la figure 19 diffère notamment de celui de la Figure 15 par le fait que les radiateurs 196 et 200 ne communiquent pas entre eux par un orifice de passage 32. De plus, les emplacements des vannes 206 et 208 et de la pompe 199 sont différents, et une autre vanne 210 est intercalée sur une conduite entre le refroidisseur d'huile 194 et le radiateur principal 196.The system of figure 19 differs from that of the Figure 15 in that the radiators 196 and 200 do not communicate with each other through a through hole 32. In addition, the locations of the valves 206 and 208 and the pump 199 are different, and another valve 210 is interposed on a pipe between the oil cooler 194 and the main radiator 196.

Le système de la figure 20 est très proche de celui de la figure 15. La aussi, les radiateurs 196 et 200 ne communiquent pas entre eux. Le radiateur 200 est relié à la pompe 199 par une conduite 212 dans laquelle débouche une conduite 214 menant à la vanne 208.The system of figure 20 is very close to that of the figure 15 . Also, the radiators 196 and 200 do not communicate with each other. The radiator 200 is connected to the pump 199 by a pipe 212 into which a pipe 214 leads to the valve 208.

Le système de la figure 21 est proche de celui de la Figure 15, mais les boucles associées aux radiateurs 196 et 200 sont reliées entre elles uniquement par un vase d'expansion commun 216. Celui-ci est relié aux deux boucles par deux conduites 218 et 220 qui débouchent respectivement en amont des pompes 188 et 199. Comme dans le cas des figures 19 et 20, les radiateurs 196 et 200 ne communiquent pas entre eux par un orifice de passage 32.The system of figure 21 is close to that of the Figure 15 , but the loops associated with the radiators 196 and 200 are connected to each other only by a common expansion vessel 216. This is connected to the two loops by two lines 218 and 220 which open respectively upstream of the pumps 188 and 199. in the case of Figures 19 and 20 , the radiators 196 and 200 do not communicate with each other through a passage opening 32.

Le système de la figure 22 est proche de celui de la figure 21. Mais les radiateurs 196 et 200 communiquent entre eux par un orifice passage, comme symbolisé par la flèche. De plus le vase d'expansion commun est supprimé.The system of figure 22 is close to that of the figure 21 . But the radiators 196 and 200 communicate with each other through a passage orifice, as symbolized by the arrow. In addition, the common expansion vessel is removed.

On a représenté sur la figure 23 un module d'échange de chaleur, désigné par la référence générale 250, conforme à la présente invention. Le module de la figure 23 diffère des modules décrits précédemment en ce qu'il comprend un second échangeur secondaire. Il est donc constitué de trois échangeurs, à savoir un échangeur de chaleur principal, désigné par la référence générale 256, et deux échangeurs de chaleur secondaires, désigné par les références 252 et 254. Chaque échangeur de chaleur possède une boîte collectrice d'entrée 261, une boîte collectrice de sortie 263 et un faisceau de tubes de circulation interposé entre la boîte collectrice d'entrée 261 et la boîte collectrice de sortie 263. Avantageusement, les échangeurs 252, 254 et 256 peuvent être identiques et/ou présentés des intercalaires 165 communs dont une partie seulement est représentée à la figure 23. Les autres détails de construction du module de la figure 23 sont similaires à ceux des modules précédemment décrits.We have shown on the figure 23 a heat exchange module, designated by the general reference 250, according to the present invention. The module of the figure 23 differs from the modules described above in that it comprises a second secondary exchanger. It therefore consists of three exchangers, namely a main heat exchanger, designated by the general reference 256, and two secondary heat exchangers, designated by the references 252 and 254. Each heat exchanger has an inlet manifold 261 , an outlet manifold 263 and a circulating tube bundle interposed between the inlet manifold 261 and the outlet manifold 263. Advantageously, the exchangers 252, 254 and 256 may be identical and / or presented 165 common dividers of which only a portion is represented at the figure 23 . The other construction details of the module of the figure 23 are similar to those of the previously described modules.

On a représenté sur la figure 24 un mode de réalisation d'un système de gestion de l'énergie thermique développé par un moteur thermique comportant un module d'échange de chaleur 250 conforme à la présente invention. Ce système de gestion est constitué d'un circuit à haute température 230, schématisé par un rectangle en trait mixte, et d'un circuit à basse température schématisé par un rectangle en trait mixte 240.We have shown on the figure 24 an embodiment of a thermal energy management system developed by a heat engine comprising a heat exchange module 250 according to the present invention. This management system consists of a high temperature circuit 230, shown schematically by a dotted line rectangle, and a low temperature circuit schematized by a dotted line rectangle 240.

Dans ce mode de réalisation, le module d'échange de chaleur 250 est constitué de trois rangs de tubes, à savoir un premier rang de tubes 252, un deuxième rang de tubes 254 et un troisième rang de tubes 256. L'ordre des rangs de tubes 252, 254, 256 est déterminé par rapport au sens du flux d'air, schématisé par la flèche 258, qui les traverse. Le rang de tubes 252 est situé en amont par rapport à l'écoulement du flux d'air. Il est traversé en premier et il bénéficie de la température d'air la plus basse. Le rang de tubes 254 est traversé par le flux d'air qui s'est échauffé au contact des tubes du premier rang 252. Il est donc moins bien refroidi que le premier rang. Enfin, le troisième rang de tubes (256) est le plus mal refroidi puisque l'air a déjà traversé les deux premiers rangs 254 et 256 et s'est par conséquent échauffé à leur contact. Par suite, le fluide de refroidissement qui circule dans le premier rang de tubes 252 sera mieux refroidi que le fluide qui circule dans le second rang de tubes 254, lequel sera lui-même mieux refroidi que le fluide caloporteur qui traverse le troisième rang de tubes 256.In this embodiment, the heat exchange module 250 consists of three rows of tubes, namely a first row of tubes 252, a second row of tubes 254 and a third row of tubes 256. The rank order of tubes 252, 254, 256 is determined relative to the direction of the air flow, shown schematically by the arrow 258, which passes through them. The row of tubes 252 is located upstream with respect to the flow of the air flow. He is crossed first and enjoys the lowest air temperature. The row of tubes 254 is traversed by the flow of air which has heated in contact with the tubes of the first row 252. It is therefore less well cooled than the first row. Finally, the third row of tubes (256) is the most badly cooled since the air has already passed through the first two rows 254 and 256 and has therefore warmed to their contact. As a result, the cooling fluid circulating in the first row of tubes 252 will be better cooled than the fluid flowing in the second row of tubes 254, which itself will be better cooled than the coolant passing through the third row of tubes. 256.

Dans ce mode de réalisation, les boîtes collectrices d'entrée 261 et de sortie 263 ne sont pas divisées. En conséquence, chacun des rangs de tubes 252, 254 et 256 constitue un échangeur. Ces trois références désignent donc aussi bien un échangeur qu'un rang de tubes. En conséquence, le module d'échange de chaleur 250 est constitué de trois échangeurs superposés, traversés par un même flux d'air. Les échangeurs peuvent disposer d'ailettes ou d'intercalaires communs 165 qui font que le module est lié physiquement. Le même fluide de refroidissement, à savoir le liquide de refroidissement du moteur, circule dans les trois échangeurs 252, 254 et 256.In this embodiment, the input manifolds 261 and output boxes 263 are not divided. Accordingly, each of the rows of tubes 252, 254 and 256 constitutes a exchanger. These three references thus designate both an exchanger and a row of tubes. Consequently, the heat exchange module 250 consists of three superimposed exchangers, through which the same airflow passes. The exchangers may have fins or common tabs 165 that make the module is physically linked. The same cooling fluid, namely the engine coolant, circulates in the three exchangers 252, 254 and 256.

Une partie du module d'échange 250 fait partie du circuit à haute température 230, à savoir les échangeurs 254 et 256, tandis que l'échangeur 252 fait partie du circuit à basse température 240.Part of the exchange module 250 is part of the high temperature circuit 230, namely the exchangers 254 and 256, while the exchanger 252 is part of the low temperature circuit 240.

Le circuit à haute température 230 comporte en outre, comme décrit précédemment, un moteur à combustion interne 186 et une pompe principale 188 qui fait circuler un fluide caloporteur dans le circuit à haute température. Il comporte également une dérivation sur laquelle est monté un aérotherme 190. Il comporte en outre une vanne à quatre voies 260. Une voie d'entrée est reliée à la sortie du moteur 186, une voie de sortie à l'aérotherme 190, une seconde voie de sortie à l'échangeur 254 et une quatrième voie, constituant une troisième voie de sortie, est reliée à l'échangeur 256. Un refroidisseur d'air de suralimentation 202 est monté en série avec l'échangeur de second rang 254.The high temperature circuit 230 further comprises, as previously described, an internal combustion engine 186 and a main pump 188 which circulates a coolant in the high temperature circuit. It also comprises a bypass on which is mounted a heater 188. It further comprises a four-way valve 260. An inlet channel is connected to the output of the engine 186, an outlet channel to the heater 190, a second output channel to the exchanger 254 and a fourth channel, constituting a third output channel, is connected to the exchanger 256. A charge air cooler 202 is connected in series with the second-row heat exchanger 254.

Le circuit à basse température 240 comporte une pompe de circulation électrique 199 qui fait circuler le fluide caloporteur de refroidissement du moteur dans l'échangeur 252 qui constitue ainsi un radiateur à basse température. Le radiateur à basse température 252 est monté en série avec un condenseur 204 faisant partie d'un circuit de climatisation de l'habitacle du véhicule automobile.The low temperature circuit 240 includes an electric circulation pump 199 which circulates the coolant coolant of the engine in the exchanger 252 which thus constitutes a radiator at low temperature. The low temperature radiator 252 is connected in series with a condenser 204 forming part of an air conditioning circuit of the passenger compartment of the motor vehicle.

Dans cette réalisation les échangeurs 254 et 256 font en permanence partie du circuit à haute température, tandis que l'échangeur 252 fait en permanence partie du circuit à basse température.In this embodiment the exchangers 254 and 256 are permanently part of the high temperature circuit, while the exchanger 252 is permanently part of the low temperature circuit.

On a représenté sur la figure 25 une variante de réalisation non-conforme à l'invention du système de gestion de l'énergie thermique représenté sur la figure 23. Ce système est constitué, comme celui de la figure 23, d'un circuit à haute température, désigné par la référence 270, et d'un circuit à basse température, désigné par la référence 280. Le module d'échange de chaleur 290, comme le module 250, est constitué de trois rangs de tubes, désignés par les références 252, 254 et 256, constituant trois échangeurs de chaleur superposés et traversés par un même flux d'air 258. Toutefois, dans cette réalisation, les échangeurs de rangs 1 et 2, à savoir les échangeurs 252 et 254 font partie du circuit à basse température 280, tandis que l'échangeur de rang 3, en d'autres termes l'échangeur 256, fait seul partie du circuit de refroidissement à haute température 270. Outre le moteur 286, la pompe de circulation et l'aérotherme 190, le circuit à haute température 256 comporte une vanne à trois voies 262. L'entrée est reliée à la sortie du fluide de refroidissement du moteur 186. Une sortie de la vanne 262 est dirigée sur l'aérotherme 190, tandis que l'autre sortie amène le fluide à l'entrée de l'échangeur 256.We have shown on the figure 25 an alternative embodiment not in accordance with the invention of the thermal energy management system shown in FIG. figure 23 . This system is constituted, like that of the figure 23 , a high temperature circuit, designated by the reference 270, and a low temperature circuit, designated by the reference 280. The heat exchange module 290, like the module 250, consists of three rows of tubes, designated by the references 252, 254 and 256, constituting three superimposed heat exchangers and traversed by the same air stream 258. However, in this embodiment, the exchangers of ranks 1 and 2, namely the exchangers 252 and 254 are part of the low temperature circuit 280, while the rank exchanger 3, in other words the exchanger 256, is only part of the high temperature cooling circuit 270. In addition to the motor 286, the circulation pump and the heater 188, the high temperature circuit 256 comprises a three-way valve 262. The inlet is connected to the output of the engine coolant 186. An output of the valve 262 is directed on the heater 188, while than the other exit brings the fluid to the inlet of the exchanger 256.

L'échangeur 252 de rang 1 est monté en série avec un condenseur 204, faisant partie du circuit de climatisation dé l'habitacle d'un véhicule automobile, tandis que l'échangeur 254 de rang 2 est monté en série avec un refroidisseur d'air de suralimentation 202. Les échangeurs 252 et 254 et les équipements avec lesquels ils sont montés en série font partie du circuit de refroidissement à basse température. Dans ce système de gestion, comme dans celui représenté sur la figure 24, les liaisons sont fixes. En d'autres termes, l'échangeur 254 fait toujours partie du circuit à basse température 280, sans pouvoir être attribué au circuit à haute température 270.The exchanger 252 of rank 1 is connected in series with a condenser 204, forming part of the air conditioning circuit d the cabin of a motor vehicle, while the exchanger 254 of rank 2 is connected in series with a cooler d ' Charge air 202. The exchangers 252 and 254 and the equipment with which they are connected in series form part of the low temperature cooling circuit. In this management system, as in that represented on the figure 24 , the links are fixed. In other words, the exchanger 254 is still part of the low temperature circuit 280, without being attributable to the high temperature circuit 270.

Claims (4)

  1. System for managing the thermal energy developed by a motor vehicle combustion engine, comprising a high-temperature circuit (230) equipped with a main pump (188) for circulating a heat transfer fluid between the combustion engine (186) and a high-temperature main exchanger (256) that exchanges heat with external atmospheric air, the high-temperature circuit (230) further comprising a heating pipe comprising a unit heater (190), and a low-temperature circuit (240) including a first secondary heat exchanger (252) and a secondary pump (199), the said system further comprising a second secondary heat exchanger (254) mounted in series with a supercharging charge-air cooler (202), the second secondary exchanger (254) and the supercharging charge-air cooler forming part of the high-temperature circuit (230), the said heat transfer fluid being the same in both circuits, the main exchanger (256) and the secondary exchangers (252; 254) forming part of a heat exchange module (250), the said main heat exchanger (256) and the said two secondary heat exchangers (252, 254) each having an inlet header box (261) and an outlet header box (263), the said main and secondary heat exchangers each further comprising a bundle of tubes (12, 38, 39) through which the said heat transfer fluid flows, heat exchange surfaces (165) in a heat exchange relationship with the tubes of the bundle, the said main exchanger and the said secondary exchangers being arranged in such a way that their bundle of tubes has the same air flow (258) passing through them.
  2. Thermal energy management system according to Claim 1, characterized in that the said main heat exchanger (256) of the said module and the said secondary exchangers (252, 254) of the said module form a unit mechanical assembly.
  3. Thermal energy management system according to Claim 1 or 2, characterized in that the said module comprises a fourth heat exchanger (164) belonging to a separate cooling circuit and through which there flows a cycle fluid different from the heat transfer cycle fluid of the main exchanger (256) and of the two secondary exchangers (252, 254).
  4. Thermal energy management system according to Claims 1 to 3, characterized in that the secondary exchanger of the low-temperature circuit (252) is mounted in series with a condenser (204) that forms part of an air-conditioning circuit for the passenger compartment of the motor vehicle.
EP03811007A 2002-11-08 2003-05-15 Management system for the thermal energy generated by a thermal engine in an automobile vehicle Expired - Lifetime EP1558886B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/FR02/03851 2002-11-08
PCT/FR2002/003851 WO2003042619A1 (en) 2001-11-13 2002-11-08 Heat exchanger module comprising a main radiator and a secondary radiator
PCT/FR2003/001485 WO2004044512A1 (en) 2002-11-08 2003-05-15 Heat exchange module with a principal radiator and two secondary radiators

Publications (2)

Publication Number Publication Date
EP1558886A1 EP1558886A1 (en) 2005-08-03
EP1558886B1 true EP1558886B1 (en) 2011-06-29

Family

ID=32309755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03811007A Expired - Lifetime EP1558886B1 (en) 2002-11-08 2003-05-15 Management system for the thermal energy generated by a thermal engine in an automobile vehicle

Country Status (5)

Country Link
EP (1) EP1558886B1 (en)
JP (1) JP4657723B2 (en)
AT (1) ATE514912T1 (en)
AU (1) AU2003260548A1 (en)
WO (1) WO2004044512A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL369487A1 (en) * 2004-08-09 2006-02-20 Delphi Technologies, Inc. A motor vehicle heat exchanger
SE530034C2 (en) * 2006-06-30 2008-02-12 Scania Cv Abp Cooling device for a motor vehicle
US20080078537A1 (en) * 2006-09-29 2008-04-03 Valeo, Inc. Multi-zone heat exchangers with separated manifolds
US20100200195A1 (en) * 2007-04-12 2010-08-12 Automotivethermotech Gmbh High-performance heat exchanger for automotive vehicles, and heating/air-conditioning device including a high-performance heat exchanger
FR2931543B1 (en) * 2008-05-22 2015-02-06 Valeo Systemes Thermiques HEAT EXCHANGE MODULE COMPRISING AT LEAST TWO HEAT EXCHANGERS PERFORMED BY THE SAME HEAT TRANSFER FLUID
CN102575881B (en) * 2009-10-22 2014-11-19 三菱电机株式会社 Air conditioning device
DE102011082797A1 (en) * 2011-09-15 2013-03-21 Behr Gmbh & Co. Kg Heat exchanger for cooling charge air
JP5910517B2 (en) 2012-02-02 2016-04-27 株式会社デンソー Heat exchanger
JP6060797B2 (en) 2012-05-24 2017-01-18 株式会社デンソー Thermal management system for vehicles
ITTO20130262A1 (en) * 2013-03-29 2014-09-30 Denso Corp COOLING SYSTEM OF A SUCTION GAS FLUID FOR AN INTERNAL COMBUSTION ENGINE, INTEGRATED IN A ENGINE COOLING CIRCUIT
SE538362C2 (en) * 2013-04-03 2016-05-31 Scania Cv Ab Radiator arrangement in a motor vehicle
JP2015071958A (en) * 2013-10-02 2015-04-16 株式会社デンソー Intake air cooling device
JP6291264B2 (en) * 2014-01-22 2018-03-14 株式会社ティラド High pressure oil cooler for construction machine and method for manufacturing the same
JP6354198B2 (en) * 2014-02-21 2018-07-11 いすゞ自動車株式会社 Radiator
FR3034510B1 (en) * 2015-04-02 2018-04-27 Valeo Systemes Thermiques HEAT EXCHANGER FOR AN AIR CONDITIONING LOOP FOR A MOTOR VEHICLE
US11631533B2 (en) 2017-12-30 2023-04-18 Hitachi Energy Switzerland Ag System for sensor utilization in a transformer cooling circuit
SE1851203A1 (en) * 2018-10-05 2019-07-05 Scania Cv Ab System and method for cooling an engine and a secondary heat source and a vehicle comprising such a system
FR3099566A1 (en) * 2019-07-29 2021-02-05 Valeo Systemes Thermiques Vehicle heat exchanger intended for use as an evaporator and / or as a radiator
KR102179343B1 (en) * 2020-05-11 2020-11-16 정춘식 Heatpipe high efficiency cooling system
GB202205677D0 (en) * 2022-04-19 2022-06-01 Tev Ltd Air conditioning assembly

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061187A (en) * 1976-04-29 1977-12-06 Cummins Engine Company, Inc. Dual cooling system
JPS6016872U (en) * 1983-07-11 1985-02-05 トヨタ自動車株式会社 Dual system cooling system for internal engine
JP2678916B2 (en) * 1988-06-07 1997-11-19 スズキ株式会社 Water cooling engine cooling system
JPH02185821A (en) * 1989-01-12 1990-07-20 Diesel Kiki Co Ltd Air conditioner for automobile
JPH02140166U (en) * 1989-04-24 1990-11-22
JP3030036B2 (en) * 1989-08-23 2000-04-10 昭和アルミニウム株式会社 Double heat exchanger
DE9111412U1 (en) * 1991-09-13 1991-10-24 Behr Gmbh & Co, 7000 Stuttgart, De
US5408843A (en) * 1994-03-24 1995-04-25 Modine Manufacturing Co. Vehicular cooling system and liquid cooled condenser therefor
FR2726325B1 (en) * 1994-10-27 1997-01-03 Peugeot OIL COOLING DEVICE IN A VEHICLE EQUIPPED WITH A WATER COOLED ENGINE
DE19854544B4 (en) * 1998-11-26 2004-06-17 Mtu Friedrichshafen Gmbh Cooling system for a supercharged internal combustion engine
JP4078766B2 (en) * 1999-08-20 2008-04-23 株式会社デンソー Heat exchanger
KR100389698B1 (en) * 2000-12-11 2003-06-27 삼성공조 주식회사 High/Low Temperature Water Cooling System
DE10065003A1 (en) * 2000-12-23 2002-07-04 Bosch Gmbh Robert Cooling system for a motor vehicle
FR2832214B1 (en) * 2001-11-13 2004-05-21 Valeo Thermique Moteur Sa HEAT EXCHANGE MODULE, PARTICULARLY FOR A MOTOR VEHICLE, COMPRISING A MAIN RADIATOR AND A SECONDARY RADIATOR, AND SYSTEM COMPRISING THIS MODULE

Also Published As

Publication number Publication date
EP1558886A1 (en) 2005-08-03
AU2003260548A1 (en) 2004-06-03
JP4657723B2 (en) 2011-03-23
ATE514912T1 (en) 2011-07-15
JP2006505760A (en) 2006-02-16
WO2004044512A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
EP1444473B1 (en) Heat exchanger module comprising a main radiator and a secondary radiator
EP1558886B1 (en) Management system for the thermal energy generated by a thermal engine in an automobile vehicle
EP1620637B1 (en) System for cooling a piece of equipment to a low temperature, such as a piece of motor vehicle equipment, and associated heat exchangers
EP1132229B1 (en) Vehicle air-conditioning device with a multi-purpose heat exchanger
EP2102575A1 (en) Heat exchanger including at least three heat exchange portions and thermal energy management system including such exchanger
EP0352158B2 (en) Heat exchange apparatus for a plurality of coding-circuits using the same heat-exchange medium
FR2861166A1 (en) Heat exchanger e.g. air conditioning evaporator, for motor vehicle, has modules connected to inlet and outlet pipes for refrigerant fluid, and plane part delimiting space with plate to permit vertical movement for storage fluid
EP1499795A2 (en) Heat energy management system comprising two networks
FR2914413A1 (en) ALUMINUM MODULAR COOLER
EP3548828B1 (en) Device for distributing a refrigerant inside tubes of a heat exchanger constituting a refrigerant circuit
FR3093357A1 (en) Thermal regulation device, in particular cooling for a motor vehicle
FR2935475A1 (en) Heat exchanger i.e. cooler, for cooling re-circulated exhaust gas, in cooling circuit of heat engine of motor vehicle, has fluid inlets for inletting fractions of coolant, and fluid outlet for evacuating fractions of coolant at same time
WO2008053090A1 (en) Heat exchanger with an extruded body
FR2907890A1 (en) Valve assembly for heat engine of motor vehicle, has seat forming surfaces, and flap pivoted between connection position, in which pipe is connected to exchanger, and branching position, in which pipe is not connected to exchanger
EP1983171A1 (en) Heat exchanger for an automobile
WO2008053093A1 (en) Regulator valve connected to an exchanger by means of a thermal bridge and corresponding heat exchanger device
FR3095265A1 (en) Thermal regulation device, in particular cooling for a motor vehicle
WO2008053092A1 (en) Heat exchanger with central channel for a heat exchange fluid
FR3108563A1 (en) Thermal management device for a hybrid motor vehicle
EP1819910B1 (en) Low-temperature equipment-cooling system, such as for a piece of motor vehicle equipment, and associated heat exchangers
FR2832185A1 (en) Heat energy management circuit for motor vehicle internal combustion engine has secondary pump and radiator circuit connected to main coolant tank
WO2024008649A1 (en) Device for thermal regulation, in particular for cooling
WO2023030791A1 (en) Heat exchanger for a coolant loop
EP2069634B1 (en) Heat exchanger for gases, in particular for the exhaust gases of an engine
FR3126760A1 (en) HEAT EXCHANGER OF A REFRIGERANT LOOP.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARTINS, CARLOS

Inventor name: GUERRERO, PASCAL

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUERRERO, PASCAL

Inventor name: MARTINS, CARLOS

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: MANAGEMENT SYSTEM FOR THE THERMAL ENERGY GENERATED BY A THERMAL ENGINE IN AN AUTOMOBILE VEHICLE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60337586

Country of ref document: DE

Effective date: 20110908

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

26N No opposition filed

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60337586

Country of ref document: DE

Effective date: 20120330

BERE Be: lapsed

Owner name: VALEO THERMIQUE MOTEUR

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210531

Year of fee payment: 19

Ref country code: DE

Payment date: 20210507

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60337586

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201