EP1554071B1 - Method of preparing iron-based components by compaction with elevated pressures - Google Patents

Method of preparing iron-based components by compaction with elevated pressures Download PDF

Info

Publication number
EP1554071B1
EP1554071B1 EP03751717A EP03751717A EP1554071B1 EP 1554071 B1 EP1554071 B1 EP 1554071B1 EP 03751717 A EP03751717 A EP 03751717A EP 03751717 A EP03751717 A EP 03751717A EP 1554071 B1 EP1554071 B1 EP 1554071B1
Authority
EP
European Patent Office
Prior art keywords
powder
compaction
process according
particles
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03751717A
Other languages
German (de)
French (fr)
Other versions
EP1554071A1 (en
Inventor
Mikhail Kejzelman
Paul Skoglund
Hilmar Vidarsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas AB filed Critical Hoganas AB
Publication of EP1554071A1 publication Critical patent/EP1554071A1/en
Application granted granted Critical
Publication of EP1554071B1 publication Critical patent/EP1554071B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/026Mold wall lubrication or article surface lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention concerns a method for the preparation of components having high density by using metal powder compositions useful within the powder metallurgical industry.
  • the invention is defined in claims 1-10.
  • the powder forging process has the advantage that full dense components may be obtained.
  • the process is however costly and is utilised mainly for mass production of heavier components, such as connection rods.
  • Full dense materials can also be obtained by elevated pressures at high temperatures, such as in hot isostatic pressing, HIP, but also this method is costly.
  • warm compaction a process where the compaction is performed at an elevated temperature, typically at 120 to 250 °C, the density can be increased with about 0,2 g/cm 3 , which results in a considerable improvement of the mechanical properties.
  • a disadvantage is however that the warm compaction method involves additional investment and processing. Other processes, such as double pressing, double sintering, sintering at elevated temperatures etc, may further increase the density. Also these methods will add further production costs hence reducing the overall cost effectiveness.
  • the method according to the present invention includes the steps of providing an iron-based powder essentially free from fine particles; optionally mixing said powder with graphite and other additives; uniaxially compacting the powder in a die at high pressure and ejecting the green body, which may subsequently be sintered.
  • high density is intended to mean compacts having a density of about at least 7.3 g/cm 3 .
  • Components having lower densities can of course also be produced but are believed to be of less interest.
  • the iron-based powder according to the present invention includes pure iron powder such as atomised iron powder, sponge iron powder, reduced iron powder; partially diffusion-alloyed steel powder; and completely alloyed steel powder.
  • the partially diffusion-alloyed steel powder is preferably a steel powder alloyed partially with one or more of Cu, Ni, and Mo.
  • the completely alloyed steel powder is preferably a steel powder alloyed with Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B. Also stainless steel powders are of interest.
  • the particles have an irregular form as is obtained by water atomisation. Also sponge iron powders having irregularly shaped particles may be of interest.
  • a critical feature of the invention is that the powder used have coarse particles i.e. the powder is essentially without fine particles.
  • the term "essentially without fine particles” is intended to mean that less than about 5 % of the powder particles have a size below 45 ⁇ m as measured by the method described in SS-EN 24 497. So far the most interesting results have been achieved with powders essentially consisting of particles above about 106 ⁇ m and particularly above about 212 ⁇ m.
  • the term "essentially consists” is intended to mean that at least 50 %, preferably at least 60 %, and most preferably at least 70 % of the particles have a particle size above 106 and 212 ⁇ m, respectively.
  • the maximum particle size may be about 2 mm.
  • the particle size distribution for iron-based powders used at PM manufacturing is normally distributed with a gaussian distribution with a average particle diameter in the region of 30 to 100 ⁇ m and about 10-30 % less than 45 ⁇ m.
  • Iron based powders essentially free from fine particles may be obtained by removing the finer fractions of the powder or by manufacturing a powder having the desired particle size distribution.
  • Powders having coarse particles are also used for the manufacture of soft magnetic components.
  • US patent 6 309 748 discloses a ferromagnetic powder, the particles of which have a diameter size between 40 and 600 ⁇ m.
  • these powder particles are provided with a coating.
  • the iron powder includes particles with less than 5 % exceeding 417 ⁇ m, and less than about 20 % of the powder particles have a size less than 147 ⁇ m.
  • This patent teaches that, because of the very low content of particles less than 147 ⁇ m, the mechanical properties of components manufactured from this coarse, highly pure powder are very low.
  • this powder teaches that if higher strength is desired, it is not possible to increase the content of particles having a size less than 147 ⁇ m without simultaneously deteriorating the soft magnetic properties. Therefore this powder is mixed with specific amounts of ferrophosphorus.
  • Graphite which may be used in the compositions according to the present invention is not mentioned in this patent and besides the presence of graphite would deteriorate the magnetic properties.
  • Powder mixtures including coarse particles are also disclosed in the US patent 5225459 ( EP 554 009 ) which also concerns powder mixtures for the preparation of soft magnetic components. Nor do these powder mixtures include graphite.
  • additives may be added to the iron-based powder before compaction, such as alloying elements comprising Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S, and B. These alloying elements may be added in amounts up to 10 % by weight. Further additives are machinability enhancing compounds, hard phase material and flow agents.
  • the iron-base powder may also be combined with a lubricant before it is transferred to the die (internal lubrication).
  • the lubricant is added to minimize friction between the metal power particles and between the particles and the die during a compaction, or pressing, step.
  • suitable lubricants are e.g. stearates, waxes, fatty acids and derivatives thereof, oligomers, polymers and other organic substances with lubricating effect.
  • the lubricants are preferably added in the form of particles but may also be bonded and/or coated to the particles. According to the present invention the amount of lubricant added to the iron-based powder may vary between 0.05 and 0.6 %, preferably between 0.1-0.5 % by weight of the mixture.
  • the method according to the invention may also be performed with the use of external lubrication (die wall lubrication) where the walls of the die are provided with a lubricant before the compaction is performed.
  • external lubrication die wall lubrication
  • a combination of external and internal lubrication may also be used.
  • At high compaction pressure is intended to mean at pressures of about at least 800 MPa. More interesting results are obtained with higher pressures such as pressures above 900, preferably above 1000, more preferably above 1100 MPa.
  • the compaction may be performed with standard equipment, which means that the new method may be performed without expensive investments.
  • the compaction is performed uniaxially in a single step at ambient or elevated temperature.
  • the compaction may be performed with the aid of a percussion machine (Model HYP 35-4 from Hydropulsor) as described in patent publication WO 02/38315 .
  • the sintering may be performed at temperatures normally used within the PM field, e.g. at standard temperature between 1080 and 1160C°C or at higher temperatures above 1160°C and in conventionally used atmospheres.
  • the advantages obtained by using the method according to the present invention are that high density green compacts can be cost effectively produced.
  • the new method also permits production of higher components which are difficult to produce by using the conventional technique.
  • standard compaction equipment can be used for producing high density compacts having acceptable or even perfect surface finish.
  • Examples of products which suitably can be manufactured by the new method are connecting rods, gears and other structural parts subjected to high loads.
  • By using stainless steel powders flanges are of special interest.
  • Two different iron-based powder compositions according to the present invention were compared with a standard iron-based powder composition. All three compositions were produced with Astaloy Mo available from Höganäs AB, Sweden. 0.2 % by weight of graphite and 0.4 % by weight of a lubricant (KenolubeTM) were added to the compositions. In one of the iron-based powder compositions according to the invention, particles of the Astaloy Mo with a diameter less than 45 ⁇ m were removed and in the other composition according to the invention particles of Astaloy Mo less than 212 ⁇ m were removed. The compaction was performed at ambient temperature and in standard equipment. As can be seen from figure 1-1 a clear density increase at all compaction pressures is obtained with the powder having a particle size above 212 ⁇ m.
  • Figure 1-2 shows that in order to obtain components without deteriorated surfaces the most important factor is the reduction or elimination of the smallest particles, i.e. particles below 45 ⁇ m. Furthermore from this figure it can be seen that the force needed for ejection of the compacts produced by the iron based powder composition without particles less than 212 ⁇ m was considerably reduced compared with the ejection force needed for compacts produced from the standard iron-based powder composition having about 20 % of the particles less than 45 ⁇ m. The ejection force needed for compacts produced from the iron-based powder composition according to the invention without particles less than 45 ⁇ m is also reduced in comparison with the standard powder.
  • a noticeable phenomenon is that the ejection force for compacts produced according to the present invention decreases with the increasing ejection pressure whereas the opposite is valid for the standard composition.
  • Example 1 was repeated but as lubricant 0.5 % of EBS (ethylene bisstearamide) was used and the compaction was performed with the aid of a percussion machine (Model HYP 35-4 from Hydropulsor, Sweden)
  • EBS ethylene bisstearamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture Of Iron (AREA)

Abstract

The present invention concerns a process for the preparation of high density green compacts comprising the steps of providing an iron-based powder essentially free from fine particles; optionally mixing said powder with graphite and other additives; uniaxially compacting the powder in a die at a compaction pressure of at least about 800 MPa and ejecting the green body. The invention also concerns the powder used in the method.

Description

    FIELD OF THE INVENTION
  • The present invention concerns a method for the preparation of components having high density by using metal powder compositions useful within the powder metallurgical industry. The invention is defined in claims 1-10.
  • There are several advantages by using powder metallurgical methods for producing structural parts compared with conventional matching processes of full dense steel. Thus, the energy consumption is much lower and the material utilisation is much higher. Another important factor in favour of the powder metallurgical route is that components with net shape or near net shape can be produced directly after the sintering process without costly shaping processes such as turning, milling, boring or grinding. However, normally a full dense steel material has superior mechanical properties compared with PM components. This is mainly due to the occurrence of porosity in the PM components. Therefore, the strive has been to increase the density of PM components in order to reach values as close as possible to the density value of a full dense steel.
  • Among the methods used in order to reach higher density of PM components the powder forging process has the advantage that full dense components may be obtained. The process is however costly and is utilised mainly for mass production of heavier components, such as connection rods. Full dense materials can also be obtained by elevated pressures at high temperatures, such as in hot isostatic pressing, HIP, but also this method is costly.
  • By using warm compaction, a process where the compaction is performed at an elevated temperature, typically at 120 to 250 °C, the density can be increased with about 0,2 g/cm3, which results in a considerable improvement of the mechanical properties. A disadvantage is however that the warm compaction method involves additional investment and processing. Other processes, such as double pressing, double sintering, sintering at elevated temperatures etc, may further increase the density. Also these methods will add further production costs hence reducing the overall cost effectiveness.
  • In order to expand the market for powder metallurgical components and utilise the advantages with the powder metallurgical technique there is thus a need for a simple, less expensive method of achieving high density compacts with improved static and dynamic mechanical strength.
  • SUMMARY OF THE INVENTION
  • It has now been found that high density components can be obtained by using high compaction pressures in combination with coarse powders. In view of the general knowledge, that conventionally used powders, i.e. powders including fine particles, cannot be compacted to high densities without problems with e.g. damaged or deteriorated surfaces of the compacts this finding is quite unexpected. Specifically, the method according to the present invention includes the steps of providing an iron-based powder essentially free from fine particles; optionally mixing said powder with graphite and other additives; uniaxially compacting the powder in a die at high pressure and ejecting the green body, which may subsequently be sintered.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The term " high density" is intended to mean compacts having a density of about at least 7.3 g/cm3. Components having lower densities can of course also be produced but are believed to be of less interest.
  • The iron-based powder according to the present invention includes pure iron powder such as atomised iron powder, sponge iron powder, reduced iron powder; partially diffusion-alloyed steel powder; and completely alloyed steel powder. The partially diffusion-alloyed steel powder is preferably a steel powder alloyed partially with one or more of Cu, Ni, and Mo. The completely alloyed steel powder is preferably a steel powder alloyed with Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B. Also stainless steel powders are of interest.
  • As regards the particle shape it is preferred that the particles have an irregular form as is obtained by water atomisation. Also sponge iron powders having irregularly shaped particles may be of interest.
  • A critical feature of the invention is that the powder used have coarse particles i.e. the powder is essentially without fine particles. The term "essentially without fine particles" is intended to mean that less than about 5 % of the powder particles have a size below 45 µm as measured by the method described in SS-EN 24 497. So far the most interesting results have been achieved with powders essentially consisting of particles above about 106 µm and particularly above about 212 µm. The term "essentially consists" is intended to mean that at least 50 %, preferably at least 60 %, and most preferably at least 70 % of the particles have a particle size above 106 and 212 µm, respectively. The maximum particle size may be about 2 mm. The particle size distribution for iron-based powders used at PM manufacturing is normally distributed with a gaussian distribution with a average particle diameter in the region of 30 to 100 µm and about 10-30 % less than 45 µm. Iron based powders essentially free from fine particles may be obtained by removing the finer fractions of the powder or by manufacturing a powder having the desired particle size distribution.
  • The influence of particle size distribution and the influence of particle shape on the compaction properties and properties of the compacted body have been subjected to intense studies. Thus the US patent 5,594,186 reveals a method of producing PM components with a density higher than 95 % of theoretical density by utilising substantially linear, acicular metal particles having a triangular cross section. Such particles are suitably produced by a machining or milling process.
  • Powders having coarse particles are also used for the manufacture of soft magnetic components. Thus the US patent 6 309 748 discloses a ferromagnetic powder, the particles of which have a diameter size between 40 and 600 µm. In contrast to iron based powder particles according to the present invention, these powder particles are provided with a coating.
  • In the US patent 4,190,441 a powder composition for production of sintered soft magnetic components is disclosed. In this patent the iron powder includes particles with less than 5 % exceeding 417 µm, and less than about 20 % of the powder particles have a size less than 147 µm. This patent teaches that, because of the very low content of particles less than 147 µm, the mechanical properties of components manufactured from this coarse, highly pure powder are very low. Furthermore the patent teaches that if higher strength is desired, it is not possible to increase the content of particles having a size less than 147 µm without simultaneously deteriorating the soft magnetic properties. Therefore this powder is mixed with specific amounts of ferrophosphorus. Graphite which may be used in the compositions according to the present invention is not mentioned in this patent and besides the presence of graphite would deteriorate the magnetic properties.
  • Powder mixtures including coarse particles are also disclosed in the US patent 5225459 ( EP 554 009 ) which also concerns powder mixtures for the preparation of soft magnetic components. Nor do these powder mixtures include graphite.
  • Within the field of powder forging it is furthermore known that pre-alloyed iron-based powders with coarse particles can be used. The US patent 3 901 661 discloses such powders. This patent discloses that a lubricant may be included and specifically that the amount of lubricant should be 1 % by weight (example 1). If the powders according to the present invention were mixed with such a high amount of lubricant it would however not be possible to achieve the high densities.
  • In order to obtain compacts having satisfactory mechanical sintered properties of the sintered part according to the present invention it is necessary to add certain amounts of graphite to the powder mixture to be compacted. Thus graphite in amounts between 0.1-1, preferably 0.2 -1.0 and most preferably 0.2-0.8 % by weight of the total mixture to be compacted could be added before the compaction.
  • Other additives may be added to the iron-based powder before compaction, such as alloying elements comprising Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S, and B. These alloying elements may be added in amounts up to 10 % by weight. Further additives are machinability enhancing compounds, hard phase material and flow agents.
  • The iron-base powder may also be combined with a lubricant before it is transferred to the die (internal lubrication). The lubricant is added to minimize friction between the metal power particles and between the particles and the die during a compaction, or pressing, step. Examples of suitable lubricants are e.g. stearates, waxes, fatty acids and derivatives thereof, oligomers, polymers and other organic substances with lubricating effect. The lubricants are preferably added in the form of particles but may also be bonded and/or coated to the particles. According to the present invention the amount of lubricant added to the iron-based powder may vary between 0.05 and 0.6 %, preferably between 0.1-0.5 % by weight of the mixture.
  • The method according to the invention may also be performed with the use of external lubrication (die wall lubrication) where the walls of the die are provided with a lubricant before the compaction is performed. A combination of external and internal lubrication may also be used.
  • The term "at high compaction pressure" is intended to mean at pressures of about at least 800 MPa. More interesting results are obtained with higher pressures such as pressures above 900, preferably above 1000, more preferably above 1100 MPa.
  • Conventional compaction at high pressures, i.e. pressures above about 800 MPa with conventionally used powders including finer particles, in admixture with low amounts of lubricants (less than 0.6 % by weight) are generally considered unsuitable due to the high forces required in order to eject the compacts from the die, the accompanying high wear of the die and the fact that the surfaces of the components tend to be less shiny or deteriorated. By using the powders according to the present invention it has unexpectedly been found that the ejection force is reduced at high pressures, about 1000 MPa, and that components having acceptable or even perfect surfaces may be obtained also when die wall lubrication is not used.
  • The compaction may be performed with standard equipment, which means that the new method may be performed without expensive investments. The compaction is performed uniaxially in a single step at ambient or elevated temperature. Alternatively the compaction may be performed with the aid of a percussion machine (Model HYP 35-4 from Hydropulsor) as described in patent publication WO 02/38315 .
  • The sintering may be performed at temperatures normally used within the PM field, e.g. at standard temperature between 1080 and 1160C°C or at higher temperatures above 1160°C and in conventionally used atmospheres.
  • Other treatments of the green or sintered component may as well be applied, such as machining, case hardening, surface densification or other methods used in PM technology.
  • In brief the advantages obtained by using the method according to the present invention are that high density green compacts can be cost effectively produced. The new method also permits production of higher components which are difficult to produce by using the conventional technique. Additionally standard compaction equipment can be used for producing high density compacts having acceptable or even perfect surface finish.
  • Examples of products which suitably can be manufactured by the new method are connecting rods, gears and other structural parts subjected to high loads. By using stainless steel powders flanges are of special interest.
  • The invention is further illustrated by the following examples.
  • Example 1
  • Two different iron-based powder compositions according to the present invention were compared with a standard iron-based powder composition. All three compositions were produced with Astaloy Mo available from Höganäs AB, Sweden. 0.2 % by weight of graphite and 0.4 % by weight of a lubricant (Kenolube™) were added to the compositions. In one of the iron-based powder compositions according to the invention, particles of the Astaloy Mo with a diameter less than 45 µm were removed and in the other composition according to the invention particles of Astaloy Mo less than 212 µm were removed. The compaction was performed at ambient temperature and in standard equipment. As can be seen from figure 1-1 a clear density increase at all compaction pressures is obtained with the powder having a particle size above 212µm.
  • Figure 1-2 shows that in order to obtain components without deteriorated surfaces the most important factor is the reduction or elimination of the smallest particles, i.e. particles below 45 µm. Furthermore from this figure it can be seen that the force needed for ejection of the compacts produced by the iron based powder composition without particles less than 212µm was considerably reduced compared with the ejection force needed for compacts produced from the standard iron-based powder composition having about 20 % of the particles less than 45µm. The ejection force needed for compacts produced from the iron-based powder composition according to the invention without particles less than 45µm is also reduced in comparison with the standard powder.
  • A noticeable phenomenon is that the ejection force for compacts produced according to the present invention decreases with the increasing ejection pressure whereas the opposite is valid for the standard composition.
  • It was also observed that the compacts obtained when the standard powder was compacted at a pressure above 700 MPa had deteriorated surfaces and were accordingly not acceptable. The compacts, which were obtained when the powder essentially without particles less than 45 µm was compacted at a pressure above 700 MPa, had a less shiny surface which at least under certain circumstances is acceptable.
  • Example 2
  • Example 1 was repeated but as lubricant 0.5 % of EBS (ethylene bisstearamide) was used and the compaction was performed with the aid of a percussion machine (Model HYP 35-4 from Hydropulsor, Sweden)
  • From figure 2-1 and 2-2, respectively, it can be noticed that higher green densities and lower ejection forces were obtained with the powder composition according to the invention compared with the powder composition with the standard powder. It can also be noticed that components produced from the standard powder had deteriorated surfaces at all compaction pressures.

Claims (10)

  1. Process for the preparation of high density green compacts comprising the following steps:
    providing an atomised iron-based powder, optionally comprising Mn, Cu, Ni, Cr, Mo, V, Co, W, Nb, Ti, Al, P, S and B, wherein less than 5% of the iron-based powder particles have a size below 45 µm;
    mixing said powder with 0.1-1.0% by weight graphite and a lubricant in an amount between 0.05 and 0.6% by weight, optionally machinability enhancing agents, hard phase materials and flow agents;
    uniaxially compacting the powder in a die at a compaction pressure of at least 800 MPa; and
    ejecting the green body from the die.
  2. Process according to claim 1, wherein the compaction is performed in a single step.
  3. Process according to claim 1 or 2, wherein at least 50%, preferably at least 60% and most preferably at least 70% of the iron-based powder consists of particles having a particle size above 106 µm.
  4. Process according to any one of the claims 1-3, wherein at least 50%, preferably at least 60% and most preferably at least 70% of the iron-based powder consists of particles having a particle size above 212 µm.
  5. Process according to claim 4, wherein the maximum particle size is 2 mm.
  6. Process according to any one of claims 1-5, wherein the compaction is performed in a lubricated die.
  7. Process according to any one of claims 1-6, wherein the compaction is performed at a pressure of at least 900 MPa, more preferably at least 1000 MPa and most preferably above 1100 MPa.
  8. Process according to any one of claims 1-7, wherein the compaction is performed at ambient temperature.
  9. Process according to any one of claims 1-8, wherein the compaction is performed at elevated temperature.
  10. Process according to any one of claims 1-9 for preparing sintered products, said process further including a single sintering step at a temperature above 1100°C.
EP03751717A 2002-10-22 2003-10-22 Method of preparing iron-based components by compaction with elevated pressures Expired - Lifetime EP1554071B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0203134 2002-10-22
SE0203134A SE0203134D0 (en) 2002-10-22 2002-10-22 Method of preparing iron-based components
PCT/SE2003/001633 WO2004037468A1 (en) 2002-10-22 2003-10-22 Method of preparing iron-based components by compaction with elevated pressures

Publications (2)

Publication Number Publication Date
EP1554071A1 EP1554071A1 (en) 2005-07-20
EP1554071B1 true EP1554071B1 (en) 2010-12-08

Family

ID=20289349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03751717A Expired - Lifetime EP1554071B1 (en) 2002-10-22 2003-10-22 Method of preparing iron-based components by compaction with elevated pressures

Country Status (17)

Country Link
EP (1) EP1554071B1 (en)
JP (2) JP4909514B2 (en)
KR (2) KR20050059285A (en)
CN (1) CN1705533B (en)
AT (1) ATE490830T1 (en)
AU (1) AU2003269786B2 (en)
BR (1) BR0314079B1 (en)
CA (1) CA2495697C (en)
DE (1) DE60335280D1 (en)
ES (1) ES2357741T3 (en)
MX (1) MXPA05004256A (en)
PL (1) PL208668B1 (en)
RU (1) RU2333075C2 (en)
SE (1) SE0203134D0 (en)
TW (2) TW201127521A (en)
WO (1) WO2004037468A1 (en)
ZA (1) ZA200501296B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI328236B (en) * 2005-06-15 2010-08-01 Hoganas Ab Publ Process for the manufacture of soft magnetic composite components and soft magnetic composite components obtained therefrom
KR100978901B1 (en) * 2008-03-21 2010-08-31 가야에이엠에이 주식회사 MANUFACTURING METHOD OF Fe-BASED SINTERED BODY WITH HIGH TENSILE STRENGTH AND HIGH HARDNESS
CA2798516C (en) * 2010-05-19 2017-03-14 Hoeganaes Corporation Compositions and methods for improved dimensional control in ferrous powder metallurgy applications
WO2013122873A1 (en) * 2012-02-15 2013-08-22 Gkn Sinter Metals, Llc Powder metal with solid lubricant and powder metal scroll compressor made therefrom
JP5903738B2 (en) * 2012-03-29 2016-04-13 住友電工焼結合金株式会社 Method for producing ferrous sintered alloy
EP2743361A1 (en) * 2012-12-14 2014-06-18 Höganäs AB (publ) New product and use thereof
RU2588979C1 (en) * 2015-03-16 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Method of producing high-density powder chromium containing material based on iron
AT526261B1 (en) * 2022-07-05 2024-03-15 Miba Sinter Austria Gmbh Method for producing a component from a sinter powder

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901661A (en) * 1972-04-06 1975-08-26 Toyo Kohan Co Ltd Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
JPS5230924B2 (en) * 1972-04-06 1977-08-11
US4190441A (en) * 1978-03-02 1980-02-26 Hoganas Ab Fack Powder intended for powder metallurgical manufacturing of soft magnetic components
SU882702A1 (en) * 1979-02-28 1981-11-23 Научно-Исследовательский Институт Порошковой Металлургии Белорусского Ордена Трудового Красного Знамени Политехнического Института Method of producing sintered fe-based articles
SU872028A1 (en) * 1979-12-17 1981-10-15 Московский Ордена Трудового Красного Знамени Институт Тонкой Химической Технологии Им.М.В.Ломоносова Metallic powder pressing method
JPS61183444A (en) * 1985-02-08 1986-08-16 Toyota Motor Corp High strength sintered alloy and its manufacture
US5225459A (en) * 1992-01-31 1993-07-06 Hoeganaes Corporation Method of making an iron/polymer powder composition
US5154881A (en) * 1992-02-14 1992-10-13 Hoeganaes Corporation Method of making a sintered metal component
US5594186A (en) * 1995-07-12 1997-01-14 Magnetics International, Inc. High density metal components manufactured by powder metallurgy
GB2315115B (en) 1996-07-10 2000-05-31 Hitachi Powdered Metals Valve guide
US5872322A (en) * 1997-02-03 1999-02-16 Ford Global Technologies, Inc. Liquid phase sintered powder metal articles
US5892164A (en) * 1997-03-19 1999-04-06 Air Products And Chemicals, Inc. Carbon steel powders and method of manufacturing powder metal components therefrom
JP3462378B2 (en) * 1997-11-07 2003-11-05 日立粉末冶金株式会社 Powder molding method in powder metallurgy
US5982073A (en) * 1997-12-16 1999-11-09 Materials Innovation, Inc. Low core loss, well-bonded soft magnetic parts
JP3869620B2 (en) * 1999-04-16 2007-01-17 株式会社日立製作所 Alloy steel powder molding material, alloy steel powder processed body, and manufacturing method of alloy steel powder molding material
EP1145788B1 (en) * 1999-10-29 2004-12-15 JFE Steel Corporation Lubricating agent for mold at elevated temperature and method for producing high density iron-based sintered compact
SE0004122D0 (en) * 2000-11-09 2000-11-09 Hoeganaes Ab High density compacts and method for the preparation thereof
JP4078512B2 (en) * 2001-04-20 2008-04-23 Jfeスチール株式会社 Highly compressible iron powder

Also Published As

Publication number Publication date
RU2005115474A (en) 2005-10-27
TW200417433A (en) 2004-09-16
ZA200501296B (en) 2006-10-25
PL375094A1 (en) 2005-11-14
RU2333075C2 (en) 2008-09-10
TW201127521A (en) 2011-08-16
AU2003269786B2 (en) 2007-12-13
KR101179725B1 (en) 2012-09-04
WO2004037468A1 (en) 2004-05-06
JP4909514B2 (en) 2012-04-04
JP2010189769A (en) 2010-09-02
CN1705533A (en) 2005-12-07
CA2495697C (en) 2011-12-13
BR0314079B1 (en) 2011-10-04
ES2357741T3 (en) 2011-04-29
CA2495697A1 (en) 2004-05-06
AU2003269786A1 (en) 2004-05-13
MXPA05004256A (en) 2005-07-05
KR20050059285A (en) 2005-06-17
JP2006503983A (en) 2006-02-02
ATE490830T1 (en) 2010-12-15
BR0314079A (en) 2005-07-05
KR20110114689A (en) 2011-10-19
EP1554071A1 (en) 2005-07-20
PL208668B1 (en) 2011-05-31
CN1705533B (en) 2010-08-11
TWI415698B (en) 2013-11-21
DE60335280D1 (en) 2011-01-20
SE0203134D0 (en) 2002-10-22

Similar Documents

Publication Publication Date Title
EP1740332B1 (en) Sintered metal parts and method for the manufacturing thereof
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
US7384445B2 (en) Sintered metal parts and method for the manufacturing thereof
EP1554070B1 (en) Iron-based powder composition including a silane lubricant
US7585459B2 (en) Method of preparing iron-based components
US7662209B2 (en) Iron-based powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SKOGLUND, PAUL

Inventor name: KEJZELMAN, MIKHAIL

Inventor name: VIDARSSON, HILMAR

17Q First examination report despatched

Effective date: 20090922

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60335280

Country of ref document: DE

Date of ref document: 20110120

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357741

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110308

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

26N No opposition filed

Effective date: 20110909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60335280

Country of ref document: DE

Effective date: 20110909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141022

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150915

Year of fee payment: 13

Ref country code: RO

Payment date: 20150908

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150908

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151013

Year of fee payment: 13

Ref country code: IT

Payment date: 20151026

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150928

Year of fee payment: 13

Ref country code: SE

Payment date: 20151013

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60335280

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 490830

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161022

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161022

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161022

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181123