EP1552563A2 - Circuit arrangement for a photovoltaic system - Google Patents

Circuit arrangement for a photovoltaic system

Info

Publication number
EP1552563A2
EP1552563A2 EP03752705A EP03752705A EP1552563A2 EP 1552563 A2 EP1552563 A2 EP 1552563A2 EP 03752705 A EP03752705 A EP 03752705A EP 03752705 A EP03752705 A EP 03752705A EP 1552563 A2 EP1552563 A2 EP 1552563A2
Authority
EP
European Patent Office
Prior art keywords
energy
solar
circuit arrangement
bypass
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03752705A
Other languages
German (de)
French (fr)
Inventor
Rüdiger Röhrig
Josef Steger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1552563A2 publication Critical patent/EP1552563A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications
    • Y10S136/293Circuits

Definitions

  • the invention relates to a circuit arrangement for controlling / regulating photovoltaic systems, which comprise a large number of solar generators connected in series and / or in parallel.
  • the maximum power can only be drawn from photovoltaic solar generators if the generator is operated at a specific operating point, the maximum power point - hereinafter referred to as MPP.
  • MPP the maximum power point
  • the MPP for each generator depends both on the respective external operating conditions, in particular the current irradiance and the temperature, and on the condition of the generator itself, in particular due to manufacturing tolerances, age, defects, contamination, etc. For these reasons, each generator has a specific MPP current I MPP or a specific MPP voltage U MPP at a specific time t.
  • the object of the invention is to reduce power losses in series and / or parallel connected solar generators. According to the present invention, this object is achieved by a circuit arrangement for controlling / regulating photovoltaic systems, which comprise a large number of series-connected and / or parallel-connected solar generators, each solar generator being assigned a variable energy bypass, which is controlled / regulated in such a way that each Solar generator is operated continuously in its current, specific MPP.
  • each solar generator of a string has a variable current bypass, which is controlled / regulated in such a way that the current in the string is just as large as the lowest MPP current all individual string solar generators.
  • the differential current between the current string current and the respective current solar generator MPP current is conducted via the current bypass.
  • the total current through the solar generator thus corresponds exactly to its MPP current at all times, which ensures optimal operation of the solar generator.
  • the control variable for the current bypass which is different for each generator, is determined by comparing its own MPP with the MPP of the other solar generators in a string.
  • This comparison can take place in both a solar generator and a string control unit, which communicates with the control units of the individual solar generators via a data bus.
  • the determination of the respective MPP of the individual generators can easily be carried out by measuring the characteristic curve of the generators in accordance with proven methods (electronically or capacitively variable load).
  • the current bypassed by the string current is again made available to the system in a suitable manner, e.g. B. via an inverter to feed the energy into the grid.
  • This bypass principle can also be used in parallel connected solar generators, in which case the circuit arrangement does not adapt the current but the voltage of the respective solar generator to the voltage of the overall system.
  • the energy bypass is flow or voltage controlled / regulated.
  • the energy bypass is a galvanically isolating control / controllable energy converter (for example in the form of a controllable / controllable DC / DC converter, a controllable / controllable current or voltage source, a current or voltage regulator (hereinafter also referred to as a bypass -Element referred to)) contains.
  • a galvanically isolating control / controllable energy converter for example in the form of a controllable / controllable DC / DC converter, a controllable / controllable current or voltage source, a current or voltage regulator (hereinafter also referred to as a bypass -Element referred to) contains.
  • the solar generator of a plurality of series-connected solar generators which in each case has the currently lowest MPP current in the series, specifies the control variable for the energy bypass of the other solar generators in the series.
  • the reason for this, as already mentioned, is that solar generators connected in series to form a string are a system of the same currents. The current through each solar generator connected in series is the same. The current in the system is largely determined by the solar generator with the lowest MPP current.
  • the bypass circuit for solar generators whose MPP current is higher than the MPP current of the weakest module, branches off the corresponding differential current and feeds the corresponding energy into a separate bypass energy path or circuit after potential isolation and possible transformation.
  • parallel connected solar generators are a system of the same voltage.
  • the voltage is the same on each of the parallel connected solar generators.
  • MPP voltages of the individual solar generators differ, optimal operation is only possible by adjusting the voltage.
  • the voltage in the system is therefore largely determined by the solar generator with the lowest MPP voltage. It can therefore be provided that the solar generator of a plurality of solar generators connected in parallel, which in each case has the currently lowest MPP voltage in the system, specifies the control variable for the energy bypass of the other solar generators in the system.
  • the bypass circuit thus builds the corresponding differential voltage in series with the respective solar generator for the solar generators, whose MPP voltage is higher than the MPP voltage of the weakest solar generator, and the corresponding energy after potential isolation and any transformation into a separate bypass energy path or circuit fed.
  • At least one main energy path is provided, via which the individual solar generators are connected in series and / or in parallel.
  • Conceivable are, for example, solar cells connected in series to a module, solar cell groups connected in parallel, modules connected in series to a string, module groups connected in series, modules connected in parallel or even strings connected in parallel.
  • At least one energy bypass path is provided, via which the energy bypasses are connected in series and / or in parallel, the bypass circuit being connected in parallel with the in the case of series-connected solar generators
  • the respective solar generators are to be arranged and, in the case of solar generators connected in parallel, the bypass circuit is to be arranged in series with the individual solar generators.
  • energy bypass elements are a system of the same voltage.
  • the power equivalent to be processed by the bypass circuit must be transformed to a uniform voltage.
  • the power equivalent is controlled / regulated accordingly by varying the current strength.
  • the bypass current and the bypass voltage can either be controlled centrally by evaluating all measurement data of the individual soiar generators or partially autonomously by the control / controllable bypass element itself.
  • bypass elements connected in series are a system of equal currents when viewed in isolation.
  • the power equivalent to be processed by the bypass circuit must be transformed to a uniform current level.
  • the power equivalent is controlled accordingly by varying the voltage.
  • the bypass current and the bypass voltage can either be controlled centrally by evaluating all measurement data of the individual solar generators, or partially autonomously by the control / controllable bypass element itself.
  • the energy bypass path is connected to the main energy path, ie that the bypass energy is supplied to the energy by a corresponding control / regulation of the voltages and currents in the energy bypass path -Main route can be fed directly again.
  • the voltage level of the bypass elements is set to the level of the main energy path by means of a central control / regulation of the voltage or by means of the controllable / adjustable bypass element (for example control / controllable DC / DC converter) whereas in the case of bypass elements connected in series, the voltage of the bypasses is set, for example, by a central control / regulation of the voltage or by the controllable / adjustable bypass element itself such that the sum of the bypass elements or bypasses connected in series is uniform the The voltages of the series-connected bypass elements or bypasses correspond to the voltage of the main energy route.
  • the main energy path and / or the energy bypass path is connected to an energy network or a battery system, which can be achieved, for example, by connecting the main energy path or / and to network-connected systems an energy converter is assigned to the energy bypass path or, in the case of a battery system, respective charge controllers and rechargeable batteries are assigned to the main energy path and / or the energy bypass path.
  • the invention further relates to a circuit arrangement for the control / regulation of photovoltaic systems, which comprise a plurality of series and / or parallel connected solar generators, which is characterized in that each solar generator or a part of the solar generators is assigned a diagnostic device which repeats during the operation of the solar generator whose operating parameters and / or characteristic data are recorded and an MPP determination of the solar generator is carried out and that the diagnostic device is assigned a system coupling device which separates the solar generator from the main energy path during the duration of the recording of the operating parameters and / or characteristic data.
  • the diagnostic unit can also be used to determine the respective solar generator, or independently determine the MPP of the respective solar generator.
  • the diagnostic device is assigned a solar generator simulator, which replaces the solar generator during the duration of the acquisition of the operating parameters and / or characteristic data with regard to its energy output.
  • a solar generator simulator which replaces the solar generator during the duration of the acquisition of the operating parameters and / or characteristic data with regard to its energy output.
  • the diagnostic device comprises a temperature or / and current or / and voltage measuring unit for detecting the current operating parameters of the solar generator and that an operating point adjuster is provided, which during the detection of the operating parameters or / and Characteristic data the working point, ie sets the current load of the generator and thus determines the current working point or varies the working point to measure the parameters, while the resulting currents and voltages. be measured.
  • the measurement is carried out in a regular cycle, the respective module MPP being determined cyclically by appropriate evaluation of the measurement points on the current-voltage characteristic curve, but the determination of the module MPP is also possible by other known methods is.
  • the result of the measurement are: open circuit current, short-circuit current, MPP current and MPP voltage (calculated MPP power), current current and current voltage (when the solar generator is connected in the system (calculated current power)) and the current temperature.
  • system coupling unit also separates the solar generator from the energy bypass path during the duration of the acquisition of the operating parameters and / or characteristic data.
  • the solar generator simulator also supplies the energy bypass path with energy during the duration of the acquisition of the operating parameters and / or characteristic data, which ensures a very uniform energy output of the overall system.
  • the invention further relates to a circuit arrangement with the features relating to the diagnostic device, which is characterized in that each solar generator is additionally assigned a variable energy bypass.
  • a control / regulating device for controlling / regulating the energy bypass or / and the diagnostic device is assigned to each solar generator or / and a group of solar generators, wherein it should not be excluded that the control / regulating device also includes other components of the Photovoltaic system, for example a communication device, etc. controls.
  • each solar generator and / or a group of solar generators can be assigned a data processing and storage unit in which measurement data, the characteristic data and the arithmetic values can be processed and stored.
  • the circuit arrangement is assigned a communication device which permits communication of the solar generator operating parameters and characteristic data to other solar generators or / and communication or / and control devices or / and data processing and storage units, the communication being carried out via a separate one Data line or bus or / and the main energy path and / or the energy bypass path can take place. If communication takes place, for example, via a main energy path, this is done, for example, by the data to be communicated being modulated onto the main energy path by means of a modulation / demodulation unit.
  • the invention further relates to a method for controlling / regulating photovoltaic systems which comprise a large number of series-connected and / or parallel-connected solar generators, which is characterized in that is that to determine the system MPP only the MPP is determined for some of the interconnected solar generators and that the system MPP is derived from this value or values. In this way, power losses during the MPP determination or the MPP tracking can be reduced, since the other solar generators are not affected by the MPP determination or the MPP tracking and in their respective during the MPP determination or the MPP tracking Work point remain and continue to provide the appropriate energy.
  • the possibility of monitoring the status of the individual solar generators is automatically made possible in the method according to the invention by the data communication of the solar generator control units with one another or with a higher-level control unit. If several strings are connected in parallel, a further control unit can log and evaluate the data communication of the entire photovoltaic system and thus act as a control center for the monitoring of all system components.
  • the advantage achieved with the invention compared to the previous method for controlling / regulating photovoltaic systems is in a higher power yield, which is achieved by the simultaneous and quasi-continuous operation of all the connected solar generators in their respective MPP (even if the characteristic curves differ from one another).
  • the timely recording of the operating status of all generators improves the safety, availability, reliability and maintainability of photovoltaic systems.
  • Fig. 2 is a schematic view of a method for controlling / regulating a photovoltaic system with a variable
  • Fig. 3 is a schematic view of a circuit arrangement for
  • FIG. 4 shows a schematic view of a photovoltaic system with two parallel solar generator strings and solar generators with a diagnostic unit
  • Fig. 5 is a schematic view of a diagnostic unit
  • Fig. 6 is a schematic view of a photovoltaic system with two parallel solar generator strings and solar generators with
  • Fig. 7 is a schematic view of a diagnostic unit
  • FIG. 8 shows a schematic view of a photovoltaic system with two parallel solar generator strings, solar generators with bypass / diagnostic unit and serially connected energy bypass with direct feed into the main energy path;
  • Fig. 9 is a schematic view of a bypass / diagnostic unit with
  • Data line; 10 shows a schematic view of a photovoltaic system with two parallel solar generator strings, solar generators with bypass / diagnostic unit and serially connected energy bypass with energy feed via a second converter into an energy network;
  • Fig. 1 another schematic view of a photovoltaic system with two parallel solar generator strings with
  • FIG. 1 2 with a schematic view of a bypass / diagnostic unit
  • Figure 1 3 is a schematic view of a photovoltaic system with two parallel solar generator strings, solar generators with bypass / diagnostic unit and parallel connected energy bypass with energy feed via a second converter into an energy network.
  • FIG. 14 is a schematic view of a photovoltaic system with two parallel solar generator strings, with solar generators
  • Figure 1 5 is a schematic view of a bypass diagnostic unit for parallel connected solar generators.
  • Fig. 1 6 is a simplified overall system representation. 1 to 3, the principle of a bypass control is explained in a simplified manner.
  • Fig. 1 shows the current-voltage characteristic of three arbitrary generators G 1, G2 and G3 at a certain time t.
  • each generator has its specific MPP with the associated current and voltage values (l MPP1 , l MPP2 , l MPP3 or U MPP1 , U MpP2 , U MPP3 ), with IMPPI being less than l MPP2 and less than l MPP3 . If these three generators are connected in series to form a string and loaded, an equally large string current flows through all three generators, so that at least two generators cannot be operated in their MPP. In the method according to the invention (see FIG.
  • the string is loaded in such a way that the string current is exactly as large as I MPP ⁇ .
  • FIG. 2 shows the method of the bypass control / regulation and is explained on the basis of the exemplary current-voltage characteristic curves from FIG. 1.
  • GCU 1 -3 Generic Control Unit
  • MPP currents l MPP G to l MPP G3 the lowest MPP current is determined.
  • the individual GCUs calculate the difference between their respective current MPP current (l MPP G1 - l MPP G3 ) and the lowest current MPP current of all generators of the string (in the example I M PP GI ) and load the corresponding bypass in such a way that exactly the calculated differential current is branched in the manner customary in terms of circuitry (l bypass G ⁇ - l ByPass G3 ) -
  • the energy equivalent of this load is appropriately provided to the system (e.g. DC / AC conversion).
  • the lowest MPP current of all generators of the string flows at the time.
  • the total current through each individual generator therefore corresponds exactly to its respective MPP current and the maximum energy yield is guaranteed. At the end of this process, the process starts all over again.
  • a generator control unit (hereinafter referred to as GCU) is connected in parallel to each solar generator G of a string.
  • GCU generator control unit
  • Each GCU has a communication interface and a DC voltage output for the bypass current.
  • the individual GCUs are connected to each other via a data bus.
  • the connection to a string control / control unit SCU can be sensible for cost reasons, in order to perform the redundant computing effort for determining the current lowest MPP current only once, while at the same time simplifying the GCU's circuitry.
  • the bypass sides of the individual GCUs are interconnected in parallel.
  • the bypass can again be connected to the string at its energy transfer point E via a galvanically isolated DC / DC converter for voltage-adapted energy return.
  • the energy transfer point can be characterized by a load, a converter or a memory.
  • FIGS. 4 to 7 show further refinements of a circuit arrangement according to the invention for the control / regulation of photovoltaic systems, which uses a diagnostic device instead of an energy bypass in order to reduce power losses in series or / and to recognize parallel connected solar generators and to reduce them by taking appropriate measures.
  • a solar generator has a current-voltage characteristic curve that is dependent on the light radiation and the temperature, and the maximum power can only be taken from the MPP with a corresponding MPP current at a specific operating point.
  • the characteristics of individual solar cells connected in a system can, however, differ. The reason for this is, for example, a deviation of the radiated energy due to the natural deviation with respect to the local brightness distribution, contamination, shading, temperature differences due to heat build-up, cell degradation or technical defects such as e.g. B. hairline cracks due to mechanical or thermal stress, mechanical destruction by vandalism or destruction by radiation effects. Due to the deviation of the characteristic curves of individual cells, system-related losses occur due to the serial or parallel connection of the solar cells; H.
  • the current or voltage in the system is largely determined by the solar generator with the lowest MPP current or the lowest MPP voltage. It is therefore necessary to determine the parameters of the individual solar generators by means of system diagnosis at more or less short intervals, which is done by temporarily varying the working point and measuring the resulting currents and voltages.
  • the corresponding solar generator MPP can also be determined cyclically by appropriate evaluation of the measuring points on the current-voltage characteristic curve, but this is also possible by other known methods.
  • a diagnostic unit suitable for this is described below with reference to FIGS. 4 and 5 using an example of a network-connected
  • the photovoltaic system 10 comprises two strings 12 arranged in parallel, each of which three in series Switched solar generators 14, which via a GCU 1 6 (generator control unit with diagnostic unit) with an energy main path (line) 18 and via this with an energy converter 20, for. B. an inverter, which converts the DC voltage generated by the solar generators into a grid-conforming AC voltage and feeds it into an energy network 22.
  • the inverter 22 controls the load on the strings 1 2 by means of MPP tracking in such a way that the maximum power can be drawn and thus each string 1 2 is always operated in the string MPP (higher-level control system).
  • the GCU 16 essentially consists of a voltage measuring unit 24 for detecting the voltage at the respective operating point of the solar generator 14, a current measuring unit 26 for detecting the current at the respective operating point, and a temperature measuring unit 28 for detecting the temperature of the solar generator , an operating point actuator 30, a system decoupling unit 32, a solar generator simulator 34, a data processing and storage unit 36 and a communication unit 38.
  • the respective solar generator 14 or the GCU 16 is separated from the entire system by means of the system coupling unit 32 and the solar generator simulator 34 activated, its energy source such It is controlled / regulated that the current and the voltage correspond exactly to the values of the solar generator before the start of the measuring cycle and subsequent system coupling, which ensures that the higher-level control loop is not disturbed. More specifically, during the measurement cycle, the generator and the GCU are completely separated from the associated string 12 and replaced by an energy source, the energy level of which corresponds to the value of the solar generator before the start of the measurement cycle and subsequent system coupling.
  • the MPP determination is ideally not carried out in a very fast cycle initially for all of the existing or interconnected solar generators, but only for one or performed on individual solar generators.
  • the variance of the generators among one another is carried out at a certain point in time in a much slower cycle by MPP determination for all interconnected or existing solar generators.
  • the result of the MPP determination is also used to control the central energy converter or to control an energy bypass. This eliminates the need for superordinate MPP tracking, which always affects all connected generators and thus also causes MPP tracking losses for all connected generators.
  • the solar generator simulator can also be self-controlled / regulated.
  • the measured voltage is the open circuit voltage.
  • the characteristic curve of the solar generator 14 is scanned by measuring the respective voltage Us and the current Is.
  • the product of current and voltage is the performance of the solar generator.
  • MPP power the MPP current and the MPP power are measured.
  • the operating point actuator 30 is deactivated and the solar generator is integrated into the higher-level system (string 12) again by deactivating the system coupling unit 32, and the current Us and the voltage Is of the solar generator 14 are measured.
  • the product is the current output of the solar generator 14.
  • U H denotes the energy main path voltage and l H denotes the energy main path current.
  • the temperature is recorded by a sensor on the solar generator and processed by the GCU 16.
  • the measurement data, characteristic data and calculated values are stored in the data processing and storage unit 36.
  • the data processing and storage unit 36 controls, as shown schematically in FIG. 5 by arrows, the operating point actuator 30 which System coupling unit 32, the solar generator simulator 34 and also the communication unit 38, which is connected via a data bus 40 to a local management unit LMU 42, which cyclically collects the measured values, the calculated values and the characteristic data of all solar generators in the system and more can control the energy converter 20 via a further data bus 44.
  • the LMU 42 is connected via a further data bus 46 in the present embodiment to a global data network 48 (eg dial-up, Internet).
  • the LMU 42 determines the current state of each individual GCU 16.
  • a global processing unit GMU can also draw conclusions about the overall system quality based on the detailed measurement data and characteristic data of the individual GCUs. Furthermore, economically optimized decisions can be made automatically.
  • the circuit arrangement according to FIGS. 6 and 7 differs from the circuit arrangement described above essentially only in that instead of the data bus 40 for transmitting data between the communication device 38 and the LMU 42, a modulation / connected to the communication unit 38a via a data line 58a Demodulation unit (data coupler / decoupler) 60a is provided, which modulates the data to be transmitted onto the main energy line or main energy path 1 8a, which in turn demodulates the LMU 42a via a corresponding data coupler / decoupler, not shown, and corresponding to FIG. 4 are transmitted to a data network 48a or an energy converter 20a.
  • a modulation / connected to the communication unit 38a via a data line 58a Demodulation unit (data coupler / decoupler) 60a is provided, which modulates the data to be transmitted onto the main energy line or main energy path 1 8a, which in turn demodulates the LMU 42a via a corresponding data coupler / decoupler, not shown, and corresponding to FIG.
  • the two circuit arrangements described above make it possible to measure the module parameters of the individual solar generators of a photovoltaic system cyclically, without this causing a disturbance to the higher-level control / regulating circuit and thereby becoming essential
  • Performance is lost at the current operating point and is a measure of the quality of the overall system. You rch corresponding
  • each solar generator 14b is assigned not only a diagnostic device but also a variable energy bypass, which is controlled in this way / is regulated that each solar generator 14b is operated continuously in its current, specific MPP.
  • the energy bypass for system optimization of photovoltaic systems can be used both at the line, module or string level with all possible connection variants, the photovoltaic elements and corresponding connections generally being referred to below as solar generators.
  • FIG. 9 illustrates a detailed view of a solar generator 14b with an energy bypass 68b.
  • the energy bypass 68b essentially consists of a control / regulatable bypass element 70b in the form of a control / regulatable DC / DC converter which connects to the output of the solar generator simulator 34b via two lines 72b and is connected via further lines 73b to an energy bypass path 74b via which the bypasses of a string 12b, as can be seen in FIG. 8, are connected in series, the energy bypass paths of a plurality of strings 12b arranged in parallel being connected in parallel.
  • solar generators connected in series to form a string are a system of the same currents, the current through each connected in series
  • Solar generator is the same size. This causes the current in the system largely determined by the solar generator with the lowest MPP current. With solar generators whose MPP current is higher than the MPP current of the weakest module, the bypass circuit branches off the corresponding differential current and feeds the corresponding energy into a separate energy bypass path 74b after potential isolation and possible transformation. The energy fed into the energy bypass path 74b is additionally made available to the overall system in accordance with the respective application. This increases the efficiency of the overall system accordingly.
  • the bypass circuit or the energy bypass 68b is electrically isolated.
  • the output of the respective bypass circuit can be connected independently of the corresponding voltage level of the respective solar generator and thus independently of the connection of the solar generators 14b themselves.
  • the energy bypass 68b in the case of series-connected solar generators 14b is arranged parallel to the respective solar generators 14b.
  • the bypass energy is fed back directly to the main energy path 18b, which requires a corresponding control / regulation of the voltage and currents in the energy bypass path 74b.
  • the voltage of the energy bypass is set, for example, by central control / regulation of the voltage or by the controllable / adjustable bypass element itself such that the voltage level of the serially connected energy bypasses (outputs of the Energy bypass elements) corresponds to the voltage of the main energy path 1 8b.
  • bypass current and the bypass voltage can either be controlled centrally by evaluating all the measurement data of the individual solar generators, or can be carried out partly independently by the controllable / adjustable bypass element itself.
  • the voltage level is set by a central control / regulation of the voltage and the current or by the controllable / adjustable bypass element itself so that the sum of the voltages of all energy bypasses connected in series corresponds to this Main energy path level 1 corresponds to 8b.
  • FIG. 10 differs from that of FIG. 8 essentially in that in FIG. 10 the energy bypass paths 74c are not returned to the main energy path 1 8c but by means of a second energy converter (eg inverter) 80c is connected to a central energy network (for example AC voltage network, DC voltage network) 22c and supplies the bypass energy to it.
  • a second energy converter eg inverter
  • 80c is connected to a central energy network (for example AC voltage network, DC voltage network) 22c and supplies the bypass energy to it.
  • the circuit arrangement according to FIG. 11 is essentially based on the circuit arrangement according to FIG. 8 described above, but with the difference that instead of the serial connection of the energy bypasses described in FIG. 8, this now takes place in parallel.
  • energy bypasses connected in parallel are in themselves a system of the same voltage, which makes it necessary for the power equivalent to be processed by the bypass circuit to be transformed to a uniform voltage got to.
  • the power equivalent is controlled accordingly by varying the current strength.
  • the bypass current and the bypass voltage can either be controlled centrally by evaluating all the measurement data of the individual solar generators, or can be carried out partly independently by the controllable / adjustable bypass element itself. This means that with energy bypasses connected in parallel, the voltage level of the energy bypass path 74d is set to the level of the main energy path 18d by a central control / regulation of the voltage or by the controllable bypass element itself.
  • a functional principle or a method for controlling a photovoltaic system is described below with reference to FIG. 11.
  • the solar generators 14d are connected in series to form strings 1 2d.
  • the bypass energy is reactivated by connecting the bypass lines 74d in parallel in the system directly to the main energy path 18d and made available to the inverter 20d.
  • the inverter 20d connected to the string 1 2d is set to the point of maximum string power MPP string.
  • Each solar generator 14d connected in the string 1 2d has its own U-I characteristic due to its nature or due to external influences.
  • each solar module has its own MPP (maximum power point).
  • the performance in the MPP is calculated as follows.
  • the bypass current l B (l bypass 0ut (x) ) of each individual solar module 14d is set to the difference between the MPP current of the corresponding module and the l MPP (mi ⁇ ) .
  • the DC / DC converter (the bypass element) is controlled / regulated so that the current I BS (I BypasS i N (X) ) at the input of the DC / DC converter 70d corresponds exactly to the current I BypassM .
  • a given current I B which corresponds to the power equivalent on the primary side, is thus fed into the main energy path 18d at a given string voltage.
  • the voltage U B at the output of the DC / DC converter corresponds to the string voltage due to the direct coupling to the string (main energy path 18d).
  • the current I B (I bypass 0ut M) at the output of the DC / DC converter 70d (energy bypass) results from the corresponding power to be transmitted.
  • bypass currents l bypassout of the respective solar generators add up.
  • the circuit arrangement shown in FIG. 12 differs from the circuit arrangement shown in FIG. 9 only in that the communication unit 38e does not feed the data to be communicated in accordance with the embodiment of FIG. 7 to the LMU, for example, through its own data bus, but rather the data to be transmitted modulated onto the main energy path 18e by means of a data coupler / decoupler or a modulation / demodulation unit 60e.
  • FIG. 13 differs from that of FIG. 11 only in that in this embodiment the bypass energy is not supplied to the main energy path 18f, but is connected to the energy network 22f via a separate energy converter or inverter 80f according to FIG. 10.
  • the circuit arrangement of FIGS. 14 and 15 differs from the circuit arrangements described above essentially in that the solar generators 14g are connected in parallel in this embodiment, that is to say it is basically a system of the same voltage.
  • the voltage on each of the solar generators connected in parallel is the same. Since the MPP voltages of the individual solar generators differ, optimal operation is only possible by adjusting the voltage. The voltage in the system is largely determined by the solar generator with the lowest MPP voltage.
  • the corresponding differential voltage is built up in series with the respective solar generator in the case of the solar generators 14g, whose MPP voltage is higher than the MPP voltage of the weakest solar generator the corresponding energy after potential isolation of any transformation is fed into its own energy bypass path 74g and - as shown in FIG. 14 only by way of example using three solar generators 14g of two strings 1 2g - independently of the main energy path 1 8g in accordance with, for example, the figure described above. 13 fed into the energy network 22g by means of a separate energy converter 80g.
  • the overall representation of the circuit arrangement shown in FIG. 1 6 is essentially based on the photovoltaic system described in FIG. 1 3, of which, however, several are connected to a solar power plant 90 h in FIG. 1 6.
  • the system comprises groups of interconnected solar generators 1 4h with GCUs (including the diagnostic and / or bypass circuits not shown therein), which are connected via main energy paths 1 8 h and energy bypass paths 74h are connected to respective energy converters 20h and 80h for feeding into a central energy network 22h, a data bus 40h, which connect the individual solar generators 14h to an LMU 42h, and a further data bus 44h, which connects the LMU 42h with the individual ones Energy converters 20f and 80h connects.
  • further solar power plants 92h are shown schematically, which are constructed in accordance with the solar power plant 90h.
  • the LMU 42h is connected to a global network 48h, which in the embodiment shown is connected via a global management unit (GMU) 94h to a further global network 96h, which in turn is associated with individual users 96h or system operators or a group of users or System operators 98h is connected.
  • GMU global management unit
  • the users 96h or system operators or the group of users or system operators are directly connected to the global network 48h.
  • the data of all solar generators 14h are cyclically transmitted to the local processing or management unit (LMU) via the common data bus 40h.
  • LMU local processing or management unit
  • the cables for energy transmission can also be used as a data bus.
  • GMU global processing and management unit
  • the data is backed up centrally and evaluated across systems.
  • the data is transmitted cyclically via data transmission or direct connection.
  • the state of the corresponding solar generators or the causes of errors can be determined by appropriate algorithms or a local expert system.
  • photovoltaic elements which are generally referred to as solar generators or generators Include solar cells, solar cell groups (parallel or series-connected solar cells), a solar cell module with several parallel or series-connected solar cell groups, series-connected modules or module groups, parallel-connected string groups, etc.

Abstract

The invention relates to a circuit arrangement for controlling/regulating photovoltaic systems (10b) which comprise a plurality of solar generators (14b) which are serially connected or/and connected in parallel. In order to reduce power loss of solar generators which is based on the fact that not all solar generators are operated in the MPP thereof, each solar generator is associated with a variable energy-bypass (68b) which is controlled/ regulated in such a manner that each solar generator (14b) is operated in a continuous manner with the current, specific MPP thereof.

Description

Schaltungsanordnung für eine PhotovoltaikanlageCircuit arrangement for a photovoltaic system
Beschreibungdescription
Die Erfindung betrifft eine Schaltungsanordnung zur Steuerung/Regelung von Photovoltaikanlagen, welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren umfassen.The invention relates to a circuit arrangement for controlling / regulating photovoltaic systems, which comprise a large number of solar generators connected in series and / or in parallel.
Es ist allgemein bekannt, dass aus photovoltaischen Solargeneratoren die maximale Leistung nur entnommen werden kann, wenn der Generator in einem bestimmten Arbeitspunkt, den Maximum Power Point - nachfolgend als MPP bezeichnet - betrieben wird. Der MPP hängt bei jedem Generator sowohl von den jeweiligen äußeren Betriebsbedingungen, insbesondere der aktuellen Bestrahlungsstärke und der Temperatur als auch dem Zustand des Generators selbst, insbesondere bedingt durch Fertigungstoleranzen, Alter, Defekte, Verunreinigungen usw. ab. Aus diesen Gründen weist jeder Generator zu einem bestimmten Zeitpunkt t einen spezifischen MPP-Strom lMPP bzw. eine spezifische MPP-Spannung UMPP auf.It is generally known that the maximum power can only be drawn from photovoltaic solar generators if the generator is operated at a specific operating point, the maximum power point - hereinafter referred to as MPP. The MPP for each generator depends both on the respective external operating conditions, in particular the current irradiance and the temperature, and on the condition of the generator itself, in particular due to manufacturing tolerances, age, defects, contamination, etc. For these reasons, each generator has a specific MPP current I MPP or a specific MPP voltage U MPP at a specific time t.
Es ist des weiteren allgemein bekannt, dass bei Photovoltaikanlagen zum Erreichen bestimmter Ausgangsspannungen Solargeneratoren zu so genannten Strings seriell verschaltet werden. Je nach gewünschter Ausgangsleistung wird eine entsprechende Anzahl von Strings parallel geschaltet. Die serielle Verschaltung bedingt, dass der Strom durch alle Solargeneratoren eines Strings gleich groß ist. Unterschiede in den MPP- Strömen der einzelnen Solargeneratoren eines Strings führen jedoch zu Leistungsverlusten der Photovoltaikanlage, da nicht jeder Solargenerator in seinem optimalen Arbeitsbereich betrieben werden kann.Furthermore, it is generally known that solar generators are connected in series to form so-called strings in photovoltaic systems in order to achieve certain output voltages. Depending on the desired output power, a corresponding number of strings are connected in parallel. The serial connection means that the current through all solar generators of a string is the same. Differences in the MPP currents of the individual solar generators in a string, however, lead to a loss of power in the photovoltaic system, since not every solar generator can be operated in its optimal working range.
Aufgabe der Erfindung ist es, Leistungsverluste seriell oder/und parallel verschalteter Solargeneratoren zu verringern. Gemäß der vorliegenden Erfindung wird diese Aufgabe gelöst durch eine Schaltungsanordnung zur Steuerung/Regelung von Photovoltaikanlagen, welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren umfassen, wobei jedem Solargenerator ein variabler Energie-Bypass zugeordnet ist, welcher derart gesteuert/geregelt wird, dass jeder Solargenerator kontinuierlich in seinem jeweils aktuellen, spezifischen MPP betrieben wird.The object of the invention is to reduce power losses in series and / or parallel connected solar generators. According to the present invention, this object is achieved by a circuit arrangement for controlling / regulating photovoltaic systems, which comprise a large number of series-connected and / or parallel-connected solar generators, each solar generator being assigned a variable energy bypass, which is controlled / regulated in such a way that each Solar generator is operated continuously in its current, specific MPP.
Dies geschieht beispielsweise bei in Serie zu einem String zusammengeschalteten Solargeneratoren im Wesentlichen dadurch, dass jeder Solargenerator eines Strings über einen variablen Strom-Bypass verfügt, welcher derart gesteuert/geregelt wird, dass der Strom im String gerade so groß ist wie der niedrigste MPP-Strom aller einzelnen Solargeneratoren des Strings. Der Differenzstrom zwischen dem aktuellen String-Strom und dem jeweiligen aktuellen Solargenerator MPP-Strom wird über den Strom-Bypass geleitet. Der Summenstrom durch den Solargenerator entspricht damit zu jedem Zeitpunkt genau seinem MPP- Strom, wodurch der optimale Betrieb des Solargenerators gewährleistet ist. Die für jeden Generator unterschiedliche Regelgröße für den Strom-Bypass wird aus dem Vergleich des eigenen MPP mit dem MPP der anderen Solargeneratoren eines Strings ermittelt. Dieser Vergleich kann sowohl in einer Solargenerator- als auch einer String-Steuer/Regeleinheit stattfinden, welche über ein Datenbus mit den Steuer/Regeleinheiten der einzelnen Solargeneratoren kommuniziert. Die Ermittlung des jeweiligen MPPs der einzelnen Generatoren kann durch die Kennlinienmessung der Generatoren nach bewährten Verfahren (elektronisch oder kapazitiv veränderliche Belastung) einfach durchgeführt werden. Der über den Bypass am String- Strom vorbeigeleitete Strom wird dem System wieder in geeigneter Weise zur Verfügung gestellt, z. B. über einen Wechselrichter zur Einspeisung der Energie in das Netz. Dieses Bypass-Prinzip ist auch bei parallel geschalteten Solargeneratoren anwendbar, wobei dann die Schaltungsanordnung nicht den Strom sondern die Spannung des jeweiligen Solargenerators an die Spannung des Gesamtsystems anpasst.This happens, for example, in the case of solar generators connected in series to form a string essentially by the fact that each solar generator of a string has a variable current bypass, which is controlled / regulated in such a way that the current in the string is just as large as the lowest MPP current all individual string solar generators. The differential current between the current string current and the respective current solar generator MPP current is conducted via the current bypass. The total current through the solar generator thus corresponds exactly to its MPP current at all times, which ensures optimal operation of the solar generator. The control variable for the current bypass, which is different for each generator, is determined by comparing its own MPP with the MPP of the other solar generators in a string. This comparison can take place in both a solar generator and a string control unit, which communicates with the control units of the individual solar generators via a data bus. The determination of the respective MPP of the individual generators can easily be carried out by measuring the characteristic curve of the generators in accordance with proven methods (electronically or capacitively variable load). The current bypassed by the string current is again made available to the system in a suitable manner, e.g. B. via an inverter to feed the energy into the grid. This bypass principle can also be used in parallel connected solar generators, in which case the circuit arrangement does not adapt the current but the voltage of the respective solar generator to the voltage of the overall system.
Um den Anforderungen seriell oder/und parallel verschalteter Solargeneratoren zu genügen, kann dabei vorgesehen sein, dass der Energie-Bypass ström- oder spannungsgesteuert/geregelt ist.In order to meet the requirements of series and / or parallel connected solar generators, it can be provided that the energy bypass is flow or voltage controlled / regulated.
Weiterhin kann vorgesehen sein, dass der Energie-Bypass einen galvanisch trennenden Steuer/regelbaren Energiewandler (beispielsweise in Form eines steuer/regelbaren DC/DC-Wandlers, einer steüer/regelbaren Strom- oder Spannungsquelle, eines Strom- oder Spannungsstellers (nachfolgend auch als Bypass-Element bezeichnet)) enthält. Dadurch kann der Ausgang der jeweiligen Bypass-Schaltung unabhängig vom entsprechenden Spannungsniveau des jeweiligen Solargenerators und somit unabhängig von der Verschaltung der Solargeneratoren selbst verschaltet werden.Furthermore, it can be provided that the energy bypass is a galvanically isolating control / controllable energy converter (for example in the form of a controllable / controllable DC / DC converter, a controllable / controllable current or voltage source, a current or voltage regulator (hereinafter also referred to as a bypass -Element referred to)) contains. As a result, the output of the respective bypass circuit can be connected independently of the corresponding voltage level of the respective solar generator and thus independently of the connection of the solar generators themselves.
Weiterhin kann vorgesehen sein, dass der Solargenerator einer Vielzahl seriell verschalteter Solargeneratoren, welcher jeweils den aktuell niedrigsten MPP-Strom in der Serie hat, die Steuer/Regelgröße für den Energie-Bypass der anderen Solargeneratoren in der Serie vorgibt. Der Grund hierfür ist, wie bereits angesprochen, dass es sich bei zu einem String seriell verschalteten Solargeneratoren um ein System gleicher Ströme handelt. Der Strom durch jeden in Serie verschalteten Solargenerator ist dabei gleich groß. Der Strom im System wird dadurch bedingt maßgeblich von dem Solargenerator mit dem geringsten MPP- Strom bestimmt. Durch die Bypass-Schaltung wird bei Solargeneratoren, deren MPP-Strom höher ist als der MPP-Strom des schwächsten Moduls, der entsprechende Differenzstrom abgezweigt und die entsprechende Energie nach Potentialtrennung und eventueller Transformation in einen eigenen Bypass-Energieweg bzw. -kreis eingespeist. Bei parallel verschalteten Solargeneratoren handelt es sich hingegen um ein System gleicher Spannung. Die Spannung ist dabei an jedem der parallel geschalteten Solargeneratoren gleich groß. Da die MPP-Spannungen der einzelnen Solargeneratoren jedoch abweichen, ist ein optimaler Betrieb nur durch Angleichung der Spannung möglich. Die Spannung im System wird demnach maßgeblich von dem Solargenerator mit der geringsten MPP- Spannung bestimmt. Daher kann vorgesehen sein, dass der Solargenerator einer Vielzahl parallel verschalteter Solargeneratoren, welcher jeweils die aktuell niedrigste MPP-Spannung im System hat, die Steuer/Regelgröße für den Energie-Bypass der anderen Solargeneratoren im System vorgibt. Durch die Bypass-Schaltung wird somit bei den Solargeneratoren, deren MPP-Spannung höher als die MPP-Spannung des schwächsten Solargenerators ist, die entsprechende Differenzspannung in Serie zum jeweiligen Solargenerator aufgebaut und die entsprechende Energie nach Potentialtrennung und eventueller Transformation in einen eigenen Bypass- Energieweg bzw. -kreis eingespeist.Furthermore, it can be provided that the solar generator of a plurality of series-connected solar generators, which in each case has the currently lowest MPP current in the series, specifies the control variable for the energy bypass of the other solar generators in the series. The reason for this, as already mentioned, is that solar generators connected in series to form a string are a system of the same currents. The current through each solar generator connected in series is the same. The current in the system is largely determined by the solar generator with the lowest MPP current. The bypass circuit for solar generators, whose MPP current is higher than the MPP current of the weakest module, branches off the corresponding differential current and feeds the corresponding energy into a separate bypass energy path or circuit after potential isolation and possible transformation. In contrast, parallel connected solar generators are a system of the same voltage. The voltage is the same on each of the parallel connected solar generators. However, since the MPP voltages of the individual solar generators differ, optimal operation is only possible by adjusting the voltage. The voltage in the system is therefore largely determined by the solar generator with the lowest MPP voltage. It can therefore be provided that the solar generator of a plurality of solar generators connected in parallel, which in each case has the currently lowest MPP voltage in the system, specifies the control variable for the energy bypass of the other solar generators in the system. The bypass circuit thus builds the corresponding differential voltage in series with the respective solar generator for the solar generators, whose MPP voltage is higher than the MPP voltage of the weakest solar generator, and the corresponding energy after potential isolation and any transformation into a separate bypass energy path or circuit fed.
Weiterhin kann vorgesehen sein, dass wenigstens ein Energie-Hauptweg vorgesehen ist, über den die einzelnen Solargeneratoren seriell oder/und parallel zusammengeschaltet sind. Denkbar sind dabei beispielsweise seriell zu einem Modul verschaltete Solarzellen, parallel verschaltete Solarzellengruppen, seriell zu einem String verschaltete Module, seriell verschaltete Modulgruppen, parallel verschaltete Module oder auch parallel verschaltete Strings.Furthermore, it can be provided that at least one main energy path is provided, via which the individual solar generators are connected in series and / or in parallel. Conceivable are, for example, solar cells connected in series to a module, solar cell groups connected in parallel, modules connected in series to a string, module groups connected in series, modules connected in parallel or even strings connected in parallel.
Um eine Zusammenfassung der einzelnen Energie-Bypässe zu ermöglichen, kann vorgesehen sein, dass wenigstens ein Energie-Bypassweg vorgesehen ist, über den die Energie-Bypässe seriell oder/und parallel verschaltet sind, wobei bei seriell verschalteten Solargeneratoren die Bypass-Schaltung parallel zu den jeweiligen Solargeneratoren anzuordnen ist und bei parallel verschalteten Solargeneratoren die Bypass-Schaltung seriell zu den einzelnen Solargeneratoren anzuordnen ist. Parallel geschaltete Energie-Bypasselemente sind dabei für sich betrachtet ein System gleicher Spannung. Das durch die Bypass-Schaltung zu verarbeitende Leistungsäquivalent muss auf eine einheitliche Spannung transformiert werden. Das Leistungsäquivalent wird durch Variation der Stromstärke entsprechend gesteuert/geregelt. Die Steuerung des Bypass- Stroms und der Bypass-Spannung kann entweder zentral durch Auswertung aller Messdaten der einzelnen Soiargeneratoren erfolgen oder teilweise autark durch das Steuer/regelbare Bypass-Element selbst.In order to enable a summary of the individual energy bypasses, it can be provided that at least one energy bypass path is provided, via which the energy bypasses are connected in series and / or in parallel, the bypass circuit being connected in parallel with the in the case of series-connected solar generators The respective solar generators are to be arranged and, in the case of solar generators connected in parallel, the bypass circuit is to be arranged in series with the individual solar generators. When viewed in parallel, energy bypass elements are a system of the same voltage. The power equivalent to be processed by the bypass circuit must be transformed to a uniform voltage. The power equivalent is controlled / regulated accordingly by varying the current strength. The bypass current and the bypass voltage can either be controlled centrally by evaluating all measurement data of the individual soiar generators or partially autonomously by the control / controllable bypass element itself.
Im Gegensatz hierzu sind seriell verschaltete Bypass-Elemente für sich betrachtet ein System gleicher Ströme. Das durch die Bypass-Schaltung zu verarbeitende Leistungsäquivalent muss auf ein einheitliches Stromniveau transformiert werden. Das Leistungsäquivalent wird durch Variation der Spannung entsprechend gesteuert. Die Steuerung des Bypass-Stroms und der Bypass-Spannung kann entweder zentral durch Auswertung aller Messdaten der einzelnen Solargeneratoren erfolgen oder teilweise autark durch das Steuer/regelbare Bypass-Element selbst.In contrast, bypass elements connected in series are a system of equal currents when viewed in isolation. The power equivalent to be processed by the bypass circuit must be transformed to a uniform current level. The power equivalent is controlled accordingly by varying the voltage. The bypass current and the bypass voltage can either be controlled centrally by evaluating all measurement data of the individual solar generators, or partially autonomously by the control / controllable bypass element itself.
Um eine Nutzung der Bypass-Energie zu ermöglichen, kann weiterhin vorgesehen sein, dass der Energie-Bypassweg mit dem Energie-Hauptweg verbunden ist, d. h. dass durch eine entsprechende Steuerung/Regelung der Spannungen und Ströme im Energie-Bypassweg die Bypass-Energie dem Energie-Hauptweg wieder direkt zugeführt werden kann. Bei parallel geschalteten Bypässen wird beispielsweise durch eine zentrale Steuerung/Regelung der Spannung bzw. durch das steuer/regelbare Bypass-Element (z.B. Steuer/regelbaren DC/DC-Wandler) selbst das Spannungsniveau der Bypass-Elemente auf das Niveau des Energie- Hauptwegs eingestellt wohingegen bei seriell verschalteten Bypass- Elementen die Spannung der Bypässe beispielsweise durch eine zentrale Steuerung/Regelung der Spannung bzw. durch das steuer/regelbare Bypass-Element selbst derart eingestellt wird, dass bei einheitlichem Strom der seriell verschalteten Bypass-Elemente bzw- Bypässe die Summe der Spannungen der seriell verschalteten Bypass-Elemte bzw. Bypässe der Spannung des Energie-Hauptwegs entspricht.In order to enable the use of the bypass energy, it can further be provided that the energy bypass path is connected to the main energy path, ie that the bypass energy is supplied to the energy by a corresponding control / regulation of the voltages and currents in the energy bypass path -Main route can be fed directly again. In the case of bypasses connected in parallel, for example, the voltage level of the bypass elements is set to the level of the main energy path by means of a central control / regulation of the voltage or by means of the controllable / adjustable bypass element (for example control / controllable DC / DC converter) whereas in the case of bypass elements connected in series, the voltage of the bypasses is set, for example, by a central control / regulation of the voltage or by the controllable / adjustable bypass element itself such that the sum of the bypass elements or bypasses connected in series is uniform the The voltages of the series-connected bypass elements or bypasses correspond to the voltage of the main energy route.
Weiterhin kann vorgesehen sein, dass der Energie-Hauptweg oder/und der Energie-Bypassweg mit einem Energie-Netz oder einem Batterie-System verbunden ist, was beispielsweise dadurch erreicht werden kann, dass bei Netz-gekoppelten Anlagen dem Energie-Hauptweg oder/und dem Energie- Bypassweg ein Energiewandler zugeordnet ist oder bei einem Batteriesystem dem Energie-Hauptweg oder/und dem Energie-Bypassweg jeweilige Laderegler und Akkus zugeordnet sind.Furthermore, it can be provided that the main energy path and / or the energy bypass path is connected to an energy network or a battery system, which can be achieved, for example, by connecting the main energy path or / and to network-connected systems an energy converter is assigned to the energy bypass path or, in the case of a battery system, respective charge controllers and rechargeable batteries are assigned to the main energy path and / or the energy bypass path.
Die Erfindung betrifft weiterhin eine Schaltungsanordnung zur Steuerung/Regelung von Photovoltaikanlagen, welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren umfassen, die dadurch gekennzeichnet ist, dass jedem Solargenerator oder einem Teil der Solargeneratoren eine Diagnoseeinrichtung zugeordnet ist, welche während des Betriebs des Solargenerators wiederholt dessen Betriebsparameter und/oder Kenndaten erfasst und eine MPP-Ermittlung des Solargenerators durchführt und dass der Diagnoseeinrichtung eine Systementkopplungs- einrichtung zugeordnet ist, welche den Solargenerator während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten vom Energie- Hauptweg trennt.The invention further relates to a circuit arrangement for the control / regulation of photovoltaic systems, which comprise a plurality of series and / or parallel connected solar generators, which is characterized in that each solar generator or a part of the solar generators is assigned a diagnostic device which repeats during the operation of the solar generator whose operating parameters and / or characteristic data are recorded and an MPP determination of the solar generator is carried out and that the diagnostic device is assigned a system coupling device which separates the solar generator from the main energy path during the duration of the recording of the operating parameters and / or characteristic data.
Die Diagnoseeinheit kann auch zur Ermittlung des jeweiligen Solargenerators verwendet werden, bzw. eigenständig den MPP des jeweiligen Solargenerators ermitteln.The diagnostic unit can also be used to determine the respective solar generator, or independently determine the MPP of the respective solar generator.
Die Grundidee der Komponenten- und Systemdiagnose von Photovoltaikanlagen basiert auf der Messung bzw. Berechnung der wichtigsten Parameter und Kenndaten (Temperatur, Leerlaufspannung, Kurzschlussstrom, Strom-Spannungskennlinie, MPP) allerSolargeneratoren, die in einem Kreis verschaltet sind, im laufenden Betrieb. Da jedoch beispielsweise bei seriell verschalteten Solargeneratoren, d. h. zu einem String verschalteten Solargeneratoren, der Strom durch jeden in Serie verschalteten Solargenerator gleich groß ist und der Strom im System maßgeblich von dem Modul mit dem geringsten MPP-Strom bestimmt wird, würde die Berechnung der wichtigsten Parameter und Kenndaten im laufenden Betrieb infolge einer hierfür notwendigen Verstellung des optimalen Arbeitspunkt und damit des MPPs zu zusätzlichen Leistungsverlusten durch eine Störung des übergeordneten MPP-Trackings in einem Energiewandler des Energie-Hauptwegs führen, was jedoch durch die Trennung des Solargenerators während der Datenerfassung der Betriebsparameter und/oder Kenndaten vom Energie-Hauptweg weitgehend verhindert wird.The basic idea of component and system diagnosis of photovoltaic systems is based on the measurement or calculation of the most important parameters and characteristic data (temperature, open circuit voltage, short-circuit current, current-voltage characteristic, MPP) of all solar generators that are connected in a circuit during operation. However, since For example, in the case of series-connected solar generators, ie solar generators connected in a string, the current through each series-connected solar generator is of the same size and the current in the system is largely determined by the module with the lowest MPP current, the most important parameters and characteristics would be calculated during operation as a result of a necessary adjustment of the optimal working point and thus of the MPP to additional power losses due to a disturbance of the higher-level MPP tracking in an energy converter of the main energy path, which however results from the separation of the solar generator during data acquisition of the operating parameters and / or Characteristic data from the main energy route is largely prevented.
Gemäß einer bevorzugten Ausführungsform kann dabei vorgesehen sein, dass der Diagnoseeinrichtung ein Solargenerator-Simulator zugeordnet ist, welcher den Solargenerator während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten hinsichtlich seiner Energieabgabe ersetzt. Das heißt, dass während des Betriebs der Photovoltaikanlage die Kenndaten eines Solargenerators erfasst werden können, ohne den Energiefluss zu unterbrechen und ohne das übergeordnete Steuer/Regel- System zu stören. Dies geschieht dadurch, dass der Solargenerator während der Dauer der Messung durch die Systementkopplungseinheit vom System getrennt und gleichzeitig der Solargenerator-Simulator, der eine Energiequelle enthält, aktiviert wird und während der Dauer der Messung den Solargenerator vertritt. Der Solargenerator-Simulator bzw. die Energiequelle wird dabei so gesteuert/geregelt, dass der Strom und die Spannung exakt dem Wert des Solargenerators vor Beginn des Messzyklus und der nachfolgenden Systementkopplung entspricht. Hierdurch wird gewährleistet, dass der übergeordnete Steuer/Regelkreis nicht gestört wird . D.h. damit das übergeordnete System und damit insbesondere das MPP- Tracking des System-Wechselrichters während der Messung nicht gestört wird, wird der Generator für die Dauer der Messung vom System (String) entkoppelt. Der Stromfluss im String wird dabei durch den Solargenerator- Simulator sichergestellt.According to a preferred embodiment, it can be provided that the diagnostic device is assigned a solar generator simulator, which replaces the solar generator during the duration of the acquisition of the operating parameters and / or characteristic data with regard to its energy output. This means that the characteristics of a solar generator can be recorded while the photovoltaic system is in operation, without interrupting the energy flow and without disrupting the higher-level control system. This is done by separating the solar generator from the system during the measurement by the system coupling unit and at the same time activating the solar generator simulator, which contains an energy source, and representing the solar generator during the measurement. The solar generator simulator or the energy source is controlled / regulated in such a way that the current and the voltage correspond exactly to the value of the solar generator before the start of the measuring cycle and the subsequent system coupling. This ensures that the higher-level control / control loop is not disturbed. This means that the higher-level system and in particular the MPP tracking of the system inverter are not disturbed during the measurement, the generator is switched off by the system for the duration of the measurement (string) decoupled. The current flow in the string is ensured by the solar generator simulator.
Zur Messung der Parameter einer Solarzelle kann beispielsweise vorgesehen sein, dass die Diagnoseeinrichtung eine Temperatur- oder/und Strom- oder/und Spannungsmesseinheit zur Erfassung der aktuellen Betriebsparameter des Solargenerators umfasst und dass ein Arbeitspunktsteller vorgesehen ist, welcher während der Erfassung der Betriebsparameter oder/und Kenndaten den Arbeitspunkt, d.h. die aktuelle Last des Generators einstellt und somit den aktuellen Arbeitspunkt festlegt bzw. zur Messung der Parameter den Arbeitspunkt variiert, während die resultierenden Ströme und Spannungen. gemessen werden. Zur Abbildung eines dynamischen Systemverhaltens wird dabei die Messung in einem regelmäßigen Zyklus durchgeführt, wobei durch eine entsprechende Auswertung der Messpunkte auf der Strom-Spannungskennlinie der jeweilige Modul-MPP zyklisch ermittelt wird, wobei die Ermittlung des Modul-MPPs jedoch auch durch andere bekannte Verfahren möglich ist. Das Ergebnis der Messung sind: Leerlaufstrom, Kurzschlussstrom, MPP- Strom und MPP-Spannung (errechnete MPP-Leistung), aktueller Strom und aktuelle Spannung (bei Verschaltung des Solargenerators im System (errechnete aktuelle Leistung)) und die aktuelle Temperatur.To measure the parameters of a solar cell, it can be provided, for example, that the diagnostic device comprises a temperature or / and current or / and voltage measuring unit for detecting the current operating parameters of the solar generator and that an operating point adjuster is provided, which during the detection of the operating parameters or / and Characteristic data the working point, ie sets the current load of the generator and thus determines the current working point or varies the working point to measure the parameters, while the resulting currents and voltages. be measured. To map a dynamic system behavior, the measurement is carried out in a regular cycle, the respective module MPP being determined cyclically by appropriate evaluation of the measurement points on the current-voltage characteristic curve, but the determination of the module MPP is also possible by other known methods is. The result of the measurement are: open circuit current, short-circuit current, MPP current and MPP voltage (calculated MPP power), current current and current voltage (when the solar generator is connected in the system (calculated current power)) and the current temperature.
Um eine vollständige Entkopplung des Generators für die Dauer der Messung vom System zu ermöglichen, kann weiterhin vorgesehen sein, dass die Systementkopplungseinheit den Solargenerator während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten auch vom Energie-Bypassweg trennt.In order to enable complete decoupling of the generator from the system for the duration of the measurement, it can further be provided that the system coupling unit also separates the solar generator from the energy bypass path during the duration of the acquisition of the operating parameters and / or characteristic data.
Hierbei kann vorgesehen sein, dass der Solargenerator-Simulator während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten auch den Energie-Bypassweg mit Energie versorgt, was eine sehr gleichmäßige Energieabgabe des Gesamtsystems sicherstellt. Die Erfindung betrifft weiterhin eine Schaltungsanordnung mit den die Diagnoseseinrichtung betreffenden Merkmalen, welche dadurch gekennzeichnet ist, dass jedem Solargenerator zusätzlich ein variabler Energie-Bypass zugeordnet ist.It can be provided here that the solar generator simulator also supplies the energy bypass path with energy during the duration of the acquisition of the operating parameters and / or characteristic data, which ensures a very uniform energy output of the overall system. The invention further relates to a circuit arrangement with the features relating to the diagnostic device, which is characterized in that each solar generator is additionally assigned a variable energy bypass.
Weiterhin kann vorgesehen sein, dass jedem Solargenerator oder/und einer Gruppe von Solargeneratoren eine Steuer/Regeleinrichtung zur Steuerung/Regelung des Energie-Bypass oder/und der Diagnoseeinrichtung zugeordnet ist, wobei nicht ausgeschlossen sein soll, dass die Steuer/Regeleinrichtung auch andere Komponenten der Photovoltaikanlage, beispielsweise eine Kommunikationseinrichtung usw. steuert/regelt.Furthermore, it can be provided that a control / regulating device for controlling / regulating the energy bypass or / and the diagnostic device is assigned to each solar generator or / and a group of solar generators, wherein it should not be excluded that the control / regulating device also includes other components of the Photovoltaic system, for example a communication device, etc. controls.
Überdies kann jedem Solargenerator oder/und einer Gruppe von Solargeneratoren eine Daten-Verarbeitungs- und Speichereinheitzugeordnet sein, in welcher Messdaten, die Kenndaten und die Rechenwerte verarbeitet und hinterlegt werden können.Furthermore, each solar generator and / or a group of solar generators can be assigned a data processing and storage unit in which measurement data, the characteristic data and the arithmetic values can be processed and stored.
Ferner kann vorgesehen sein, dass der Schaltungsanordnung eine Kommunikationseinrichtung zugeordnet ist, welche eine Kommunikation der Solargenerator-Betriebsparameter und -Kenndaten zu anderen Solargeneratoren oder/und Kommunikations- oder/und Steuereinrichtungen oder/und Datenverarbeitungs- und Speichereinheiten erlaubt, wobei die Kommunikation über eine separate Daten-Leitung oder -Bus oder/und den Energie-Hauptweg oder/und dem Energie-Bypassweg erfolgen kann. Erfolgt die Kommunikation beispielsweise über einen Energie-Hauptweg, geschieht dies beispielsweise dadurch, dass die zu kommunizierenden Daten mittels einer Modulations/Demodulationseinheit auf den Energie-Hauptweg aufmoduliert werden.Furthermore, it can be provided that the circuit arrangement is assigned a communication device which permits communication of the solar generator operating parameters and characteristic data to other solar generators or / and communication or / and control devices or / and data processing and storage units, the communication being carried out via a separate one Data line or bus or / and the main energy path and / or the energy bypass path can take place. If communication takes place, for example, via a main energy path, this is done, for example, by the data to be communicated being modulated onto the main energy path by means of a modulation / demodulation unit.
Die Erfindung betrifft ferner ein Verfahren zur Steuerung/Regelung von Photovoltaikanlagen, welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren umfassen, welches dadurch gekennzeichnet ist, dass zur Festlegung des System-MPPs lediglich bei einem Teil der verschalteten Solargeneratoren der MPP bestimmt wird und dass aus diesem Wert bzw. Werten der System-MPP abgeleitet wird. Hierdurch können Leistungsverluste während der MPP-Bestimmung bzw. des MPP- Trackings verringert werden, da die übrigen Solargeneratoren von der MPP- Ermittlung bzw. vom MPP-Tracking nicht betroffen sind und während der MPP-Ermittlung bzw. des MPP-Trackings in ihrem jeweiligen Arbeitspunkt verbleiben und weiterhin die entsprechende Energie bereitstellen.The invention further relates to a method for controlling / regulating photovoltaic systems which comprise a large number of series-connected and / or parallel-connected solar generators, which is characterized in that is that to determine the system MPP only the MPP is determined for some of the interconnected solar generators and that the system MPP is derived from this value or values. In this way, power losses during the MPP determination or the MPP tracking can be reduced, since the other solar generators are not affected by the MPP determination or the MPP tracking and in their respective during the MPP determination or the MPP tracking Work point remain and continue to provide the appropriate energy.
Die Möglichkeit der Zustandsüberwachung der einzelnen Solargeneratoren wird bei dem erfindungsgemäßen Verfahren durch die Datenkommunikation der Solargenerator-Steuer/Regeleinheiten untereinander bzw. mit einer übergeordneten Steuer/Regeleinheit automatisch ermöglicht. Werden mehrere Strings parallel geschaltet, kann eine weitere Steuer/Regeleinheit die Datenkommunikation der gesamten Photovoltaikanlage protokollieren und auswerten und so als Leitstelle für die Überwachung aller Anlagenkomponenten fungieren.The possibility of monitoring the status of the individual solar generators is automatically made possible in the method according to the invention by the data communication of the solar generator control units with one another or with a higher-level control unit. If several strings are connected in parallel, a further control unit can log and evaluate the data communication of the entire photovoltaic system and thus act as a control center for the monitoring of all system components.
Der mit der Erfindung erzielte Vorteil liegt gegenüber dem bisherigen Verfahren zur Steuerung/Regelung von Photovoltaikanlagen in einer höheren Leistungsausbeute, die durch den gleichzeitigen und quasikontinuierlichen Betrieb aller verschalteten Solargeneratoren in ihrem jeweiligen MPP erreicht wird (auch bei voneinander anbweichenden Kennlinien). Darüber hinaus wird durch die zeitnahe Erfassung der Betriebszustände aller Generatoren die Sicherheit, Verfügbarkeit, Zuverlässigkeit und Wartbarkeit von Photovoltaikanlagen verbessert.The advantage achieved with the invention compared to the previous method for controlling / regulating photovoltaic systems is in a higher power yield, which is achieved by the simultaneous and quasi-continuous operation of all the connected solar generators in their respective MPP (even if the characteristic curves differ from one another). In addition, the timely recording of the operating status of all generators improves the safety, availability, reliability and maintainability of photovoltaic systems.
Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Zeichnungen anhand bevorzugter Ausgestaltungsformen detailliert beschrieben. Es zeigt: Fig. 1 die Strom-Spannungskennlinien dreier beliebigerThe present invention is described in detail below with reference to the accompanying drawings on the basis of preferred embodiments. It shows: Fig. 1, the current-voltage characteristics of any three
Solargeneratoren;Solar generators;
Fig. 2 ein schematische Ansicht eines Verfahres zur Steuerung/Regelung einer Photovoltaikanlage mit variablemFig. 2 is a schematic view of a method for controlling / regulating a photovoltaic system with a variable
Strom-Bypass;Current bypass;
Fig. 3 eine schematische Ansicht einer Schaltungsanordnung zurFig. 3 is a schematic view of a circuit arrangement for
Steuerung/Regelung einer Photovoltaikanlage mit variablem Strom-Bypass in einer vorteilhaften Ausgestaltung;Control / regulation of a photovoltaic system with variable current bypass in an advantageous embodiment;
Fig. 4 eine schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings und Solargeneratoren mit Diagnoseeinheit;4 shows a schematic view of a photovoltaic system with two parallel solar generator strings and solar generators with a diagnostic unit;
Fig. 5 eine schematische Ansicht einer Diagnoseeinheit mitFig. 5 is a schematic view of a diagnostic unit
Datenbus;data bus;
Fig. 6 eine schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings und Solargeneratoren mitFig. 6 is a schematic view of a photovoltaic system with two parallel solar generator strings and solar generators with
Diagnoseeinheit gemäß einer weiteren Ausführungsform;Diagnostic unit according to a further embodiment;
Fig. 7 eine schematische Ansicht einer Diagnoseeinheit mitFig. 7 is a schematic view of a diagnostic unit
Datenkopplung;Data coupling;
Fig. 8 eine schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings, Solargeneratoren mit Bypass/Diagnoseeinheit und seriell verschaltet Energie- Bypass mit direkter Einspeisung in den Hauptenergie-Weg;8 shows a schematic view of a photovoltaic system with two parallel solar generator strings, solar generators with bypass / diagnostic unit and serially connected energy bypass with direct feed into the main energy path;
Fig . 9 eine schematische Ansicht einer Bypass/Diagnoseeinheit mitFig. 9 is a schematic view of a bypass / diagnostic unit with
Datenleitung; Fig. 10 eine schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings, Solargeneratoren mit Bypass/Diagnoseeinheit und seriell verschaltetem Energie- Bypass mit Energieeinspeisung über einen zweiten Wandler in ein Energie- Netz;Data line; 10 shows a schematic view of a photovoltaic system with two parallel solar generator strings, solar generators with bypass / diagnostic unit and serially connected energy bypass with energy feed via a second converter into an energy network;
Fig. 1 1 eine weitere schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings mitFig. 1 1 another schematic view of a photovoltaic system with two parallel solar generator strings with
Solargeneratoren mit Bypass/Diagnoseeinheit und parallel verschaltetem Energie-Bypass und direkter Einspeisung in denSolar generators with bypass / diagnostic unit and parallel connected energy bypass and direct feed into the
Energie-Hauptweg;Energy main path;
Fig. 1 2 eine schematische Ansicht einer Bypass/Diagnoseeinheit mitFig. 1 2 with a schematic view of a bypass / diagnostic unit
Datenmodulation;Data modulation;
Fig. 1 3 eine schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings, Solargeneratoren mit Bypass/Diagnoseeinheit und parallel verschaltetem Energie- Bypass mit Energieeinspeisung über einen zweiten Wandler in ein Energie- Netz;Figure 1 3 is a schematic view of a photovoltaic system with two parallel solar generator strings, solar generators with bypass / diagnostic unit and parallel connected energy bypass with energy feed via a second converter into an energy network.
Fig. 14 eine schematische Ansicht einer Photovoltaikanlage mit zwei parallelen Solargenerator-Strings, Solargeneratoren mit14 is a schematic view of a photovoltaic system with two parallel solar generator strings, with solar generators
Bypass/Diagnoseeinheit und parallel verschaltetem Energie- Bypass mit Energieeinspeisung über einen zweiten Wandler in ein Energie- Netz;Bypass / diagnostic unit and parallel connected energy bypass with energy feed via a second converter into an energy network;
Fig. 1 5 eine schematische Ansicht einer Bypass-Diagnoseeinheit für parallel geschaltete Solargeneratoren; undFigure 1 5 is a schematic view of a bypass diagnostic unit for parallel connected solar generators. and
Fig. 1 6 eine vereinfachte Gesamtsystemdarstellung. Anhand der Fig. 1 bis 3 wird vereinfacht das Prinzip einer Bypass- Steuerung/Regelung erläutert.Fig. 1 6 is a simplified overall system representation. 1 to 3, the principle of a bypass control is explained in a simplified manner.
Fig. 1 zeigt die Strom-Spannungskennlinie dreier willkürlicher Generatoren G 1 , G2 und G3 zu einem bestimmten Zeitpunkt t. In diesem Beispiel hat jeder Generator seinen spezifischen MPP mit dem dazugehörigen Strom- und Spannungswerten (lMPP1, lMPP2, lMPP3 bzw. UMPP1, UMpP2, UMPP3), wobei IMPPI kleiner als lMPP2 und kleiner als lMPP3 ist. Werden diese drei Generatoren in Serie zu einem String verschaltet und belastet, fließt ein gleich großer String-Strom durch alle drei Generatoren, so dass mindestens zwei Generatoren nicht in ihrem MPP betrieben werden können. In dem erfindungsgemäßen Verfahren (siehe Fig. 2) zum Betrieb der erfindungsgemäßen Schaltungsanordnung wird der String derart belastet, dass der String-Strom genau so groß ist wie lMPPι . Von den Generatoren G2 und G3 werden Bypass-Ströme abgezweigt, deren Größe zu diesem Zeitpunkt t jeweils die Differenz lBypass G2 = lMPP G2 - lMPP G1 bzw. lBypass G3 = ' PP G3 " 'MPP GI betragt.Fig. 1 shows the current-voltage characteristic of three arbitrary generators G 1, G2 and G3 at a certain time t. In this example, each generator has its specific MPP with the associated current and voltage values (l MPP1 , l MPP2 , l MPP3 or U MPP1 , U MpP2 , U MPP3 ), with IMPPI being less than l MPP2 and less than l MPP3 . If these three generators are connected in series to form a string and loaded, an equally large string current flows through all three generators, so that at least two generators cannot be operated in their MPP. In the method according to the invention (see FIG. 2) for operating the circuit arrangement according to the invention, the string is loaded in such a way that the string current is exactly as large as I MPP ι. Bypass currents are branched off from the generators G2 and G3, the magnitude of which at this point in time t is the difference l bypass G2 = l MPP G2 -l MPP G1 or l bypass G3 = 'PP G 3 "' MPP G I.
Fig. 2 zeigt das Verfahren der Bypass-Steuerung/Regelung und wird auf Basis der beispielhaften Strom-Spannungskennlinien aus Fig. 1 erläutert.FIG. 2 shows the method of the bypass control / regulation and is explained on the basis of the exemplary current-voltage characteristic curves from FIG. 1.
Nach (An) jedem Generator wird ein Bypass vom String abgezweigtAfter (on) each generator, a bypass is branched off the string
(Bypass G 1 - G3) . Jeder Bypass verfügt über eine eigene(Bypass G 1 - G3). Each bypass has its own
Steuer/Regeleinheit (Generator Control Unit: GCU 1 -3) . Zu einem bestimmten Zeitpunkt t ermitteln die einzelnen GCUs eines Strings die l-U- Kennlinie und damit den aktuellen MPP ihres jeweiligen Generators nach bekanntem Verfahren. Durch Kommunikation und Vergleich der aktuellenControl unit (Generator Control Unit: GCU 1 -3). At a certain point in time t, the individual GCUs of a string determine the I-U characteristic and thus the current MPP of their respective generator using a known method. By communicating and comparing the current
MPP-Ströme lMPP G bis lMPP G3 wird der niedrigste MPP-Strom ermittelt. In derMPP currents l MPP G to l MPP G3 the lowest MPP current is determined. In the
Folge berechnen die einzelnen GCUs die Differenz aus ihrem jeweiligen aktuellen MPP-Strom (lMPP G1- lMPP G3) und den niedrigsten aktuellen MPP- Strom aller Generatoren des Strings (im Beispiel IMPP GI ) und belasten den entsprechenden Bypass derart, dass genau der berechnete Differenzstrom in schaltungstechnisch üblicher Weise gezweigt wird (lBypass Gι - lByPass G3) - Das Energieäquivalent dieser Last wird dem System in geeigneter Weise (z. B. DC/AC-Wandlung zur Verfügung gestellt). Gleichzeitig fließt im String genau der zu diesem Zeitpunkt niedrigste MPP-Strom aller Generatoren des Strings. Der Summenstrom durch jeden einzelnen Generator entspricht demnach genau seinem jeweiligen MPP-Strom und die maximale Energieausbeute ist gewährleistet. Mit Abschluss dieses Prozesses beginnt das Verfahren von vorne.As a result, the individual GCUs calculate the difference between their respective current MPP current (l MPP G1 - l MPP G3 ) and the lowest current MPP current of all generators of the string (in the example I M PP GI ) and load the corresponding bypass in such a way that exactly the calculated differential current is branched in the manner customary in terms of circuitry (l bypass G ι - l ByPass G3 ) - The energy equivalent of this load is appropriately provided to the system (e.g. DC / AC conversion). At the same time, the lowest MPP current of all generators of the string flows at the time. The total current through each individual generator therefore corresponds exactly to its respective MPP current and the maximum energy yield is guaranteed. At the end of this process, the process starts all over again.
Fig. 3 zeigt die Schaltungsanordnung zur Steuerung/Regelung einer Photovoltaikanlage mit variablem Strom-Bypass in einer vorteilhaften Ausgestaltung. Zu jedem Solargenerator G eines Strings wird eine Generator-Steuer/Regeleinheit (nachfolgend als GCU bezeichnet) parallel geschaltet. Jede GCU verfügt über eine Kommunikationsschnittstelle und einen Gleichspannungsausgang für den Bypass-Strom. Die einzelnen GCUs sind über einen Datenbus miteinander verbunden. Bei größeren Photovoltaikanlagen (z.B. größer 2kWp) kann die Anbindung an eine String- Steuer/Regeleinheit SCU aus Kostengründen sinnvoll sein, um dort den redundanten Rechenaufwand zur Ermittlung des aktuellen niedrigsten MPP- Stroms nur einmal zu leisten, bei gleichzeitig schaltungstechnischer Vereinfachung der GCUs. Die Bypass-Seiten der einzelnen GCUs sind miteinander parallel verschaltet. Über einen galvanisch getrennten DC/DC- Wandler zur spannungsangepassten Energierückführung kann der Bypass wieder mit dem String an dessen Energieübergabepunkt E verbunden werden. Abhängig von der Art der Photovoltaikanlage kann der Energieübergabepunkt durch eine Last, einen Wandler oder einen Speicher charakterisiert werden.3 shows the circuit arrangement for the control / regulation of a photovoltaic system with variable current bypass in an advantageous embodiment. A generator control unit (hereinafter referred to as GCU) is connected in parallel to each solar generator G of a string. Each GCU has a communication interface and a DC voltage output for the bypass current. The individual GCUs are connected to each other via a data bus. In the case of larger photovoltaic systems (e.g. larger than 2 kWp), the connection to a string control / control unit SCU can be sensible for cost reasons, in order to perform the redundant computing effort for determining the current lowest MPP current only once, while at the same time simplifying the GCU's circuitry. The bypass sides of the individual GCUs are interconnected in parallel. The bypass can again be connected to the string at its energy transfer point E via a galvanically isolated DC / DC converter for voltage-adapted energy return. Depending on the type of photovoltaic system, the energy transfer point can be characterized by a load, a converter or a memory.
In den Fig. 4 bis 7 sind weitere Ausgestaltungsformen einer erfindungsgemäßen Schaltungsanordnung zur Steuerung/Regelung von Photovoltaikanlagen dargestellt, welche anstelle eines Energie-Bypasses eine Diagnoseeinrichtung verwendet, um Leistungsverluste bei seriell oder/und parallel verschalteten Solargeneratoren zu erkennen und durch Einleitung entsprechender Maßnahmen auch zu verringern.4 to 7 show further refinements of a circuit arrangement according to the invention for the control / regulation of photovoltaic systems, which uses a diagnostic device instead of an energy bypass in order to reduce power losses in series or / and to recognize parallel connected solar generators and to reduce them by taking appropriate measures.
Wie bekannt ist, besitzt ein Solargenerator eine von der Lichteinstrahlung und der Temperatur abhängige Strom-Spannungskennlinie und die maximale Leistung kann der Solargenerator nur an einem spezifischen Arbeitspunkt dem MPP, mit entsprechendem MPP-Strom entnommen werden. Die Kennlinien einzelner in einem System verschalteter Solarzellen können jedoch voneinander abweichen. Grund hierfür ist beispielsweise eine Abweichung der eingestrahlten Energie aufgrund der natürlichen Abweichung bezüglich der örtlichen Hellig keitsverteilung, Verschmutzungen, Verschattungen, Temperaturunterschiede durch Wärmestaus, Degradation der Zelle oder auch technische Defekte wie z. B. Haarrisse aufgrund mechanischer oderthermischer Belastung, mechanische Zerstörung durch Vandalismus oder Zerstörung durch Strahlungseffekte. Aufgrund der Abweichung der Kennlinien einzelner Zellen treten durch die serielle bzw. parallele Verschaltung der Solarzellen systembedingte Verluste auf, d. h. der Strom bzw. die Spannung im System wird maßgeblich von dem Solargenerator mit dem geringsten MPP-Strom bzw. der geringsten MPP-Spannung bestimmt. Es ist daher notwendig durch eine Systemdiagnose in mehr oder weniger kurzen Abständen die Parameter der einzelnen Solargeneratoren zu ermitteln, was durch temporäres Variieren des Arbeitspunkts und Messen der resultierten Ströme und Spannungen erfolgt. Durch entsprechende Auswertung der Messpunkte auf der Strom- Spannungskennlinie kann der jeweilige SoIargenerator-MPP ebenfalls zyklisch ermittelt werden, was jedoch auch durch andere bekannte Verfahren möglich ist.As is known, a solar generator has a current-voltage characteristic curve that is dependent on the light radiation and the temperature, and the maximum power can only be taken from the MPP with a corresponding MPP current at a specific operating point. The characteristics of individual solar cells connected in a system can, however, differ. The reason for this is, for example, a deviation of the radiated energy due to the natural deviation with respect to the local brightness distribution, contamination, shading, temperature differences due to heat build-up, cell degradation or technical defects such as e.g. B. hairline cracks due to mechanical or thermal stress, mechanical destruction by vandalism or destruction by radiation effects. Due to the deviation of the characteristic curves of individual cells, system-related losses occur due to the serial or parallel connection of the solar cells; H. the current or voltage in the system is largely determined by the solar generator with the lowest MPP current or the lowest MPP voltage. It is therefore necessary to determine the parameters of the individual solar generators by means of system diagnosis at more or less short intervals, which is done by temporarily varying the working point and measuring the resulting currents and voltages. The corresponding solar generator MPP can also be determined cyclically by appropriate evaluation of the measuring points on the current-voltage characteristic curve, but this is also possible by other known methods.
Eine hierfür geeignete Diagnoseeinheit wird im Folgenden unter Bezugnahme auf die Fig. 4 und 5 an einem Beispiel einer netzgekoppeltenA diagnostic unit suitable for this is described below with reference to FIGS. 4 and 5 using an example of a network-connected
Photovoltaikanlage 10 beschrieben. Die Photovoltaikanlage 10 umfasst zwei parallel angeordnete Strings 12, von denen jeder drei in Serie geschaltete Solargeneratoren 14 aufweist, die über eine GCU 1 6 (Generator-Steuer/Regeleinheit mit Diagnoseeinheit) mit einem Energie- Hauptweg (Leitung) 18 und über diesen mit einem Energiewandler 20, z. B. einem Wechselrichter, verbunden sind, welcher die von den Solargeneratoren erzeugte Gleichspannung in eine netzkonforme Wechselspannung umwandelt und in ein Energie-Netz 22 einspeist. Gemäß dieser Ausführungsform steuert der Wechselrichter 22 hierbei durch MPP- Tracking die Belastung der Strings 1 2 derart, dass die maximale Leistung entnommen werden kann und somit jeder String 1 2 stets im String-MPP betrieben wird (übergeordnetes Steuer/Regelsystem) .Photovoltaic system 10 described. The photovoltaic system 10 comprises two strings 12 arranged in parallel, each of which three in series Switched solar generators 14, which via a GCU 1 6 (generator control unit with diagnostic unit) with an energy main path (line) 18 and via this with an energy converter 20, for. B. an inverter, which converts the DC voltage generated by the solar generators into a grid-conforming AC voltage and feeds it into an energy network 22. According to this embodiment, the inverter 22 controls the load on the strings 1 2 by means of MPP tracking in such a way that the maximum power can be drawn and thus each string 1 2 is always operated in the string MPP (higher-level control system).
Wie man insbesondere in Fig. 5 sieht, besteht die GCU 16 im Wesentlichen aus einer Spannungsmesseinheit 24 zur Erfassung der Spannung im jeweiligen Arbeitspunkt des Solargenerators 14, einer Strommesseinheit 26 zur Erfassung des Strom im jeweiligen Arbeitspunkt, einer Temperaturmesseinheit 28 zur Erfassung der Temperatur des Solargenerators, einem Arbeitspunktsteller 30, einer System- Entkopplungseinheit 32, einem Solargenerator-Simulator 34, einer Daten- Verarbeitungs- und Speichereinheit 36 und einer Kommunikationseinheit 38.As can be seen in particular in FIG. 5, the GCU 16 essentially consists of a voltage measuring unit 24 for detecting the voltage at the respective operating point of the solar generator 14, a current measuring unit 26 for detecting the current at the respective operating point, and a temperature measuring unit 28 for detecting the temperature of the solar generator , an operating point actuator 30, a system decoupling unit 32, a solar generator simulator 34, a data processing and storage unit 36 and a communication unit 38.
Die Grundidee der Komponenten- und Systemdiagnose von Photovoltaikkraftwerken basiert auf der zyklischen Messung bzw. Berechnung der wichtigsten Parameter und Kenndaten (Temperatur, Leerlaufspannung, Kurzschlussstrom, Strom-Spannungskennlinie, MPP) aller Solargeneratoren, die in einem Kreis verschaltet sind, im laufenden Betrieb. Um jedoch nicht den Energiefluss durch einen String während der Messung bzw. der Berechnung der wichtigsten Parameter und Kenndaten zu unterbrechen oder das übergeordnete Steuer/Regelsystem zu stören, wird mittels der Systementkopplungseinheit 32 der jeweilige Solargenerator 14 bzw. die GCU 1 6 vom gesamten System getrennt und der Solargenerator-Simulator 34 aktiviert, dessen Energiequelle derart gesteuert/geregelt ist, dass der Strom und die Spannung exakt den Werten des Solargenerators vor Beginn des Messzyklus und nachfolgenden Systementkopplung entspricht, wodurch gewährleistet ist, dass der übergeordnete Regelkreis nicht gestört wird. Genauer gesagt wird während des Messzyklus der Generator und die GCU vollständig von dem zugehörigen String 12 getrennt und durch eine Energiequelle ersetzt, deren Energieniveau dem Wert des Solargenerators vor Beginn des Messzyklus und nachfolgenden Systementkopplung entspricht.The basic idea of component and system diagnosis of photovoltaic power plants is based on the cyclical measurement or calculation of the most important parameters and characteristic data (temperature, open circuit voltage, short-circuit current, current-voltage characteristic curve, MPP) of all solar generators that are connected in a circuit during operation. However, in order not to interrupt the flow of energy through a string during the measurement or calculation of the most important parameters and characteristic data or to disrupt the higher-level control system, the respective solar generator 14 or the GCU 16 is separated from the entire system by means of the system coupling unit 32 and the solar generator simulator 34 activated, its energy source such It is controlled / regulated that the current and the voltage correspond exactly to the values of the solar generator before the start of the measuring cycle and subsequent system coupling, which ensures that the higher-level control loop is not disturbed. More specifically, during the measurement cycle, the generator and the GCU are completely separated from the associated string 12 and replaced by an energy source, the energy level of which corresponds to the value of the solar generator before the start of the measurement cycle and subsequent system coupling.
Zur optimierten Kopplung des Systems bei globalen Helligkeitsveränderungen und damit Änderung des MPP und zur Reduzierung der Verluste beim der MPP-Ermittlung wird idealerweise die MPP-Bestimmung in einem sehr schnellen Zyklus zunächst nicht bei allen im System vorhandenen bzw. verschalteten Solargeneratoren, sondern nur bei einem bzw. bei einzelnen Solargeneratoren durchgeführt. Die Varianz der Generatoren untereinander wird hingegen in einem wesentlich langsameren Zyklus durch MPP-Bestimmung bei allen verschalteten bzw. im System vorhandenen Solargeneratoren zu einem bestimmten Zeitpunkt durchgeführt.To optimize the coupling of the system in the event of global changes in brightness and thus changes in the MPP and to reduce the losses when determining the MPP, the MPP determination is ideally not carried out in a very fast cycle initially for all of the existing or interconnected solar generators, but only for one or performed on individual solar generators. In contrast, the variance of the generators among one another is carried out at a certain point in time in a much slower cycle by MPP determination for all interconnected or existing solar generators.
Idealerweise wird das Ergebnis der MPP-Bestimmung auch für die Steuerung/Regelung des zentralen Energiewandlers bzw. zur Steuerung eines Energie-Bypasses, verwendet. Damit kann ein übergeordnetes MPP- Tracking entfallen, das stets auf alle verschalteten Generatoren wirkt und damit auch MPP-Tracking-Verluste bei allen verschalteten Generatoren verursacht.Ideally, the result of the MPP determination is also used to control the central energy converter or to control an energy bypass. This eliminates the need for superordinate MPP tracking, which always affects all connected generators and thus also causes MPP tracking losses for all connected generators.
Durch dieses Verfahren ist gewährleistet, dass auch ohne die Verwendung eines zusätzlichen Sensors die MPP-Tracking-Verluste auf ein Minimum reduziert werden, eine enge Kopplung an globale Helligkeitsveränderungen erreicht wird und die Varianz der Generatoren berücksichtigt wird. Der Solargenerator-Simulator kann auch selbstgesteuert/geregelt ausgeführt sein.This method ensures that even without the use of an additional sensor, the MPP tracking losses are reduced to a minimum, a close coupling to global changes in brightness is achieved and the variance of the generators is taken into account. The solar generator simulator can also be self-controlled / regulated.
Nach der Entkopplung des Solargenerators 14 und der angeschlossenen GCU 16 vom String 12 und der Aktivierung des Solarmodulsimulators 34 wird der Arbeitspunktsteller 30 auf offen (keine Last, i = 0) eingestellt und mit der Spannungsmesseinheit 24 die Spannung Us am Solargenerator 14 gemessen. Die gemessene Spannung ist die Leerlaufspannung.After the decoupling of the solar generator 14 and the connected GCU 16 from the string 12 and the activation of the solar module simulator 34, the operating point actuator 30 is set to open (no load, i = 0) and the voltage Us at the solar generator 14 is measured with the voltage measuring unit 24. The measured voltage is the open circuit voltage.
Zur Messung des Kurzschlussstroms wird der Arbeitspunktsteller 30 auf Kurzschluss (maximale Last U = 0) eingestellt und mit der Strommesseinheit 26 der Solargeneratorstrom Is gemessen.To measure the short-circuit current, the operating point controller 30 is set to short-circuit (maximum load U = 0) and the solar generator current Is is measured with the current measuring unit 26.
Durch abschnittsweise Variation des Arbeitspunkts wird die Kennlinie des Solargenerators 14 durch Messung der jeweiligen Spannung Us und des Stroms Is abgetastet. Das Produkt aus Strom und Spannung ist die Leistung des Solargenerators. Am Punkt mit der höchsten Leistung (MPP- Leistung) wird der MPP-Strom und die MPP-Leistung gemessen.By varying the operating point in sections, the characteristic curve of the solar generator 14 is scanned by measuring the respective voltage Us and the current Is. The product of current and voltage is the performance of the solar generator. At the point with the highest power (MPP power), the MPP current and the MPP power are measured.
Zur Messung der aktuellen Werte im System wird der Arbeitspunktsteller 30 deaktiviert und der Solargenerator durch eine Deaktivierung der Systementkopplungseinheit 32 wieder in das übergeordnete System (String 12) eingebunden und der Strom Us und die Spannung Is des Solargenerators 14 gemessen. Das Produkt ist die aktuelle Leistung des Solargenerators 14. UH bezeichnet die Energie-Hauptweg-Spannung und lH bezeichnet den Energie-Hauptweg-Strom.To measure the current values in the system, the operating point actuator 30 is deactivated and the solar generator is integrated into the higher-level system (string 12) again by deactivating the system coupling unit 32, and the current Us and the voltage Is of the solar generator 14 are measured. The product is the current output of the solar generator 14. U H denotes the energy main path voltage and l H denotes the energy main path current.
Die Temperatur wird durch einen Sensor am Solargenerator erfasst und von der GCU 16 verarbeitet. In der Datenverarbeitungs- und Speichereinheit 36 werden die Messdaten, Kenndaten und Rechenwerte hinterlegt. Darüber hinaus steuert/regelt die Datenverarbeitungs- und Speichereinheit 36 wie in Fig. 5 schematisch durch Pfeile dargestellt, den Arbeitspunktsteller 30, die Systementkopplungseinheit 32, den Solargenerator-Simulator 34 und darüber hinaus die Kommunikationseinheit 38, welche über einen Datenbus 40 mit einer lokalen Management-Einheit LMU 42 verbunden ist, welche zyklisch die Messwerte, die berechneten Werte und die Kenndaten aller Solargeneratoren im System sammelt und darüber hinaus über einen weitere Datenbus 44 den Energiewandler 20 steuern/regeln kann. Ferner ist die LMU 42 über einen weiteren Datenbus 46 in der vorliegenden Ausführungsform mit einem globalen Datennetz 48 (z. B. DFÜ, Internet) verbunden. Aufgrund der Kenndaten und der aktuellen Messdaten der einzelnen GCUs, sowie dem dynamischen Verhalten mit entsprechender Berücksichtigung der absoluten Zeit ermittelt die LMU 42 den aktuellen Zustand jeder einzelnen GCU 16.The temperature is recorded by a sensor on the solar generator and processed by the GCU 16. The measurement data, characteristic data and calculated values are stored in the data processing and storage unit 36. In addition, the data processing and storage unit 36 controls, as shown schematically in FIG. 5 by arrows, the operating point actuator 30 which System coupling unit 32, the solar generator simulator 34 and also the communication unit 38, which is connected via a data bus 40 to a local management unit LMU 42, which cyclically collects the measured values, the calculated values and the characteristic data of all solar generators in the system and more can control the energy converter 20 via a further data bus 44. Furthermore, the LMU 42 is connected via a further data bus 46 in the present embodiment to a global data network 48 (eg dial-up, Internet). On the basis of the characteristic data and the current measurement data of the individual GCUs, as well as the dynamic behavior with appropriate consideration of the absolute time, the LMU 42 determines the current state of each individual GCU 16.
Durch die Auswertung und den Vergleich der aktuellen oder/und historischen statistischen oder/und dynamischen Messdaten aller GCUs im System mit Hilfe entsprechender Algorithmen bzw. einem Expertensystem können Rückschlüsse auf mögliche Fehlerursachen ermittelt werden. Durch entsprechende Rückkopplungsmechanismen ist auch ein lernendes Diagnosesystem realisierbar oder es ist aufgrund von Langzeitmessungen auch möglich, bereits frühzeitig Prognosen bzgl. des weiteren Systemverhaltens abzugeben.By evaluating and comparing the current or / and historical statistical or / and dynamic measurement data of all GCUs in the system with the help of appropriate algorithms or an expert system, conclusions can be drawn about possible causes of errors. Appropriate feedback mechanisms can also be used to implement a learning diagnostic system or, based on long-term measurements, it is also possible to make predictions regarding the further system behavior at an early stage.
Darüber hinaus ist jedoch auch eine globale Auswertung möglich. Aufgrund der detaillierten Messdaten und Kenndaten der einzelnen GCUs kann eine globale Verarbeitungseinheit GMU auch Rückschlüsse auf die gesamte Systemqualität ableiten. Des Weiteren können wirtschaftlich optimierte Entscheidungen automatisiert getroffen werden.However, a global evaluation is also possible. A global processing unit GMU can also draw conclusions about the overall system quality based on the detailed measurement data and characteristic data of the individual GCUs. Furthermore, economically optimized decisions can be made automatically.
In den Fig. 6 bis 16 sind weitere Ausgestaltungsformen der erfindungsgemäßen Schaltungsanordnung dargestellt, wobei dort6 to 16 show further embodiments of the circuit arrangement according to the invention, wherein there
Komponenten, welche vorangehend beschriebenen Komponenten hinsichtlich Aufbau bzw. Funktion entsprechen, mit den gleichen Bezugszeichen und zusätzlich jeweils mit dem Index "a", "b", "c", "d", "e", "f", "g", bzw. "h" versehen sind. Im Folgenden wird lediglich auf die konstruktiven Unterschiede zu den jeweils vorangehend beschriebenen Ausgestaltungsformen eingegangen.Components that correspond to the components described above in terms of structure or function, with the same Reference numerals and additionally each with the index "a", "b", "c", "d", "e", "f", "g", or "h". In the following, only the structural differences from the previously described embodiments are discussed.
Die Schaltungsanordnung gemäß den Fig. 6 und 7 unterscheidet sich gegenüber der vorangehend beschriebenen Schaltungsanordnung im Wesentlichen nur dadurch, dass anstelle des Datenbusses 40 zur Übertragung von Daten zwischen der Kommunikationseinrichtung 38 und der LMU 42 eine über eine Datenleitung 58a mit der Kommunikationseinheit 38a verbundene Modulations/Demodulationseinheit (Datenkoppler/Entkoppler) 60a vorgesehen ist, welcher die zu übertragenden Daten auf die Energiehauptleitung bzw. den Energie- Hauptweg 1 8a aufmoduliert, die dann wiederum von der LMU 42a über einen entsprechenden nicht dargestellten Datenkoppler/Entkoppler demoduliert und entsprechend der Fig. 4 an ein Datennetz 48a bzw. einen Energiewandler 20a übermittelt werden.The circuit arrangement according to FIGS. 6 and 7 differs from the circuit arrangement described above essentially only in that instead of the data bus 40 for transmitting data between the communication device 38 and the LMU 42, a modulation / connected to the communication unit 38a via a data line 58a Demodulation unit (data coupler / decoupler) 60a is provided, which modulates the data to be transmitted onto the main energy line or main energy path 1 8a, which in turn demodulates the LMU 42a via a corresponding data coupler / decoupler, not shown, and corresponding to FIG. 4 are transmitted to a data network 48a or an energy converter 20a.
Durch die beiden vorangehend beschriebenen Schaltungsanordnungen ist es möglich, zyklisch die Modulparameter der einzelnen Solargeneratoren einer Photovoltaikanlage zu messen, ohne dass es hierbei zu einer Störung des übergeordneten Steuer/Regelkreises und dadurch zu wesentlichenThe two circuit arrangements described above make it possible to measure the module parameters of the individual solar generators of a photovoltaic system cyclically, without this causing a disturbance to the higher-level control / regulating circuit and thereby becoming essential
Leistungsverlusten an der Photovoltaikanlage kommt. Darüber hinaus ist man in der Lage, Solarzellen mit ungenügender Leistung, welche die gesamte Systemleistung negativ beeinflusst, schnell und einfach zu lokalisieren und entsprechende Gegenmaßnahmen zu unternehmen. ImPower loss at the photovoltaic system comes. In addition, you are able to quickly and easily localize solar cells with insufficient performance, which negatively affects the overall system performance, and take appropriate countermeasures. in the
Gegensatz zu der mit Bezug auf die Fig. 1 bis 3 beschriebenenContrary to that described with reference to FIGS. 1 to 3
Ausführungsform geht jedoch die Differenz der Leistung im MPP zurHowever, in the embodiment, the difference in performance in MPP goes to
Leistung im aktuell betriebenen Arbeitspunkt verloren und ist ein Maß für die Qualität des Gesa mtsystems . Du rch entsprechendePerformance is lost at the current operating point and is a measure of the quality of the overall system. You rch corresponding
Energietransformation kann diese Verlustleistung jedoch mit Hilfe eines Energie-Bypasses dem Gesamtsystem wieder zur Verfügung gestellt werden.However, this power loss can be transformed using an energy transformation Energy bypasses are made available to the overall system again.
Die in Fig. 8 dargestellte Schaltungsanordnung basiert im Wesentlichen auf der vorangehend beschriebenen Schaltungsanordnung gemäß Fig. 4, jedoch mit dem Unterschied, dass in dieser Ausführungsform jedem Solargenerator 14b nicht nur eine Diagnoseeinrichtung, sondern auch ein variabler Energie-Bypass zugeordnet ist, welcher derart gesteuert/geregelt wird, dass jeder Solargenerator 14b kontinuierlich in seinem jeweils aktuellen, spezifischen MPP betrieben wird. Hierbei kann der Energie- Bypass zur Systemoptimierung von Photovoltaikanlagen sowohl auf Zeil-, Modul- bzw. Stringebene mit allen möglichen Verschaltungsvarianten angewendet werden, wobei im Folgenden die Photovoltaikelemente und entsprechende Verschaltungen allgemein als Solargenerator bezeichnet werden.The circuit arrangement shown in FIG. 8 is essentially based on the circuit arrangement according to FIG. 4 described above, but with the difference that in this embodiment each solar generator 14b is assigned not only a diagnostic device but also a variable energy bypass, which is controlled in this way / is regulated that each solar generator 14b is operated continuously in its current, specific MPP. Here, the energy bypass for system optimization of photovoltaic systems can be used both at the line, module or string level with all possible connection variants, the photovoltaic elements and corresponding connections generally being referred to below as solar generators.
Zur genauen Erläuterung der Schaltungsanordnung wird auf Fig. 9 verwiesen, welche eine Detailansicht eines Solargenerators 14b mit Energie-Bypass 68b veranschaulicht. Wie man in Fig. 9 erkennt, besteht der Energie-Bypass 68b im Wesentlichen aus einem Steuer/regelbaren Bypass-Element 70b in Form eines Steuer/regelbaren DC/DC-Wandlers, der über zwei Leitungen 72b mit dem Ausgang des Solargenerator-Simulators 34b und über weitere Leitungen 73b mit einem Energie-Bypassweg 74b verbunden ist, über den die Bypässe eines Strings 12b, wie in Fig. 8 zu sehen, seriell zusammengeschaltet sind, wobei die Energie-Bypasswege mehrerer parallel angeordneter Strings 12b parallel zusammengeschaltet sind.For a detailed explanation of the circuit arrangement, reference is made to FIG. 9, which illustrates a detailed view of a solar generator 14b with an energy bypass 68b. As can be seen in FIG. 9, the energy bypass 68b essentially consists of a control / regulatable bypass element 70b in the form of a control / regulatable DC / DC converter which connects to the output of the solar generator simulator 34b via two lines 72b and is connected via further lines 73b to an energy bypass path 74b via which the bypasses of a string 12b, as can be seen in FIG. 8, are connected in series, the energy bypass paths of a plurality of strings 12b arranged in parallel being connected in parallel.
Wie bereits in Bezug auf die Fig. 1 und 3 beschrieben, handelt es sich bei zu einem String seriell verschalteten Solargeneratoren um ein System gleicher Ströme, wobei der Strom durch jeden in Serie verschaltetenAs already described with reference to FIGS. 1 and 3, solar generators connected in series to form a string are a system of the same currents, the current through each connected in series
Solargenerator gleich groß ist. Der Strom im System wird dadurch bedingt maßgeblich von dem Solargenerator mit dem geringsten MPP-Strom bestimmt. Durch die Bypass-Schaltung wird bei Solargeneratoren, deren MPP-Strom höher ist als der MPP-Strom des schwächsten Moduls, der entsprechende Differenzstrom abgezweigt und die entsprechende Energie nach Potentialtrennung und eventueller Transformation in einen eigenen Energie-Bypassweg 74b eingespeist. Die in den Energie-Bypassweg 74b eingespeiste Energie wird entsprechend der jeweiligen Anwendung dem Gesamtsystem zusätzlich zur Verfügung gestellt. Dadurch wird der Wirkungsgrad des Gesamtsystems entsprechend erhöht.Solar generator is the same size. This causes the current in the system largely determined by the solar generator with the lowest MPP current. With solar generators whose MPP current is higher than the MPP current of the weakest module, the bypass circuit branches off the corresponding differential current and feeds the corresponding energy into a separate energy bypass path 74b after potential isolation and possible transformation. The energy fed into the energy bypass path 74b is additionally made available to the overall system in accordance with the respective application. This increases the efficiency of the overall system accordingly.
Die Bypass-Schaltung bzw. der Energie-Bypass 68b ist galvanisch getrennt. Dadurch kann der Ausgang der jeweiligen Bypass-Schaltung unabhängig vom entsprechenden Spannungsniveau des jeweiligen Solargenerators und somit unabhängig von der Verschaltung der Solargeneratoren 14b selbst verschaltet werden. Durch die Zusammenschaltung der einzelnen Energie- Bypass-Schaltungen sind sowohl serielle Verschaltung der Energie-Bypass- Elemente als auch Parallelschaltungen möglich, welche später beschrieben werden. Wie aus Fig. 9 zu sehen ist, ist der Energie-Bypass 68b bei seriell verschalteten Solargeneratoren 14b parallel zu den jeweiligen Solargeneratoren 14b angeordnet.The bypass circuit or the energy bypass 68b is electrically isolated. As a result, the output of the respective bypass circuit can be connected independently of the corresponding voltage level of the respective solar generator and thus independently of the connection of the solar generators 14b themselves. By interconnecting the individual energy bypass circuits, both serial connection of the energy bypass elements and parallel connections are possible, which will be described later. As can be seen from FIG. 9, the energy bypass 68b in the case of series-connected solar generators 14b is arranged parallel to the respective solar generators 14b.
Gemäß Fig. 8 wird die Bypass-Energie dem Energie-Hauptweg 18b wieder direkt zugeführt, was eine entsprechende Steuerung/Regelung der Spannung und Ströme im Energie-Bypassweg 74b erfordert. Das heißt, bei einem Energie-Bypass 68b wird beispielsweise durch zentrale Steuerung/Regelung der Spannung bzw. durch das steuer/regelbare Bypass-Element selbst die Spannung des Energie-Bypasses derart eingestellt, dass das Spannungsniveau der seriell verschalteten Energie- Bypässe (Ausgänge der Energie-Bypass-Elemente) der Spannung des Energie-Hauptwegs 1 8b entspricht. Anzumerken ist diesbezüglich, dass seriell geschaltete Energie-Bypässe für sich betrachtet ein System gleicher Ströme sind, was es notwendig macht, dass das durch die Bypass-Schaltung zu verarbeitende Leistungsäquivalent auf einen einheitlichen Strom transformiert werden muss, wobei die Summe der Spannungen aller in Serie geschalteten Energie-Bypässe der Spannung des gesamten Strings entspricht. Das Leistungsäquivalent wird durch eine Variation der Stromstärke entsprechend gesteuert. Die Steuerung des Bypass-Stroms und der Bypass-Spannung kann entweder zentral durch Auswertung aller Messdaten der einzelnen Solargeneratoren erfolgen oder kann teilweise autark durch das steuer/regelbare Bypass- Element selbst erfolgen. Das heißt, bei seriell geschalteten Energie- Bypässen wird durch eine zentrale Steuerung/Regelung der Spannung und des Stroms bzw. durch das steuer/regelbare Bypass-Element selbst das Spannungsniveau so eingestellt, dass die Summe der Spannungen aller in Serie geschalteter Energie-Bypässe dem Niveau des Energie-Hauptwegs 1 8b entspricht.According to FIG. 8, the bypass energy is fed back directly to the main energy path 18b, which requires a corresponding control / regulation of the voltage and currents in the energy bypass path 74b. This means that in the case of an energy bypass 68b, the voltage of the energy bypass is set, for example, by central control / regulation of the voltage or by the controllable / adjustable bypass element itself such that the voltage level of the serially connected energy bypasses (outputs of the Energy bypass elements) corresponds to the voltage of the main energy path 1 8b. It should be noted in this regard that series-connected energy bypasses are in themselves a system of equal currents, which makes it necessary that the power equivalent to be processed by the bypass circuit must be transformed to a uniform current, the sum of the voltages of all in series switched energy bypasses corresponds to the voltage of the entire string. The power equivalent is controlled accordingly by varying the current strength. The bypass current and the bypass voltage can either be controlled centrally by evaluating all the measurement data of the individual solar generators, or can be carried out partly independently by the controllable / adjustable bypass element itself. This means that in the case of series-connected energy bypasses, the voltage level is set by a central control / regulation of the voltage and the current or by the controllable / adjustable bypass element itself so that the sum of the voltages of all energy bypasses connected in series corresponds to this Main energy path level 1 corresponds to 8b.
Die Schaltungsanordnung der Fig. 10 unterscheidet sich von der der Fig. 8 im Wesentlichen dadurch, dass in der Fig. 10 die Energie-Bypasswege 74c nicht in den Energie-Hauptweg 1 8c zurückgeführt werden, sondern mittels eines zweiten Energiewandlers (z.B. Wechselrichters) 80c mit einem zentralen Energienetz (z.B. Wechselspannungsnetz, Gleichspannungsnetz) 22c verbunden ist und diesem die Bypass-Energie zuführt.The circuit arrangement of FIG. 10 differs from that of FIG. 8 essentially in that in FIG. 10 the energy bypass paths 74c are not returned to the main energy path 1 8c but by means of a second energy converter (eg inverter) 80c is connected to a central energy network (for example AC voltage network, DC voltage network) 22c and supplies the bypass energy to it.
Die Schaltungsanordnung gemäß der Fig. 1 1 basiert im Wesentlichen auf der vorangehend beschriebenen Schaltungsanordnung gemäß Fig. 8, jedoch mit dem Unterschied, dass anstelle der in Fig. 8 beschriebenen seriellen Verschaltung der Energie-Bypässe, diese nunmehr parallel erfolgt. Anzumerken ist diesbezüglich, dass parallel geschaltete Energie-Bypässe für sich betrachtet ein System gleicher Spannung sind, was es notwendig macht, dass das durch die Bypass-Schaltung zu verarbeitende Leistungsäquivalent auf eine einheitliche Spannung transformiert werden muss. Das Leistungsäquivalent wird durch eine Variation der Stromstärke entsprechend gesteuert. Die Steuerung des Bypass-Stroms und der Bypass- Spannung kann entweder zentral durch Auswertung aller Messdaten der einzelnen Solargeneratoren erfolgen oder kann teilweise autark durch das steuer/regelbare Bypass-Element selbst erfolgen. Das heißt, bei parallel g eschalteten Energ ie-Bypässen wird d u rch eine zentrale Steuerung/Regelung der Spannung bzw. durch das steuer/regelbare Bypass-Element selbst das Spannungsniveau des Energie-Bypasswegs 74d auf das Niveau des Energie-Hauptwegs 18d eingestellt.The circuit arrangement according to FIG. 11 is essentially based on the circuit arrangement according to FIG. 8 described above, but with the difference that instead of the serial connection of the energy bypasses described in FIG. 8, this now takes place in parallel. In this regard, it should be noted that energy bypasses connected in parallel are in themselves a system of the same voltage, which makes it necessary for the power equivalent to be processed by the bypass circuit to be transformed to a uniform voltage got to. The power equivalent is controlled accordingly by varying the current strength. The bypass current and the bypass voltage can either be controlled centrally by evaluating all the measurement data of the individual solar generators, or can be carried out partly independently by the controllable / adjustable bypass element itself. This means that with energy bypasses connected in parallel, the voltage level of the energy bypass path 74d is set to the level of the main energy path 18d by a central control / regulation of the voltage or by the controllable bypass element itself.
Ein Funktionsprinzip bzw. ein Verfahren zur Steuerung/Regelung einer Photovoltaikanlage wird im Folgenden anhand der Fig. 1 1 beschrieben. Wie man erkennt, sind die Solargeneratoren 14d seriell zu Strings 1 2d verschaltet. Die Bypass-Energie wird durch Parallelschaltung der Bypass- Leitungen 74d im System direkt auf den Energie-Hauptweg 18d wieder aufgeschaltet und dem Wechselrichter 20d zur Verfügung gestellt. Der am String 1 2d angeschlossene Wechselrichter 20d wird auf den Punkt maximaler Stringleistung MPP-String eingestellt. Jeder im String 1 2d verschaltete Solargenerator 14d hat aufgrund seiner Beschaffenheit bzw. aufgrund äußerer Einflüsse eine eigene U-I-Kennlinie. Dadurch bedingt hat auch jedes Solarmodul seinen eigenen MPP (Punkt maximaler Leistung). Die Leistung im MPP errechnet sich wie folgt.A functional principle or a method for controlling a photovoltaic system is described below with reference to FIG. 11. As can be seen, the solar generators 14d are connected in series to form strings 1 2d. The bypass energy is reactivated by connecting the bypass lines 74d in parallel in the system directly to the main energy path 18d and made available to the inverter 20d. The inverter 20d connected to the string 1 2d is set to the point of maximum string power MPP string. Each solar generator 14d connected in the string 1 2d has its own U-I characteristic due to its nature or due to external influences. As a result, each solar module has its own MPP (maximum power point). The performance in the MPP is calculated as follows.
MIPPPP MIPPPP
Aus den IMPP-Werten aller im String verschalteter Solarmodule wird zunächst der niedrigste Wert lMPP (min) bestimmt. Somit gilt lMPP (min) ≤ lMPP (x); (x = 1 ...n).The lowest value l MPP (min) is first determined from the I MPP values of all solar modules connected in the string. Hence l MPP (min) ≤ l MPP (x) ; (x = 1 ... n).
Der Bypass-Strom lB (lBypass 0ut (x)) jedes einzelnen Solarmoduls 14d wird auf die Differenz des MPP-Stroms des entsprechenden Moduls zum lMPP(miπ) eingestellt. 'BypasslN(x) = 'MPP(X) " 'MPP(min)'" 'X = 1 ---n)> The bypass current l B (l bypass 0ut (x) ) of each individual solar module 14d is set to the difference between the MPP current of the corresponding module and the l MPP (miπ) . 'BypasslN (x) = ' MPP (X) " 'MPP (min)'"' X = 1 --- n ) >
Der DC/DC-Wandler (das Bypass-Element) wird so gesteuert/geregelt, dass der Strom lBS (lBypasSiN(X)) am Eingang des DC/DC-Wandlers 70d jeweils exakt dem Strom lBypassM entspricht. Auf der Sekundärseite wird dadurch bei gegebener String-Spannung ein entsprechender Strom lB, der dem Leistungsäquivalent auf der Primärseite entspricht, in den Energie- Hauptweg 18d eingespeist.The DC / DC converter (the bypass element) is controlled / regulated so that the current I BS (I BypasS i N (X) ) at the input of the DC / DC converter 70d corresponds exactly to the current I BypassM . On the secondary side, a given current I B , which corresponds to the power equivalent on the primary side, is thus fed into the main energy path 18d at a given string voltage.
Die Spannung UB am Ausgang des DC/DC-Wandlers (Energie-Bypass) entspricht aufgrund des direkten Kopplung mit dem String (Energie- Hauptweg 18d) der String-Spannung.The voltage U B at the output of the DC / DC converter (energy bypass) corresponds to the string voltage due to the direct coupling to the string (main energy path 18d).
Der Strom lB (lBypass 0ut M) am Ausgang des DC/DC-Wandlers 70d (Energie- Bypass) ergibt sich aus der entsprechenden zu übertragenden Leistung.The current I B (I bypass 0ut M) at the output of the DC / DC converter 70d (energy bypass) results from the corresponding power to be transmitted.
'Bypass Out (x) ~ '*^MPP(x) X ''MPP (X) " 'lVIPP(mlnμ' ^tätriπg''Bypass Out (x) ~' * ^ MPP (x) X '' MPP (X) " 'lVIPP (mlnμ' ^ tätriπg '
Aufgrund der Parallelschaltung der Bypass-Zweige addieren sich die Bypass-Ströme lBypass0ut der jeweiligen Solargeneratoren.Due to the parallel connection of the bypass branches, the bypass currents l bypassout of the respective solar generators add up.
Die in Fig.12 dargestellte Schaltungsanordnung unterscheidet sich von der in Fig. 9 dargestellten Schaltungsanordnung lediglich dadurch, dass die Kommunikationseinheit 38e die zu kommunizierenden Daten entsprechend der Ausführungsform der Fig. 7 nicht durch einen eigenen Datenbus beispielsweise der LMU zuführt, sondern die zu übertragenden Daten mittels eines Datenkopplers/Entkopplers bzw. einer Modulations/Demodulationseinheit 60e auf den Energie-Hauptweg 18e aufmoduliert.The circuit arrangement shown in FIG. 12 differs from the circuit arrangement shown in FIG. 9 only in that the communication unit 38e does not feed the data to be communicated in accordance with the embodiment of FIG. 7 to the LMU, for example, through its own data bus, but rather the data to be transmitted modulated onto the main energy path 18e by means of a data coupler / decoupler or a modulation / demodulation unit 60e.
Die Schaltungsanordnung der Fig. 13 unterscheidet sich von der der Fig. 11 lediglich dadurch, dass in dieser Ausführungsform die Bypass-Energie nicht dem Energie-Hauptweg 18f zugeführt wird, sondern über einen separaten Energiewandler bzw. Wechselrichter 80f entsprechend der Fig. 10 mit dem Energienetz 22f verbunden ist.The circuit arrangement of FIG. 13 differs from that of FIG. 11 only in that in this embodiment the bypass energy is not supplied to the main energy path 18f, but is connected to the energy network 22f via a separate energy converter or inverter 80f according to FIG. 10.
Die Schaltungsanordnung der Fig. 14 und 1 5 unterscheidet sich gegenüber den vorangehend beschriebenen Schaltungsanordnungen im Wesentlichen dadurch, dass die Solargeneratoren 14g in dieser Ausführungsform parallel geschaltet sind, es sich also grundsätzlich um ein System gleicher Spannung handelt. Die Spannung an jedem der parallel geschalteten Solargeneratoren ist gleich groß. Da die MPP-Spannungen der einzelnen Solargeneratoren abweichen, ist ein optimaler Betrieb nur durch Angleichung der Spannung möglich. Die Spannung im System wird maßgeblich von dem Solargenerator mit der geringsten MPP-Spannung bestimmt. Durch die dargestellte, seriell zu dem "einzelnen" Solargenerator 1 e angeordnete Energie-Bypass-Schaltung wird bei den Solargeneratoren 14g, deren MPP-Spannung höher ist als die MPP-Spannung des schwächsten Solargenerators, die entsprechende Differenzspannung in Serie zum jeweiligen Solargenerator aufgebau und die entsprechende Energie nach Potentialtrennung eventueller Transformation in einen eigenen Energie-Bypass-Weg 74g eingespeist und - wie in Fig. 14 lediglich beispielhaft anhand dreier Solargeneratoren 14g zweier Strings 1 2g dargestellt - unabhängig vom Energie-Hauptweg 1 8g entsprechend beispielsweise der vorangehend beschriebenen Fig. 13 mittels eines separaten Energiewandlers 80g in das Energienetz 22g eingespeist.The circuit arrangement of FIGS. 14 and 15 differs from the circuit arrangements described above essentially in that the solar generators 14g are connected in parallel in this embodiment, that is to say it is basically a system of the same voltage. The voltage on each of the solar generators connected in parallel is the same. Since the MPP voltages of the individual solar generators differ, optimal operation is only possible by adjusting the voltage. The voltage in the system is largely determined by the solar generator with the lowest MPP voltage. Due to the energy bypass circuit shown in series with the "individual" solar generator 1 e, the corresponding differential voltage is built up in series with the respective solar generator in the case of the solar generators 14g, whose MPP voltage is higher than the MPP voltage of the weakest solar generator the corresponding energy after potential isolation of any transformation is fed into its own energy bypass path 74g and - as shown in FIG. 14 only by way of example using three solar generators 14g of two strings 1 2g - independently of the main energy path 1 8g in accordance with, for example, the figure described above. 13 fed into the energy network 22g by means of a separate energy converter 80g.
Die in Fig. 1 6 dargestellte Gesamtdarstellung der Schaltungsanordnung basiert im Wesentlichen auf der in Fig. 1 3 beschriebenen Photovoltaikanlage, von der jedoch in Fig. 1 6 mehrere jeweils zu einem Solarkraftwerk 90h verbunden sind. Wie auch in Fig. 13 umfasst die Anlage Gruppen verschalteter Solargeneratoren 1 4h mit GCUs (einschließlich der darin enthaltenen Diagnose- oder/und Bypassschaltungen nicht dargestellt), welche über Energie-Hauptwege 1 8h und Energie-Bypasswege 74h mit jeweiligen Energiewandlern 20h bzw. 80h verbunden sind zur Einspeisung in ein zentrales Energienetz 22h, einen Datenbus 40h, welche die einzelnen Solargeneratoren 14h mit einer LMU 42h verbinden, sowie eine weiteren Datenbus 44h, welcher die LMU 42h mit den einzelnen Energiewandlern 20f bzw. 80h verbindet. Zusätzlich zu dem Solarkraftwerk 90h sind weitere Solarkraftwerke 92h schematisch dargestellt, welche entsprechend dem Solarkraftwerk 90h aufgebaut sind.The overall representation of the circuit arrangement shown in FIG. 1 6 is essentially based on the photovoltaic system described in FIG. 1 3, of which, however, several are connected to a solar power plant 90 h in FIG. 1 6. As also in FIG. 13, the system comprises groups of interconnected solar generators 1 4h with GCUs (including the diagnostic and / or bypass circuits not shown therein), which are connected via main energy paths 1 8 h and energy bypass paths 74h are connected to respective energy converters 20h and 80h for feeding into a central energy network 22h, a data bus 40h, which connect the individual solar generators 14h to an LMU 42h, and a further data bus 44h, which connects the LMU 42h with the individual ones Energy converters 20f and 80h connects. In addition to the solar power plant 90h, further solar power plants 92h are shown schematically, which are constructed in accordance with the solar power plant 90h.
Die LMU 42h ist mit einem globalen Netzwerk 48h verbunden, welches in der dargestellten Ausführungsform über eine globale Management-Einheit (GMU) 94h mit einem weiteren globalen Netzwerk 96h verbunden ist, das wiederum mit einzelnen Benutzern 96h bzw. Anlagenbetreibern oder einer Gruppe von Benutzern bzw. Anlagenbetreibern 98h verbunden ist. Es ist jedoch auch denkbar, dass die Benutzer 96h oder Anlagenbetreiber bzw. die Gruppe von Benutzern oder Anlagenbetreibern direkt mit dem globalen Netzwerk 48h verbunden sind.The LMU 42h is connected to a global network 48h, which in the embodiment shown is connected via a global management unit (GMU) 94h to a further global network 96h, which in turn is associated with individual users 96h or system operators or a group of users or System operators 98h is connected. However, it is also conceivable that the users 96h or system operators or the group of users or system operators are directly connected to the global network 48h.
Die Daten aller Solargeneratoren 14h werden über den gemeinsamen Datenbus 40h zyklisch zu der lokalen Verarbeitungs- bzw. Managementeinheit (LMU) übertragen. Da die Komponenten ohnehin elektrisch verbunden sind, kann die Leitungen zur Energieübertragung auch als Datenbus genutzt werden. In der globalen Verarbeitungs- bzw. Managementeinheit (GMU) werden die Daten zentral gesichert und Systemübergreifend ausgewertet. Die Übertragung der Daten erfolgt zyklisch per DFÜ bzw. Direktverbindung. Aufgrund der Messdaten und unter Berücksichtigung der jeweiligen Kenndaten sowie des zeitlichen Verlaufs kann durch entsprechende Algorithmen bzw. ein lokales Expertensystem der Zustand der entsprechenden Solargeneratoren bzw. Fehlerursachen ermittelt werden.The data of all solar generators 14h are cyclically transmitted to the local processing or management unit (LMU) via the common data bus 40h. As the components are electrically connected anyway, the cables for energy transmission can also be used as a data bus. In the global processing and management unit (GMU), the data is backed up centrally and evaluated across systems. The data is transmitted cyclically via data transmission or direct connection. On the basis of the measurement data and taking into account the respective characteristic data and the time course, the state of the corresponding solar generators or the causes of errors can be determined by appropriate algorithms or a local expert system.
Abschließend sei noch darauf hingewiesen, dass die allgemein als Solargenerator bzw. Generator bezeichneten Photovoltaikelemente eine Solarzelle, Solarzellengruppen (parallel bzw. seriell verschaltete Solarzellen), ein Solarzellenmodul mit mehreren parallelen bzw. seriell verschalteten Solarzellengruppen, seriell zu einem String verschaltete Module bzw. Modulgruppen, parallel verschaltete String-Gruppen usw. einschließen. Finally, it should also be pointed out that the photovoltaic elements, which are generally referred to as solar generators or generators Include solar cells, solar cell groups (parallel or series-connected solar cells), a solar cell module with several parallel or series-connected solar cell groups, series-connected modules or module groups, parallel-connected string groups, etc.

Claims

Ansprüche Expectations
1 . Sch a ltun g sa n o rd n ung zur Steu eru n g/Reg elu n g vo n Photovoltaikanlagen (10b), welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren (14b) umfassen, dadurch gekennzeichnet, dass jedem Solargenerator (14b) ein variabler Energie-Bypass (68b) zugeordnet ist, welcher derart gesteuert/geregelt wird, dass jeder Solargenerator (14b) kontinuierlich in seinem jeweils aktuellen, spezifischen MPP betrieben wird.1 . Circuitry for the control / regulation of photovoltaic systems (10b), which comprise a large number of series and / or parallel connected solar generators (14b), characterized in that each solar generator (14b) has a variable one Energy bypass (68b) is assigned, which is controlled / regulated in such a way that each solar generator (14b) is operated continuously in its current, specific MPP.
2. Schaltungsanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Energie-Bypass (68b) ström- oder/und spannungs- gesteuert/geregelt ist.2. Circuit arrangement according to claim 1, characterized in that the energy bypass (68b) is flow or / and voltage controlled.
3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Energie-Bypass (68b) einen galvanisch trennenden Steuer/regelbaren Energiewandler (70b) enthält.3. Circuit arrangement according to claim 1 or 2, characterized in that the energy bypass (68b) contains a galvanically isolating control / controllable energy converter (70b).
4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Solargenerator ( 4b) einer Vielzahl seriell verschalteter Solargeneratoren (14b), welcher jeweils den aktuell niedrigsten MPP-Strom in der Serie hat, die Steuer/Regelgröße für den Energie-Bypass (68b) der anderen Solargeneratoren (14b) in der4. Circuit arrangement according to one of claims 1 to 3, characterized in that the solar generator (4b) of a plurality of serially connected solar generators (14b), each of which has the currently lowest MPP current in the series, the control variable for the energy Bypass (68b) of the other solar generators (14b) in the
Serie vorgibt.Series pretends.
5. Schaltungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Solargenerator (14g) einer Vielzahl parallel verschalteter Solargeneratoren (14g), welcher jeweils die aktuell niedrigste MPP-Spannung im System hat, die Steuer/Regelgröße für den Energie-Bypass (68b) der anderen Solargeneratoren (14g) im System vorgibt.5. Circuit arrangement according to one of claims 1 to 3, characterized in that the solar generator (14g) of a plurality of parallel connected solar generators (14g), each of which has the currently lowest MPP voltage in the system, the control variable for specifies the energy bypass (68b) of the other solar generators (14g) in the system.
6. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Energie-Hauptweg6. Circuit arrangement according to one of the preceding claims, characterized in that at least one main energy path
(18b) vorgesehen ist, über den die einzelnen Solargeneratoren (14b) seriell oder/und parallel zusammengeschaltet sind.(18b) is provided, via which the individual solar generators (14b) are connected in series and / or in parallel.
7. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Energie-Bypassweg7. Circuit arrangement according to one of the preceding claims, characterized in that at least one energy bypass path
(74b; 74d) vorgesehen ist, über den die Energie-Bypässe (68b; 68d) seriell oder/und parallel zusammengeschaltet sind.(74b; 74d) is provided, via which the energy bypasses (68b; 68d) are connected in series and / or in parallel.
8. Schaltungsanordnung nach Anspruch 6 in Verbindung mit Anspruch 7, dadurch gekennzeichnet, dass der Energie-Bypassweg (74b; 74d) mit dem Energie-Hauptweg (18b; 18d) verbunden ist.8. Circuit arrangement according to claim 6 in conjunction with claim 7, characterized in that the energy bypass path (74b; 74d) is connected to the main energy path (18b; 18d).
9. Schaltungsanordnung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Energie-Hauptweg (18c) oder/und der Energie-Bypassweg (74c) mit einem Energie-Netz (22c) oder einem9. Circuit arrangement according to one of claims 6 to 8, characterized in that the main energy path (18c) and / or the energy bypass path (74c) with an energy network (22c) or
Batteriesystem verbunden ist.Battery system is connected.
10. Schaltungsanordnung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass dem Energie-Hauptweg (18c) oder/und dem Energie-Bypassweg (74c) ein Energiewandler (20c; 80c) zugeordnet ist.10. Circuit arrangement according to one of claims 6 to 9, characterized in that the energy main path (18c) and / or the energy bypass path (74c) is associated with an energy converter (20c; 80c).
11. Schaltungsanordnung zur Steuerung/Regelung von Photovoltaikanlagen (10), welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren umfassen, dadurch gekennzeichnet. dass jedem Solargenerator ( 14) oder einem Teil der Solargeneratoren (14) eine Diagnoseeinrichtung (16) zugeordnet ist, welche während des Betriebs des Solargenerators (14) wiederholt dessen Betriebsparameter oder/und Kenndaten erfasst, und dass der Diagnoseeinrichtung (16) eine Systementkopplungseinheit (32) zugeordnet ist, welche den Solargenerator (14) während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten von einem Energie-Hauptweg (18) trennen kann.11. Circuit arrangement for the control / regulation of photovoltaic systems (10), which comprise a plurality of series and / or parallel connected solar generators, characterized. that each solar generator (14) or part of the solar generators (14) is assigned a diagnostic device (16) which repeatedly detects its operating parameters and / or characteristic data during operation of the solar generator (14), and that the diagnostic device (16) has a system coupling unit ( 32) is assigned, which can separate the solar generator (14) from a main energy path (18) during the duration of the acquisition of the operating parameters and / or characteristic data.
12. Schaltungsanordnung nach Anspruch 1 1 , dadurch gekennzeichnet, das der Diagnoseeinrichtung (16) ein Solargenerator-Simulator (34) zugeordnet ist, welcher den Solargenerator (14) während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten hinsichtlich seiner Energieabgabe ersetzt.12. Circuit arrangement according to claim 1 1, characterized in that the diagnostic device (16) is assigned a solar generator simulator (34) which replaces the solar generator (14) during the duration of the detection of the operating parameters and / or characteristic data with regard to its energy output.
13. Schaltungsanordnung nach Anspruch 12, dadurch gekennzeichnet, dass der Solargenerator-Simulator (34) so geschaltet ist, dass er während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten den Energie-Hauptweg (18) mit Energie versorgt.13. Circuit arrangement according to claim 12, characterized in that the solar generator simulator (34) is switched such that it supplies the main energy path (18) with energy for the duration of the detection of the operating parameters and / or characteristic data.
14. Schaltungsanordnung nach einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass die Diagnoseeinrichtung (16) eine Temperatur- (28) oder/und Strom- (26) oder/und Spannungsmesseinheit (24) zur Erfassung der aktuellen Betriebsparameter des Solargenerators (14) umfasst.14. Circuit arrangement according to one of claims 1 1 to 13, characterized in that the diagnostic device (16) a temperature (28) or / and current (26) or / and voltage measuring unit (24) for detecting the current operating parameters of the solar generator ( 14) includes.
15. Schaltungsanordnung nach einem der Ansprüche 1 1 bis 14, dadurch gekennzeichnet, dass der Schaltungsanordnung ein Arbeitspunktsteller (30) zugeordnet ist, welcher während der Erfassung der Betriebsparameter oder/und Kenndaten den15. Circuit arrangement according to one of claims 1 1 to 14, characterized in that the circuit arrangement is assigned an operating point actuator (30), which during the detection of the operating parameters and / or characteristic data
Arbeitspunkt einstellt. Sets working point.
1 6. Schaltungsanordnung nach einem der Ansprüche 1 1 bis 1 5, dadurch gekennzeichnet, dass jedem Solargenerator (14b) ein variabler Energie-Bypass (68b) mit den Merkmalen eines der Ansprüche 1 bis 1 0 zugeordnet ist.1 6. Circuit arrangement according to one of claims 1 1 to 1 5, characterized in that each solar generator (14b) is assigned a variable energy bypass (68b) with the features of one of claims 1 to 1 0.
1 7. Schaltungsanordnung nach Anspruch 1 6, dadurch gekennzeichnet, dass die Systementkopplungseinrichtung (32b) den Solargenerator (14b) während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten auch von einem Energie-Bypassweg (74b) trennt.1 7. Circuit arrangement according to claim 1 6, characterized in that the system coupling device (32b) also separates the solar generator (14b) from an energy bypass path (74b) during the duration of the detection of the operating parameters and / or characteristic data.
1 8. Schaltungsanordnung nach einem der Ansprüche 1 6 oder 1 7, dadurch gekennzeichnet, dass der Solargenerator-Simulator (34b) während der Dauer der Erfassung der Betriebsparameter oder/und Kenndaten auch den Energie-Bypassweg (74) mit Energie versorgt.1 8. Circuit arrangement according to one of claims 1 6 or 1 7, characterized in that the solar generator simulator (34b) also supplies the energy bypass path (74) with energy during the duration of the detection of the operating parameters and / or characteristic data.
1 9. Schaltungsanordnung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass jedem Solargenerator (14; 14b) oder/und einem Teil der Solargeneratoren (14; 14b) eine Steuer/Regel- einrichtung ( 1 6; 1 6b) zur Steuerung/Regelung des Energie-Bypasses1 9. Circuit arrangement according to one of claims 1 to 18, characterized in that each solar generator (14; 14b) and / or part of the solar generators (14; 14b) has a control / regulating device (1 6; 1 6b) for control / Regulation of the energy bypass
(68b) oder/und der Diagnoseeinrichtung (1 6) zugeordnet ist.(68b) and / or the diagnostic device (1 6) is assigned.
20. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedem Solargenerator (14; 14b) oder/und einem Teil der Solargeneratoren ( 14; 1 4b) eine Datenverarbeitungs- und Speichereinheit (36; 36b) zugeordnet ist.20. Circuit arrangement according to one of the preceding claims, characterized in that each solar generator (14; 14b) and / or part of the solar generators (14; 1 4b) is assigned a data processing and storage unit (36; 36b).
21 . Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schaltungsanordnung eine Kommunikationseinrichtung (38; 38b) zugeordnet ist, welche eine21. Circuit arrangement according to one of the preceding claims, characterized in that the circuit arrangement is assigned a communication device (38; 38b) which has a
Kommunikation der Solargenerator-Betriebsparameter und - Kenndaten zu anderen Solargeneratoren (14; 14b) oder/und Kommunikations- oder/und Steuer/Regeleinrichtungen oder/und Datenverarbeitungs- und Speichereinheiten (42h, 94h) erlaubt.Communication of the solar generator operating parameters and characteristics to other solar generators (14; 14b) and / or Communication or / and control / regulating devices and / or data processing and storage units (42h, 94h) allowed.
22. Schaltungsanordnung nach Anspruch 21 , dadurch gekennzeichnet, dass die Kommunikation über eine Datenleitung (40) oder/und den22. Circuit arrangement according to claim 21, characterized in that the communication via a data line (40) and / or the
Energie-Hauptweg (18) oder/und den Energie-Bypassweg erfolgt.Main energy path (18) and / or the energy bypass path.
23. Verfahren zur Steuerung/Regelung von Photovoltaikanlagen (10), welche eine Vielzahl seriell oder/und parallel verschalteter Solargeneratoren (14) umfassen, dadurch gekennzeichnet, dass zur Festlegung des System-MPPs lediglich bei einem Teil der verschalteten Solargeneratoren (14) der MPP bestimmt wird und dass aus diesem Wert bzw. Werten der System-MPP abgeleitet wird. 23. A method for controlling / regulating photovoltaic systems (10), which comprise a large number of series-connected and / or parallel-connected solar generators (14), characterized in that the MPP is only used to determine the system MPPs in some of the connected solar generators (14) is determined and that the system MPP is derived from this value or values.
EP03752705A 2002-05-17 2003-05-19 Circuit arrangement for a photovoltaic system Withdrawn EP1552563A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10222621A DE10222621A1 (en) 2002-05-17 2002-05-17 Process and circuit to control and regulated a photovoltaic device assembly for solar energy has controlled bypass for each cell to ensure maximum power operation
DE10222621 2002-05-17
PCT/DE2003/001611 WO2003098703A2 (en) 2002-05-17 2003-05-19 Circuit arrangement for a photovoltaic system

Publications (1)

Publication Number Publication Date
EP1552563A2 true EP1552563A2 (en) 2005-07-13

Family

ID=29285640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03752705A Withdrawn EP1552563A2 (en) 2002-05-17 2003-05-19 Circuit arrangement for a photovoltaic system

Country Status (6)

Country Link
US (1) US7709727B2 (en)
EP (1) EP1552563A2 (en)
JP (1) JP4092334B2 (en)
AU (1) AU2003232634A1 (en)
DE (2) DE10222621A1 (en)
WO (1) WO2003098703A2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108118A1 (en) * 2008-06-02 2010-05-06 Daniel Luch Photovoltaic power farm structure and installation
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
EP1642355A4 (en) 2003-05-28 2015-05-27 Beacon Power Llc Power converter for a solar panel
US7288921B2 (en) * 2004-06-25 2007-10-30 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for providing economic analysis of power generation and distribution
US7839022B2 (en) 2004-07-13 2010-11-23 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
US7864497B2 (en) * 2005-01-26 2011-01-04 Guenther Spelsberg Gmbh & Co. Kg Protective circuit
DE102005036153B4 (en) * 2005-05-24 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Protection switching device for a solar module
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8751053B2 (en) * 2006-10-19 2014-06-10 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus
US7960870B2 (en) * 2006-11-27 2011-06-14 Xslent Energy Technologies, Llc Power extractor for impedance matching
US9431828B2 (en) * 2006-11-27 2016-08-30 Xslent Energy Technologies Multi-source, multi-load systems with a power extractor
US8013474B2 (en) * 2006-11-27 2011-09-06 Xslent Energy Technologies, Llc System and apparatuses with multiple power extractors coupled to different power sources
US7839025B2 (en) 2006-11-27 2010-11-23 Xslent Energy Technologies, Llc Power extractor detecting a power change
US7900361B2 (en) * 2006-12-06 2011-03-08 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US8158877B2 (en) 2007-03-30 2012-04-17 Sunpower Corporation Localized power point optimizer for solar cell installations
US10468993B2 (en) * 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module
US20090000654A1 (en) 2007-05-17 2009-01-01 Larankelo, Inc. Distributed inverter and intelligent gateway
US20090078300A1 (en) * 2007-09-11 2009-03-26 Efficient Solar Power System, Inc. Distributed maximum power point tracking converter
US20090084426A1 (en) * 2007-09-28 2009-04-02 Enphase Energy, Inc. Universal interface for a photovoltaic module
DE102008004675B3 (en) * 2007-10-12 2009-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controllable switching device for solar module, has control provided to control controllable switching unit to switch switching unit in one of switch conditions using output of solar module or input at output terminal
JP5498388B2 (en) * 2007-10-15 2014-05-21 エーエムピーティー, エルエルシー System for high efficiency solar power
US8736108B1 (en) 2007-11-01 2014-05-27 Sandia Corporation Photovoltaic system
US8933321B2 (en) * 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US7602080B1 (en) * 2008-11-26 2009-10-13 Tigo Energy, Inc. Systems and methods to balance solar panels in a multi-panel system
US9218013B2 (en) * 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
EP3561881A1 (en) 2007-12-05 2019-10-30 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2077453A1 (en) * 2008-01-01 2009-07-08 SMA Solar Technology AG Evaluation method
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8212139B2 (en) 2008-01-18 2012-07-03 Tenksolar, Inc. Thin-film photovoltaic module
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US8037327B2 (en) * 2008-03-31 2011-10-11 Agilent Technologies, Inc. System and method for improving dynamic response in a power supply
US20090250096A1 (en) * 2008-04-07 2009-10-08 Eric Ting-Shan Pan Solar-To-Electricity Conversion Sub-Module
US7969133B2 (en) * 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US8630098B2 (en) * 2008-06-12 2014-01-14 Solaredge Technologies Ltd. Switching circuit layout with heatsink
ES2372518B1 (en) * 2008-07-07 2013-02-15 Universitat Politècnica De Catalunya SWITCHING DEVICE DEDICATED TO OPTIMAL EXTRACTION OF ENERGY IN PHOTOVOLTAIC GENERATORS.
US8098055B2 (en) * 2008-08-01 2012-01-17 Tigo Energy, Inc. Step-up converter systems and methods
US8273979B2 (en) * 2008-10-15 2012-09-25 Xandex, Inc. Time averaged modulated diode apparatus for photovoltaic application
CA2740238A1 (en) * 2008-10-16 2010-04-22 Enphase Energy, Inc. Method and apparatus for determining an operating voltage for preventing photovoltaic cell reverse breakdown during power conversion
JP5172613B2 (en) * 2008-11-11 2013-03-27 シャープ株式会社 Solar power generation device and solar power generation system
US8860241B2 (en) * 2008-11-26 2014-10-14 Tigo Energy, Inc. Systems and methods for using a power converter for transmission of data over the power feed
US20120215372A1 (en) * 2008-12-15 2012-08-23 Array Converter Inc. Detection and Prevention of Hot Spots in a Solar Panel
US8050804B2 (en) * 2008-12-15 2011-11-01 Array Converter, Inc. Detection and prevention of hot spots in a solar panel
US8791598B2 (en) * 2008-12-21 2014-07-29 NavSemi Energy Private Ltd. System and method for selectively controlling a solar panel in segments
WO2010078303A2 (en) * 2008-12-29 2010-07-08 Atonometrics, Inc. Electrical safety shutoff system and devices for photovoltaic modules
DE102009061044B4 (en) 2009-01-16 2012-05-03 Phoenix Contact Gmbh & Co. Kg Photovoltaic system with module monitoring
US20100198424A1 (en) * 2009-01-30 2010-08-05 Toru Takehara Method for reconfigurably connecting photovoltaic panels in a photovoltaic array
US8297273B2 (en) * 2009-02-08 2012-10-30 Atomic Energy Council—Institute of Nuclear Energy Research Controlling apparatus for a concentration photovoltaic system
US9401439B2 (en) * 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
JP5260387B2 (en) * 2009-03-31 2013-08-14 株式会社ダイヘン Converter control device and grid-connected inverter system using the converter control device
US8435056B2 (en) * 2009-04-16 2013-05-07 Enphase Energy, Inc. Apparatus for coupling power generated by a photovoltaic module to an output
EP2249457A1 (en) * 2009-05-08 2010-11-10 Nxp B.V. PV solar cell
US8217534B2 (en) * 2009-05-20 2012-07-10 General Electric Company Power generator distributed inverter
CN104158483B (en) 2009-05-22 2017-09-12 太阳能安吉科技有限公司 The heat dissipating junction box of electric isolution
US8303349B2 (en) 2009-05-22 2012-11-06 Solaredge Technologies Ltd. Dual compressive connector
US8690110B2 (en) 2009-05-25 2014-04-08 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
IT1395530B1 (en) * 2009-05-27 2012-09-28 Carletti METHOD AND ITS APPARATUS FOR THE MANAGEMENT AND CONDITIONING OF ENERGY PRODUCTION FROM PHOTOVOLTAIC PLANTS
EP2443666A4 (en) 2009-06-15 2013-06-05 Tenksolar Inc Illumination agnostic solar panel
EP2280469B1 (en) * 2009-07-30 2016-07-06 Nxp B.V. A photovoltaic unit, a dc-dc converter therefor, and a method of operating the same
US8102074B2 (en) * 2009-07-30 2012-01-24 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
US8791602B2 (en) * 2009-08-17 2014-07-29 NavSemi Energy Private Ltd. System and method for controlling a solar panel output
US8314375B2 (en) 2009-08-21 2012-11-20 Tigo Energy, Inc. System and method for local string management unit
US8482156B2 (en) * 2009-09-09 2013-07-09 Array Power, Inc. Three phase power generation from a plurality of direct current sources
MX2012003417A (en) * 2009-09-21 2013-05-30 Renewable Energy Solution Systems Solar power distribution system.
US8263920B2 (en) * 2009-09-30 2012-09-11 The Boeing Company Diodeless terrestrial photovoltaic solar power array
JP5507959B2 (en) * 2009-10-26 2014-05-28 パナソニック株式会社 Power selling system
US9413174B2 (en) * 2009-11-30 2016-08-09 Atonometrics, Inc. I-V measurement system for photovoltaic modules
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
CN104143956B (en) * 2010-02-26 2017-09-26 东芝三菱电机产业系统株式会社 Solar power system
ES2853174T3 (en) * 2010-02-26 2021-09-15 Toshiba Mitsubishi Elec Ind Power generation system
FR2958080B1 (en) * 2010-03-26 2012-08-31 Watt Consulting DEVICE AND METHOD FOR DETECTING THE PERFORMANCE OF PHOTOVOLTAIC PANELS
WO2011139803A2 (en) 2010-04-27 2011-11-10 Navsemi Energy Private Limited Method and apparatus for controlling a solar panel output in charging a battery
CN102822762B (en) * 2010-05-12 2015-11-25 欧姆龙株式会社 Electric pressure converter, voltage conversion method, power regulator, electric power method of adjustment, solar power system and management devices
US9116537B2 (en) 2010-05-21 2015-08-25 Massachusetts Institute Of Technology Thermophotovoltaic energy generation
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
WO2011163437A2 (en) 2010-06-25 2011-12-29 Massachusetts Institute Of Technology Power processing methods and apparatus for photovoltaic systems
EP2603932A4 (en) 2010-08-10 2017-07-05 Tenksolar, Inc. Highly efficient solar arrays
US9035626B2 (en) * 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US9331499B2 (en) * 2010-08-18 2016-05-03 Volterra Semiconductor LLC System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
US10615743B2 (en) * 2010-08-24 2020-04-07 David Crites Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
CN101951190B (en) * 2010-09-08 2012-10-24 文创太阳能(福建)科技有限公司 Photovoltaic module capable of being electrically isolated
DE102011110197B4 (en) * 2010-09-10 2018-04-12 Sew-Eurodrive Gmbh & Co Kg System with a DC link as common rail and method of operating a system with arranged in different housings actuators
DE202010014744U1 (en) 2010-10-26 2012-01-30 Diehl Ako Stiftung & Co. Kg photovoltaic system
EP2461456B1 (en) * 2010-12-03 2014-07-02 ABB Oy AC conversion of varying voltage DC such as solar power
DE102011056107A1 (en) * 2010-12-07 2012-06-14 Hst Elektronik Gmbh Safety device for photovoltaic systems
CN102082194A (en) * 2010-12-31 2011-06-01 常州天合光能有限公司 Intelligent junction box with voltage regulation control function
GB2496140B (en) * 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
US8952672B2 (en) 2011-01-17 2015-02-10 Kent Kernahan Idealized solar panel
ITVI20110112A1 (en) 2011-04-29 2012-10-30 Itaco S R L PHOTOVOLTAIC PLANT FOR THE PRODUCTION OF ELECTRIC POWER OF HIGH POWER
US20130009483A1 (en) * 2011-05-31 2013-01-10 Kawate Keith W Power generator module connectivity control
WO2012176168A2 (en) * 2011-06-22 2012-12-27 Morgan Solar Inc. Photovoltaic power generation system
EP2735021A4 (en) 2011-07-18 2015-03-11 Enphase Energy Inc Resilient mounting assembly for photovoltaic modules
US9368965B2 (en) 2011-07-28 2016-06-14 Tigo Energy, Inc. Enhanced system and method for string-balancing
US9431825B2 (en) 2011-07-28 2016-08-30 Tigo Energy, Inc. Systems and methods to reduce the number and cost of management units of distributed power generators
US9142965B2 (en) 2011-07-28 2015-09-22 Tigo Energy, Inc. Systems and methods to combine strings of solar panels
JP5747742B2 (en) * 2011-08-30 2015-07-15 Jx日鉱日石エネルギー株式会社 Arithmetic device for optimizing photovoltaic power generation, method for optimizing photovoltaic power generation, photovoltaic power generation system, and photovoltaic power generation simulation system
GB2496139B (en) * 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
EP2774243B1 (en) 2011-11-01 2018-05-16 SolarCity Corporation Photovoltaic power conditioning units
US9112430B2 (en) 2011-11-03 2015-08-18 Firelake Acquisition Corp. Direct current to alternating current conversion utilizing intermediate phase modulation
WO2013075144A1 (en) 2011-11-20 2013-05-23 Solexel, Inc. Smart photovoltaic cells and modules
US10181541B2 (en) 2011-11-20 2019-01-15 Tesla, Inc. Smart photovoltaic cells and modules
WO2013108210A1 (en) * 2012-01-19 2013-07-25 Ramot At Tel-Aviv University Ltd. Overcoming power loss in photovoltaic arrays having differential generating capacity by substring energy harvesting paths
JP2013187496A (en) * 2012-03-09 2013-09-19 Panasonic Corp Power generation control device, power generation control system, and power generation control method
EP3168971B2 (en) 2012-05-25 2022-11-23 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9141123B2 (en) 2012-10-16 2015-09-22 Volterra Semiconductor LLC Maximum power point tracking controllers and associated systems and methods
USD734653S1 (en) 2012-11-09 2015-07-21 Enphase Energy, Inc. AC module mounting bracket
US9685789B2 (en) 2013-03-14 2017-06-20 The Board Of Trustees Of The Leland Stanford Junior University Current diversion for power-providing systems
US10784815B2 (en) 2013-04-13 2020-09-22 Sigmagen, Inc. Solar photovoltaic module remote access module switch and real-time temperature monitoring
ITPI20130045A1 (en) * 2013-05-28 2014-11-29 Alessandro Caraglio DEVICE AND METHOD OF OPTIMIZATION OF ENERGY PRODUCED BY PHOTOVOLTAIC PANELS.
DE102013106808A1 (en) * 2013-06-28 2014-12-31 Sma Solar Technology Ag Circuit arrangement for inline power supply
JP6209412B2 (en) * 2013-09-27 2017-10-04 株式会社日立製作所 Fault diagnosis system and fault diagnosis method for photovoltaic power generation system
US9831369B2 (en) 2013-10-24 2017-11-28 National Technology & Engineering Solutions Of Sandia, Llc Photovoltaic power generation system with photovoltaic cells as bypass diodes
CN103560159B (en) * 2013-11-06 2016-08-24 无锡清莲新能源科技有限公司 Protection circuit for photovoltaic cell group
UA107542C2 (en) 2014-01-24 2015-01-12 Товариство З Обмеженою Відповідальністю "Техінвест-Еко" METHOD AND APPARATUS FOR takeoff OF ELECTRICAL ENERGY from photoelectric module
US20160079761A1 (en) * 2014-09-15 2016-03-17 The Board Of Trustees Of The University Of Illinois System and method for power point tracking for photovoltaic cells
US10218307B2 (en) 2014-12-02 2019-02-26 Tigo Energy, Inc. Solar panel junction boxes having integrated function modules
CN105319431B (en) * 2015-11-02 2018-04-13 珠海格力电器股份有限公司 Working state detecting method, device and system and the photovoltaic electric system of photovoltaic panel
WO2017083687A1 (en) * 2015-11-13 2017-05-18 Schmidt Robert F Modular photovoltaic light and power cube
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN107153212B (en) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 Method for mapping a power generation facility
CN105932964B (en) * 2016-05-20 2018-03-09 华为技术有限公司 A kind of photovoltaic module detection means and power system
EP3687019A1 (en) * 2016-05-25 2020-07-29 Solaredge Technologies Ltd. Photovoltaic power device and wiring
DE102017205524A1 (en) * 2017-03-08 2018-09-13 Siemens Aktiengesellschaft photovoltaic facility
US11611006B2 (en) * 2017-04-28 2023-03-21 Maxeon Solar Pte. Ltd. Automated reel processes for producing solar modules and solar module reels
CN109765960B (en) * 2019-03-04 2020-08-28 上海数明半导体有限公司 Maximum power tracking power generation device and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017860A1 (en) * 1990-06-02 1991-12-05 Schottel Werft ENERGY RECOVERY SYSTEM, IN PARTICULAR PROPELLER SHIP DRIVE, WITH POWER FROM A SOLAR GENERATOR
DE4032569A1 (en) * 1990-10-13 1992-04-16 Flachglas Solartechnik Gmbh Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network
ES2094801T3 (en) * 1990-12-28 1997-02-01 Webasto Systemkomponenten Gmbh DEVICE TO SHADE SURFACES WITH A FASTENING CEILING COVER AND PHOTOVOLTAIC ELEMENTS PROVIDED FOR IN IT.
JP2666754B2 (en) * 1994-12-19 1997-10-22 日本電気株式会社 Power supply method in solar cell power supply
DE19502762C2 (en) * 1995-01-30 2000-05-31 Inst Luft Kaeltetech Gem Gmbh Process and circuit arrangement for MPP control of photovoltaic solar systems
DE19838229A1 (en) * 1998-08-22 2000-02-24 Gfe Ges Fuer Energieelektronik Electric energy transmission system from photo-voltaic cells into electric supply network, stabilizes parameters of central DC voltage and/or current circuit through conventional DC pulse converter
DE19904561C1 (en) * 1999-02-04 2000-08-24 Rossendorf Forschzent Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator
DE19916742C1 (en) * 1999-04-13 2000-08-24 Angew Solarenergie Ase Gmbh Solar cell current generation circuit has bypass diodes across each solar cell chain connected in series and bridged in groups by further diodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03098703A3 *

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring

Also Published As

Publication number Publication date
AU2003232634A1 (en) 2003-12-02
US20050172995A1 (en) 2005-08-11
JP4092334B2 (en) 2008-05-28
JP2005528071A (en) 2005-09-15
US7709727B2 (en) 2010-05-04
WO2003098703A2 (en) 2003-11-27
WO2003098703A3 (en) 2005-05-12
DE10393094D2 (en) 2005-05-12
DE10222621A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
WO2003098703A2 (en) Circuit arrangement for a photovoltaic system
DE19904561C1 (en) Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator
DE102017118610A1 (en) DC conversion for electrified distributed control vehicles
EP2244348B1 (en) Wind farm with multiple wind energy assemblies and method for regulating the feed-in from a wind farm
DE19515786C2 (en) Solar energy system
EP1728305B1 (en) Device for distributing charge and monitoring several accumulators
DE3525630A1 (en) Method for optimum matching of the voltage from a solar generator to a parallel-connected battery
EP2705564B1 (en) Method for controlling a battery, and a battery for carrying out the method
DE102018106309A1 (en) energy storage
EP2461455B1 (en) Photovoltaic device
EP3491693B1 (en) Fuel cell system and method for operating a fuel cell system
WO2013041534A2 (en) Provision of control power with a photovoltaic arrangement
DE3346508C2 (en)
EP3526891B1 (en) Control device for a dc converter, dc converter, and method for controlling a dc converter
DE2352657B2 (en) Voltage regulating arrangement for an electrical energy source
DE102011054971A1 (en) Method for controlling photovoltaic system, involves transferring electric current signals between photovoltaic generator and alternating current network using inverter in accordance with acquired power control signal
WO2013117305A2 (en) Energy harvesting system with energy accumulator and method for operating an energy harvesting system
DE102017003635A1 (en) System and method for active energy balancing or active voltage compensation
WO2018146226A1 (en) Method for determining the maximum possible output of a pv system, and pv system
DE102019131019A1 (en) METHOD FOR DETERMINING AN OPERATING PARAMETER OF A PV SYSTEM, PV SYSTEM WITH AN INVERTER AND INVERTER FOR SUCH A PV SYSTEM
DE102006022706B3 (en) Drive device for e.g. internal combustion engine of vehicle, has voltage stabilisation device with two controllers, which are assigned to two different system components and each controller has two asymmetrical Integral regulators
DE10043139B4 (en) Method for monitoring fuel cell stacks and monitoring unit
DE102013106151A1 (en) Power generation system, has two groups of inverters, and measuring devices for measuring electrical parameters of collective total current output of inverters, where group control devices define how control device controls inverters
DE2828645A1 (en) DEVICE FOR CONTROLLING AT LEAST TWO HYDRAULIC TURBINES
DE102018102767A1 (en) METHOD FOR DETERMINING A PROPERTY OF AT LEAST ONE PV MODULE BY MEANS OF A UNIDIRECTIONALLY COMMUNICATION TO THE PV MODULE AND PV PLANT USING THE METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17P Request for examination filed

Effective date: 20051111

17Q First examination report despatched

Effective date: 20101130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202