DE19904561C1 - Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator - Google Patents

Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator

Info

Publication number
DE19904561C1
DE19904561C1 DE19904561A DE19904561A DE19904561C1 DE 19904561 C1 DE19904561 C1 DE 19904561C1 DE 19904561 A DE19904561 A DE 19904561A DE 19904561 A DE19904561 A DE 19904561A DE 19904561 C1 DE19904561 C1 DE 19904561C1
Authority
DE
Germany
Prior art keywords
solar
solar generator
sensor
generator
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19904561A
Other languages
German (de)
Inventor
Udo Rindelhardt
Guenther Teichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Dresden Rossendorf eV
Original Assignee
Forschungszentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Dresden Rossendorf eV filed Critical Forschungszentrum Dresden Rossendorf eV
Priority to DE19904561A priority Critical patent/DE19904561C1/en
Application granted granted Critical
Publication of DE19904561C1 publication Critical patent/DE19904561C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The control method uses calculation of the power characteristic (B) from a quasi- continuous current characteristic (A) of a sensor of similar type and charge to the solar generator, which is isolated from the latter, with provision of a setting parameter for the solar generator transducer in dependence on the maximum power point (MPP) of the power characteristic. An Independent claim for a maximum power point control circuit is also included.

Description

Die Erfindung betrifft ein Verfahren und eine Schaltungsanordnung zur Maximum-Power-Point- Steuerung von photovoltaischen Solargeneratoren.The invention relates to a method and a circuit arrangement for maximum power point Control of photovoltaic solar generators.

Es ist allgemein bekannt, daß aus photovoltaischen Solargeneratoren die maximale Leistung nur entnommen werden kann, wenn der Generator in einem bestimmten Arbeitspunkt, dem Maxi­ mum Power Point - nachfolgend als MPP bezeichnet - betrieben wird. Der MPP hängt bei jedem Generator von den jeweiligen äußeren Betriebsbedingungen, insbesondere der aktuellen Bestrahlungsstärke und der Temperatur der Solarzellen ab. Da sich diese Parameter im prakti­ schen Betrieb ständig ändern können, ist zur maximalen Energiegewinnung eine kontinuierliche Nachführung des aktuellen Arbeitspunktes zum jeweiligen MPP erforderlich.It is generally known that the maximum output from photovoltaic solar generators only can be taken if the generator at a certain operating point, the Maxi mum Power Point - hereinafter referred to as MPP - is operated. The MPP depends on everyone Generator from the respective external operating conditions, especially the current one Irradiance and the temperature of the solar cells. Since these parameters are in practice constantly changing operation is a continuous one for maximum energy production It is necessary to update the current working point for the respective MPP.

Ein weit verbreitetes Verfahren zur Gewährleistung des Betriebes eines Solargenerators im MPP ist das sogenannte MPP-Tracking (B. Günther, G. Wirtz, Endbericht: Meßtechnische Untersu­ chungen an Systemkomponenten photovoltaischer Stromerzeugersysteme, Forschungsstelle für Energiewirtschaft, München 1994, S. 112-114; Sakulin, M.: Die Problematik bei der photo- Voltaischen Stromeinspeisung ins öffentliche Netz, e 1992, H. 7/8, S. 373-379; Aeberland, M.: Solargeneratoren unter Kontrolle, TR Transfer Nr. 14, 1996, S. 38-39). Dabei wird durch den dem Solargenerator nachgeschalteten DC-DC-Steller bzw. DC-AC-Wandler nach einem vorgegebenen Zeitregime der aktuelle Arbeitspunkt des Generators (bestimmt durch Strom und Spannung) verlassen und geprüft, ob an einem anderen Arbeitspunkt dem Generator eine höhere Leistung entnommen werden kann. Ist dies nicht der Fall, so wird der Generator weiterhin im bisherigen Arbeitspunkt betrieben. Andernfalls erfolgt eine Änderung des Arbeitspunktes durch Anfahren des neuen MPP. Als Nachteil dieses Verfahrens gilt, daß während der Regelung sowie bei Betrieb im festen Arbeitspunkt bei sich ggf. gleichzeitig ändernden äußeren Bedingungen dem Generator nicht die maximal mögliche Leistung entnommen werden kann.A widely used procedure to ensure the operation of a solar generator in the MPP is the so-called MPP tracking (B. Günther, G. Wirtz, final report: Meßtechnische Untersu System components of photovoltaic power generation systems, research center for Energiewirtschaft, Munich 1994, pp. 112-114; Sakulin, M .: The problem with photo Voltaic electricity feed into the public network, e 1992, H. 7/8, S. 373-379; Aeberland, M .: Solar generators under control, TR Transfer No. 14, 1996, pp. 38-39). This is done by the DC-DC converter or DC-AC converter downstream of the solar generator after a predefined time regime the current operating point of the generator (determined by current and Voltage) and checked whether the generator has a higher one at another operating point Power can be taken. If this is not the case, the generator will continue to run previous operating point operated. Otherwise the operating point is changed by Starting up the new MPP. The disadvantage of this method is that during the regulation as well  when operating at a fixed operating point with possibly changing external conditions at the same time the maximum possible power cannot be taken from the generator.

Es ist auch ein Verfahren bekannt, nach dem der MPP eines Solargenerators durch eine schnelle Messung seines Kurzschlußstromes und der Leerlaufspannung sowie Vergleich dieser Werte mit gespeicherten Kennlinien ermittelt wird (DE-OS 43 25 436). Abgesehen von der durch die galvanische Netztrennung technisch aufwendigen Messung von großen DC-Strömen setzt dieses Verfahren die genaue Kenntnis der Generatorkennlinien voraus. Zudem wird für die Zeitdauer der Messung von Kurzschlußstrom und Leerlaufspannung die Energieabgabe vom Solargenera­ tor unterbrochen.A method is also known according to which the MPP of a solar generator is replaced by a fast one Measurement of its short-circuit current and the open circuit voltage and comparison of these values with stored characteristics is determined (DE-OS 43 25 436). Apart from that by the Galvanic isolation separates technically complex measurement of large DC currents Precise knowledge of the generator characteristic curve. In addition, for the duration the measurement of short-circuit current and open circuit voltage, the energy output from the solar genera gate interrupted.

Ferner ist ein Verfahren bekannt, bei dem durch eine spezielle Schaltung des Solargenerators in zwei identische Teilgeneratoren sowie durch Vergleich der von den Teilgeneratoren gelieferten Ströme eine MPP-Regelung vorgenommen wird (DE-PS 195 15 786). Nachteilig an diesem Verfahren ist die Notwendigkeit, zwei elektrisch identische Teilgeneratoren zu montieren. Auch die Steuerung des MPP eines Solargenerators mittels eines unabhängigen Sensors, der der gleichen Strahlung wie der Solargenerator ausgesetzt ist, ist bekannt (DE 195 02 762 A1; Pfeiffer, H. und Fett, F. N.: Solarzellen-Versuchs-Anlage, Messen prüfen automatisieren, Juli/August 1985, S. 384-390). Eine andere bekannte Möglichkeit besteht in der Steuerung nach der gemessenen Modultemperatur (B. Günther, G. Wirtz, a. a. o.). Nachteil der beiden letztgenannten Verfahren ist, daß nur jeweils ein den MPP bestimmender Parameter zur Steuerung benutzt wird. Zudem erfordern beide Möglichkeiten Kenntnisse bzw. Berechnungen des Kennlinienfeldes des Solargenerators.Furthermore, a method is known in which a special circuit of the solar generator in two identical sub-generators and by comparing the ones supplied by the sub-generators Currents an MPP regulation is made (DE-PS 195 15 786). Disadvantage of this Process is the need to assemble two electrically identical sub-generators. The control of the MPP of a solar generator by means of an independent sensor, which the is exposed to the same radiation as the solar generator is known (DE 195 02 762 A1; Pfeiffer, H. and Fett, F. N .: Solar cell test facility, automated measurement testing, July / August 1985, pp. 384-390). Another known possibility is control after the measured module temperature (B. Günther, G. Wirtz, op. cit.). Disadvantage of the two the latter method is that only one parameter determining the MPP for each Control is used. In addition, both options require knowledge or calculations the characteristic field of the solar generator.

In DE 40 17 860 A1 werden die beiden vorstehend angeführten Verfahren kombiniert durch einen Mikrorechner ergänzt. Die Ermittlung des MPP erfolgt zunächst auf konventionelle Weise. Die Daten des so gefundenen MPP werden zusammen mit den Werten der Einstrahlung und der Temperatur im Mikrorechner abgespeichert. Nach einer gewissen Lernzeit besitzt der Mikrorechner genügend Wertepaare, so daß danach die Bestimmung des MPP allein auf der Basis der gespeicherten Werte der Einstrahlung und der Temperatur erfolgen kann. Der Nachteil dieses Verfahrens besteht darin, daß Änderungen der Kennlinie des Solargenerators, z. B. durch Alterung oder Verschmutzung, nicht erkannt werden und somit bei Eintreten dieser Umstände der auf Basis von Einstrahlung und Temperatur gespeicherte MPP-Wert vom tatsächlich vorhandenen MPP-Wert abweicht. In DE 40 17 860 A1, the two methods listed above are combined by added a microcomputer. The MPP is initially determined using conventional methods Wise. The data of the MPP found in this way are combined with the values of the irradiation and the temperature stored in the microcomputer. After a certain period of study, the Microcomputer enough pairs of values so that afterwards the determination of the MPP alone on the Basis of the stored radiation and temperature values can be done. The disadvantage this method is that changes in the characteristic of the solar generator, for. B. by Aging or pollution, can not be detected and thus when these circumstances occur the MPP value of the actual stored on the basis of irradiation and temperature existing MPP value deviates.  

In JP-181907 A wird der von der Referenzzelle über einem Widerstand erzeugte Spannungs­ abfall genutzt, um durch Vergleich mit zuvor ermittelten Werten einen Sollwert für das MPP- Tracking zu erhalten. Dabei ist nachteilig, daß lediglich durch Messung des Spannungsabfalls über einem festen Widerstand weder der MPP der Referenzzelle noch der MPP des Solargenera­ tors eindeutig bestimmbar sind.JP-181907 A describes the voltage generated by the reference cell across a resistor waste is used to determine a setpoint for the MPP- by comparison with previously determined values Get tracking. The disadvantage here is that only by measuring the voltage drop over a fixed resistance neither the MPP of the reference cell nor the MPP of the Solargenera tors are clearly determinable.

Aufgabe der Erfindung ist es, die MPP-Steuerung eines Solargenerators mittels eines Sensors zeitnah, mit geringem technischen Aufwand und ohne Unterbrechung der Energieabgabe vorzunehmen.The object of the invention is to control the MPP of a solar generator by means of a sensor promptly, with little technical effort and without interrupting the energy supply to make.

Erfindungsgemäß wird die Aufgabe durch die in den Patentansprüchen aufgeführten Merkmale gelöst.According to the invention the object is achieved by the features listed in the claims solved.

Der Vorteil der Erfindung liegt gegenüber den bisher üblichen Verfahren darin, daß der MPP des Solargenerators quasikontinuierlich und unabhängig vom aktuellen Arbeitspunkt des Solargene­ rators ermittelt werden kann. Dies geschieht im Wesentlichen dadurch, daß durch den gewähl­ ten, vom Solargenerator elektrisch getrennten Sensor sowohl die aktuelle, auf den Solargenera­ tor wirkende Bestrahlungsstärke, als auch die Temperatur des Solargenerators bzw. der Solar­ zellen korrekt berücksichtigt wird. Auch bei schnellen Änderungen der Bestrahlungsstärke, z. B. infolge Durchzug von Wolkenfeldern, kann der Solargenerator faktisch ständig im MPP betrieben werden und damit energetische Verluste durch Betrieb des Solargenerators in vom MPP abweichenden Arbeitspunkten ausgeschlossen werden. Die Kennlinienmessung des Sensors kann nach bewährten Verfahren (elektronisch oder kapazitiv veränderliche Belastung) einfach durchgeführt werden. Kenntnisse über die Kennlinienfelder der den Solargenerator bildenden Module sind nicht erforderlich, d. h. auch bei produktionsbedingten Abweichungen der Modulparameter der eingesetzten Charge ist ein optimaler MPP-Betrieb des Solargenerators nach der Erfindung möglich.The advantage of the invention over the conventional methods is that the MPP of Solar generator quasi-continuously and regardless of the current operating point of the solar gene rators can be determined. This is done essentially by the fact that the The sensor, which is electrically isolated from the solar generator, is the current sensor on the solar generator Tor acting irradiance, as well as the temperature of the solar generator or the solar cells is taken into account correctly. Even with rapid changes in the irradiance, e.g. B. due to the passage of cloud fields, the solar generator can actually be in the MPP all the time be operated and thus energy losses from operating the solar generator in the MPP deviating working points can be excluded. The characteristic curve measurement of the Sensors can be used according to proven methods (electronically or capacitively variable load) just be done. Knowledge of the characteristic fields of the solar generator educational modules are not required, d. H. even with production-related deviations the module parameter of the batch used is optimal MPP operation of the solar generator possible according to the invention.

Die Erfindung wird nachfolgend an je einem Ausführungsbeispiel für das Verfahren und die Schaltungsanordnung näher erläutert.The invention is based on an exemplary embodiment of the method and the Circuit arrangement explained in more detail.

In der zugehörigen Zeichnung zeigen Show in the accompanying drawing  

Fig. 1 die Kennlinien des Sensors, Fig. 1 shows the characteristics of the sensor,

Fig. 2 die Schaltungsanordnung zur MPP-Steuerung in ihrer Grundform. Fig. 2 shows the circuit arrangement for MPP control in its basic form.

Nach dem Verfahren werden die Werte zur Bestimmung des MPP des Photovoltaik-Generators, nachstehend als PV-Generator bezeichnet, aus einem speziellen Sensor gewonnen. Dieser besteht aus Zellmaterial derselben Charge wie der energieliefernde PV-Generator und ist bezüglich seiner optischen und thermischen Eigenschaften in gleicher Weise wie die Module des PV-Generators verarbeitet und montiert. Er ist im einfachsten Fall ein PV-Modul aus der Lieferung des PV-Generators. Dieses Sensormodul wird innerhalb des Solargenerators, jedoch elektrisch isoliert, angebracht. Damit wirken alle den MPP des PV-Generators beeinflussenden Größen (Bestrahlung, Temperatur, Staub, usw.) in gleicher Weise auf die Kennlinie des Sensors. Kern des Verfahrens ist die vom aktuellen Arbeitspunkt des PV-Generators unabhängige und quasikontinuierliche Messung der Kennlinie des Sensors. Diese wird innerhalb von ca. 1 ms aufgenommen. Sie ist in Fig. 1 als Kurve A dargestellt. Daraus wird die Leistungskennlinie (Kurve B) berechnet. Im nächsten Schritt wird durch Bestimmung des Leistungsmaximums die MPP-Spannung des Sensors (Punkt MPP) ermittelt. Dieses Verfahren wird im Abstand von beispielsweise 1 Sekunde wiederholt.According to the method, the values for determining the MPP of the photovoltaic generator, hereinafter referred to as the PV generator, are obtained from a special sensor. This consists of cell material from the same batch as the energy-generating PV generator and is processed and assembled in terms of its optical and thermal properties in the same way as the modules of the PV generator. In the simplest case, it is a PV module from the delivery of the PV generator. This sensor module is installed inside the solar generator, but is electrically insulated. This means that all variables influencing the MPP of the PV generator (radiation, temperature, dust, etc.) act in the same way on the characteristic curve of the sensor. The core of the process is the quasi-continuous measurement of the sensor's characteristic curve, which is independent of the current operating point of the PV generator. This is recorded within approx. 1 ms. It is shown as curve A in FIG. 1. The performance curve (curve B) is calculated from this. In the next step, the MPP voltage of the sensor (point MPP) is determined by determining the maximum power. This process is repeated every 1 second, for example.

Die Anpassung der Sensormeßgröße MPP-Spannung an die Regelgröße für den PV-Generator erfolgt durch Vergleich der in Reihe geschalteten Solarzellenanzahlen von Sensor und PV- Generator. Die so ermittelte Regelgröße wird dem Wandler in geeigneter Form übergeben, der den Solargenerator seinerseits auf den MPP einstellt. Die Regelgröße wird gegebenenfalls entsprechend der Meßfrequenz auf einen neuen Wert eingestellt.The adaptation of the sensor measured variable MPP voltage to the controlled variable for the PV generator is done by comparing the number of solar cells in series from the sensor and the PV Generator. The control variable determined in this way is transferred to the converter in a suitable form, which in turn sets the solar generator to the MPP. The controlled variable is, if necessary set to a new value according to the measuring frequency.

Die Schaltungsanordnung ist in Fig. 2 dargestellt. Der PV-Solargenerator 1 ist in üblicher Weise mit dem DC-DC-Wandler 2 verbunden. Über eine Steuerung im Innern des Wandlers 2 wird der Arbeitspunkt des PV-Solargenerators eingestellt, was z. B. durch eine Impulsbreitens­ teuerung realisiert wird.The circuit arrangement is shown in Fig. 2. The PV solar generator 1 is connected to the DC-DC converter 2 in the usual way. The operating point of the PV solar generator is set via a control inside the converter 2 . B. is realized by a pulse width expensive.

Erfindungsgemäß wird die Regelgröße für diese Steuerung aus den verarbeiteten Meßsignalen des Sensors 3 gewonnen. Dazu wird der Sensorausgang über eine Kennlinienmessschaltung 4 mit einem Mikrorechner 5 verbunden. Die Kennlinienmessschaltung 4 enthält als zeitgesteuertes Belastungselement einen Feldeffekttransistor sowie Multiplexer, ADC und DAC. Durch den Mikrorechner 5 werden der Drain-Source-Widerstand des Feldeffekttransistors innerhalb von 1 ms von Unendlich bis Null durchfahren und gleichzeitig Strom und Spannung des Sensors alle 50 µs gemessen. Der Mikrorechner 5 steuert über die genannten Baugruppen sowohl die Kenn­ linienmessung als auch die Berechnung des MPP und nimmt die Taktung der Schaltung vor. Dazu ist eine Firmware-Programm-Steuerung über einen PROM am Mikrorechner 5 installiert. Aus der ermittelten MPP-Spannung des Sensors 3 wird die aktuelle MPP-Spannung des PV- Generators bestimmt. Dieses Ergebnis ist definiert durch das Verhältnis der in Reihe ge­ schalteten Solarzellenzahl im Sensor 3 und im PV-Generator. Unter Berücksichtigung des Übertragungsfakors des Wandlers 2 berechnet der Mikrorechner 5 die Regelgröße und überträgt diese über einen DAC an den Wandler 2, der die Einstellung des MPP des PV-Solargenerators vornimmt.According to the invention, the controlled variable for this control is obtained from the processed measurement signals from sensor 3 . For this purpose, the sensor output is connected to a microcomputer 5 via a characteristic curve measuring circuit 4 . The characteristic curve measuring circuit 4 contains a field effect transistor as well as multiplexer, ADC and DAC as a time-controlled load element. The microcomputer 5 traverses the drain-source resistance of the field effect transistor from infinity to zero within 1 ms and simultaneously measures the current and voltage of the sensor every 50 μs. The microcomputer 5 controls both the characteristic line measurement and the calculation of the MPP via the modules mentioned and carries out the clocking of the circuit. For this purpose, a firmware program control is installed on the microcomputer 5 via a PROM. The current MPP voltage of the PV generator is determined from the determined MPP voltage of sensor 3 . This result is defined by the ratio of the number of solar cells connected in series in sensor 3 and in the PV generator. Taking into account the transmission factor of the converter 2 , the microcomputer 5 calculates the controlled variable and transmits it via a DAC to the converter 2 , which carries out the setting of the MPP of the PV solar generator.

Claims (6)

1. Verfahren zur Maximum-Power-Point-Steuerung von Solargeneratoren, wobei der Arbeitspunkt des Solargenerators durch einen Wandler festgelegt wird,
quasikontinuierlich die Stromkennlinie eines vom Solargenerator elektrisch isolierten Sensors gleichen Typs und gleicher Charge wie die im Solargenerator verwendeten Solarmodule bestimmt wird,
aus der Stromkennlinie die Leistungskennlinie berechnet wird und
aus deren Maximum quasikontinuierlich die Regelgröße für den Wandler abgeleitet wird.
1. Method for maximum power point control of solar generators, the operating point of the solar generator being determined by a converter,
the current characteristic of a sensor electrically insulated from the solar generator of the same type and the same batch as the solar modules used in the solar generator is determined virtually continuously,
the power characteristic is calculated from the current characteristic and
the control variable for the converter is derived quasi-continuously from its maximum.
2. Schaltungsanordnung zur Durchführung des Verfahrens nach Anspruch 1, wobei ein Sensor und ein Wandler mit einer Steuerung verwendet werden und der Wandler zwischen dem Solargenerator und der Last angeordnet ist, und wobei zwischen Sensor (3) und Wandlersteuerung eine Kennlinienmessung (4) und ein Mikrorechner (5) zur Ermittlung der Regelgröße des Wandlers (2) eingeschaltet sind.2. Circuit arrangement for performing the method according to claim 1, wherein a sensor and a converter are used with a controller and the converter is arranged between the solar generator and the load, and wherein between the sensor ( 3 ) and converter controller a characteristic curve measurement ( 4 ) and a Microcomputer ( 5 ) for determining the controlled variable of the converter ( 2 ) are switched on. 3. Schaltungsanordnung nach Anspruch 2, wobei der Sensor konstruktiv im oder unmittelbar neben dem Solargenerator in gleicher Weise wie die den Solargenerator bildenden Solarmodule angebracht ist.3. Circuit arrangement according to claim 2, wherein the sensor constructively in or directly next to the solar generator in the same way as that of the solar generator forming solar modules is attached. 4. Schaltungsanordnung nach Anspruch 2 oder 3, wobei das den Sensor bildende Solarmodul nur aus einer Solarzelle besteht. 4. Circuit arrangement according to claim 2 or 3, wherein the sensor forming Solar module consists of only one solar cell.   5. Schaltungsanordnung nach Anspruch 2 oder 3, wobei das den Sensor bildende Solarmodul aus wenigen Solarzellen besteht.5. Circuit arrangement according to claim 2 or 3, wherein the sensor forming Solar module consists of a few solar cells. 6. Schaltungsanordnung nach einem der Ansprüche 2 bis 5, wobei die Kennlinienmessung (4) und der Mikrorechner (5) integraler Bestandteil des den Arbeitspunkt des Solargenerators (1) festlegenden Wandlers (2) ist.6. Circuit arrangement according to one of claims 2 to 5, wherein the characteristic curve measurement ( 4 ) and the microcomputer ( 5 ) is an integral part of the converter ( 2 ) defining the operating point of the solar generator ( 1 ).
DE19904561A 1999-02-04 1999-02-04 Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator Expired - Fee Related DE19904561C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19904561A DE19904561C1 (en) 1999-02-04 1999-02-04 Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19904561A DE19904561C1 (en) 1999-02-04 1999-02-04 Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator

Publications (1)

Publication Number Publication Date
DE19904561C1 true DE19904561C1 (en) 2000-08-24

Family

ID=7896449

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19904561A Expired - Fee Related DE19904561C1 (en) 1999-02-04 1999-02-04 Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator

Country Status (1)

Country Link
DE (1) DE19904561C1 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239576A2 (en) 2001-03-09 2002-09-11 National Institute of Advanced Industrial Science and Technology Maximum power point tracking method and device
DE10136147A1 (en) * 2001-07-25 2003-02-20 Hendrik Kolm Photovoltaic alternating current generator has solar modules, each electrically connected to individual D.C. voltage converter that transforms to intermediate D.C. voltage and decouples module
DE10222621A1 (en) * 2002-05-17 2003-11-27 Josef Steger Process and circuit to control and regulated a photovoltaic device assembly for solar energy has controlled bypass for each cell to ensure maximum power operation
WO2005076444A1 (en) * 2004-01-09 2005-08-18 Philips Intellectual Property & Standards Gmbh Dc/dc converter and decentralized power generation system comprising a dc/dc converter
WO2006079503A2 (en) * 2005-01-26 2006-08-03 Günther Spelsberg GmbH & Co. KG Protective circuit with current bypass for solar cell module
DE102005032864A1 (en) * 2005-07-14 2007-01-25 Sma Technologie Ag Photovoltaic-generator maximum power output finding method, involves switching-off regulation of inverter to charge and discharge generator, and switching-on regulation to transfer operating point from stable into unstable state
DE102007008402A1 (en) 2007-02-21 2008-08-28 Universität Stuttgart Solar module's operating point adjusting device, has direct current/direct current converter provided with input and output which changes input voltage in response to control signal for adjusting operating point of solar module
WO2011064137A1 (en) 2009-11-27 2011-06-03 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Load state determiner, load assembly, power supply circuit and method for determining a load state of an electrical power source
DE202010016207U1 (en) * 2010-12-03 2012-03-06 Voltwerk Electronics Gmbh photovoltaic system
DE102011112474A1 (en) 2011-09-05 2013-03-07 Dehn + Söhne Gmbh + Co. Kg Method and arrangement for overvoltage protection of inverters for photovoltaic installations
US8669675B2 (en) 2003-05-28 2014-03-11 Beacon Power, Llc Power converter for a solar panel
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017860A1 (en) * 1990-06-02 1991-12-05 Schottel Werft ENERGY RECOVERY SYSTEM, IN PARTICULAR PROPELLER SHIP DRIVE, WITH POWER FROM A SOLAR GENERATOR
DE4325436A1 (en) * 1993-07-29 1995-02-02 Inst Luft & Kaeltetechnik Ggmbh Method for regulating photovoltaic solar systems and circuit arrangements for carrying out the method
DE19502762A1 (en) * 1995-01-30 1996-08-01 Inst Luft Kaeltetech Gem Gmbh Procedure for MPP control of photovoltaic solar power plant
DE19515786C2 (en) * 1994-04-28 1997-08-21 Kyocera Corp Solar energy system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017860A1 (en) * 1990-06-02 1991-12-05 Schottel Werft ENERGY RECOVERY SYSTEM, IN PARTICULAR PROPELLER SHIP DRIVE, WITH POWER FROM A SOLAR GENERATOR
DE4325436A1 (en) * 1993-07-29 1995-02-02 Inst Luft & Kaeltetechnik Ggmbh Method for regulating photovoltaic solar systems and circuit arrangements for carrying out the method
DE19515786C2 (en) * 1994-04-28 1997-08-21 Kyocera Corp Solar energy system
DE19502762A1 (en) * 1995-01-30 1996-08-01 Inst Luft Kaeltetech Gem Gmbh Procedure for MPP control of photovoltaic solar power plant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Günther, Wirtz: Endbericht: Meßtechnische Unter- suchungen an Systemkomponenten photovoltaischer Stromerzeugersysteme, Forschungsstelle für Ener- giewirtschaft, München 1994, S.112-114 *
JP-181907 A. In: Pat. Abstr. of Jap. Aeberhard,M.:Solargeneratoren unter Kontrolle. In: TR Transfer Nr.14, 1996, S.38-39 *
Pfeiffer,H. und Fett,F.N.: Solarzellen-Versuchs- Anlage. In: Messen prüfen automatisieren Juli/ August 1985, S.384-390 *
Sakulin,M.: Die Problematik bei der photo-Voltai- schen Stromeinspeisung ins öffentliche Netz. In: e&i 1992, H.7/8, S.373-379 *

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239576A2 (en) 2001-03-09 2002-09-11 National Institute of Advanced Industrial Science and Technology Maximum power point tracking method and device
AU783004B2 (en) * 2001-03-09 2005-09-15 Mishimaki Electronics Co., Ltd. Maximum power point tracking method and device
EP1239576A3 (en) * 2001-03-09 2004-07-07 National Institute of Advanced Industrial Science and Technology Maximum power point tracking method and device
DE10136147B4 (en) * 2001-07-25 2004-11-04 Kolm, Hendrik, Dipl.-Ing. Photovoltaic alternator
DE10136147A1 (en) * 2001-07-25 2003-02-20 Hendrik Kolm Photovoltaic alternating current generator has solar modules, each electrically connected to individual D.C. voltage converter that transforms to intermediate D.C. voltage and decouples module
WO2003098703A3 (en) * 2002-05-17 2005-05-12 Ruediger Roehrig Circuit arrangement for a photovoltaic system
DE10222621A1 (en) * 2002-05-17 2003-11-27 Josef Steger Process and circuit to control and regulated a photovoltaic device assembly for solar energy has controlled bypass for each cell to ensure maximum power operation
US7709727B2 (en) 2002-05-17 2010-05-04 Ruediger Roehrig Circuit arrangement for a photovoltaic system
WO2003098703A2 (en) * 2002-05-17 2003-11-27 Roehrig Ruediger Circuit arrangement for a photovoltaic system
US8669675B2 (en) 2003-05-28 2014-03-11 Beacon Power, Llc Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
WO2005076444A1 (en) * 2004-01-09 2005-08-18 Philips Intellectual Property & Standards Gmbh Dc/dc converter and decentralized power generation system comprising a dc/dc converter
WO2006079503A2 (en) * 2005-01-26 2006-08-03 Günther Spelsberg GmbH & Co. KG Protective circuit with current bypass for solar cell module
US7864497B2 (en) 2005-01-26 2011-01-04 Guenther Spelsberg Gmbh & Co. Kg Protective circuit
US8139335B2 (en) 2005-01-26 2012-03-20 Guenther Spelsberg Gmbh & Co. Kg Protective circuit
WO2006079503A3 (en) * 2005-01-26 2006-11-30 Spelsberg Guenther Gmbh Co Kg Protective circuit with current bypass for solar cell module
DE102005032864B4 (en) * 2005-07-14 2011-04-14 Sma Solar Technology Ag Method for finding a maximum power of a photovoltaic generator
US7471073B2 (en) 2005-07-14 2008-12-30 Sma Technologie Ag Method of finding a maximum power of a photovoltaic generator
DE102005032864A1 (en) * 2005-07-14 2007-01-25 Sma Technologie Ag Photovoltaic-generator maximum power output finding method, involves switching-off regulation of inverter to charge and discharge generator, and switching-on regulation to transfer operating point from stable into unstable state
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
DE102007008402A1 (en) 2007-02-21 2008-08-28 Universität Stuttgart Solar module's operating point adjusting device, has direct current/direct current converter provided with input and output which changes input voltage in response to control signal for adjusting operating point of solar module
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9121912B2 (en) 2009-11-27 2015-09-01 Hahn-Schickard-Gesellschaft Fuer Angewandte Forschung E.V. Loading state determiner, load assembly, power supply circuit and method for determining a loading state of an electric power source
WO2011064137A1 (en) 2009-11-27 2011-06-03 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Load state determiner, load assembly, power supply circuit and method for determining a load state of an electrical power source
DE102009047247A1 (en) 2009-11-27 2011-09-08 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. A load condition determiner, load assembly, power supply circuit, and method for determining a load condition of an electrical power source
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
DE202010016207U1 (en) * 2010-12-03 2012-03-06 Voltwerk Electronics Gmbh photovoltaic system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9601986B2 (en) 2011-09-05 2017-03-21 Dehn + Söhne Gmbh + Co. Kg Method and arrangement for the surge protection of inverters for photovoltaic systems
WO2013034428A1 (en) 2011-09-05 2013-03-14 Dehn + Söhne Gmbh + Co. Kg Method and arrangement for the surge protection of inverters for photovoltaic systems
DE102011112474A1 (en) 2011-09-05 2013-03-07 Dehn + Söhne Gmbh + Co. Kg Method and arrangement for overvoltage protection of inverters for photovoltaic installations
DE102011112474B4 (en) * 2011-09-05 2017-07-13 Dehn + Söhne Gmbh + Co. Kg Method and arrangement for overvoltage protection of inverters for photovoltaic installations
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Similar Documents

Publication Publication Date Title
DE19904561C1 (en) Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator
DE10107600C1 (en) Method for operating a photovoltaic solar module and photovoltaic solar module
DE19502762C2 (en) Process and circuit arrangement for MPP control of photovoltaic solar systems
DE3604513C2 (en)
DE4327996C2 (en) Device for measuring the impedance of rechargeable battery cells
EP2786467B1 (en) Method and apparatus for charging rechargeable cells
DE112006003417T5 (en) Optimization of the efficiency of a photovoltaic electrolysis device
EP1552563A2 (en) Circuit arrangement for a photovoltaic system
CH676515A5 (en)
DE4325436A1 (en) Method for regulating photovoltaic solar systems and circuit arrangements for carrying out the method
EP1818990A2 (en) Solar module for a photovoltaic plant
DE102012104560B4 (en) Detecting the string configuration for a multi-string inverter
EP2858849B1 (en) Method for determining the internal ohmic resistance of a battery module, battery management system and motor vehicle
DE102012105721B4 (en) Controlling a plurality of inverters connected to a common grid transfer point
DE112014004838B4 (en) Solar energy generation device and control method of solar energy generation device
DE112015002996T5 (en) BALANCING CORRECTION CONTROL DEVICE, BALANCING CORRECTION SYSTEM AND ELECTRICAL STORAGE SYSTEM
EP3580826B1 (en) Method for determining the maximum possible output of a pv system, and pv system
EP2295892A1 (en) Method and Apparatus for determining possible deliverable power for given irradiation conditions
EP1925923A2 (en) Method and device for determining measuring values characteristic for the solar irradiance at the location of a PV generator
DE2606396C3 (en) Device for heating up and setting a specified treatment temperature of workpieces by means of a high-current glow discharge
DE102013106151B4 (en) Cascading and energy storage
DE102018101010A1 (en) Real-time monitoring of a multi-zone vertical furnace with early detection of a failure of a heating zone element
WO2020069782A1 (en) Control of a local network sector for implementing a local energy community with a timetable
DE102011084230A1 (en) Method for operating a converter for a starter motor
DE102022110426A1 (en) Method for characterizing and/or optimizing at least one energy storage module

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: FORSCHUNGSZENTRUM DRESDEN - ROSSENDORF E.V., 0, DE

8339 Ceased/non-payment of the annual fee