EP1550481B1 - Inerting method for decreasing the risk of a fire - Google Patents

Inerting method for decreasing the risk of a fire Download PDF

Info

Publication number
EP1550481B1
EP1550481B1 EP03029927A EP03029927A EP1550481B1 EP 1550481 B1 EP1550481 B1 EP 1550481B1 EP 03029927 A EP03029927 A EP 03029927A EP 03029927 A EP03029927 A EP 03029927A EP 1550481 B1 EP1550481 B1 EP 1550481B1
Authority
EP
European Patent Office
Prior art keywords
concentration
protected area
oxygen
control
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03029927A
Other languages
German (de)
French (fr)
Other versions
EP1550481A1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amrona AG
Original Assignee
Amrona AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34560176&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1550481(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Amrona AG filed Critical Amrona AG
Priority to ES03029927T priority Critical patent/ES2399215T3/en
Priority to DK03029927.5T priority patent/DK1550481T3/en
Priority to EP03029927A priority patent/EP1550481B1/en
Priority to US10/584,905 priority patent/US7854270B2/en
Priority to RU2006123037/12A priority patent/RU2318560C1/en
Priority to PCT/EP2004/013285 priority patent/WO2005063337A1/en
Priority to CA2551226A priority patent/CA2551226C/en
Priority to UAA200606995A priority patent/UA86045C2/en
Priority to AU2004308568A priority patent/AU2004308568B2/en
Priority to JP2006545948A priority patent/JP4818932B2/en
Priority to CN200480035850XA priority patent/CN1889999B/en
Priority to TW093138311A priority patent/TWI302843B/en
Publication of EP1550481A1 publication Critical patent/EP1550481A1/en
Priority to HK05108473.4A priority patent/HK1076415A1/en
Priority to NO20063302A priority patent/NO20063302L/en
Publication of EP1550481B1 publication Critical patent/EP1550481B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames

Definitions

  • the present invention relates to an inerting method for reducing the risk of fire in an enclosed protection area, in which the oxygen content in the protected area is maintained at a predeterminable control range by introducing an oxygen-displacing gas from a primary source for a certain time at a control concentration below an operating concentration, and a device for carrying out the method.
  • the oxygen-displacing gases used in this "inert-gas extinguishing technology" are usually stored in special ancillary rooms in steel cylinders. It is also conceivable to use a device for generating an oxygen-displacing gas. These steel bottles or this device for the production of oxygen displacing gas constitute the so-called primary source of Inertgas mecaniclöschstrom. If necessary, then the gas is passed from this primary source via piping systems and corresponding outlet nozzles in the space in question.
  • the associated inert gas fire extinguishing system generally has at least one system for the sudden introduction of the oxygen displacing gas from the primary source into the space to be monitored and a fire detection device for detecting a fire parameter in the room air.
  • the reignition phase refers to the time period after the fire fighting phase in which the oxygen concentration in the protected area must not exceed a certain value, the so-called re-ignition prevention value, to avoid reignition of the materials in the protected area.
  • the re-ignition prevention level is an oxygen concentration that depends on the fire load of the protected area and is determined by experiments. According to the VdS guidelines, when the protection zone is flooded, the oxygen concentration in the protection zone must reach the rebound prevention level of, for example, 13.8% by volume within the first 60 seconds from the start of the flooding (firefighting phase). Further, the level of re-ignition prevention should not be exceeded within 10 minutes after the end of the fire-fighting phase. It is envisaged that within the firefighting phase of the fire in the protected area is completely deleted.
  • the oxygen concentration is shut down as quickly as possible to a so-called operating concentration in the case of a detection signal.
  • the inert gas required for this purpose originates from the primary source of the inert gas fire extinguishing system.
  • the term "operating concentration" is understood to mean a level which is below a so-called design concentration.
  • the design concentration is an oxygen concentration in the protection range at which the ignition of each substance in the protection region is effectively prevented.
  • a safety margin is usually deducted from the limit value at which ignition of any material in the protected area is prevented.
  • the oxygen concentration is usually maintained at a control concentration lower than an operating concentration.
  • the control concentration is a control range of the residual oxygen concentration in the inerted protection zone, within which the oxygen concentration is maintained during the reignition phase. That control range is limited by an upper limit, the turn-on threshold for the primary source of the inert gas fire extinguishing system, and a lower limit, the turn-off threshold of the primary source of the inert gas fire extinguishing system.
  • the control concentration is maintained by repeatedly introducing inert gas within this control range. That inert gas usually comes from the primary source reservoir of the Inertgasfashionerieschstrom, ie, either the device for generating oxygen displacing gas (eg a nitrogen generator), from gas cylinders or other buffer devices.
  • the object of the present invention is to further develop the inertization process known from the prior art and explained above in such a way that the emergency operation phase is adequate even when an accident involving the primary source occurs is long to effectively prevent inflammation or reignition of the combustible materials in the protected area.
  • Another object is to provide a corresponding inert gas fire extinguishing system for carrying out the method.
  • control concentration and the operating concentration are reduced so far below the specified for the protection range design concentration that the increase curve of the oxygen content in case of failure of the primary source determined for the protection area limit concentration only in reached a predetermined time.
  • the technical problem underlying the present invention is further solved by a device for carrying out the above-mentioned method, which is characterized in that the primary source and / or the secondary source an oxygen displacing gas generating machine, a bottle battery, a buffer volume or an oxygen depriving or similar machine.
  • the advantages of the invention are, in particular, that an inerting method that is easy to implement and thereby very effective for reducing the risk of fire in an enclosed protected area can be achieved, even in an accident, i. for example, in the event of failure of the primary source from which the inert gas used to adjust the control concentration in the protected area originates, the control concentration for an emergency operation time is maintained by means of a secondary source (alternative 1).
  • a secondary source in this context means any inert gas reservoir, such as e.g. a nitrogen generator, a gas cylinder battery in which the inert gas is in compressed form, or another buffer volume.
  • the term "secondary source” is to be understood as meaning a reservoir which is redundant from the primary source, which in turn may be, for example, a nitrogen generator, a bottle battery or any buffer volume.
  • An essential aspect of the present invention lies in the fact that the secondary source is redundantly designed by the primary source, in order to decouple both systems from each other and to reduce the susceptibility of the inertization process. It is provided that the secondary source is designed to maintain the control concentration in case of failure of the primary source for a Not sunnyszeit, which is sufficiently long to provide, for example, at least a 10-minute photosündungsphase or an 8-hour emergency operation phase in the protection area, in which the oxygen content in the protected area does not rise above the reburn prevention level.
  • the limit concentration is, for example, the backfire prevention level of the shelter.
  • This is an oxygen concentration which ensures that flammable substances in the protected area can no longer be ignited. It is envisaged to lower the operating concentration from the outset so far that the increase curve the oxygen concentration reaches the limit only after a certain time.
  • This predetermined time is, for example 10, 30 or 60 minutes for a fire extinguishing system and 8, 24 or 36 hours for a fire prevention system to service personnel with spare parts arrives, and thus allows a realization of a re-ignition phase or emergency operation phase in which the oxygen content does not have a Recirculation preventing level increases and thus effectively prevents ignition or re-ignition of fires in the protected area.
  • the primary source and / or the secondary source any reservoir, such as a machine that generates an oxygen displacing gas, a bottle battery in which the inert gas is in compressed form, another buffer volume, or even an oxygen depriving or similar machine is.
  • a machine that generates an oxygen displacing gas such as a machine that generates an oxygen displacing gas, a bottle battery in which the inert gas is in compressed form, another buffer volume, or even an oxygen depriving or similar machine is.
  • it is also conceivable to extract oxygen from the ambient air for example with the aid of fuel cells.
  • secondary sources both stationary and mobile devices come into question, such as extinguishing agent tanks with evaporator on a truck. Switching between the primary and secondary sources is either manual or automatic.
  • the operating concentration is equal to or approximately equal to a design concentration determined for the protection range.
  • the failure safety distance is determined taking into account a valid for the protection area air exchange rate, in particular an n 50 - value of the protection area, and / or the pressure difference between the protection area and the environment.
  • a valid for the protection area air exchange rate in particular an n 50 - value of the protection area, and / or the pressure difference between the protection area and the environment.
  • the failure safety distance is greater, the greater the n 50 value of the target area.
  • the design concentration be lowered by a safety margin below the limit concentration determined for the protection zone.
  • a detector is further provided for detecting a fire characteristic, wherein the oxygen content in the protected area upon detection of an incipient fire or a fire is rapidly lowered to the control concentration when the oxygen content was previously at a higher level.
  • the oxygen content in the protected area is lowered to a specific basic inerting level of, for example, 17% by volume and, in the event of a fire, the oxygen content is lowered further to the standard concentration level to a specific full inerting level.
  • a basic inerting level of 17% by volume oxygen concentration does not pose any risk to persons or animals, so that they can still easily enter the room.
  • Setting the Vollinertmaschinespars or the control concentration can be set either after the detection of a conflagration, but it would also be conceivable here that this level is set, for example, at night when no persons enter the room in question. In the rule concentration, the flammability of all materials in the shelter is reduced so much that they can no longer ignite.
  • control range is about ⁇ 0.2 vol .-% and preferably at most ⁇ 0.2 vol .-% oxygen content to the control concentration in the shelter.
  • This is a range defined by upper and lower thresholds, which are about 0.4% by volume and preferably at most 0.4% by volume apart.
  • the two thresholds indicate the residual oxygen concentrations, where the secondary source is turned on or off to maintain or reach the setpoint when the primary source fails.
  • other orders of magnitude for the control range are also conceivable here.
  • the regulation of the oxygen content in the protected area takes into account the air exchange rate, in particular the n 50 value of the protected area and / or the pressure difference between protected area and environment.
  • This is a value that describes the ratio of the generated leakage volume flow in relation to the existing volume of space at a pressure difference to the environment of 50 Pa generated.
  • the n 50 value is thus a measure of the tightness of the protected area and thus a decisive factor for dimensioning the inert gas fire extinguishing system or for the design of the inertization process with regard to the reliability of the primary source.
  • the n 50 value is determined by means of a so-called BlowerDoor measurement, in order to be able to assess the tightness of the enclosing components bounding the protected area.
  • a so-called BlowerDoor measurement in order to be able to assess the tightness of the enclosing components bounding the protected area.
  • a standardized overpressure or underpressure of 10 to 60 Pa is generated in the protected area.
  • the air escapes through the leakage surfaces of the enclosing components to the outside or penetrates there.
  • a corresponding measuring device measures the required volume flow to maintain the pressure difference of, for example, 50 Pa required for the measurement.
  • a measuring program calculates the n 50 value, which refers to the generated pressure difference of 50 Pa in a standardized manner.
  • the BlowerDoor measurement is to be carried out before the concrete design of the inertization method according to the invention, in particular before the design of the inventively provided, redundant from the primary source secondary source or before the design of the fail-safe distance in the alternative
  • the calculation of the extinguishing agent quantity for maintaining the control concentration in the protected area takes place taking into account the air exchange rate n 50 . Accordingly, it is possible to change the size or capacity of the primary source and / or the secondary source as a function of the n 50 value and thus adapted exactly to the protected area.
  • Fig. 1 shows a section of a time course of the oxygen concentration in a protected area, wherein the operating concentration BK and the control concentration RK of the oxygen content according to the first alternative of the inertization process according to the invention are maintained by means of a secondary source.
  • the ordinate axis represents the oxygen content in the protected area and the abscissa axis represents the time.
  • the oxygen content in the protected area is already at a so-called full inertization level lowered, ie to a lower than an operating concentration BK control concentration RK.
  • the operating concentration BK exactly the design concentration AK.
  • the design concentration AK is an oxygen concentration value in the protection region, which is fundamentally below a limit concentration GK specific to the protection region.
  • the limiting concentration GK which is often called the "re-ignition prevention level" refers to the oxygen content in the atmosphere of the protected area, in which a defined substance with a defined ignition source can no longer be ignited.
  • the respective value of the limit concentration GK must be determined experimentally and determines the basis for the determination of the design concentration AK. For this purpose, a safety discount is deducted from the limit concentration GK.
  • the operating concentration BK must not be greater than the design concentration AK.
  • the operating concentration BK is determined taking into account the safety concept for the inert gas fire extinguishing system or the inerting process used.
  • the distance between the operating concentration BK and the design concentration AK is preferably chosen to be as small as possible, because beyond the necessary level of protection, lowering the oxygen concentration leads to an increased use of extinguishing agents or inert gas.
  • time course of the oxygen concentration is also a control concentration RK indicated, which is centered in a control range, wherein the upper limit of the control range is identical to the operating concentration BK.
  • the control concentration RK represents a concentration value by which the oxygen concentration fluctuates within the protection range. It is provided that the fluctuations take place in the control area. If the oxygen content in the control range now reaches the upper limit (here the operating concentration BK), the oxygen content in the protected area is lowered again by introducing inert gas until the lower limit of the control range is reached, whereupon a further introduction of inert gas into the protected area is halted.
  • the upper limit of the control range corresponds to an upper threshold value for introducing the inert gas and the lower limit of the control range corresponds to a lower threshold value at which further supply of the inert gas to the protected range is omitted.
  • the upper threshold corresponds to activating a primary or secondary source and the lower threshold corresponds to deactivating the primary or secondary source.
  • the secondary source is redundant from the primary source.
  • the time in which by introducing the inert gas from a primary source and the Not sunnyszeit at which in the failure of the primary source, the control concentration RK is maintained by the secondary source is advantageously so long that an emergency operating phase is provided in which the oxygen content in the protected area Design concentration does not exceed AK and thus ignites ignition of materials in the protected area continues.
  • Fig. 2 shows a section of a time course of the oxygen concentration in a protection area, wherein the operating concentration BK and the control concentration RK of the oxygen content are lowered below the design concentration AK of the protection area according to the second alternative of the inerting process according to the invention.
  • the difference to Fig. 1 lies in the fact that in this case the design concentration AK no longer coincides with the operating concentration BK. Instead, the operating concentration BK and thus also the control concentration RK with the associated control range is shifted downwards, wherein the spacing between the design concentration AK and the operating concentration BK corresponds to a fail-safe distance ASA.
  • the design concentration AK no longer coincides with the operating concentration BK.
  • the operating concentration BK and thus also the control concentration RK with the associated control range is shifted downwards, wherein the spacing between the design concentration AK and the operating concentration BK corresponds to a fail-safe distance ASA.
  • the oxygen concentration in the protection region is maintained by alternately turning the primary source on and off in the control region by the control concentration RK.
  • the fail-safe distance ASA is selected such that in case of failure of the primary source, the increase curve of the oxygen content in the protection area, the limiting concentration BK or reaches the re-ignition prevention level only in a predetermined time. That time is preferably chosen so as to ensure an emergency operation phase which is long enough to prevent ignition or re-ignition of materials in the protected area before restarting the fire prevention or fire extinguishing system.
  • Fig. 3 shows a profile of the oxygen content in a protected area, in which case the second alternative of the method according to the invention is implemented in the inerting process.
  • the Figures 1 and 2 here represents the ordinate axis the oxygen content in the protection area and the abscissa axis the time dar Fig. 3 Initially, an oxygen concentration of 21% by volume is present in the protected area.
  • a fire prevention system begins at time t 0 , the oxygen content in the protection area is rapidly lowered to the control concentration RK. As shown, the oxygen concentration in the protection region reaches the re-ignition prevention level GK at time t 1 and the control concentration RK at time t 2 .
  • the period from t 0 to t 2 is referred to as Clearabsenkung.
  • a subsequent directly to the initial lowering fire protection phase is provided for effective fire prevention.
  • the oxygen concentration in the protected area is kept below the recirculation prevention level GK.
  • this is done by inert gas or oxygen displacing gas is introduced from the primary source, if necessary, in the scope to keep the oxygen concentration in the control range by the control concentration RK and below the operating concentration BK.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Emergency Alarm Devices (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

Die vorliegende Erfindung betrifft ein Inertisierungsverfahren zur Minderung des Risikos eines Brandes in einem umschlossenen Schutzbereich, bei dem der Sauerstoffgehalt im Schutzbereich mit einem vorgebbaren Regelbereich durch Einleiten eines Sauerstoff verdrängenden Gases aus einer Primärquelle für eine bestimmte Zeit auf einer unter einer Betriebskonzentration liegenden Regelkonzentration gehalten wird, sowie eine Vorrichtung zur Durchführung des Verfahrens.The present invention relates to an inerting method for reducing the risk of fire in an enclosed protection area, in which the oxygen content in the protected area is maintained at a predeterminable control range by introducing an oxygen-displacing gas from a primary source for a certain time at a control concentration below an operating concentration, and a device for carrying out the method.

Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen sind aus der Feuerlöschtechnik bekannt (siehe z.B. US 6 341 572 ). Die bei diesem Verfahren resultierende Löschwirkung beruht auf dem Prinzip der Sauerstoffverdrängung. Die normale Umgebungsluft besteht bekanntlich zu 21 Vol.-% aus Sauerstoff, zu 78 Vol.-% aus Stickstoff und zu 1 Vol.-% aus sonstigen Gasen. Zum Löschen wird durch Einleiten von z. B. reinem Stickstoff als Inertgas die Stickstoffkonzentration in dem betreffenden Raum weiter erhöht und damit der Sauerstoffanteil verringert. Es ist bekannt, dass eine Löschwirkung einsetzt, wenn der Sauerstoffanteil unter etwa 15 Vol.-% absinkt. Abhängig von den in dem betreffenden Raum vorhandenen brennbaren Materialien kann ferner ein weiteres Absenken des Sauerstoffanteils auf beispielsweise 12 Vol.-% erforderlich sein. Bei dieser Sauerstoffkonzentration können die meisten brennbaren Materialien nicht mehr brennen.Inertisierungsverfahren for fire prevention and extinction in closed spaces are known from the fire extinguishing technology (see, eg US 6,341,572 ). The extinguishing effect resulting from this process is based on the principle of oxygen displacement. The normal ambient air is known to be 21% by volume of oxygen, 78% by volume of nitrogen and 1% by volume of other gases. To delete by initiating z. B. pure nitrogen as an inert gas, the nitrogen concentration in the room further increased and thus reduces the oxygen content. It is known that an extinguishing effect begins when the oxygen content drops below about 15% by volume. Further, depending on the flammable materials present in the room in question, further lowering of the oxygen content to, for example, 12 vol.% May be required. At this oxygen concentration, most flammable materials can no longer burn.

Die bei dieser "Inertgaslöschtechnik" verwendeten, Sauerstoff verdrängenden Gase werden in der Regel in speziellen Nebenräumen in Stahlflaschen komprimiert gelagert. Ferner ist denkbar, ein Gerät zur Erzeugung eines Sauerstoff verdrängenden Gases einzusetzen. Diese Stahlflaschen bzw. dieses Gerät zur Erzeugung des Sauerstoff verdrängenden Gases begründen die sogenannte Primärquelle der Inertgasfeuerlöschanlage. Im Bedarfsfall wird dann das Gas von dieser Primärquelle über Rohrleitungssysteme und entsprechende Austrittsdüsen in den betreffenden Raum geleitet.The oxygen-displacing gases used in this "inert-gas extinguishing technology" are usually stored in special ancillary rooms in steel cylinders. It is also conceivable to use a device for generating an oxygen-displacing gas. These steel bottles or this device for the production of oxygen displacing gas constitute the so-called primary source of Inertgasfeuerlöschanlage. If necessary, then the gas is passed from this primary source via piping systems and corresponding outlet nozzles in the space in question.

Die zugehörige Inertgasfeuerlöschanlage verfügt dabei in der Regel zumindest über eine Anlage zum plötzlichen Einleiten des Sauerstoff verdrängenden Gases von der Primärquelle in den zu überwachenden Raum und eine Branderkennungsvorrichtung zum Detektieren einer Brandkenngröße in der Raumluft.The associated inert gas fire extinguishing system generally has at least one system for the sudden introduction of the oxygen displacing gas from the primary source into the space to be monitored and a fire detection device for detecting a fire parameter in the room air.

Zum Auslegen der gesamten Brandvermeidungs- bzw. Inertgasfeuerlöschanlage auf einem möglichst hohen Sicherheitsniveau gehört eine anlagentechnische und logistische Planung für den Fall des Anlagenstillstands als Folge von Störfällen, um den sicherheitstechnischen Anforderungen gerecht zu werden. Auch wenn während der Projektierung der Brandvermeidungs- bzw. Inertgasfeuerlöschanlage alle Maßnahmen berücksichtigt werden, die es erlauben, eine Wiederinbetriebnahme der Anlage möglichst schnell und übergangslos zu erreichen, bringt das Inertisieren mittels der Inertgastechnik jedoch gewisse Probleme mit sich und weist im Bezug auf die Ausfallsicherheit klare Grenzen auf. So hat sich gezeigt, dass es zwar möglich ist, die Inertgasfeuerlöschanlage derart zu konzipieren, dass die Wahrscheinlichkeit für das Auftreten eines Störfalls während der Absenkung bzw. Regelung des Sauerstoffgehalts im Schutzbereich auf eine unter einer vorgenannten Betriebskonzentration liegenden Regelkonzentration relativ gering ist, jedoch besteht oftmals ein Problem darin, die Regelkonzentration für eine längere Zeit, während der sogenannten Notbetriebphase, auf dem erforderlichen Wert zu halten, insbesondere deshalb, weil bei den aus dem Stand der Technik bekannten Inertisierungsverfahren keine Möglichkeit besteht, ein frühzeitiges Überschreiten eines Rückzündungsniveaus der Sauerstoffkonzentration im Schutzbereich zu verhindern, wenn aufgrund eines Störfalls die Primärquelle ganz oder zumindest teilweise ausfällt.To design the entire fire prevention or inert gas fire extinguishing system at the highest possible level of safety, a technical and logistical planning in the event of plant downtime as a result of incidents belongs to meet the safety requirements. Even if all measures are taken into account during the planning of the fire prevention or inert gas fire extinguishing system, which make it possible to reactivate the system as quickly and seamlessly as possible, inerting by means of the inert gas technology involves certain problems and has a clear definition of failure safety Borders up. Thus, it has been shown that while it is possible to design the inert gas fire extinguishing system such that the probability of the occurrence of an accident during the reduction or control of the oxygen content in the protected area to a lower than an aforementioned operating concentration control concentration is relatively low, but often a problem in keeping the control concentration for a long time, during the so-called emergency operation phase, to the required value, in particular because in the known from the prior art inerting process, there is no possibility to early exceeding a Rückzündungsniveaus the oxygen concentration in the protected area prevent, if due to an accident the primary source completely or at least partially fails.

Die Rückzündungsphase bezeichnet den Zeitabschnitt nach der Brandbekämpfungsphase, in welchem die Sauerstoffkonzentration im Schutzbereich einen bestimmten Wert, den sogenannten Rückzündungsverhinderungswert, nicht überschreiten darf, um ein erneutes Entzünden der im Schutzbereich vorhandenen Materialien zu vermeiden. Das Rückzündungsverhinderungsniveau ist eine Sauerstoffkonzentration, die von der Brandlast des Schutzbereichs abhängt und anhand von Versuchen ermittelt wird. Gemäß den VdS-Richtlinien muss beim Fluten des Schutzbereichs die Sauerstoffkonzentration im Schutzbereich das Rückzündungsverhinderungsniveau von beispielsweise 13,8 Vol.-% innerhalb der ersten 60 Sekunden ab Flutungsbeginn erreicht werden (Brandbekämpfungsphase). Ferner soll das Rückzündungsverhinderungsniveau innerhalb von 10 Minuten nach Ende der Brandbekämpfungsphase nicht überschritten werden. Dabei ist vorgesehen, dass innerhalb der Brandbekämpfungsphase der Brand im Schutzbereich vollständig gelöscht wird.The reignition phase refers to the time period after the fire fighting phase in which the oxygen concentration in the protected area must not exceed a certain value, the so-called re-ignition prevention value, to avoid reignition of the materials in the protected area. The re-ignition prevention level is an oxygen concentration that depends on the fire load of the protected area and is determined by experiments. According to the VdS guidelines, when the protection zone is flooded, the oxygen concentration in the protection zone must reach the rebound prevention level of, for example, 13.8% by volume within the first 60 seconds from the start of the flooding (firefighting phase). Further, the level of re-ignition prevention should not be exceeded within 10 minutes after the end of the fire-fighting phase. It is envisaged that within the firefighting phase of the fire in the protected area is completely deleted.

Bei den aus dem Stand der Technik bekannten Inertisierungsverfahren wird bei einem Detektionssignal die Sauerstoffkonzentration möglichst schnell auf eine sogenannte Betriebskonzentration heruntergefahren. Das hierzu erforderliche Inertgas stammt dabei aus der Primärquelle der Inertgasfeuerlöschanlage. Unter dem Begriff "Betriebskonzentration" wird ein Niveau verstanden, das unterhalb einer sogenannten Auslegungskonzentration liegt. Die Auslegungskonzentration ist eine Sauerstoffkonzentration im Schutzbereich, bei welcher die Entzündung eines jeden im Schutzbereich vorhandenen Stoffes wirksam verhindert wird. Bei der Festlegung der Auslegungskonzentration eines Schutzbereichs wird in der Regel von dem Grenzwert, bei der eine Zündung jeglicher Materialien im Schutzbereich unterbunden wird, noch ein zur Sicherheit dienender Abschlag abgezogen. Nach Erreichen der Betriebskonzentration in dem Schutzbereich wird üblicherweise die Sauerstoffkonzentration auf einer unter einer Betriebskonzentration liegenden Regelkonzentration gehalten.In the inertization method known from the prior art, the oxygen concentration is shut down as quickly as possible to a so-called operating concentration in the case of a detection signal. The inert gas required for this purpose originates from the primary source of the inert gas fire extinguishing system. The term "operating concentration" is understood to mean a level which is below a so-called design concentration. The design concentration is an oxygen concentration in the protection range at which the ignition of each substance in the protection region is effectively prevented. When determining the design concentration of a protected area, a safety margin is usually deducted from the limit value at which ignition of any material in the protected area is prevented. After reaching the operating concentration in the protected area, the oxygen concentration is usually maintained at a control concentration lower than an operating concentration.

Die Regelkonzentration ist ein Regelbereich der Restsauerstoffkonzentration im inertisierten Schutzbereich, innerhalb welchem die Sauerstoffkonzentration während der Rückzündungsphase gehalten wird. Jener Regelbereich wird durch eine obere Grenze, der Einschaltschwelle für die Primärquelle der Inertgasfeuerlöschanlage, und einer unteren Grenze, der Ausschaltschwelle der Primärquelle der Inertgasfeuerlöschanlage, begrenzt. Während der Rückzündungsphase wird die Regelkonzentration durch wiederholtes Einleiten von Inertgas in diesem Regelbereich gehalten. Jenes Inertgas stammt üblicherweise aus dem als Primärquelle dienenden Reservoir der Inertgasfeuerlöschanlage, d.h., entweder dem Gerät zur Erzeugung von Sauerstoff verdrängendem Gas (z.B. einem Stickstofferzeuger), aus Gasflaschen oder von anderen Puffereinrichtungen. Im Falle einer Fehlfunktion oder Störung nun die Gefahr, dass die Sauerstoffkonzentration in dem Schutzbereich frühzeitig ansteigt und das Rückzündungsverhinderungsniveau überschreitet, wodurch die Rückzündungsphase verkürzt ist und eine erfolgreiche Brandbekämpfung in dem Schutzbereich nicht mehr gewährleistet werden kann.The control concentration is a control range of the residual oxygen concentration in the inerted protection zone, within which the oxygen concentration is maintained during the reignition phase. That control range is limited by an upper limit, the turn-on threshold for the primary source of the inert gas fire extinguishing system, and a lower limit, the turn-off threshold of the primary source of the inert gas fire extinguishing system. During the reignition phase, the control concentration is maintained by repeatedly introducing inert gas within this control range. That inert gas usually comes from the primary source reservoir of the Inertgasfeuerlöschanlage, ie, either the device for generating oxygen displacing gas (eg a nitrogen generator), from gas cylinders or other buffer devices. In the event of a malfunction or malfunction now the risk that the oxygen concentration in the protection area rises early and exceeds the Rückzündungsverhinderungsniveau, whereby the reignition phase is shortened and successful firefighting in the protection area can no longer be guaranteed.

Ausgehend von den zuvor geschilderten Problemen hinsichtlich der sicherheitstechnischen Anforderungen einer Inertgasfeuerlöschanlage bzw. eines Inertisierungsverfahrens liegt der vorliegenden Erfindung die Aufgabe zugrunde, das aus dem Stand der Technik bekannte und vorstehend erläuterte Inertisierungsverfahren derart weiterzuentwickeln, dass selbst beim Auftreten eines die Primärquelle betreffenden Störfalls die Notbetriebsphase hinreichend lang ist, um eine Entzündung oder Wiederentzündung der brennbaren Materialien im Schutzbereich wirksam zu verhindern. Eine weitere Aufgabe liegt darin, eine entsprechende Inertgasfeuerlöschanlage zur Ausführung des Verfahrens anzugeben.Based on the problems described above with regard to the safety requirements of an inert gas fire extinguishing system or an inerting process, the object of the present invention is to further develop the inertization process known from the prior art and explained above in such a way that the emergency operation phase is adequate even when an accident involving the primary source occurs is long to effectively prevent inflammation or reignition of the combustible materials in the protected area. Another object is to provide a corresponding inert gas fire extinguishing system for carrying out the method.

Diese Aufgabe wird dadurch gelöst, dass bei dem eingangs genannten Inertisierungsverfahren die Regelkonzentration und die Betriebskonzentration unter Bildung eines Ausfallsicherheitsabstandes so weit unter die für den Schutzbereich festgelegte Auslegungskonzentration gesenkt werden, dass die Anstiegskurve des Sauerstoffgehalts bei Ausfall der Primärquelle eine für den Schutzbereich ermittelte Grenzkonzentration erst in einer vorgegebenen Zeit erreicht.This object is achieved in that in the inertization method mentioned above, the control concentration and the operating concentration are reduced so far below the specified for the protection range design concentration that the increase curve of the oxygen content in case of failure of the primary source determined for the protection area limit concentration only in reached a predetermined time.

Das der vorliegenden Erfindung zugrundeliegende technische Problem wird ferner durch eine Vorrichtung zur Durchführung des vorstehend genannten Verfahrens gelöst, die dadurch gekennzeichnet ist, dass die Primärquelle und/oder die Sekundärquelle eine das Sauerstoff verdrängende Gas erzeugende Maschine, eine Flaschenbatterie, ein Puffervolumen oder eine sauerstoffentziehende oder ähnliche Maschine ist.The technical problem underlying the present invention is further solved by a device for carrying out the above-mentioned method, which is characterized in that the primary source and / or the secondary source an oxygen displacing gas generating machine, a bottle battery, a buffer volume or an oxygen depriving or similar machine.

Die Vorteile der Erfindung liegen insbesondere darin, dass ein einfach zu realisierendes und dabei sehr effektives Inertisierungsverfahren zur Minderung des Risikos eines Brandes in einem umschlossenen Schutzbereich erzielbar ist, wobei selbst in einem Störfall, d.h. zum Beispiel bei Ausfall der Primärquelle, aus welcher das zum Einstellen der Regelkonzentration im Schutzbereich verwendete Inertgas stammt, die Regelkonzentration für eine Notbetriebzeit mittels einer Sekundärquelle aufrechterhalten wird (Alternative 1). Unter dem Begriff "Primärquelle" ist in diesem Zusammenhang jegliches Inertgasreservoir zu verstehen, wie z.B. ein Stickstofferzeuger, eine Gasflaschenbatterie, in der das Inertgas in komprimierter Form vorliegt, oder ein anderes Puffervolumen. Im analogen Sinne ist unter dem Begriff "Sekundärquelle" ein von der Primärquelle redundantes Reservoir, was wiederum beispielsweise ein Stickstofferzeuger, eine Flaschenbatterie oder jegliches Puffervolumen sein kann, zu verstehen. Ein wesentlicher Aspekt der vorliegenden Erfindung liegt nun darin, dass die Sekundärquelle redundant von der Primärquelle ausgelegt ist, um somit beide Systeme voneinander zu entkoppeln und die Störanfälligkeit des Inertisierungsverfahrens zu verringern. Dabei ist vorgesehen, dass die Sekundärquelle derart konzipiert ist, um die Regelkonzentration bei Ausfall der Primärquelle für eine Notbetriebszeit aufrechtzuerhalten, die hinreichend lang ist, um beispielsweise zumindest eine 10-minütige Rückzündungsphase oder eine 8-stündige Notbetriebsphase im Schutzbereich bereitstellen zu können, in welcher der Sauerstoffgehalt im Schutzbereich nicht über das Rückzündungsverhinderungsniveau steigt. Selbstverständlich ist hier auch denkbar, die Sekundärquelle entsprechend einer beliebigen Notbetriebszeit auszulegen.The advantages of the invention are, in particular, that an inerting method that is easy to implement and thereby very effective for reducing the risk of fire in an enclosed protected area can be achieved, even in an accident, i. for example, in the event of failure of the primary source from which the inert gas used to adjust the control concentration in the protected area originates, the control concentration for an emergency operation time is maintained by means of a secondary source (alternative 1). The term "primary source" in this context means any inert gas reservoir, such as e.g. a nitrogen generator, a gas cylinder battery in which the inert gas is in compressed form, or another buffer volume. In the analogous sense, the term "secondary source" is to be understood as meaning a reservoir which is redundant from the primary source, which in turn may be, for example, a nitrogen generator, a bottle battery or any buffer volume. An essential aspect of the present invention lies in the fact that the secondary source is redundantly designed by the primary source, in order to decouple both systems from each other and to reduce the susceptibility of the inertization process. It is provided that the secondary source is designed to maintain the control concentration in case of failure of the primary source for a Notbetriebszeit, which is sufficiently long to provide, for example, at least a 10-minute Rückzündungsphase or an 8-hour emergency operation phase in the protection area, in which the oxygen content in the protected area does not rise above the reburn prevention level. Of course, it is also conceivable here to design the secondary source according to any emergency operating time.

In der zweiten Alternative handelt es sich bei der Grenzkonzentration beispielsweise um das Rückzündungsverhinderungsniveau des Schutzraumes. Hier handelt es sich um eine Sauerstoffkonzentration, bei welcher sichergestellt ist, dass sich Brandstoffe des Schutzbereichs nicht mehr entzünden lassen. Dabei ist vorgesehen, die Betriebskonzentration von vornherein so weit herunterzusetzen, dass die Anstiegskurve der Sauerstoffkonzentration den Grenzwert erst nach einer bestimmten Zeit erreicht. Diese vorgegebene Zeit beträgt beispielsweise 10, 30 oder 60 Minuten für eine Feuerlöschanlage und 8, 24 oder 36 Stunden für eine Brandvermeidungsanlage bis Service-Personal mit Ersatzteilen eintrifft, und ermöglicht somit eine Realisierung einer Rückzündungsphase bzw. Notbetriebsphase, in welcher der Sauerstoffgehalt nicht über ein Rückzündungsverhinderungsniveau steigt und somit wirksam ein Entzünden bzw. Wiederentzünden von Brandstoffen im Schutzbereich verhindert. Durch dieses sogenannte "Tieferfahren" der Betriebskonzentration, d.h. durch das Festlegen der Betriebskonzentration unter Bildung eines Ausfallsicherheitsabstandes unterhalb der Auslegungskonzentration des Schutzraumes, wird eine Alternative zu den zuvor beschriebenen Ausführungsformen des erfindungsgemäßen Inertisierungsverfahrens angegeben, bei der ebenfalls sichergestellt ist, dass bei Ausfall der Primärquelle für eine Notbetriebszeit die Sauerstoffkonzentration unter einem festgelegten Wert, in vorteilhafter Weise unter dem Rückzündungsverhinderungsniveau, gehalten wird. Selbstverständlich ist hier aber auch denkbar, beide Alternativen miteinander zu kombinieren. Um die Notbetriebszeit zu verlängern, ist es ferner möglich, dass zusätzliche Maßnahmen ergriffen werden, wie zum Beispiel die Vornahme von Betriebseinschränkungen, etwa die zeitweilige Herabsetzung der Begehung.In the second alternative, the limit concentration is, for example, the backfire prevention level of the shelter. This is an oxygen concentration which ensures that flammable substances in the protected area can no longer be ignited. It is envisaged to lower the operating concentration from the outset so far that the increase curve the oxygen concentration reaches the limit only after a certain time. This predetermined time is, for example 10, 30 or 60 minutes for a fire extinguishing system and 8, 24 or 36 hours for a fire prevention system to service personnel with spare parts arrives, and thus allows a realization of a re-ignition phase or emergency operation phase in which the oxygen content does not have a Recirculation preventing level increases and thus effectively prevents ignition or re-ignition of fires in the protected area. By this so-called "lowering" of the operating concentration, ie by setting the operating concentration to form a fail-safe distance below the design concentration of the shelter, an alternative to the previously described embodiments of the inerting process according to the invention is specified, which also ensures that in case of failure of the primary source for an emergency operation time, the oxygen concentration is kept below a predetermined value, advantageously below the re-ignition prevention level. Of course, it is also conceivable here to combine the two alternatives. In order to extend the emergency operating time, it is also possible that additional measures are taken, such as the implementation of operational restrictions, such as the temporary reduction of the commission.

Mit der erfindungsgemäßen Vorrichtung wird eine Möglichkeit zur Durchführung des vorstehend beschriebenen Verfahrens angegeben. Hierbei ist vorgesehen, dass die Primärquelle und/oder die Sekundärquelle ein jegliches Reservoir, wie etwa eine Maschine, die ein Sauerstoff verdrängendes Gas erzeugt, eine Flaschenbatterie, in der das Inertgas in komprimierter Form vorliegt, ein anderes Puffervolumen, oder aber auch eine sauerstoffentziehende oder ähnliche Maschine ist. Anstatt ein Sauerstoff verdrängendes Gas zu erzeugen, ist es auch denkbar, der Raumluft Sauerstoff zu entziehen, beispielsweise mit Hilfe von Brennstoffzellen. Als Sekundärquellen kommen sowohl stationäre als auch mobile Einrichtungen in Frage, wie zum Beispiel Löschmitteltanks mit Verdampfer auf einem LKW. Die Umschaltung zwischen der Primär- und der Sekundärquelle erfolgt entweder manuell oder automatisch.With the device according to the invention, a possibility for carrying out the method described above is given. It is provided that the primary source and / or the secondary source, any reservoir, such as a machine that generates an oxygen displacing gas, a bottle battery in which the inert gas is in compressed form, another buffer volume, or even an oxygen depriving or similar machine is. Instead of producing an oxygen-displacing gas, it is also conceivable to extract oxygen from the ambient air, for example with the aid of fuel cells. As secondary sources, both stationary and mobile devices come into question, such as extinguishing agent tanks with evaporator on a truck. Switching between the primary and secondary sources is either manual or automatic.

Bevorzugte Weiterbildungen der Erfindung sind bezüglich des Verfahrens in den Unteransprüchen 2 und 4 bis 9 angegeben.Preferred embodiments of the invention are given with respect to the method in the dependent claims 2 and 4 to 9.

So ist für das Verfahren bevorzugt vorgesehen, dass die Betriebskonzentration gleich oder in etwa gleich einer für den Schutzbereich festgelegten Auslegungskonzentration ist. Durch diese Weiterbildung des Verfahrens ist es möglich, den Verbrauch von Inertgas bzw. Löschmittel für den Schutzbereich optimal zu reduzieren, indem die Betriebskonzentration auf eine Sauerstoffkonzentration im Schutzbereich festgelegt wird, bei welcher sich die Stoffe des Schutzbereichs gerade nicht mehr entzünden lassen. Zur Festlegung der Auslegungskonzentration wird in bevorzugter Weise von der Konzentration, bei welcher sich die Stoffe des Schutzbereichs gerade nicht mehr entzünden lassen, noch ein Abschlag abgezogen.Thus, it is preferably provided for the method that the operating concentration is equal to or approximately equal to a design concentration determined for the protection range. By means of this further development of the method, it is possible to optimally reduce the consumption of inert gas or extinguishing agent for the protected area by setting the operating concentration to an oxygen concentration in the protected area at which the substances of the protected area can no longer be ignited. In order to determine the design concentration, it is preferable to deduct a discount from the concentration at which the substances of the protected area can no longer be ignited.

Besonders bevorzugt wird der Ausfallsicherheitsabstand unter Berücksichtigung einer für den Schutzbereich geltenden Luftwechselrate, insbesondere eines n50 - Wertes des Schutzbereiches, und /oder der Druckdifferenz zwischen Schutzbereich und Umgebung, ermittelt. Um eine möglichst genaue Anpassung des erfindungsgemäßen Verfahrens an den betreffenden Schutzbereich zu ermöglichen, ist dabei vorgesehen, dass der Ausfallsicherheitsabstand umso größer wird, je größer der n50-Wert des Zielbereiches ist.Particularly preferably, the failure safety distance is determined taking into account a valid for the protection area air exchange rate, in particular an n 50 - value of the protection area, and / or the pressure difference between the protection area and the environment. In order to allow the most accurate adaptation of the method according to the invention to the relevant protection area, it is provided that the failure safety distance is greater, the greater the n 50 value of the target area.

Um eine weitere Erhöhung der Ausfallsicherheit der Anlage zu erreichen, ist in besonders bevorzugter Weise vorgesehen, dass die Auslegungskonzentration um einen Sicherheitsabschlag unter die für den Schutzbereich ermittelte Grenzkonzentration gesenkt wird. Damit kann zum Beispiel während der Zeit bis zur Bereitstellung der Sekundärquelle sichergestellt werden, dass der Sauerstoffgehalt unter dem Rückzündungsverhinderungsniveau bzw. der Grenzkonzentration bleibt. So ist es denkbar, dass der Sicherheitsabschlag unter Berücksichtigung der Grenzkonzentration und/oder der Luftwechselrate n50 ermittelt wird; d.h. es gilt S = α([O2,Luft] - GK) , wobei S der Sicherheitsabschlag, [O2,Luft] die Sauerstoffkonzentration in der Luft des Schutzbereiches, GK das Rückzündungsverhinderungsniveau und α ein vorgegebener Faktor sind. Beispielsweise ergibt sich für α = 20%, [O2,Luft] = 20,9 Vol.-%, GK = 16 Vol.-% ein Sicherheitsabschlag von S = 1 Vol.-% und für α = 20%, [O2,Luft] = 20,9 Vol.-%, GK = 13 Vol.-% ein Sicherheitsabschlag von S = 1,6 Vol.-%.In order to achieve a further increase in the reliability of the system, it is particularly preferred that the design concentration be lowered by a safety margin below the limit concentration determined for the protection zone. Thus, for example, it can be ensured during the time until the secondary source is made available that the oxygen content remains below the re-ignition prevention level or the limit concentration. Thus, it is conceivable that the safety discount is determined taking into account the limit concentration and / or the air exchange rate n50; ie S = α ([O 2, air ] - GK), where S is the safety margin, [O 2, air ] is the oxygen concentration in the air of the protected area, GK is the re-ignition prevention level and α is a given factor. For example, for α = 20%, [O 2, air ] = 20.9% by volume, GK = 16% by volume, a safety discount of S = 1% by volume results and for α = 20%, [O 2, air ] = 20.9 vol.%, GK = 13 vol.%, A safety discount of S = 1.6 vol.%.

In einer besonders bevorzugten Ausführungsform ist ferner ein Detektor zum Erkennen einer Brandkenngröße vorgesehen, wobei der Sauerstoffgehalt im Schutzbereich beim Detektieren eines Entstehungsbrandes oder eins Brandes rasch auf die Regelkonzentration abgesenkt wird, wenn der Sauerstoffgehalt vorher auf einem höheren Niveau lag. Durch diese Weiterbildung des erfindungsgemäßen Inertisierungsverfahrens ist es nun möglich, das Verfahren beispielsweise auch in einem mehrstufigen Inertisierungsverfahren zu implementieren. So ist erfindungsgemäß vorgesehen, dass der Schutzbereich anfänglich, um beispielsweise eine Begehung durch Personen zuzulassen, auf einem entsprechend höheren Niveau liegt. Dieses höhere Niveau kann entweder die Konzentration der Raumluft (21 Vol.-%) oder ein erstes bzw. Grundinertisierungsniveau von beispielsweise 17 Vol.-% sein. So ist denkbar, dass zunächst der Sauerstoffgehalt in dem Schutzbereich auf ein bestimmtes Grundinertisierungsniveau von beispielsweise 17 Vol.-% abgesenkt und im Fall eines Brandes der Sauerstoffgehalt auf ein bestimmtes Vollinertisierungsniveau weiter auf die Regelkonzentration abgesenkt wird. Ein Grundinertisierungsniveau von 17 Vol.-% Sauerstoffkonzentration bedeutet keinerlei Gefährdung von Personen oder Tieren, so dass diese den Raum immer noch problemlos betreten können. Das Einstellen des Vollinertisierungsniveaus bzw. der Regelkonzentration kann entweder nach der Detektion eines Entstehungsbrandes eingestellt werden, denkbar wäre hier jedoch auch, dass dieses Niveau beispielsweise nachts eingestellt wird, wenn keine Personen den betreffenden Raum betreten. Bei der Regelkonzentration ist die Entflammbarkeit sämtlicher Materialien im Schutzraum so weit herabgesetzt, dass sie sich nicht mehr entzünden können. Durch das Bereitstellen einer redundanten Sekundärquelle oder alternativ hierzu durch das Tieferfahren der Sauerstoffkonzentration wird in vorteilhafter Weise erreicht, dass die Ausfallsicherheit des Inertisierungsverfahren deutlich erhöht wird, da somit sichergestellt ist, dass selbst bei Ausfall der Primärquelle ein hinreichender Brandschutz vorliegt.In a particularly preferred embodiment, a detector is further provided for detecting a fire characteristic, wherein the oxygen content in the protected area upon detection of an incipient fire or a fire is rapidly lowered to the control concentration when the oxygen content was previously at a higher level. By means of this development of the inerting method according to the invention, it is now possible to implement the method, for example, in a multi-stage inerting method. Thus, the invention provides that the scope initially, for example, to allow a visit by persons, is at a correspondingly higher level. This higher level may be either the concentration of room air (21% by volume) or a first or bottom inerting level of, for example, 17% by volume. Thus, it is conceivable that initially the oxygen content in the protected area is lowered to a specific basic inerting level of, for example, 17% by volume and, in the event of a fire, the oxygen content is lowered further to the standard concentration level to a specific full inerting level. A basic inerting level of 17% by volume oxygen concentration does not pose any risk to persons or animals, so that they can still easily enter the room. Setting the Vollinertisierungsniveaus or the control concentration can be set either after the detection of a conflagration, but it would also be conceivable here that this level is set, for example, at night when no persons enter the room in question. In the rule concentration, the flammability of all materials in the shelter is reduced so much that they can no longer ignite. By providing a redundant secondary source or, alternatively, by lowering the oxygen concentration, it is advantageously achieved that the failure safety of the inerting process is significantly increased, since it is thus ensured that adequate fire protection exists even if the primary source fails.

Vorzugsweise beträgt der Regelbereich etwa ± 0,2 Vol.-% und vorzugsweise maximal ± 0,2 Vol.-% Sauerstoffgehalt um die Regelkonzentration im Schutzraum. Hierbei handelt es sich um einen Bereich, der durch einen oberen und einen unteren Schwellwert definiert wird, die etwa 0,4 Vol.-% und vorzugsweise maximal 0,4 Vol.-% auseinanderliegen. Die beiden Schwellwerte bezeichnen die Restsauerstoffkonzentrationen, bei denen die Sekundärquelle ein- oder ausgeschalten wird, um den Sollwert zu halten oder zu erreichen, wenn die Primärquelle ausfällt. Selbstverständlich sind hier aber auch andere Größenordnungen für den Regelbereich denkbar.Preferably, the control range is about ± 0.2 vol .-% and preferably at most ± 0.2 vol .-% oxygen content to the control concentration in the shelter. This is a range defined by upper and lower thresholds, which are about 0.4% by volume and preferably at most 0.4% by volume apart. The two thresholds indicate the residual oxygen concentrations, where the secondary source is turned on or off to maintain or reach the setpoint when the primary source fails. Of course, other orders of magnitude for the control range are also conceivable here.

Um eine möglichst gute Anpassung des Inertisierungsverfahrens an den betreffenden Schutzraum zu erreichen, ist in einer bevorzugten Ausführungsform des erfindungsgemäßen Inertisierungsverfahrens vorgesehen, dass die Regelung des Sauerstoffgehalts im Schutzbereich unter Berücksichtigung der Luftwechselrate, insbesondere des n50 - Wertes des Schutzbereiches, und /oder der Druckdifferenz zwischen Schutzbereich und Umgebung erfolgt. Hierbei handelt es sich um einen Wert, der das Verhältnis des erzeugten Leckagevolumenstromes in Relation zum vorhandenen Raumvolumen bei einer erzeugten Druckdifferenz zur Umgebung von 50 Pa bezeichnet. Der n50-Wert ist somit ein Maß für die Dichtigkeit des Schutzbereichs und somit eine entscheidende Größe zur Dimensionierung der Inertgasfeuerlöschanlage bzw. zur Auslegung des Inertisierungsverfahrens hinsichtlich der Ausfallsicherheit der Primärquelle. In bevorzugter Weise wird der n50-Wert mittels einer sogenannten BlowerDoor-Messung bestimmt, um die Dichtigkeit der den Schutzbereich begrenzenden Umfassungsbauteile beurteilen zu können. Dabei wird in den Schutzbereich ein genormter Über- bzw. Unterdruck von 10 bis 60 Pa erzeugt. Die Luft entweicht über die Leckageflächen der Umfassungsbauteile nach außen oder dringt dort ein. Ein entsprechendes Messgerät misst den erforderlichen Volumenstrom zur Aufrechterhaltung der zur Messung geforderten Druckdifferenz von z.B. 50 Pa. Anschließend errechnet ein Messprogramm den n50-Wert, der sich standardisiert auf die erzeugte Druckdifferenz von 50 Pa bezieht. Die BlowerDoor-Messung ist vor der konkreten Auslegung des erfindungsgemäßen Inertisierungsverfahrens, insbesondere vor der Auslegung der erfindungsgemäß vorgesehenen, von der Primärquelle redundanten Sekundärquelle bzw. vor der Auslegung des Ausfallsicherheitsabstandes bei dem alternativen Inertisierungsverfahren durchzuführen.In order to achieve the best possible adaptation of the inerting process to the relevant protective space, it is provided in a preferred embodiment of the inerting method according to the invention that the regulation of the oxygen content in the protected area takes into account the air exchange rate, in particular the n 50 value of the protected area and / or the pressure difference between protected area and environment. This is a value that describes the ratio of the generated leakage volume flow in relation to the existing volume of space at a pressure difference to the environment of 50 Pa generated. The n 50 value is thus a measure of the tightness of the protected area and thus a decisive factor for dimensioning the inert gas fire extinguishing system or for the design of the inertization process with regard to the reliability of the primary source. In a preferred manner, the n 50 value is determined by means of a so-called BlowerDoor measurement, in order to be able to assess the tightness of the enclosing components bounding the protected area. In this case, a standardized overpressure or underpressure of 10 to 60 Pa is generated in the protected area. The air escapes through the leakage surfaces of the enclosing components to the outside or penetrates there. A corresponding measuring device measures the required volume flow to maintain the pressure difference of, for example, 50 Pa required for the measurement. Subsequently, a measuring program calculates the n 50 value, which refers to the generated pressure difference of 50 Pa in a standardized manner. The BlowerDoor measurement is to be carried out before the concrete design of the inertization method according to the invention, in particular before the design of the inventively provided, redundant from the primary source secondary source or before the design of the fail-safe distance in the alternative inertization.

In einer besonders bevorzugten Weiterentwicklung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Berechnung der Löschmittelmenge für das Halten der Regelkonzentration im Schutzbereich unter Berücksichtigung der Luftwechselrate n50 erfolgt. Demgemäss ist es möglich, die Größe bzw. die Kapazität der Primärquelle und/oder der Sekundärquelle in Abhängigkeit des n50-Wertes und somit genau an den Schutzbereich angepasst auszulegen.In a particularly preferred further development of the method according to the invention, it is provided that the calculation of the extinguishing agent quantity for maintaining the control concentration in the protected area takes place taking into account the air exchange rate n 50 . Accordingly, it is possible to change the size or capacity of the primary source and / or the secondary source as a function of the n 50 value and thus adapted exactly to the protected area.

Im folgenden wird das erfindungsgemäße Verfahren anhand der Figuren näher erläutert.The method according to the invention will be explained in more detail below with reference to the figures.

Es zeigen:

Fig. 1
einen Ausschnitt eines zeitlichen Verlaufs der Sauerstoffkonzentration in einem Schutzbereich, wobei die Betriebskonzentration und die Regelkonzentration des Sauerstoffgehalts gemäß der ersten Alternative des erfindungsgemäßen Inertisierungsverfahrens mittels einer Sekundärquelle aufrechterhalten werden;
Fig. 2
einen Ausschnitt eines zeitlichen Verlaufs der Sauerstoffkonzentration in einem Schutzbereich, wobei die Betriebskonzentration und die Regelkonzentration des Sauerstoffgehalts gemäß der zweiten Alternative des erfindungsgemäßen Inertisierungsverfahrens unter die Auslegungskonzentration des Schutzbereichs gesenkt werden; und
Fig. 3
einen Verlauf des Sauerstoffgehalts in einem Schutzbereich, wobei die zweite Alternative des erfindungsgemäßen Verfahrens in dem zugrundeliegenden Inertiserungsverfahren implementiert ist.
Show it:
Fig. 1
a section of a time course of the oxygen concentration in a protected area, wherein the operating concentration and the control concentration of the oxygen content according to the first alternative of the inertization process according to the invention are maintained by means of a secondary source;
Fig. 2
a section of a time course of the oxygen concentration in a protected area, wherein the operating concentration and the control concentration of the oxygen content are lowered below the design concentration of the protected area according to the second alternative of the inerting process according to the invention; and
Fig. 3
a course of the oxygen content in a protected area, wherein the second alternative of the method according to the invention is implemented in the underlying Inertiserungsverfahren.

Fig. 1 zeigt einen Ausschnitt eines zeitlichen Verlaufs der Sauerstoffkonzentration in einem Schutzbereich, wobei die Betriebskonzentration BK und die Regelkonzentration RK des Sauerstoffgehalts gemäß der ersten Alternative des erfindungsgemäßen Inertisierungsverfahrens mittels einer Sekundärquelle aufrechterhalten werden. In der dargestellten Auftragung stellen die Ordinatenachse den Sauerstoffgehalt im Schutzbereich und die Abzissenachse die Zeit dar. Im vorliegenden Fall ist bereits der Sauerstoffgehalt im Schutzbereich auf ein sogenanntes Vollinertisierungsniveau herabgesenkt, d.h. auf eine unter einer Betriebskonzentration BK liegenden Regelkonzentration RK. In dem in Fig. 1 schematisch dargestellten Szenario entspricht die Betriebskonzentration BK genau der Auslegungskonzentration AK. Fig. 1 shows a section of a time course of the oxygen concentration in a protected area, wherein the operating concentration BK and the control concentration RK of the oxygen content according to the first alternative of the inertization process according to the invention are maintained by means of a secondary source. In the plot shown, the ordinate axis represents the oxygen content in the protected area and the abscissa axis represents the time. In the present case, the oxygen content in the protected area is already at a so-called full inertization level lowered, ie to a lower than an operating concentration BK control concentration RK. In the in Fig. 1 schematically illustrated scenario, the operating concentration BK exactly the design concentration AK.

Die Auslegungskonzentration AK ist ein Sauerstoffkonzentrationswert im Schutzbereich, der grundsätzlich unterhalb einer für den Schutzbereich spezifischen Grenzkonzentration GK liegt. Die Grenzkonzentration GK, die häufig auch "Rückzündungsverhinderungsniveau" genannt wird, bezieht sich auf den Sauerstoffgehalt in der Atmosphäre des Schutzbereichs, bei dem ein definierter Stoff mit einer definierten Zündquelle gerade nicht mehr entzündet werden kann. Der jeweilige Wert der Grenzkonzentration GK muss experimentell ermittelt werden und stellt die Basis für die Festlegung der Auslegungskonzentration AK fest. Hierzu wird von der Grenzkonzentration GK ein Sicherheitsabschlag abgezogen.The design concentration AK is an oxygen concentration value in the protection region, which is fundamentally below a limit concentration GK specific to the protection region. The limiting concentration GK, which is often called the "re-ignition prevention level", refers to the oxygen content in the atmosphere of the protected area, in which a defined substance with a defined ignition source can no longer be ignited. The respective value of the limit concentration GK must be determined experimentally and determines the basis for the determination of the design concentration AK. For this purpose, a safety discount is deducted from the limit concentration GK.

Die Betriebskonzentration BK darf grundsätzlich nicht größer als die Auslegungskonzentration AK sein. Die Betriebskonzentration BK ergibt sich unter Berücksichtigung des Sicherheitskonzepts für die Inertgasfeuerlöschanlage bzw. das eingesetzte Inertisierungsverfahrens. Um die Betriebskosten der Inertgasfeuerlöschanlage möglichst gering zu halten, wird in bevorzugter Weise der Abstand zwischen der Betriebskonzentration BK und der Auslegungskonzentration AK möglichst klein gewählt, da über das notwendige Schutzniveau hinausgehende Absenkungen der Sauerstoffkonzentration einen erhöhten Einsatz von Löschmitteln bzw. Inertgas nach sich ziehen.The operating concentration BK must not be greater than the design concentration AK. The operating concentration BK is determined taking into account the safety concept for the inert gas fire extinguishing system or the inerting process used. In order to keep the operating costs of the inert gas fire extinguisher system as low as possible, the distance between the operating concentration BK and the design concentration AK is preferably chosen to be as small as possible, because beyond the necessary level of protection, lowering the oxygen concentration leads to an increased use of extinguishing agents or inert gas.

Bei dem in der Fig. 1 dargestellten zeitlichen Verlauf der Sauerstoffkonzentration ist ferner eine Regelkonzentration RK angegeben, die mittig in einem Regelbereich liegt, wobei die obere Grenze des Regelbereichs identisch mit der Betriebskonzentration BK ist. Die Regelkonzentration RK repräsentiert einen Konzentrationswert, um welchen die Sauerstoffkonzentration im Schutzbereich schwankt. Dabei ist vorgesehen, dass die Schwankungen in dem Regelbereich stattfinden. Erreicht nun der Sauerstoffgehalt im Regelbereich die obere Grenze (hier die Betriebskonzentration BK) so wird der Sauerstoffgehalt im Schutzbereich durch Einleiten von Inertgas erneut abgesenkt, bis die untere Grenze des Regelbereichs erreicht wird, woraufhin eine weitere Einleitung von Inertgas in den Schutzbereich angehalten wird. Somit entspricht die obere Grenze des Regelbereichs einem oberen Schwellenwert für das Einleiten des Inertgases und die untere Grenze des Regelbereichs einem unteren Schwellenwert, bei dem eine weitere Zufuhr des Inertgases in den Schutzbereich unterlassen wird. Anders ausgedrückt bedeutet dies, dass der obere Schwellenwert ein Aktivieren einer Primär- bzw. Sekundärquelle und der untere Schwellenwert ein Deaktivieren der Primär- bzw. Sekundärquelle entspricht.In the in the Fig. 1 shown time course of the oxygen concentration is also a control concentration RK indicated, which is centered in a control range, wherein the upper limit of the control range is identical to the operating concentration BK. The control concentration RK represents a concentration value by which the oxygen concentration fluctuates within the protection range. It is provided that the fluctuations take place in the control area. If the oxygen content in the control range now reaches the upper limit (here the operating concentration BK), the oxygen content in the protected area is lowered again by introducing inert gas until the lower limit of the control range is reached, whereupon a further introduction of inert gas into the protected area is halted. Consequently For example, the upper limit of the control range corresponds to an upper threshold value for introducing the inert gas and the lower limit of the control range corresponds to a lower threshold value at which further supply of the inert gas to the protected range is omitted. In other words, this means that the upper threshold corresponds to activating a primary or secondary source and the lower threshold corresponds to deactivating the primary or secondary source.

Erfindungsgemäß ist nun vorgesehen, dass selbst bei Ausfall der Primärquelle die Sauerstoffkonzentration in dem Regelbereich um die Regelkonzentration RK herum für eine hinreichend lange Zeit aufrechterhalten werden kann. Dabei ist vorgesehen, dass die Sekundärquelle redundant von der Primärquelle ausgeführt ist. Die Zeit, in welcher durch Einleiten des Inertgases aus einer Primärquelle und die Notbetriebszeit, bei welcher bei Ausfall der Primärquelle die Regelkonzentration RK durch die Sekundärquelle aufrechterhalten wird, ist vorteilhafter Weise so lang, dass eine Notbetriebsphase bereitgestellt wird, in welcher der Sauerstoffgehalt im Schutzbereich die Auslegungskonzentration AK nicht überschreitet und somit ein Entzünden von Materialien im Schutzbereich weiterhin unterbunden wird.According to the invention, it is now provided that even if the primary source fails, the oxygen concentration in the control range around the control concentration RK can be maintained for a sufficiently long time. It is provided that the secondary source is redundant from the primary source. The time in which by introducing the inert gas from a primary source and the Notbetriebszeit at which in the failure of the primary source, the control concentration RK is maintained by the secondary source is advantageously so long that an emergency operating phase is provided in which the oxygen content in the protected area Design concentration does not exceed AK and thus ignites ignition of materials in the protected area continues.

Fig. 2 zeigt einen Ausschnitt eines zeitlichen Verlaufs der Sauerstoffkonzentration in einem Schutzbereich, wobei die Betriebskonzentration BK und die Regelkonzentration RK des Sauerstoffgehalts gemäß der zweiten Alternative des erfindungsgemäßen Inertisierungsverfahrens unter die Auslegungskonzentration AK des Schutzbereichs gesenkt werden. Der Unterschied zur Fig. 1 liegt nun darin, dass in diesem Fall die Auslegungskonzentration AK nicht mehr mit der Betriebskonzentration BK übereinstimmt. Stattdessen ist die Betriebskonzentration BK und somit auch die Regelkonzentration RK mit dem zugehörigen Regelbereich nach unten verschoben, wobei die Beabstandung zwischen der Auslegungskonzentration AK und der Betriebskonzentration BK einem Ausfallssicherheitsabstand ASA entspricht. Bei dem in der Fig. 2 dargestellten Szenario wird die Sauerstoffkonzentration im Schutzbereich durch abwechselndes Ein- bzw. Ausschalten der Primärquelle in dem Regelbereich um die Regelkonzentration RK herum gehalten. Dabei ist vorgesehen, dass der Ausfallssicherheitsabstand ASA derart gewählt ist, dass bei Ausfall der Primärquelle die Anstiegskurve des Sauerstoffgehalts im Schutzbereich die Grenzkonzentration BK bzw. das Rückzündungsverhinderungsniveau erst in einer vorgegebenen Zeit erreicht. Jene Zeit ist in bevorzugter Weise derart gewählt, dass eine Notbetriebsphase sichergestellt werden kann, die lang genug ist, um vor der Wiederinbetriebsetzung der Brandvermeidungs- bzw. Feuerlöschanlage ein Entzünden bzw. Wiederentzünden von Materialien im Schutzbereich weiterhin zu verhindern. Fig. 2 shows a section of a time course of the oxygen concentration in a protection area, wherein the operating concentration BK and the control concentration RK of the oxygen content are lowered below the design concentration AK of the protection area according to the second alternative of the inerting process according to the invention. The difference to Fig. 1 lies in the fact that in this case the design concentration AK no longer coincides with the operating concentration BK. Instead, the operating concentration BK and thus also the control concentration RK with the associated control range is shifted downwards, wherein the spacing between the design concentration AK and the operating concentration BK corresponds to a fail-safe distance ASA. In the in the Fig. 2 In the illustrated scenario, the oxygen concentration in the protection region is maintained by alternately turning the primary source on and off in the control region by the control concentration RK. It is provided that the fail-safe distance ASA is selected such that in case of failure of the primary source, the increase curve of the oxygen content in the protection area, the limiting concentration BK or reaches the re-ignition prevention level only in a predetermined time. That time is preferably chosen so as to ensure an emergency operation phase which is long enough to prevent ignition or re-ignition of materials in the protected area before restarting the fire prevention or fire extinguishing system.

Fig. 3 zeigt einen Verlauf des Sauerstoffgehalts in einem Schutzbereich, wobei hier die zweite Alternative des erfindungsgemäßen Verfahrens in dem Inertisierungsverfahren implementiert ist. Wie bereits bei den Figuren 1 und 2 stellt hier die Ordinatenachse den Sauerstoffgehalt im Schutzbereich und die Abzissenachse die Zeit dar. Ausweislich der Fig. 3 ist anfänglich im Schutzbereich eine Sauerstoffkonzentration von 21 Vol.-% vorhanden. Fig. 3 shows a profile of the oxygen content in a protected area, in which case the second alternative of the method according to the invention is implemented in the inerting process. As already with the Figures 1 and 2 here represents the ordinate axis the oxygen content in the protection area and the abscissa axis the time dar Fig. 3 Initially, an oxygen concentration of 21% by volume is present in the protected area.

Nachdem eine prophylaktische Erstabsenkung einer Brandvermeidungsanlage zum Zeitpunkt t0 beginnt, wird der Sauerstoffgehalt im Schutzbereich rasch auf die Regelkonzentration RK abgesenkt. Wie dargestellt, erreicht die Sauerstoffkonzentration im Schutzbereich das Rückzündungsverhinderungsniveau bzw. die Grenzkonzentration GK zum Zeitpunkt t1 und die Regelkonzentration RK zum Zeitpunkt t2. Die Zeitspanne von t0 bis t2 wird als Erstabsenkung bezeichnet.After a prophylactic Erstabsenkung a fire prevention system begins at time t 0 , the oxygen content in the protection area is rapidly lowered to the control concentration RK. As shown, the oxygen concentration in the protection region reaches the re-ignition prevention level GK at time t 1 and the control concentration RK at time t 2 . The period from t 0 to t 2 is referred to as Erstabsenkung.

Um nach der Erstabsenkung zu verhindern, dass sich die im Schutzbereich befindlichen Materialien entzünden können, ist ferner eine sich direkt an die Erstabsenkung anschließende Brandschutzphase zur wirksamen Brandverhinderung vorgesehen. In jener Phase wird die Sauerstoffkonzentration im Schutzbereich unterhalb des Rückzündungsverhinderungsniveaus bzw. der Grenzkonzentration GK gehalten. Üblicherweise erfolgt dies, indem bei Bedarf aus der Primärquelle Inertgas bzw. Sauerstoff verdrängendes Gas in den Schutzbereich eingebracht wird, um die Sauerstoffkonzentration in dem Regelbereich um die Regelkonzentration RK bzw. unterhalb der Betriebskonzentration BK zu halten.In order to prevent after the initial lowering that the materials located in the protected area can ignite, also a subsequent directly to the initial lowering fire protection phase is provided for effective fire prevention. In that phase, the oxygen concentration in the protected area is kept below the recirculation prevention level GK. Usually, this is done by inert gas or oxygen displacing gas is introduced from the primary source, if necessary, in the scope to keep the oxygen concentration in the control range by the control concentration RK and below the operating concentration BK.

Bei Ausfall der Primärquelle ist nun erfindungsgemäß vorgesehen, dass der Ausfallssicherheitsabstand ASA zwischen der Grenzkonzentration GK und der Betriebskonzentration BK so groß ist, dass die Anstiegskurve des Sauerstoffgehalts die Grenzkonzentration GK erst in einer vorgegebenen Zeit z erreicht, wodurch eine hinreichende Notbetriebsphase erzielt wird.In case of failure of the primary source is now provided according to the invention that the Ausfallssicherheitsabstand ASA between the limit concentration GK and the operating concentration BK is so large that the increase curve of the oxygen content, the limit concentration GK reached z only in a predetermined time, whereby a sufficient emergency operation phase is achieved.

Zur Erläuterung sei darauf hingewiesen, dass in Fig. 3 der Ausschnitt eingetragen ist, der in vergrößertem Ausmaß in der Fig. 2 dargestellt wird.For explanation it should be noted that in Fig. 3 the excerpt is inscribed, which to a greater extent in the Fig. 2 is pictured.

Claims (9)

  1. Inerting method for reducing the risk of a fire in an enclosed protected area, in which the oxygen content in the protected area is maintained at a control concentration (RK) located below an operating concentration (BK) by introducing an oxygen-displacing gas from a primary source for a certain time, whereby the oxygen concentration in the protected area is maintained in a control range around the control concentration (RK),
    characterized in that
    the control concentration (RK) and the operating concentration (BK) are lowered, under formation of a fail-safe interval (ASA), so far below the design concentration (AK) fixed for the protected area that the rise curve of the oxygen content achieves a boundary concentration (GK) determined for the protected area upon failure of the primary source only in a given time,
    whereby the boundary concentration (GK) is a maximal oxygen concentration at which renewed ignition of the material present in the protected area is still avoided; and
    whereby the design concentration (AK) is an oxygen concentration that corresponds to the boundary concentration (GK) minus a safety reduction (S) or that corresponds to the boundary concentration (GK).
  2. The inerting method according to claim 1,
    whereby the fail-safe interval (ASA) is determined taking into account an air exchange rate valid for the protected area, in particular an n50 value of the protected area, and/or the pressure difference between the protected area and environment is determined.
  3. The inerting method according to claim 1 or 2, whereby the design concentration (AK) is lowered by a safety reduction (S) below the boundary concentration (GK) determined for the protected area.
  4. The inerting method according to one of claims 1 to 3, with a detector for detecting a fire parameter, whereby the oxygen content in the protected area is lowered quickly to the control concentration upon detecting an incipient fire or a fire when the oxygen content was previously at a higher level.
  5. The inerting method according to one of the previous claims, whereby the control range is approximately ± 0.2% by volume oxygen content around the control concentration (RK).
  6. The inerting method according to one of the previous claims, whereby the control of the oxygen content takes place in the protected area taking into consideration the air exchange rate, in particular the n50 value of the protected area, and/or the pressure difference between the protected area and the environment.
  7. The inerting method according to one of the previous claims, whereby the calculation of the amount of extinguishing agent for maintaining the control concentration (RK) in the protected area takes place considering the air exchange rate of the target area, in particular of the n50 value of the target area, and/or the pressure difference between target area and environment.
  8. A device for reducing the risk of a fire in an enclosed protected area, whereby the device comprises a primary source from which oxygen-displacing gas can be introduced as needed into the protected area in such a manner as to maintain the oxygen content in the protected area with a settable control range for a certain time at a control concentration (RK) located below an operating concentration (BK), whereby the oxygen concentration in the protected area is maintained in the control range around the control concentration (RK), and whereby the primary source is a machine that produces the oxygen-displacing gas, is a flat battery, a buffer volume or an oxygen-removing machine or a similar machine,
    characterized in that
    the device is designed to lower the control concentration (RK) and the operating concentration (BK), under formation of a fail-safe interval (ASA), so far below the design concentration (AK) fixed for the protected area that the rise curve of the oxygen content achieves a boundary concentration (GK) determined for the protected area upon failure of the primary source only in a given time, whereby the boundary concentration (GK) is a maximal oxygen concentration at which renewed ignition of the material present in the protected area can still be avoided; and whereby the design concentration (AK) is an oxygen concentration that corresponds to the boundary concentration (GK) minus a safety reduction (S) or that corresponds to the boundary concentration (GK).
  9. The device according to claim 8,
    whereby a detector is furthermore provided for detecting a fire parameter, and whereby the device is furthermore designed to quickly lower the oxygen content in the protected area to the control concentration upon detecting an incipient fire or a fire when the oxygen content was previously at a higher level.
EP03029927A 2003-12-29 2003-12-29 Inerting method for decreasing the risk of a fire Revoked EP1550481B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES03029927T ES2399215T3 (en) 2003-12-29 2003-12-29 Inerting procedure to reduce the risk of a fire
DK03029927.5T DK1550481T3 (en) 2003-12-29 2003-12-29 Method of inertization to reduce the risk of fire
EP03029927A EP1550481B1 (en) 2003-12-29 2003-12-29 Inerting method for decreasing the risk of a fire
AU2004308568A AU2004308568B2 (en) 2003-12-29 2004-11-23 Inertisation method for reducing the risk of fire
CN200480035850XA CN1889999B (en) 2003-12-29 2004-11-23 Inerting method for decreasing the risk of a fire
PCT/EP2004/013285 WO2005063337A1 (en) 2003-12-29 2004-11-23 Inertisation method for reducing the risk of fire
CA2551226A CA2551226C (en) 2003-12-29 2004-11-23 Inertisation method for reducing the risk of fire
UAA200606995A UA86045C2 (en) 2003-12-29 2004-11-23 Inertisation method for reducing risk of fire
US10/584,905 US7854270B2 (en) 2003-12-29 2004-11-23 Inertization method for reducing the risk of fire
JP2006545948A JP4818932B2 (en) 2003-12-29 2004-11-23 Inactivation methods to reduce the risk of fire
RU2006123037/12A RU2318560C1 (en) 2003-12-29 2004-11-23 Method for inert gas introduction to reduce fire hazard
TW093138311A TWI302843B (en) 2003-12-29 2004-12-10 Inertisierungsverfahren zur minderung des risikos eines brandes
HK05108473.4A HK1076415A1 (en) 2003-12-29 2005-09-26 Inerting method for decreasing the risk of a fire
NO20063302A NO20063302L (en) 2003-12-29 2006-07-17 Inertialization method for reducing fire risk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03029927A EP1550481B1 (en) 2003-12-29 2003-12-29 Inerting method for decreasing the risk of a fire

Publications (2)

Publication Number Publication Date
EP1550481A1 EP1550481A1 (en) 2005-07-06
EP1550481B1 true EP1550481B1 (en) 2012-12-19

Family

ID=34560176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03029927A Revoked EP1550481B1 (en) 2003-12-29 2003-12-29 Inerting method for decreasing the risk of a fire

Country Status (14)

Country Link
US (1) US7854270B2 (en)
EP (1) EP1550481B1 (en)
JP (1) JP4818932B2 (en)
CN (1) CN1889999B (en)
AU (1) AU2004308568B2 (en)
CA (1) CA2551226C (en)
DK (1) DK1550481T3 (en)
ES (1) ES2399215T3 (en)
HK (1) HK1076415A1 (en)
NO (1) NO20063302L (en)
RU (1) RU2318560C1 (en)
TW (1) TWI302843B (en)
UA (1) UA86045C2 (en)
WO (1) WO2005063337A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI1911498T1 (en) * 2006-10-11 2009-04-30 Amrona Ag Multi-stage inerting method for preventing and extinguishing fires is enclosed spaces
BRPI0805836B1 (en) * 2007-08-01 2018-08-07 Amrona Ag INERTIZATION PROCESS FOR REDUCING THE RISK OF A FIRE IN A CLOSED SPACE, AS WELL AS DEVICE FOR CARRYING OUT THE PROCESS
DK2136148T3 (en) * 2008-06-18 2010-12-06 Amrona Ag Device and method for adjusting the leakage rate for a leak on a slot-like opening of a rotary heat exchanger
PT3141287T (en) * 2012-10-29 2022-12-05 Amrona Ag Method and device for determining and/or monitoring the air permeability of an enclosed space
EP2881149B1 (en) * 2013-12-04 2018-02-28 Amrona AG Oxygen reduction system and method for operating an oxygen reduction system
EP3111999B1 (en) * 2015-07-02 2017-12-06 Amrona AG Oxygen reducing installation and method for dimensioning out an oxygen reducing installation
CN115382348A (en) * 2022-08-26 2022-11-25 苏州班顺工业气体设备有限公司 Energy-saving nitrogen production method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3467349A (en) * 1967-11-09 1969-09-16 Robert A Gautier System and method for freeing aircraft fuels of moisture,micro-organisms and other contaminants
US3840667A (en) * 1968-06-12 1974-10-08 Atlantic Res Corp Oxygen-containing atmospheres
US4807706A (en) * 1987-07-31 1989-02-28 Air Products And Chemicals, Inc. Breathable fire extinguishing gas mixtures
US5759430A (en) * 1991-11-27 1998-06-02 Tapscott; Robert E. Clean, tropodegradable agents with low ozone depletion and global warming potentials to protect against fires and explosions
JP3397382B2 (en) * 1993-08-03 2003-04-14 能美防災株式会社 Carbon dioxide fire extinguishing equipment
JPH09276428A (en) * 1996-04-08 1997-10-28 Sekiko Ryo Method and system for preventing and distinguishing fire
US20020040940A1 (en) * 1998-03-18 2002-04-11 Wagner Ernst Werner Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
DE19811851C2 (en) * 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inerting procedure for fire prevention and extinguishing in closed rooms
JP2000153004A (en) * 1998-11-19 2000-06-06 Kawasaki Safety Service Industries Ltd Oxygen lack prevention type inert gas fire extinguishing facility
AU3727900A (en) * 1999-03-03 2000-09-21 Fmc Corporation Explosion prevention system for internal turret mooring system
JP3929214B2 (en) * 1999-10-04 2007-06-13 株式会社コーアツ Gas fire extinguishing equipment
DE10051662B4 (en) * 2000-10-18 2004-04-01 Airbus Deutschland Gmbh Procedure for extinguishing a fire that has broken out inside a closed room
PL195429B1 (en) * 2001-01-11 2007-09-28 Wagner Alarm Sicherung Inert rendering method with a nitrogen buffer
JP2003102858A (en) * 2001-09-28 2003-04-08 Nohmi Bosai Ltd Fire prevention system for closed space
CN1431027A (en) * 2002-01-11 2003-07-23 廖赤虹 Method and system for putting out fire happened in unopened space
US7337856B2 (en) * 2003-12-02 2008-03-04 Alliant Techsystems Inc. Method and apparatus for suppression of fires

Also Published As

Publication number Publication date
UA86045C2 (en) 2009-03-25
AU2004308568B2 (en) 2010-08-26
CN1889999A (en) 2007-01-03
AU2004308568A1 (en) 2005-07-14
JP2007516755A (en) 2007-06-28
CN1889999B (en) 2012-11-14
CA2551226A1 (en) 2005-07-14
TW200534894A (en) 2005-11-01
ES2399215T3 (en) 2013-03-26
NO20063302L (en) 2006-09-28
CA2551226C (en) 2011-10-11
US7854270B2 (en) 2010-12-21
RU2318560C1 (en) 2008-03-10
TWI302843B (en) 2008-11-11
WO2005063337A1 (en) 2005-07-14
DK1550481T3 (en) 2013-02-11
JP4818932B2 (en) 2011-11-16
US20080011492A1 (en) 2008-01-17
EP1550481A1 (en) 2005-07-06
HK1076415A1 (en) 2006-01-20

Similar Documents

Publication Publication Date Title
EP1683548B1 (en) Inerting method for avoiding fire
EP2173440B1 (en) Device and method for fire-prevention and for extinguishing a fire that has broken out in an enclosed area
EP1941932B1 (en) A method to determine the airtightness of enclosed chambers
EP1062005B2 (en) Inerting method for preventing and extinguishing fires in enclosed spaces
EP1550482B1 (en) Inerting method for extinguishing fires
EP2186546B1 (en) Inert gas fire extinguisher for reducing the risk of and extinguishing fires in a protected area
EP1913980B1 (en) Inerting device with safety device
EP2724754B1 (en) Method and device for determining and/or monitoring the air permeability of an enclosed space
EP1913978A1 (en) Inerting device with nitrogen generator
EP2881149B1 (en) Oxygen reduction system and method for operating an oxygen reduction system
WO2014180728A2 (en) Inertization method and system for oxygen reduction
EP1550481B1 (en) Inerting method for decreasing the risk of a fire
EP2602006B1 (en) Method for extinguishing a fire in a closed space and fire extinguishing assembly
EP1913979B1 (en) Inerting device with nitrogen generator
WO2017109069A1 (en) Oxygen reduction plant and method for operating an oxygen reduction plant
WO2016110340A1 (en) Method and system for preventing and/or extinguishing a fire
WO2016045979A1 (en) Inert gas extinguishing system
Klaffenböck et al. Automatic fire‐fighting systems in tunnels
EP3184152B1 (en) Oxygen reduction system and method for operating an oxygen reduction system
DE102014210032B4 (en) Fire protection device for lowering an atmospheric oxygen concentration in a protected area of a building
DE102015002024A1 (en) Device for limiting pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET.

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1076415

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMRONA AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50314616

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A62C0039000000

Ipc: A62C0099000000

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 99/00 20100101AFI20120730BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: IPRIS AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: IPRIS AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314616

Country of ref document: DE

Effective date: 20130221

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2399215

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130326

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1076415

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MINIMAX GMBH & CO KG

Effective date: 20130829

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50314616

Country of ref document: DE

Effective date: 20130829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20131125

Year of fee payment: 11

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MINIMAX GMBH & CO. KG

Effective date: 20130829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50314616

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50314616

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20151221

Year of fee payment: 13

Ref country code: IE

Payment date: 20151223

Year of fee payment: 13

Ref country code: FI

Payment date: 20151211

Year of fee payment: 13

Ref country code: GB

Payment date: 20151221

Year of fee payment: 13

Ref country code: DE

Payment date: 20151210

Year of fee payment: 13

Ref country code: CH

Payment date: 20151221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151221

Year of fee payment: 13

Ref country code: NL

Payment date: 20151221

Year of fee payment: 13

Ref country code: CZ

Payment date: 20151228

Year of fee payment: 13

Ref country code: AT

Payment date: 20151222

Year of fee payment: 13

Ref country code: SE

Payment date: 20151221

Year of fee payment: 13

Ref country code: ES

Payment date: 20151214

Year of fee payment: 13

Ref country code: BE

Payment date: 20151221

Year of fee payment: 13

Ref country code: LU

Payment date: 20151224

Year of fee payment: 13

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20151109

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20151109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20121219

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20121219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151228

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 589055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151109

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC