EP1549482A1 - Hohler zylindrischer formkörper auf der basis von thermoplastischem polyurethan - Google Patents

Hohler zylindrischer formkörper auf der basis von thermoplastischem polyurethan

Info

Publication number
EP1549482A1
EP1549482A1 EP03766181A EP03766181A EP1549482A1 EP 1549482 A1 EP1549482 A1 EP 1549482A1 EP 03766181 A EP03766181 A EP 03766181A EP 03766181 A EP03766181 A EP 03766181A EP 1549482 A1 EP1549482 A1 EP 1549482A1
Authority
EP
European Patent Office
Prior art keywords
shaped body
shape
melting temperature
temperature
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03766181A
Other languages
English (en)
French (fr)
Inventor
Johann Diedrich Brand
Herbert MÖLLERING
Daniela Herkenhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1549482A1 publication Critical patent/EP1549482A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • B29L2031/265Packings, Gaskets

Definitions

  • the invention relates to hollow cylindrical shaped bodies, hereinafter also referred to as "shaped bodies", based on thermoplastic polyurethane in a temporary shape, the wall of the hollow cylindrical shaped body having a thickness in the permanent shape which is at least 10% greater than the thickness of the wall of the hollow cylindrical shaped body in the temporary shape.
  • the invention further relates to methods for fastening or sealing materials, whereby a material, e.g.
  • a pipe, an electrical line, a nail, a screw placed in the cavity of the shaped body according to the invention for example introducing or pushing the hollow cylindrical shaped body over the material, and then the shaped body according to the invention by heating to a temperature in the range greater than or equal to the melting temperature of the Soft phase and low melting temperature of the hard phase are converted from the temporary form into the permanent form.
  • Elastic plastics are often used to fasten or seal objects.
  • a disadvantage of known solutions is, in particular, the difficult, precisely fitting insertion of the sealing or fastening material in or around the material to be fastened or sealed.
  • the object of the present invention was to develop a sealing and fastening material as well as a method for sealing and fastening, with which simple handling with good fastening and sealing properties is made possible at the same time.
  • the material should have excellent mechanical properties such as low abrasion and high tear resistance.
  • Thermoplastic polyurethane hereinafter also referred to as TPU, is used as the material for the production of the shaped bodies, which is generally known, widely described and commercially available. It is essential to the invention that the shaped body can be transferred from a temporary state in which the shaped body is in an extended state with a small wall thickness to a permanent state with a greater wall thickness of the cylinder, in particular by heating the shaped body to a temperature greater than or equal to the switching temperature and low melting temperature of the hard phase.
  • the invention relates to the shaped body in the temporary shape, ie the elongated shape.
  • the temporary shape is defined by the possibility of being able to be converted into the permanent shape by heating the molded body to a temperature greater than or equal to the switching temperature.
  • the “permanent shape” of the shaped body according to the invention is, in particular, the shape of the shaped body which is present at a temperature in the range of greater than or equal to the switching temperature, ie in particular the melting temperature of the soft phase and the low melting temperature of the hard phase.
  • the "temporary shape" of the shaped body according to the invention is, in particular, the shape of the shaped body which is below the switching temperature, ie the melting temperature of the soft phase, and by heating the shaped body to a temperature in the range of greater than or equal to the melting temperature of the soft phase and a low melting temperature of the hard phase the temporary form can be converted into the permanent form.
  • the transition from a temporary form to a permanent form by heating the TPU is described in the article "Shape memory polymers" by A. Landlein and S. Kelch, Angewandte Chemie, 2002. 114, 2138-2162, WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, in which terms such as “temporary shape”, “permanent shape”, “switching temperature” or “Ttrans” and “Tper” are also explained.
  • the switching temperature is defined in particular as the melting temperature of the soft phase of the polyurethane, which can be determined using generally known methods.
  • the melting temperature of the soft phase of the polyurethane is, in particular, the temperature at which the maximum of the melting peak of the soft phase is present in the DSC (differential scanning calorimetry) measurement.
  • Tperm is in particular the melting temperature of the hard phase of the TPU, i.e. the melting temperature of the entire TPU. This melting temperature can also be determined using generally known methods, for example based on the temperature at which the melting peak of the hard phase in the DSC
  • the switching temperature is preferably in a range from 25 ° C. to 50 ° C., preferably 35 ° C. to 50 ° C. This switching temperature can in particular be selected by selecting suitable polyols (b), which will be presented later, in particular the butane-1,4-diol and / or
  • Hexane-1, 6-diol adipates with a molecular weight of 2000 g / mol to 4000 g / mol can be set specifically because of the ratio of butane-1,4-diol to hexane-1,6-diol in the polyester the crystallinity can be specifically controlled while the molecular weight remains the same.
  • the TPUs preferably have an at least partially crystalline soft phase, since the crystallinity of the soft phase determines the "width" of the switching temperature.
  • the shaped bodies according to the invention can be produced in the temporary shape, for example, by cold-stretching or rolling a generally cylindrical hollow TPU shaped body obtainable by known processes, for example injection molding or extrusion, starting from the permanent shape, and in the stretched shape at one Temperature remains lower than the switching temperature until the molded body has taken on this temporary shape.
  • This form conversion from the permanent form to the temporary form takes place through the partial crystallization of the soft phase at temperatures lower than the melting temperature of the soft phase.
  • the molded body By cooling to a temperature lower than the switching temperature, the molded body is fixed in the elongated, temporary shape, which only changes back to the permanent shape when heated above or equal to the switching temperature.
  • Generally known machines or devices for stretching or rolling the shaped body can be used, for example known gusset machines or rollers. Manual stretching is also possible.
  • the stretching can be one-dimensional or two-dimensional, that is to say in the diameter of the cylinder and / or length of the cylinder.
  • the molded body is preferably stretched from the permanent shape to produce the temporary shape by 10% to 300%, particularly preferably by 10% to 100%, in particular 50% to 100%.
  • the process for producing the shaped bodies according to the invention can thus preferably be carried out in such a way that the shaped body, based on the permanent shape, the wall thickness of which is at least 10% greater than the thickness of the wall in the temporary shape, by stretching or rolling at a temperature in the range higher or equal melting temperature of the soft phase and lower melting temperature of the hard phase in the temporary form and in this temporary form cools to a temperature lower than the melting temperature of the soft phase.
  • the shaped body according to the invention in such a way that the shaped body, based on the permanent shape, the wall thickness of which is at least 10% greater than the thickness of the wall in the temporary shape, is stretched or rolled at a temperature in the range smaller The melting temperature of the soft phase is converted into the temporary shape and fixed in this stretched shape until the molded body has assumed the temporary shape with the smaller wall thickness.
  • the shaped body in the temporary, ie elongated form usually has a wall thickness of 1 mm to 100 mm, preferably 2 mm to 50 mm, in particular 5 mm to 30 mm.
  • the thickness of the wall of the hollow cylindrical shaped body in the permanent shape is at least 10%, preferably 15% to 500%, particularly preferably 20% to 100% greater than the wall thickness of the shaped body in the temporary shape.
  • the fastening and / or sealing of materials according to the invention shown at the outset takes place by thickening the wall of the cylindrical shaped body during the transition from the elongated, temporary shape by increasing the temperature to the permanent shape, which, although having a larger wall thickness, but correspondingly a shorter length of the cylinder and / or diameter of the cylinder.
  • the cylindrical shaped body according to the invention preferably has a length of 5 mm to 500 mm and a diameter of 4 mm to 300 mm.
  • the hollow space of the cylindrical shaped body preferably has a diameter of 2 mm to 100 mm.
  • Thermoplastic polyurethanes and processes for their production are generally known and have been described in many different ways.
  • the TPUs according to the invention preferably have an at least partially crystalline soft phase. TPU are characterized by good ones
  • TPUs offer the advantage of cost-effective production, for example by the belt or reaction extruder process, which can be carried out continuously or batchwise, and the simple processing of thermoplastics.
  • the production of hollow cylindrical shaped articles from the thermoplastic polyurethane, for example by means of extrusion, is generally known to the person skilled in the art.
  • the preparation is usually carried out by reacting (a) diisocyanates, in the present case preferably aliphatic diisocyanates, with (b) compounds which are reactive towards isocyanates and have a molecular weight of 500 g / mol to 8000 g / mol, if appropriate in the presence of (c) chain extenders with a molecular weight of 60 g / mol to 499 g / mol, (d) catalysts and / or (e) customary auxiliaries.
  • diisocyanates in the present case preferably aliphatic diisocyanates
  • the build-up components (b) and (c) can be varied in relatively wide molar ratios.
  • Molar ratios of component (b) to chain extenders (c) to be used in total from 1: 0.5 to 1: 8, in particular from 1: 1 to 1: 4, have proven useful, the hardness of the TPUs increasing with the content of (c) increases.
  • the implementation for the production of the TPU can take place with a key figure of 0.8 to 1.2: 1, preferably with a key figure of 0.9 to 1: 1.
  • the characteristic number is defined by the ratio of the total isocyanate groups of component (a) used in the reaction to the groups reactive towards isocyanates, i.e.
  • thermoplastic polyurethanes are usually produced in a one-shot or prepolymer process on the belt system or on the reaction extruder.
  • the components (a), (b) and (c) and, if appropriate, chain terminators which come to the reaction are combined together or in a specific order and brought to reaction.
  • the build-up components (a) to (c) and, if appropriate, chain terminators, (d) and / or (e) are introduced into the extruder individually or as a mixture, e.g. reacted at temperatures of 100 to 250 ° C, preferably 140 to 220 ° C, the TPU obtained is extruded, cooled and granulated.
  • the TPU molded articles can be produced by generally known processes.
  • Aliphatic, cycloaliphatic, araliphatic and / or aromatic diisocyanates can be used as isocyanates, usually diisocyanates.
  • aromatic isocyanates may be mentioned as examples: 2,4-tol (u) ylene diisocyanate, mixtures of 2,4- and 2,6-tolylene diisocyanate, 4,4'-, 2,4'- and / or 2,2'-diphenylmethane diisocyanate, mixtures of 2,4'- and 4,4'-diphenylmethane diisocyanate, urethane-modified liquid 4,4'- and / or 2,4'-diphenylmethane diisocyanates, 4,4'-diisocyanatodiphenylethane (1,2) and 1,5-naphthylene diisocyanate.
  • aliphatic diisocyanates customary aliphatic and / or cycloaliphatic diisocyanates are used, with for example tri, tetra, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methyl-pentamethylene-diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-l, 4, 1-isocyanato- 3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate, IPDI), 1,4- and / or 1,3-bis (isocyanatomethyl) cyclohexane (HXDI), 1,4-cyclohexane diisocyanate, l-methyl-2, 4- and / or -2, 6-cyclohexane diisocyanate, 4,4'-, 2,4'- and / or 2,2 '-dicyclohe
  • Hexamethylene-1, 6-diisocyanate hexamethylene diisocyanate, HDI
  • 4,4'-, 2,4'- and / or 2,2'-diphenylmethane diisocyanate is preferred as isocyanate (a ) used.
  • isocyanate-reactive compounds generally known polyhydroxyl compounds with molecular weights of 500 g / mol to 8000 g / mol, preferably 800 g / mol to 6000 g / mol, in particular 2000 g / mol to 4000 g / mol, and preferably an average functionality of 1.8 to 2.6, preferably 1.9 to 2.2, in particular 2, for example generally known polyesterols, polyetherols and / or polycarbonate diols.
  • the ratio of butane-1,4- diol and hexane-1,6-diol can be selected depending on the desired melting point of the soft phase and the desired crystallinity of the soft phase.
  • chain extenders for example diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical, in particular ethylene glycol and / or 1,4-butanediol, and / or hexanediol and / or di - and / or tri-oxyalkylene glycols with 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-polyoxypropylene glycols, it also being possible to use mixtures of the chain extenders.
  • diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical in particular ethylene glycol and / or 1,4-butanediol, and / or hexanediol and / or di - and / or tri-oxyalkylene glycols with 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-polyoxypropylene
  • Accelerate hydroxyl groups of the structural components (b) and (c) are those known in the prior art and customary tertiary amines, such as, for example, triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo [2/2/2] octane and the like, and in particular organic metal compounds such as titanium acid esters, Iron compounds such as iron (III) a ⁇ etylacetonate, tin compounds, for example tin diacetate, tin dioctoate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or the like.
  • the catalysts are usually used in amounts of 0.0001 to 0.1 part by weight per 100 parts by weight of polyhydroxy compound (b
  • customary auxiliaries can also be added to the structural components (a) to (d).
  • examples include surface-active substances, glass fibers, flame retardants, nucleating agents, lubricants and mold release agents, dyes and pigments, inhibitors, stabilizers against hydrolysis, light, heat, oxidation or discoloration, protective agents against microbial degradation, inorganic and / or organic fillers, reinforcing agents and plasticizers.
  • Additives are also mentioned which lead to an improvement in adhesion between TPU and wood, particle board or wood substitutes, specifically in this invention.
  • adhesion promoters can e.g. Additives containing isocyanate.
  • TPU directly during synthesis or only during thermoplastic processing in bulk or incorporated in a carrier, e.g. TPU, can be added as so-called masterbatches.
  • chain terminators with a molecular weight of 46 to 499 can also be used.
  • Such chain terminators are compounds that have only one isocyanate-reactive functional group, such as Monoalcohols. The flow behavior can be specifically adjusted by means of such chain terminators.
  • Thermoplastic polyurethane based on hexamethylene diisocyanate, a polyester diol from adipic acid and butanediol as well as the short-chain diol butanediol was extruded through a tube profile die into hollow bodies with an inner diameter of 4mm and a wall thickness of 1.20mm.
  • This "permanent" shape of the tube was expanded at room temperature to an inner diameter of 5 mm using a metal mandrel and thus converted into the "temporary" shape.
  • the wall thickness of the cylindrical shaped body was reduced by approx. 10% to 1.1 mm.
  • the "temporary" shape of the tube pattern was returned to the "permanent" shape within 2 minutes

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

Die Erfindung betrifft Hohle zylindrische Formkörper auf der Basis von thermoplastischem Polyurethan in einer temporären Form, wobei die Wand des hohlen zylindrischen Formkörpers in der permanenten Form eine Dicke aufweist, die mindestens 10 % größer ist als die Dicke der Wand des hohlen zylindrischen Formkörpers in der temporären Form.

Description

Hohler zylindrischer Formkörper auf der Basis von thermoplastischem Polyurethan
Beschreibung
Die Erfindung bezieht sich auf hohle zylindrische Formkörper, im Folgenden auch als "Formkörper" bezeichnet, auf der Basis von thermoplastischem Polyurethan in einer temporären Form, wobei die Wand des hohlen zylindrischen Formkörpers in der permanenten Form eine Dicke aufweist, die mindestens 10 % größer ist als die Dicke der Wand des hohlen zylindrischen Formkörpers in der temporären Form. Des weiteren bezieht sich die Erfindung auf Verfahren zum Befestigen oder Abdichten von Werkstoffen, wobei man einen Werkstoff, z.B. ein Rohr, eine elektrische Leitung, eine Nagel, eine Schraube in dem Hohlraum des erfindungsgemäßen Formkörpers platziert, beispielsweise einführt oder den hohlen zylindrischen Formkörper über den Werkstoff schiebt, und anschließend den erfindungsgemäßen Formkörper durch Erwärmen auf eine Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hartphase von der temporären Form in die permanente Form überführt.
Zur Befestigen oder Abdichten von Gegenständen werden häufig elastische Kunststoffe eingesetzt. Nachteilig bei bekannten Lösungen ist insbesondere die schwierige passgenaue Einfügung des Dichtungs- oder Befestigungsmaterials in oder um den zu befestigenden oder abzudichtenden Werkstoff.
Aufgabe der vorliegenden Erfindung war es, ein Dichtungsund Befestigungsmaterial sowie Verfahren zur Abdichtung- und Befestigung zu entwickeln, mit denen eine einfache Handhabung bei gleichzeitig guten Befestigungs- und Abdichtungseigenschaften ermöglicht wird. Dabei sollte das Material über hervorragende mechanische Eigenschaften wie z.B. geringen Abrieb und hohe Weiterreißfestigkeit verfügen.
Diese Aufgabe konnte durch die eingangs dargestellten Formkörper gelöst werden. Als Material zur Herstellung der Form- körper wird thermoplastisches Polyurethan, im Folgenden auch als TPU bezeichnet, eingesetzt, das allgemein bekannt, vielfältig beschrieben und kommerziell erhältlich ist. Erfindungswesentlich ist, dass der Formkörper von einem temporären Zustand, in dem der Formkörper in einem gestreckten Zustand mit geringer Wanddicke vorliegt, in einem permanenten Zustand mit größerer Wanddicke des Zylinders überführt werden kann, insbesondere durch Erwärmen der Formkörper auf eine Temperatur größer/gleich Schalttemperatur und kleiner Schmelztemperatur der Hartphase. Gegenstand der Erfindung ist der Formkörper in der temporären Form, d.h. gestreckten Form. Die temporäre Form definiert sich durch die Möglichkeit, durch Erwärmen des Formkörpers auf eine Temperatur größer oder gleich der Schalttemperatur in die permanente Form überführt werden zu können. Die "permanente Form" des erfindungsgemäßen Formkörpers ist insbesondere die Form des Formkörpers, die bei einer Temperatur in dem Bereich größer oder gleich Schalttemperatur, d.h. insbesondere Schmelztemperatur der Weichphase, und kleiner Schmelztemperatur der Hartphase vorliegt. Die "temporäre Form" des erfindungsgemäßen Formkörpers ist insbesondere die Form des Formkörpers, die unterhalb der Schalttemperatur, d.h. der Schmelztemperatur der Weichphase, vorliegt und durch Erwärmen des Formkörpers auf eine Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hartphase von der temporären Form in die permanente Form überführt werden kann.
Der Übergang von einer temporären Form in die permanente Form durch Erwärmen des TPU ist beschrieben in dem Aufsatz "Form- gedächtnispolymere" von A. Landlein und S. Kelch, Angewandte Chemie, 2002. 114, 2138-2162, WILEY-VCH Verlag GmbH, 69451 Weinheim, Deutschland, in dem auch Begriffe wie "temporäre Form", "permanente Form", "Schalttemperatur" oder "Ttrans" sowie "Tper " erklärt werden. Die Schalttemperatur ist insbesondere definiert als die Schmelztemperatur der Weichphase des Polyurethans, die nach allgemein bekannten Verfahren ermittelt werden kann. Die Schmelztemperatur der Weichphase des Polyurethans ist insbesondere die Temperatur, bei der das Maximum des Schmelzpeaks der Weichphase in der DSC- (Differential Scanning Calorimetry) Messung vorliegt. Tperm ist insbesondere die Schmelztemperatur der Hartphase des TPU, d.h. die Schmelztemperatur des gesamten TPU. Auch diese Schmelztemperatur kann nach allgemein bekannten Verfahren ermittelt werden, beispielsweise anhand der Temperatur, bei das Maximum des Schmelzpeaks der Hartphase in der DSC-
(Differential Scanning Calometry) Messung vorliegt. Bevorzugt liegt die Schalttemperatur in einem Bereich von 25°C bis 50°C, bevorzugt 35°C bis 50°C. Diese Schalttemperatur kann insbesondere durch die Auswahl geeigneter Polyole (b) , die an späterer Stelle dargestellt werden, insbesondere den Butan-1,4-diol- und/oder
Hexan-1, 6-diol-Adipaten mit einem Molekulargewicht von 2000 g/mol bis 4000 g/mol, gezielt eingestellt werden, da über das Verhältnis von Butan-l,4-diol zu Hexan-1, 6-diol in dem Polyester bei gleichbleibenden Molekulargewicht die Kristallinität gezielt gesteuert werden kann. Bevorzugt weisen die TPU eine zumindest teilkristalline Weichphase auf, da die Kristallinität der Weichphase die "Breite" der Schalttemperatur bestimmt. Die Herstellung der erfindungsgemäßen Formkörper in der temporären Form kann beispielsweise dadurch erfolgen, dass man einen allgemein üblichen und nach bekannten Verfahren, z.B. Spritzguss oder Extrusion erhältlichen hohlen zylindrischen TPU-Formkörper ausgehend von der permanenten Form kalt verstreckt oder walzt und in der gestreckten Form bei einer Temperatur kleiner als die Schalttemperatur hält, bis der Formkörper diese temporäre Form angenommen hat. Diese Formumwandlung von der permanenten Form zur temporären Form erfolgt durch die Teilkristallisation der Weich- phase bei Temperaturen kleiner als die Schmelztemperatur der Weichphase. Alternativ ist es möglich, den Formkörper ausgehend von der (üblicherweise vorliegenden) permanenten Form bei einer Temperatur größer oder gleich der Schalttemperatur und kleiner der Schmelztemperatur der Hartphase (Tperm) streckt und in gestreckter Form auf eine Temperatur kleiner Schalttemperatur abkühlt. Durch das Abkühlen auf einer Temperatur kleiner als die Schalttemperatur wird der Formkörper in der gestreckten, temporären Form fixiert, die sich erst bei Erwärmung über oder gleich der Schalttemperatur zurück in die permanente Form umwandelt. Es können allgemein bekannte Maschinen oder Vorrichtungen zur Streckung oder Walzung des Formkörpers eingesetzt werden, beispielsweise bekannte Zwickelmaschinen oder Walzen. Auch ein manuelles Strecken ist möglich. Die Streckung kann eindimensional oder zweidimensional, also in Durchmesser des Zylinders und/oder Länge des Zylinders erfolgen. Bevorzugt wird der Formkörper ausgehend von der permanenten Form zur Erzeugung der temporären Form um 10 % bis 300 %, besonders bevorzugt um 10 % bis 100 %, insbesondere 50 % bis 100 % gestreckt. Das Verfahren zur Herstellung der erfindungsgemäßen Formkörper kann somit bevorzugt derart erfolgen, dass man den Formkörper ausgehend von der permanenten Form, dessen Wanddicke mindestens 10 % größer ist als die Dicke der Wand in der temporären Form, durch Strecken oder Walzen bei einer Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hart- phase in die temporäre Form überführt und in dieser temporären Form auf eine Temperatur kleiner als die Schmelztemperatur der Weichphase abkühlt. Alternativ ist es bevorzugt möglich, den erfindungsgemäßen Formkörper derart herzustellen, dass man den Formkörper ausgehend von der permanenten Form, dessen Wanddicke mindestens 10 % größer ist als die Dicke der Wand in der temporären Form, durch Strecken oder Walzen bei einer Temperatur in dem Bereich kleiner Schmelztemperatur der Weichphase in die temporäre Form überführt und in dieser gestreckten Form fixiert, bis der Formkörper die temporäre Form mit der geringeren Wand- dicke angenommen hat . Der Formkörper hat in der temporären, d.h. gestreckten Form üblicherweise eine Wanddicke von 1 mm bis 100 mm, bevorzugt 2 mm bis 50 mm, insbesondere 5 mm bis 30 mm. Die Dicke der Wand des hohlen zylindrischen Formkörpers in der permanenten Form ist mindestens 10 %, bevorzugt 15 % bis 500 %, besonders bevorzugt 20 % bis 100 % größer als die Wanddicke des Formkörpers in der temporären Form.
Das eingangs dargestellte erfindungsgemäße Befestigen und/oder Abdichten von Werkstoffen erfolgt durch das Verdicken der Wand des zylindrischen Formkörpers beim Übergang von der gestreckten, temporären Form durch Temperaturerhöhung in die permanente Form, die zwar eine größere Wandstärke, aber entsprechend eine geringere Länge des Zylinders und/oder Durchmesser des Zylinders auf- weist. Durch die Verdickung der Wand wird der in dem Hohlraum des Zylinders befindliche Werkstoff fixiert und gegebenenfalls gegen einen außerhalb des Zylinders befindlichen Werkstoff abgedichtet, da der zylindrische Formkörper durch die dickere Wand in der permanenten Form den Raum zwischen dem Werkstoff im Hohlraum des Zylinders und dem Werkstoff auf der Mantelfläche des Zylinders, d.h. außerhalb des Zylinders ausfüllt und damit abdichtet. Der erfindungsgemäße zylindrische Formkörper weist bevorzugt eine Länge von 5 mm bis 500 mm und einen Durchmesser von 4 mm bis 300 mm auf. Der Hohlraum des zylindrischen Formkörpers hat bevor- zugt einen Durchmesser von 2 mm bis 100 mm.
Thermoplastische Polyurethane und Verfahren zu deren Herstellung sind allgemein bekannt und vielfältig beschrieben. Bevorzugt weisen die erfindungsgemäßen TPU eine zumindest teilkristalline Weichphase auf. TPU zeichnen sich unter anderem durch gute
Festigkeiten, Abriebe, Weiterreißfestigkeiten und Chemikalienbeständigkeit aus, und können in nahezu beliebiger Härte durch geeignete RohstoffZusammensetzung hergestellt werden. Zusätzlich bieten TPU den Vorteil einer kostengünstigen Herstellung, beispielsweise nach dem Band- oder dem Reaktionsextruderverfahren, die kontinuierlich oder diskontinuierlich durchgeführt werden können, und die einfache Thermoplastverarbeitung. Die Herstellung von hohlen zylindrischen Formkörpers aus dem thermoplastischem Polyurethan beispielsweise mittels Extrusion ist dem Fachmann allgemein bekannt.
Üblicherweise erfolgt die Herstellung durch die Umsetzung von (a) Diisocyanaten, im vorliegenden Fall bevorzugt aliphatischen Diisocyanaten, mit (b) gegenüber Isocyanaten reaktiven Ver- bindungen mit einem Molekulargewicht von 500 g/mol bis 8000 g/mol gegebenenfalls in Gegenwart von (c) Kettenverlängerungsmitteln mit einem Molekulargewicht von 60 g/mol bis 499 g/mol, (d) Katalysatoren und/oder (e) üblichen Hilfsstoffen.
Zur Einstellung von Härte der TPUs können die Aufbaukomponenten (b) und (c) in relativ breiten molaren Verhältnissen variiert werden. Bewährt haben sich molare Verhältnisse von Komponente (b) zu insgesamt einzusetzenden Kettenverlängerungsmitteln (c) von 1 : 0,5 bis 1 : 8, insbesondere von 1 : 1 bis 1 : 4, wobei die Härte der TPUs mit zunehmendem Gehalt an (c) ansteigt. Die Umsetzung zur Herstellung der TPU kann bei einer Kennzahl von 0,8 bis 1,2 : 1, bevorzugt bei einer Kennzahl von 0,9 bis 1 : 1 erfolgen. Die Kennzahl ist definiert durch das Verhältnis der insgesamt bei der Umsetzung eingesetzten Isocyanatgruppen der Komponente (a) zu den gegenüber Isocyanaten reaktiven Gruppen, d.h. den aktiven Wasserstoffen, der Komponenten (b) und gegebenenfalls (c) und gegebenenfalls monofunktionellen gegenüber Isocyanaten reaktiven Komponenten als Kettenabruchsmitteln wie z.B. Monoalkoholen. Die Herstellung der thermoplastischen Polyurethane erfolgt üblicherweise im One-shot- oder Prepolymerver- fahren auf der Bandanlage oder auf dem Reaktionsextruder. Hierbei werden die zur Reaktion kommenden Komponenten (a) , (b) und (c) und gegebenenfalls Kettenabbruchsmitteln gemeinsam oder in bestimmter Reihenfolge vereinigt und zur Reaktion gebracht. Beim Reaktionsextruderverfahren werden die Aufbaukomponenten (a) bis (c) sowie gegebenenfalls Kettenabruchsmittel, (d) und/oder (e) einzeln oder als Gemisch in den Extruder eingeführt, z.B. bei Temperaturen von 100 bis 250°C, vorzugsweise 140 bis 220°C zur Reaktion gebracht, das erhaltene TPU wird extrudiert, abgekühlt und granuliert . Die Herstellung der TPU-Formkörper kann nach all- gemein bekannten Verfahren erfolgen.
Die bei der Herstellung der TPUs üblicherweise verwendeten Komponenten (a) , (b) , (c) sowie gegebenenfalls (d) und/oder (e) sollen im Folgenden beispielhaft beschrieben werden:
(a) Als Isocyanate, üblicherweise Diisocyanate, können aliphatische, cycloaliphatische, araliphatische und/oder aromatische Diisocyanate eingesetzt werden. Im einzelnen seien beispielhaft die folgenden aromatische Isocyanate genannt: 2, 4-Tol (u)ylen-diisocyanat, Gemische aus 2,4- und 2, 6-Toluylen-diisocyanat, 4,4'-, 2,4'- und/oder 2,2'-Di- phenylmethan-diisocyanat , Gemische aus 2,4'- und 4,4'-Di- phenylmethan-diisocyanat, urethanmodifizierte flüssige 4,4'- und/oder 2 , 4' -Diphenylmethan-diisocyanate, 4, 4'-Diisocyanato- diphenylethan- (1,2) und 1, 5-Naphthylen-diisocyanat . Als aliphatische Diisocyanate (a) werden übliche aliphatische und/oder cycloaliphatische Diisocyanate eingesetzt, bei- spielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen-diiso- cyanat-1, 5 , 2-Ethyl-butylen-diisocyanat-l, 4, 1-Isocyanato- 3,3, 5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron- diisocyanat, IPDI) , 1,4- und/oder 1, 3-Bis (isocyanatomethyl) - cyclohexan (HXDI) , 1, 4-Cyclohexan-diisocyanat, l-Methyl-2 , 4- und/oder -2, 6-cyclohexan-diisocyanat, 4,4'-, 2,4'- und/oder 2,2' -Dicyclohexylmethan-diisocyanat . Bevorzugt wird Hexa- methylen-1, 6-diisocyanat (Hexamethylendiisocyanat, HDI) und/oder 4,4'-, 2,4'- und/oder 2,2' -Diphenylmethan-diiso- cyanat (MDI) als Isocyanat (a) eingesetzt.
(b) Als gegenüber Isocyanaten reaktive Verbindungen (b) können allgemein bekannte Polyhydroxylverbindungen mit Molekular- gewichten von 500 g/mol bis 8000 g/mol, bevorzugt 800 g/mol bis 6000 g/mol, insbesondere 2000 g/mol bis 4000 g/mol, und bevorzugt einer mittleren Funktionalität von 1,8 bis 2,6, bevorzugt 1,9 bis 2,2, insbesondere 2 eingesetzt werden, beispielsweise allgemein bekannte Polyesterole, Polyetherole und/oder Polycarbonatdiole.
Bevorzugt werden als (b) ε-Caprolecton und/oder Polyesterdiol auf der Basis von Adipinsäure und Butan-1, 4-diol und/oder Hexan-1, 6-diol als Diolkomponente eingesetzt, wobei das Verhältnis von Butan-l,4-diol und Hexan-1, 6-diol in Abhängigkeit des gewünschten Schmelzpunktes der Weichphase und der gewünschten Kristallinität der Weichphase gewählt werden kann.
(c) Als Kettenverlängerungsmittel (c) können allgemein bekannte Verbindungen eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere Ethylenglykol und/oder Butandiol-1 , 4, und/oder Hexandiol und/oder Di- und/oder Tri-oxyalkylenglykole mit 3 bis 8 Kohlenstoffatomen im Oxyalkylenrest, bevorzugt entsprechende Oligo-Polyoxypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Als Kettenverlängerer können auch 1, 4-Bis- (hydroxymethyl) - benzol (1,4-BHMB), 1, 4-Bis- (hydroxyethyl) -benzol (1,4-BHEB) oder 1,4-Bis- (2-hydroxyethoxy) -benzol (1,4-HQEE) zum Einsatz kommen. Bevorzugt werden als Kettenverlängerungsmittel Ethylenglykol, Butandiol und/oder Hexandiol eingesetzt.
(d) Geeignete Katalysatoren, welche insbesondere die Reaktion zwischen den NCO-Gruppen der Diisocyanate (a) und den
Hydroxylgruppen der Aufbaukomponenten (b) und (c) beschleunigen, sind die nach dem Stand der Technik bekannten und üblichen tertiären Amine, wie z.B. Triethylamin, Dimethyl- cyclohexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2- (Dimethylaminoethoxy)-ethanol, Diazabicyclo [2/2/2] -octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen- (III)- aσetylacetonat, Zinnverbindungen, z.B. Zinndiacetat, Zinn- dioctoat, Zinndilaurat oder die Zinndialkylsalze ali- phatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutyl- zinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew. -Teilen pro 100 Gew. -Teile PolyhydroxylVerbindung (b) eingesetzt.
(e) Neben Katalysatoren können den Aufbaukomponenten (a) bis (d) auch übliche Hilfsstoffe (e) hinzugefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Glasfasern, Flammschutzmittel, Keimbildungsmittel, Gleit- und Entformungshilfen, Farbstoffe und Pigmente, Inhibitoren, Stabilisatoren gegen Hydrolyse, Licht, Hitze, Oxidation oder Verfärbung, Schutzmittel gegen mikrobiellen Abbau, anorganische und/oder organische Füllstoffe, Verstärkungs- mittel und Weichmacher. Genannt seien auch Additive, die speziell in dieser genannten Erfindung zu einer Haftverbesserung zwischen TPU und Holz, Spanplatte bzw. Holzersatzstoffen führen. Solche Haftverbesserer können z.B. Isocyanat enthaltende Additive sein.
Genannte Hilfsstoffe bzw. Additive können dem TPU direkt bei der Synthese oder erst bei der thermoplastischen Verarbeitung in Substanz oder eingearbeitet in einem Träger, z.B. TPU, als sogenannte Masterbatches zugesetzt werden.
Neben den genannten Rohstoffen (a) bis (e) können auch Kettenabbruchsmittel mit einem Molekulargewicht von 46 bis 499 eingesetzt werden. Solche Kettenabbruchsmittel sind Verbindungen, die lediglich eine gegenüber Isocyanaten reaktive funktioneile Gruppe aufweisen, wie z.B. Monoalkohole. Durch solche Kettenabbruchsmittel kann das Fließverhalten gezielt eingestellt werden.
Nähere Angaben über die oben genannten Hilfsmittel- und Zusatzstoffe sind der Fachliteratur zu entnehmen. Alle in dieser Schrift genannten Molekulargewichte weisen die Einheit [g/mol] auf und stellen das Zahlenmittel des Molekulargewichtes dar. Beispiel
Thermoplastisches Polyurethan auf Basis von Hexamethylen- diisocyanat, einem Polyesterdiol aus Adipinsäure und Butandiol sowie dem kurzkettigen Diol Butandiol wurde über eine Schlauchprofildüse zu Hohlkörpern mit einem Innendurchmesser von 4mm und einer Wandstärke von 1,20mm extrudiert. Diese „permanente" Form des Schlauches wurde bei Raumtemperatur mit einem Metalldorn auf einen Innendurchmesser von 5mm geweitet und so in die „temporäre" Form überführt . Dabei wurde die Wandstärke des zylindrischen Formkörpers um ca. 10% auf 1,1mm reduziert. Bei einer Lagertemperatur von 60°C wurde die „temporäre" Form des Schlauchmusters innerhalb von 2min wieder zurück in die „permanente" Form überführt

Claims

Patentansprüche
1. Hohler zylindrischer Formkörper auf der Basis von thermoplastischem Polyurethan in einer temporären Form, dadurch gekennzeichnet, dass die Wand des hohlen zylindrischen Formkörpers in der permanenten Form eine Dicke aufweist, die mindestens 10 % größer ist als die Dicke der Wand des hohlen zylindrischen Formkörpers in der temporären Form.
2. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, dass die permanente Form die Form des Formkörpers ist, die bei einer Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hartphase vorliegt.
3. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, dass die temporäre Form die Form des Formkörpers ist, die unterhalb der Schmelztemperatur der Weichphase vorliegt und durch Erwärmen des Formkörpers auf eine Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hartphase von der temporären Form in die permanente Form überführt werden kann.
4. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, dass die Wand des Formkörper in der temporären Form eine Dicke von
1 mm bis 100 mm aufweist.
5. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, dass das thermoplastische Polyurethan auf der Umsetzung von Iso- cyanaten mit ε-Caprolacton und/oder Polyesterdiol auf der Basis von Adipinsäure und Butan-1, 4-diol und/oder Hexan- 1,6-diol als Diolkomponente basiert.
6. Formkörper gemäß Ansprüche 1, dadurch gekennzeichnet, dass das thermoplastische Polyurethan auf Hexamethylendiisocyanat als Isocyanatkomponente basiert.
7. Verfahren zum Befestigen oder Abdichten von Werkstoffen, dadurch gekennzeichnet, dass man einen Werkstoff in dem Hohlraum des Formkörpers gemäß Anspruch 1 platziert und anschließend den Formkörper gemäß Anspruch 1 durch Erwärmen auf eine Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hartphase von der temporären Form in die permanente Form überführt.
8. Verfahren zur Herstellung eines Formkörpers gemäß Anspruch 1, dadurch gekennzeichnet, dass man den Formkörper ausgehend von der permanenten Form, dessen Wanddicke mindestens 10 % größer ist als die Dicke der Wand in der temporären Form, durch i Strecken oder Walzen bei einer Temperatur in dem Bereich größer oder gleich Schmelztemperatur der Weichphase und kleiner Schmelztemperatur der Hartphase in die temporäre Form überführt und in dieser temporären Form auf eine Temperatur kleiner als die Schmelztemperatur der Weichphase abkühlt.
EP03766181A 2002-07-25 2003-07-16 Hohler zylindrischer formkörper auf der basis von thermoplastischem polyurethan Withdrawn EP1549482A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10234006 2002-07-25
DE2002134006 DE10234006A1 (de) 2002-07-25 2002-07-25 Hohler zylindrischer Formkörper auf der Basis von thermoplastischem Polyurethan
PCT/EP2003/007685 WO2004012926A1 (de) 2002-07-25 2003-07-16 Hohler zylindrischer formkörper auf der basis von thermoplastischem polyurethan

Publications (1)

Publication Number Publication Date
EP1549482A1 true EP1549482A1 (de) 2005-07-06

Family

ID=30010381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03766181A Withdrawn EP1549482A1 (de) 2002-07-25 2003-07-16 Hohler zylindrischer formkörper auf der basis von thermoplastischem polyurethan

Country Status (4)

Country Link
EP (1) EP1549482A1 (de)
AU (1) AU2003254361A1 (de)
DE (1) DE10234006A1 (de)
WO (1) WO2004012926A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007011239A1 (de) 2007-03-08 2008-11-06 Bayer Materialscience Ag Verfahren zur Herstellung von Formgedächtnisformkörpern mit einem breiten Einsatzbereich
US8038923B2 (en) * 2009-01-20 2011-10-18 GM Global Technology Operations LLC Methods of forming a part using shape memory polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282209A (ja) * 1988-05-09 1989-11-14 Asahi Chem Ind Co Ltd 形状記憶性ポリウレタン
JPH02113016A (ja) * 1988-10-21 1990-04-25 Mitsubishi Heavy Ind Ltd 形状記憶性ポリマー発泡体からなる断熱材
JPH02163594A (ja) * 1988-12-19 1990-06-22 Mitsubishi Heavy Ind Ltd 形状記憶性ポリマを用いた配管接続方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004012926A1 *

Also Published As

Publication number Publication date
WO2004012926A1 (de) 2004-02-12
AU2003254361A1 (en) 2004-02-23
DE10234006A1 (de) 2004-02-05

Similar Documents

Publication Publication Date Title
EP1338614B1 (de) Verfahren zur Herstellung von weichen, gut entformbaren thermoplastischen Polyurethanelastomeren mit geringer Schwindung
EP1967537A1 (de) Verfahren zur Herstellung von Formgedächtnisformkörpern mit einem breiten Einsatzbereich
EP2139934B1 (de) Verfahren zur umsetzung von thermoplastischen polyurethanen mit isocyanatgruppen aufweisenden verbindungen
DE102005039933A1 (de) Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethanen
EP3122795B1 (de) Tpu pneumatikschlauch
EP3645597B1 (de) Thermoplastisches polyurethan
EP3394138B1 (de) Tpu schrumpfmaterial
DE3323520A1 (de) Weiche, gummielastische, thermoplastische polyurethane, verfahren zu deren herstellung und deren verwendung
EP2582757A1 (de) Verfahren zur herstellung von blends aus polylactiden (pla) und thermoplastischen polyurethanen (tpu)
EP1204688A1 (de) Thermoplastische polyurethane
DE10022848B4 (de) Formkörper aus thermoplastischen Polyurethanen mit reduziertem Fogging
EP2569359B1 (de) Thermoplastisches polyurethan enthaltend glycerin, das mit mindestens einer aliphatischen carbonsäure verestert ist als weichmacher
DE10356611A1 (de) Verfahren zur Umsetzung von (i) thermoplastischen Polyurethanen mit (ii) Isocyanatgruppen aufweisenden Verbindungen
DE102005019663A1 (de) Thermoplastische Polyurethane
EP0950674A1 (de) Verfahren zur Herstellung von thermoplastischen Polyurethanen
EP1556433B1 (de) Polyester, insbesondere als weichmacher für kunststoffe
EP1549482A1 (de) Hohler zylindrischer formkörper auf der basis von thermoplastischem polyurethan
DE10234007A1 (de) Folie auf der Basis von thermoplastischem Polyurethan
DE10037622A1 (de) Verfahren zur Herstellung von Folien auf der Basis von thermoplastischen Polyurethanen
DE102005021366A1 (de) Formgedächtnispolymer
EP3802653A1 (de) Skischuhe mit temperaturunabhängigem e-modul
EP3812410B1 (de) Polyurethanpolymer mit einer härte von "kleiner oder gleich als" 60 shore a und guter abriebfestigkeit
EP1028132A1 (de) Verfahren zur Herstellung von thermoplastischen Polyurethanen
DE10109302A1 (de) Thermoplastische Polyurethane auf der Basis aliphatischer Isocyanate
EP3812409B1 (de) Polyurethanpolymer mit einer härte von kleiner oder gleich 60 shore a

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070201