EP1546791A1 - Verfahren zur herstellung einer linse und danach hergestellte linse - Google Patents

Verfahren zur herstellung einer linse und danach hergestellte linse

Info

Publication number
EP1546791A1
EP1546791A1 EP03807835A EP03807835A EP1546791A1 EP 1546791 A1 EP1546791 A1 EP 1546791A1 EP 03807835 A EP03807835 A EP 03807835A EP 03807835 A EP03807835 A EP 03807835A EP 1546791 A1 EP1546791 A1 EP 1546791A1
Authority
EP
European Patent Office
Prior art keywords
lens
corrected
eye
visual acuity
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03807835A
Other languages
English (en)
French (fr)
Inventor
Gerhard Kelch
Timo Kratzer
Markus Welscher
Helmut Wietschorke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of EP1546791A1 publication Critical patent/EP1546791A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Definitions

  • the invention relates to a method for producing a lens, in particular a spectacle lens, wherein central aberrations of an eye to be corrected by a defective person, such as sphere, cylinder and axis, are compensated for.
  • the invention also relates to a lens made by the method.
  • Defective vision in eyes is generally corrected with glasses or contact lenses to increase visual acuity.
  • the optimum refractive values, such as sphere, cylinder and axis, of the spectacle lens or the contact lens are determined in a subjective or objective measurement process. These data are then incorporated in a known manner into a spectacle lens with two refractive surfaces, the surface facing away from the eye being generally a spherical surface and the surface facing the eye, in the presence of astigmatism, being a toric surface corresponding to the axis position in front of the eye.
  • Imaging errors that occur at are reduced by using aspheric and atoric surfaces, whereby aspherical and atoric surfaces represent surfaces that deviate from a sphere or a torus. Such areas have been used for a long time to reduce aberrations. Irregularly shaped surfaces, so-called free-form surfaces, are also used, which are used particularly in progressive lenses to achieve an increase in activity in the near area to support accommodation become known. The production of such surfaces with the aid of CNC-controlled grinding, milling and polishing machines is also known from the prior art.
  • refractive measuring methods e.g. Wavefront Detection, known, which not only make it possible to determine the above-mentioned values of sphere, cylinder and axis, but also higher-order imaging errors. These aberrations depend on the opening of the eye pupil.
  • the size of the pupil opening is influenced, among other things, by the brightness of the surroundings, medication, the age and diseases of the person examined.
  • the pupil opening fluctuates between 2.0 mm and 7.0 mm in healthy adults.
  • the pupil opening is smaller in daylight than at dusk or at night.
  • a refractive measuring method is known from EP 663 179 AI.
  • the document describes a method with which refractive measurements can also be carried out on the eye provided with a contact lens. Measurements are taken at various points in the contact lens / eye system.
  • a light beam is generated, the light source of which is selected from a group consisting of several point light sources and slit-shaped light sources.
  • This light beam is then directed directly into the eye on the retina and the light beam is reflected from there.
  • the reflected light beam thus strikes a scanning opening.
  • the passage of light through the scanning opening is recorded by a camera which generates an image signal. This signal is displayed on a monitor.
  • the process Ren as well as the device are essential to measure optical defects, deformations or aberrations of an eye.
  • a manufacturing method for contact lenses is known, the optical ametropia of an eye being determined first with the so-called wavefront detection method, and a soft contact lens being placed on the cornea.
  • the refractive measurement is carried out with the contact lens seated, after which a laser-beam-assisted material removal process is applied to the contact lens separated from the eye. Due to the laser-assisted material removal, the contact lens takes on a surface shape, through which a surface power is obtained in the contact lens, which is determined by the optical correction data. Furthermore, information about the surface topology of the eye is obtained, which is also included in the correction.
  • DE 100 24 080 A1 discloses a method with which the complete correction of vision defects of the human eye should be possible, for which purpose work is carried out with a wavefront analysis device.
  • the focus here is on surgical correction of the eye itself.
  • the dependence of the pupil opening on the higher-order imaging errors is not taken into account.
  • the size of the pupil opening in healthy middle-aged adults is 3.0 mm to 3.5 mm in daylight. It decreases with age to approximately 2.0 mm to 2.5 mm. Since the size of the pupil opening can increase up to 7.0 mm with increasing darkness, the effects of the higher-order errors also change accordingly.
  • At least one refractive surface of the lens is designed in such a way that for at least one direction of vision there is both a dioptric correction of the ametropia and higher-order imaging errors, their effects on the eyesight and / or the contrast vision from the Depending on the size of the pupil opening of the eye to be corrected, be corrected by the lens.
  • spherical aberration is understood to mean that incoming rays parallel to the axis strike the lens at different incidence heights and so the paraxial ray intersects the optical axis at the focal point F ', while the rays incident at finite heights have different focal lengths.
  • Coma is generally understood to mean the aberration overlaid with spherical aberration and astigmatism, which is proportional to the 3rd order approximation of the object and the square of the pupil height in the imaging of non-axial thing points by beams with a large aperture angle.
  • the result is an asymmetrical comet-like scattering figure, the tail of which points away from or towards the optical axis in the case of external and internal coma, and a corresponding point image washing function with only partially formed diffraction rings.
  • a three-leaf error is understood to be a higher-order aberration which, via a wave aberration, generates a three-beam point image washing function with a definition brightness.
  • the three-leaf error is superimposed on the 3rd order coma and remains as a residual aberration if only the meridional and the sagittal beam formation is corrected.
  • three-pointed stars are created as pixels.
  • the refractive values of the defective eye are determined by refractive measurement methods, such as the wavefront detection method, which means that the sphere, the cylinder and the axis are determined. Furthermore, transmitted light measurements through the cornea, of the eye lens and the vitreous body and thus the imaging errors of a higher order, which depend on the pupil opening, are determined. The result includes the aberrations that result from the combination of the optical effects of the cornea, eye lens, vitreous body and pupil opening.
  • the information obtained can thus be incorporated into at least one refractive surface, usually the rear surface of the lens, using the calculation and production methods corresponding to the prior art.
  • a lens is designed which, in addition to the previously correctable errors, which are described by the paraxial values sphere, cylinder, axis, also compensates for those which depend on the opening of the pupil. This creates lenses for ametropic as well as for e - metropic (right - sighted) people who offer the lens wearer a significantly higher visual acuity for at least one viewing direction. The best possible visual acuity is thus not only given by a correction of the paraxial values, but also by a correction of the higher-order imaging errors.
  • the area of highest visual acuity is formed by introducing at least one aspherical surface.
  • the design of the area of sharpest vision as an aspherical surface is very advantageous because this refractive surface deviates from a spherical surface.
  • the lens curvature thus differs from a spherical surface, with axis far rays are broken weaker or stronger than when using a spherical surface and thus the light rays can be combined again in a focal point F '.
  • Figure 1 is a schematic representation of a beam with uncorrected spherical aberration
  • Figure 2 is a schematic diagram of a projected original pattern
  • FIGS. 3a basic representations of a reflected profile and 3b with distortions
  • FIG. 4 shows a basic representation of a beam with corrected spherical aberration
  • Figure 5 is an illustration of the uncorrected spherical aberration of an eye
  • FIG. 6 shows an example of a correction representation of the spherical aberration
  • FIG. 7 shows an arrow height h, which is the distance between an apex S of a lens and a base L on an optical axis. is drawn.
  • FIG. 1 shows the eye 1 system in conjunction with a lens 2.
  • the lens 2 is preferably an eyeglass lens, of course it can also be a contact lens or an intraocular lens.
  • the lens 2 can be formed from glass and / or plastic. It can also be provided that different lenses 2, e.g. Contact lens and spectacle lens can be combined to correct the ametropia.
  • the light rays 3 emanating from an object, which is not shown here, pass through the optical system lens 2 and reach the retina 7 of the eye 1 through a cornea 4, an eye pupil 5 and an eye lens 6.
  • a retinal pit is located on the retina 7 ( Fovea) of eye 1, where the greatest density of the visual cells predominates. Ideally, all of the optical information should be directed into the fovea.
  • the fovea on the retina 7 represents a focal point F 'in which the light rays 3 should intersect at one point.
  • F ' focal point
  • the lens 2 Since this involves the correction of basically every eye, including the right-angled (emmetropic) eye, the lens 2 is only shown in the illustration in FIG. 1 as a basic drawing.
  • the wavefront detection method is used, which works using a wavefront aberrometer, eg a Hartmann shack sensor.
  • a pattern of individual light rays which is shown in FIG. 2, is imaged on the retina 7 (retina).
  • a distorted image of the incoming light bundle 3 is formed on the retina 7 due to the aberrations of the eye 1.
  • An integrated CCD camera which is installed coaxially with the incident beam 3, takes the distorted image at a very small solid angle in which the image is free is defined by aberrations.
  • An offline program calculates the aberrations on the basis of a target / actual comparison of the relative positions of the incident partial beams 3 to the relative positions of the points generated on the retina 7. The aberrations are then described mathematically by coefficients of Zernike polynomials and represented as an elevation profile.
  • the profiles reflected in FIGS. 3a and 3b are provided with two different distortions of the original pattern.
  • Figure 3a shows a less distorted profile with respect to Figure 3b.
  • FIG. 4 shows the eye system in connection with a lens 2 with corrected spherical aberration.
  • the measurement of the eye 1 with the aid of a wavefront detection method gives precise information about the imaging properties of the eye 1 and in particular about the imaging errors dependent on the pupil opening 5.
  • any device can be used that can deliver the wavefronts required here.
  • the paraxial values can of course also be determined by means of a refraction measurement or with the help of the skiascopy. These values can e.g. be determined by an optician or ophthalmologist. Skiascopy is understood to be a manual method of objectively determining the refraction of the eye. The directions of movement of light phenomena (secondary light source) on the retina of the test person's eye are observed and conclusions are drawn about the ametropia.
  • the size of the pupil opening 5 is determined using the wavefront detection method for correcting the higher-order imaging errors. Since the pupil opening 5 differs significantly in daylight from that in the dark, the visual acuity of a person can consequently also change. It can therefore make sense to adapt such a person to first lenses 2 for correcting the ametropia during the day and further lenses 2 for correcting the ametropia in the dark. If necessary, depending on the pupil opening 5 and the visual acuity determined in this way, further lenses 2 can also be adapted, e.g. for seeing at dusk.
  • the information obtained is used by means of corresponding optical calculations for at least one surface of the lens 2, this exemplary embodiment relating to a rear surface or an eye-side surface 9 of the lens 2, to be modified in the vicinity of a viewing point 8 such that the ideal combination of the light beams 3 already described above is realized in the fovea of the retina 7.
  • the eye 1 is measured without the lens 2, which results in a deformed wavefront.
  • a wavefront should be generated which is formed opposite to the already existing wavefront.
  • the information of the opposite 'wavefront are introduced into the lens 2 on the back surface 9 in the vicinity of the visual point 8 such that at least one aspherical surface is generated.
  • Aspherical surface is understood here in particular to mean the section from a rotationally symmetrical surface which differs from the spherical shape.
  • the design as an asphere thus ensures that the light beams 3 intersect at a focal point F 'of the fovea on the retina 7. This eliminates the spherical aberration.
  • the surface can also be an ator surface or a free-form surface.
  • atoric surface of a section is referred to from a surface that has the two perpendicular principal sections of different curvature, and wherein the section 'is non-circular by at least one of the main sections.
  • Free-form surface is to be understood as an asphere that is neither rotationally symmetrical nor axially symmetrical.
  • the correction of the spherical aberration, or also called the opening error, of the eye 1 can also take place with the same effect on a surface 10 of the lens 2 facing away from the eye 1. Corrections can also be implemented on both surfaces 9 and 10 of lens 2.
  • a correction of the spherical aberration is fundamentally possible with all lens shapes, in particular eyeglass lens shapes.
  • the spectacle lens 2 is modified in the vicinity of the viewing point 8 by introducing an asphere.
  • two-strength lenses bifocal lenses
  • three-strength lenses trifocal lenses
  • the two parts of the dual-power lens ie the long-range part and the near-range part, have different refractive powers and are especially intended for people with presbyopia who need both a lens for distance and one for close proximity.
  • the reading portion still divided into a part for reading distance and a half of average distance with eg effect of the full near addition, it is called a Dreiorgnlin 'se, that of a glass with three effects.
  • the separating surface between the base glass and the near part material can be designed accordingly.
  • An asphere is introduced once in the far section and once in the near section.
  • the transition from the area with the highest visual acuity 8 into the normal area of the spectacle lens 2 with slightly reduced visual acuity can either be abrupt at one edge or also be done by a soft or 'flowing transition. Progressive lenses are used for such a smooth transition.
  • Progressive lens is an eyeglass lens 2 with a non-rotationally symmetrical surface with a continuous change in the focusing effect over part or the entire area of the eyeglass lens 2.
  • the surroundings of the two viewing points for distance and for each Modified proximity it is also possible, if desired, to include the progression zone.
  • FIG. 5 shows the spherical aberration of a right-angled (emmetropic) eye 1 as a function of the pupil diameter p.
  • the spherical aberration correlates with the size of the pupil diameter p. This means that as the pupil 5 increases, the spherical aberration also increases.
  • the pupil diameter p has a size of 6 mm.
  • the eye 1 is nearsighted with an ametropia of approximately -0.5 dpt.
  • the spherical aberration is approx. -0.075 dpt.
  • the aberration of higher order or the spherical aberration is assumed to be rotationally symmetrical via the pupil 5 in the exemplary embodiment and can therefore be represented by its cross section.
  • the arrow height h is for the distance between the The apex S of a curved refractive surface and the base point L of the vertical on the optical axis are designated by the point of incidence A of a beam hitting the height H (FIG. 7). It is shown in this exemplary embodiment which correction has to be applied to the eye-side surface 9 of the spectacle lens 2, which is shown in FIG. 4, in order to correct the spherical aberration described in FIG. It is easy to see that this is an aspherical surface that deviates from the spherical shape.
  • the lens 2 has refractive and / or diffractive structures in at least one refractive surface, which serve both for the dioptric correction of ametropia and for the correction of at least one higher-order imaging error for at least one viewing direction.
  • only one surface 9 or 10 of the lens 2, in particular the spectacle lens is to be provided with such structures.
  • This surface 9 or 10 preferably has only refractive structures.
  • Diffractive structures can be used, for example, for contact lenses and spectacle lenses. So you can attach a lot of concentrically arranged rings in microscopic gradations to the back of a contact lens. You cannot see and feel these "grooves" with the naked eye. They fill up with tear fluid. Both together create a light division in addition to the refraction of light.
  • a lens 2 with a multi-power effect with transmitted depth of field is thus created.
  • Visual impressions from near to far can be imaged on the retina 7 simultaneously and with different sharpness.
  • the spherical aberration but also any other higher order aberration, can be significantly reduced or eliminated.
  • At least 50%, preferably 75%, of the higher order errors can be compensated for only by correcting the central imaging errors, such as spheres, cylinders and axes. It would be conceivable to compensate for the higher-order imaging errors by corrective measures, such as, for example, applying a correspondingly calculated corrective surface (asphere, atorus or free-form surface) on at least one refractive surface 9 and / or 10 of the lens 2, preferably the spectacle lens.
  • a correction for example of the spherical equivalent (sph + cyl / 2), is already sufficient to compensate for at least 50% of the spherical aberration.
  • At least 50%, preferably 85%, of the spherical aberration can be compensated for only by correcting the central aberrations.
  • the number of parameters to be observed during lens production, in particular spectacle lens production can thus be reduced to the central imaging errors. This enables the possibility of more complex areas, e.g. Free-form surfaces, through simple structured surfaces, e.g. a rotationally symmetrical aspherical surface, which simplifies production.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Verfahren zur Herstellung einer Linse und danach hergestellte Linse (Figur 4) Bei einem Verfahren zur Herstellung einer Linse (2), insbesondere eines Brillenglases, werden zentrale Abbildungsfehler eines zu korrigierenden Auges (1) einer fehlsichtigen Person, wie Sphäre, Zylinder und Achse, ausgeglichen. Wenigstens eine brechende Fläche (9,10) der Linse (2) wird so gestaltet, dass für wenigstens eine Blickrichtung sowohl eine dioptrische Korrektur der Fehlsichtigkeit erfolgt als auch Abbildungsfehler höherer Ordnung korrigiert werden. Deren Auswirkungen auf die Sehkraft und/oder das Kontrastsehen hängen von der Grösse der Pupillenöffnung (5) des zu korrigierenden Auges (1) ab und werden durch die Linse (2) korrigiert.

Description

Verfahren zur Herstellung einer Linse und danach hergestellte Linse
Die Erfindung betrifft ein Verfahren zur Herstellung einer Linse, insbesondere eines Brillenglases, wobei zentrale Abbildungsfehler eines zu korrigierenden Auges einer fehlsichtigen Person, wie Sphäre, Zylinder und Achse, ausgeglichen werden. Die Erfindung betrifft auch eine Linse, die nach dem Verfahren hergestellt ist.
Fehlsichtigkeiten von Augen werden allgemein mit Brillengläsern oder Kontaktlinsen korrigiert, um die Sehschärfe zu erhöhen. Dazu werden in einem subjektiven oder objektiven Messverfahren die zur Visussteigerung optimalen Brechwerte, wie Sphäre, Zylinder und Achse, des Brillenglases oder der Kontaktlinse bestimmt. In bekannter Weise werden danach diese Daten in ein Brillenglas mit zwei brechenden Flächen eingearbeitet, wobei allgemein die dem Auge abgewandte Fläche eine Kugelfläche und die dem Auge zugewandte Fläche, bei Vorhandensein eines Astigmatismus, eine der Achslage entsprechend vor dem Auge verdrehte torische Fläche ist.
Auftretende Abbildungsfehler, welche bei . seitlichem Blick durch ein Brillenglas entstehen, werden durch Verwendung von asphärischen und atorischen Flächen reduziert, wobei asphärische und atorische Flächen Flächen darstellen, die von einer Kugel bzw. einem Torus abweichen. Der Einsatz von derartigen Flächen zur Reduzierung von Abbildungsfehlern wird schon seit langer Zeit durchgeführt. Ebenfalls sind unregelmäßig geformte Flächen, sogenannte Freiformflächen, welche besonders bei Gleitsichtgläsern zur Erzielung eines Wirkungsanstieges im Nahbereich zur Unterstützung der Akkommodation eingesetzt werden, bekannt. Die Produktion derartiger Flächen mit Hilfe von CNC-gesteuerten Schleif-, Fräs- und Poliermaschinen ist ebenfalls aus dem Stand der Technik bekannt.
Des weiteren sind refraktive Messverfahren, wie z.B. Wa- vefront Detection, bekannt, welche es nicht nur gestatten, die oben bereits erwähnten Werte Sphäre, Zylinder und Achse zu bestimmen, sondern darüber hinaus auch Abbildungsfehler höherer Ordnung. Diese Abbildungsfehler hängen von der Öffnung der Augenpupille ab.
Die Größe der Pupillenöffnung wird unter anderem beeinflusst von der Helligkeit der Umgebung, Medikamenten, dem Alter und Krankheiten der untersuchten Person. Die Pupillenöffnung schwankt bei gesunden Erwachsenen zwischen 2,0 mm und 7,0 mm. Die Pupillenöffnung ist bei Tageslicht kleiner als bei Dämmerung oder Nacht.
Ein refraktives Messverfahren ist aus der EP 663 179 AI bekannt. Die Schrift beschreibt ein Verfahren, mit dem refraktive Messungen auch am mit einer Kontaktlinse versehenen Auge vorgenommen werden können. An verschiedenen Stellen des Systems Kontaktlinse/Auge werden Messungen vorgenommen. In einem ersten Schritt wird ein Lichtstrahl erzeugt, dessen Lichtquelle aus einer Gruppe ausgewählt wird, welche aus mehreren Punktlichtquellen und spaltförmigen Lichtquellen besteht. Daraufhin wird dieser Lichtstrahl direkt ins Auge auf die Retina geführt und von dort aus wird der Lichtstrahl reflektiert. Der reflektierte Lichtstrahl trifft somit auf eine Abtastöffnung. Der Lichtdurchtritt durch die Abtastöffnung wird von einer Kamera, welche ein Bildsignal erzeugt, aufgenommen. Dieses Signal wird auf einem Monitor dargestellt. Das Verfah- ren wie auch die Vorrichtung sind von wesentlichem Nutzen, um optische Defekte, Deformationen oder Aberrationen eines Auges zu messen.
Ferner ist aus der DE 199 54 523 ein Herstellverfahren für Kontaktlinsen bekannt, wobei zunächst mit dem sogenannten Wa- vefront-Detection-Verfahren die optische Fehlsichtigkeit eines Auges bestimmt wird, und wobei eine weiche Kontaktlinse auf die Hornhaut aufgesetzt wird. Die refraktive Messung wird mit aufsitzender Kontaktlinse durchgeführt, wobei danach ein laserstrahlunterstütztes Materialabtrageverfahren an der vom Auge getrennten Kontaktlinse angewendet wird. Die Kontaktlinse nimmt durch die laserunterstützte Materialabtragung eine Oberflächenform an, durch die eine Flächenbrechkraft in der Kontaktlinse gewonnen wird, die durch die optischen Korrekturdaten bestimmt wird. Weiterhin werden Informationen über die Oberflächentopologie des Auges gewonnen, welche ebenfalls mit in die Korrektur einbezogen werden.
Aus der US 6,224,211 ist ein Verfahren zu entnehmen, welches neben der Korrektur der normalen Fehlsichtigkeit auch eine Korrektur der sphärischen Aberration des Auges ermöglicht. Auf das Auge werden jeweils verschiedene asphärische Kontaktlinsen, welche für die sphärische und astigmatische Wirkung Null ausgelegt sind, aufgesetzt. Anhand dieser Linsen wird ermittelt, wie die sphärische Aberration des Auges bestmöglichst korrigiert werden kann. Aus dieser Information wird eine asphärische Linse, welche die optimale Korrektur der Sehschärfe ermöglicht, ermittelt und dem Patienten angepasst.
Schließlich ist in der DE 100 24 080 AI ein Verfahren offenbart, mit dem die vollständige Korrektur von Sehfehlern des menschlichen Auges möglich sein soll, wozu mit einer Wellen- frontanalyseeinrichtung gearbeitet wird. Hier wird schwerpunktmäßig auf eine operative Korrektur am Auge selber abgestellt. Die Abhängigkeit der Pupillenöffnung auf die Abbildungsfehler höherer Ordnung findet keine Berücksichtigung.
Die Größe der Pupillenöffnung beträgt bei gesunden Erwachsenen mittleren Alters bei Tageslicht 3,0 mm bis 3,5 mm. Sie nimmt mit zunehmendem Alter auf ungefähr 2,0 mm bis 2,5 mm ab. Da die Größe der Pupillenöffnung mit zunehmender Dunkelheit sich auf bis zu 7,0 mm vergrößern kann, ändern sich dementsprechend auch die Auswirkungen der Fehler höherer Ordnung.
Demgemäß ist es Aufgabe der Erfindung, ein Alternativverfahren zu schaffen, welches eine Herstellung einer Linse ermöglicht, so dass die optischen Flächen einer Linse derart gestaltet werden können, dass Abbildungsfehler höherer Ordnung wesentlich reduziert werden und dadurch eine Linse erzeugt wird, welche eine maximale Sehschärfe zulässt.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass wenigstens eine brechende Fläche der Linse so gestaltet wird, dass für wenigstens eine Blickrichtung sowohl eine dioptri- sche Korrektur der Fehlsichtigkeit erfolgt als auch Abbildungsfehler höherer Ordnung, deren Auswirkungen auf die Sehkraft und/oder das Kontrastsehen von der Größe der Pupillenöffnung des zu korrigierenden Auges abhängen, durch die Linse korrigiert werden.
Abbildungsfehler höherer Ordnung, welche von der Pupillenöffnung abhängen, sind hauptsächlich die sphärische Aberration, Astigmatismen höherer Ordnung, die Koma und der Dreiblattfehler (Dreiwelligkeit) . Dies sind Abweichungen von der idealen paraxialen Abbildung. Unter sphärischer Aberration wird verstanden, dass ankommende achsenparallele Strahlen auf die Linse in verschiedenen Einfallshöhen treffen und so der para- xiale Strahl die optische Achse im Brennpunkt F' schneidet, während die in endlichen Höhen einfallenden Strahlen andere Schnittweiten besitzen.
Unter Koma wird im Allgemeinen die mit sphärischer Aberration und Astigmatismus überlagerte, in der Näherung 3. Ordnung der Objekt- und dem Quadrat der Pupillenhöhe proportionale Aberration bei der Abbildung außeraxialer Dingpunkte durch Strahlenbündel mit großem Öffnungswinkel verstanden. Dabei entsteht eine unsymmetrische kometenartige Zerstreuungsfigur, deren Schweif bei Außen- bzw. Innenkoma von der optischen Achse weg- bzw. zu ihr hinweist, und eine entsprechende Punktbildverwaschungsfunktion mit nur noch teilweise ausgebildeten Beugungsringen. Unter Dreiblattfehler wird eine A- berration höherer Ordnung verstanden, die über eine Wellenaberration eine dreistrahlige Punktbildverwaschungsfunktion mit einer Definitionshelligkeit erzeugt. Der Dreiblattfehler überlagert sich der Koma 3. Ordnung und verbleibt als Restaberration, wenn nur die Meridional- und die Sagittalstrah- labbildung korrigiert wird. Danach entstehen dreistrahlige Sterne als Bildpunkte.
Durch refraktive Messverfahren, wie z.B. das Wavefront- Detection-Verfahren, werden die Refraktionswerte des fehlsichtigen Auges ermittelt, was bedeutet, dass die Sphäre, der Zylinder und die Achse bestimmt werden. Des weiteren können mit diesem Verfahren Durchlichtmessungen durch die Hornhaut, der Augenlinse und dem Glaskörper durchgeführt und damit die Abbildungsfehler höherer Ordnung, welche von der Pupillenöffnung abhängen, ermittelt werden. Das Ergebnis beinhaltet die Aberrationen, die durch die Kombination der optischen Wirkungen von Hornhaut, Augenlinse, Glaskörper und Pupillenöffnung entstehen.
Die gewonnenen Informationen können somit unter Verwendung der dem Stand der Technik entsprechenden Berechnungs- und Herstellungsverfahren in wenigstens eine brechende Fläche, meist die Rückfläche der Linse, eingearbeitet werden.
Somit wird eine Linse konzipiert, welche zusätzlich zu den bisher korrigierbaren Fehlern, welche durch die paraxialen Werte Sphäre, Zylinder, Achse beschrieben werden, auch diejenigen ausgleicht, welche von der Öffnung der Pupille abhängen. Dadurch werden Linsen für fehlsichtige wie auch für e - metrope (rechtsichtige) Personen geschaffen, die dem Linsenträger für mindestens eine Blickrichtung eine deutlich höhere Sehschärfe bieten. Die bestmöglichste Sehschärfe ist somit nicht nur durch eine Korrektur der paraxialen Werte gegeben, sondern auch durch eine Korrektur der Abbildungsfehler höherer Ordnung.
In vorteilhafter Weise kann vorgesehen sein, dass der Bereich der höchsten Sehschärfe durch Einbringen wenigstens einer .asphärischen Fläche gebildet wird.
Die Ausführung des Bereichs des schärfsten Sehens als asphärische Fläche ist dadurch sehr vorteilhaft, da diese brechende Fläche von einer Kugelfläche abweicht. Die Linsenkrümmung unterscheidet sich somit von einer Kugelfläche, wobei achs- ferne Strahlen schwächer oder stärker gebrochen werden als bei Verwendung einer sphärischen Fläche und somit die Lichtstrahlen wieder in einem Brennpunkt F' vereint werden können.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert.
Es zeigt:
Figur 1 eine prinzipmäßige Darstellung eines Strahlenbündels bei unkorrigierter sphärischer Aberration;
Figur 2 eine Prinzipdarstellung eines projizierten Originalmusters;
Figuren 3a Prinzipdarstellungen eines reflektierten Profils und 3b mit Verzerrungen;
Figur 4 eine prinzipmäßige Darstellung eines Strahlenbündels bei korrigierter sphärischer Aberration;
Figur 5 eine Abbildung der unkorrigierten sphärischen Aberration eines Auges;
Figur 6 eine Beispielabbildung einer Korrekturdarstellung der sphärischen Aberration; und
Figur 7 Darstellung einer Pfeilhöhe h, die als Abstand zwischen einem Scheitelpunkt S einer Linse und einem Fußpunkt L auf einer optischen Achse be- zeichnet wird.
Figur 1 zeigt das System Auge 1 in Verbindung mit einer Linse 2. Bei der Linse 2 handelt es sich bevorzugt um ein Brillenglas, selbstverständlich kann es sich auch um eine Kontaktlinse oder eine Intraokularlinse handeln. Die Linse 2 kann aus Glas und/oder Kunststoff gebildet sein. Es kann auch vorgesehen sein, verschiedene Linsen 2, z.B. Kontaktlinse und Brillenglas, miteinander zu kombinieren, um die Fehlsichtig- keiten zu korrigieren. Die von einem Objekt, welches hier nicht dargestellt ist, ausgehenden Lichtstrahlen 3 passieren das optische System Linse 2 und gelangen durch eine Hornhaut 4, eine Augenpupille 5 und eine Augenlinse 6 zur Netzhaut 7 des Auges 1. Auf der Netzhaut 7 befindet sich eine Netzhautgrube (Fovea) des Auges 1, an der die größte Dichte der Sehzellen vorherrscht. Idealerweise sollte die gesamte optische Information in die Fovea gelenkt werden. Das bedeutet, dass die Fovea auf der Netzhaut 7 einen Brennpunkt F' darstellt, in dem sich die Lichtstrahlen 3 in einem Punkt schneiden sollten. Jedoch gelingt dies nur für kleine Pupillenöffnungen. Wegen der bei jedem Auge 1 auftretenden sphärischen Aberration vereinigen sich nicht alle Lichtstrahlen 3, die die Augenlinse 6 passieren, im Brennpunkt F' bzw. in der Fovea auf der Netzhaut 7. Die weiter zum Rand der Pupille 5 hin einfallenden Strahlen 3 schneiden die Netzhaut 7 im Allgemeinen in weiter vom idealen Schnittpunkt F' entfernten Punkten.
Da es sich hier um die Korrektur von grundsätzlich jedem, also auch dem rechtsichtigen (emmetropen) Auge handelt, wird die Linse 2 in der Abbildung Figur 1 nur als Prinzipzeichnung dargestellt. Um die sphärische Aberration zu beseitigen, müssen erst bestimmte Informationen über das fehlsichtige Auge 1 gewonnen werden. Dazu wird das Wavefront Detection Verfahren, welches unter Benutzung eines Wellenfrontaberrometers, z.B. ein Hart- mann-Shack-Sensor, arbeitet, eingesetzt.
Ein Muster aus einzelnen Lichtstrahlen, welches in Figur 2 dargestellt ist, wird auf die Netzhaut 7 (Retina) abgebildet. Auf der Retina 7 entsteht ein verzerrtes Abbild des eintretenden Lichtbündels 3 aufgrund der Aberrationen des Auges 1. Eine integrierte CCD-Kamera, die koaxial zum einfallenden Strahlenbündel 3 installiert wird, nimmt das verzerrte Bild unter einem sehr kleinen Raumwinkel auf, in dem das Bild frei von Aberrationen definiert ist. Ein Offline-Programm kalkuliert die Aberrationen anhand eines Soll/Ist-Vergleiches der relativen Lagen der einfallenden Teilstrahlen 3 zu den relativen Lagen der auf der Retina 7 erzeugten Punkte. Die Aberrationen werden danach mathematisch durch Koeffizienten von Zernike-Polynomen beschrieben und als Höhenprofil dargestellt. Die in den Figuren 3a und 3b reflektierten Profile sind mit zwei verschiedenen Verzerrungen des Originalmusters versehen. Figur 3a zeigt ein weniger verzerrtes Profil bezüglich Figur 3b.
In Figur 4 ist das System Auge in Verbindung mit einer Linse 2 bei korrigierter sphärischer Aberration dargestellt.
Die Vermessung des Auges 1 mit Hilfe eines Wavefront- Detection-Verfahrens gibt genauen Aufschluss über die Abbildungseigenschaften des Auges 1 und insbesondere über die von der Pupillenöffnung 5 abhängenden Abbildungsfehler. Zur Be- stimmung der Abbildungseigenschaften des Auges 1 bzw. der paraxialen Werte Sphäre, Zylinder, Achse des Auges 1, kann ein beliebiges Gerät eingesetzt werden, welches die hier bestimmt geforderten Wellenfronten liefern kann.
Die paraxialen Werte können selbstverständlich auch über eine Refraktionsmessung oder mit Hilfe der Skiaskopie ermittelt werden. Diese Werte können z.B. bei einem Augenoptiker oder Augenarzt bestimmt werden. Unter Skiaskopie wird eine manuelle Methode der objektiven Refraktionsbestimmung des Auges verstanden. Dabei werden die Bewegungsrichtungen von Lichterscheinungen (sekundäre Lichtquelle) auf der Netzhaut des Probandenauges beobachtet und daraus Schlüsse auf die Fehlsichtigkeit gezogen.
Ebenso wird mittels des Wavefront-Detection-Verfahrens zur Korrektur der Abbildungsfehler höherer Ordnung die Größe der Pupillenöffnung 5 bestimmt. Da die Pupillenöffnung 5 bei Tageslicht deutlich von der bei Dunkelheit abweicht, kann sich folglich auch die Sehschärfe einer Person ändern. Es kann daher sinnvoll sein, einer solchen Person erste Linsen 2 zur Korrektur der Fehlsichtigkeit bei Tag und weitere Linsen 2 zur Korrektur der Fehlsichtigkeit in der Dunkelheit anzupassen. Gegebenenfalls können bei Bedarf in Abhängigkeit von der Pupillenöffnung 5 und der dabei ermittelten Sehschärfe auch weitere Linsen 2 angepasst werden, z.B. für das Sehen in der Dämmerung.
Die erhaltenen Informationen werden über entsprechende optische Berechnungen dazu verwendet, zumindest eine Fläche der Linse 2, wobei sich dieses Ausführungsbeispiel auf eine Rückfläche bzw. eine augenseitige Fläche 9 der Linse 2 bezieht, in der Umgebung eines Durchblickpunktes 8 so zu modifizieren, dass die bereits oben beschriebene ideale Vereinigung der Lichtstrahlen 3 in der Fovea der Netzhaut 7 realisiert wird. Das Auge 1 wird ohne Linse 2 vermessen, wobei eine deformierte Wellenfront entsteht. Um die sphärische Aberration zu beheben, sollte eine Wellenfront erzeugt werden, die entgegengesetzt zur bereits bestehenden Wellenfront ausgebildet wird. Die Informationen der entgegengesetzten' Wellenfront werden in die Linse 2 auf der Rückfläche 9 in der Umgebung des Durchblickpunktes 8 derart eingebracht, dass wenigstens eine asphärische Fläche erzeugt wird.
Unter asphärischer Fläche wird hier im Besonderen der Ausschnitt aus einer rotationssymmetrischen, aber von der Kugelform abweichenden Fläche verstanden. Durch die Ausgestaltung als Asphäre ist somit gegeben, dass sich die Lichtstrahlen 3 in einem Brennpunkt F' der Fovea auf der Netzhaut 7 schneiden. Dadurch ist die sphärische Aberration beseitigt. Die Fläche kann ebenfalls je nach angestrebter Verbesserung der Sehschärfe eine atorische Fläche oder eine Freiformfläche sein.
Mit atorischer Fläche wird ein Ausschnitt aus einer Fläche bezeichnet, die zwei zueinander senkrechte Hauptschnitte unterschiedlicher Krümmung besitzt und bei der der Schnitt durch mindestens einen der Hauptschnitte' nicht kreisförmig ist.
Unter Freiformfläche soll eine Asphäre verstanden werden, die weder rotationssymmetrisch noch achsensymmetrisch ist. Die Korrektur der sphärischen Aberration, oder auch Öffnungsfehler genannt, des Auges 1 kann mit gleicher Wirkung ebenso auf einer dem Auge 1 abgewandten Fläche 10 der Linse 2 stattfinden. Ebenso sind Korrekturen auf beiden Flächen 9 und 10 der Linse 2 realisierbar.
Eine Korrektur der sphärischen Aberration ist grundsätzlich bei allen Linsenformen, insbesondere Brillenglasformen, möglich. Bei Einstärkengläsern, wie auch Einstärkengläsern mit prismatischer Wirkung, wird in der Umgebung des Durchblickpunktes 8 das Brillenglas 2 durch Einbringen einer Asphäre modifiziert .
Nach der Anzahl der dioptrischen Wirkungen unterscheidet man insbesondere bei Brillengläsern zwischen Zweistärkenlinsen (Bifokallinsen) und Dreistärkenlinsen (Trifokallinsen) . Die beiden Teile der Zweistärkenlinse, d.h. Fernteil und Nahteil, haben verschiedene Brechkraft und sind insbesondere für Alterssichtige gedacht, die sowohl ein Glas für die Ferne als auch eines für die Nähe benötigen. Wird das Nahteil noch aufgeteilt in einen Teil für Leseabstand und einen für mittlere Entfernung mit z.B. halber Wirkung des vollen Nahzusatzes, so spricht man von einer Dreistärkenlin'se, also von einem Glas mit drei Wirkungen.
Bei Bifokallinsen, welche ein eingeschmolzenes Nahteil aufweisen, kann die Trennfläche zwischen dem Grundglas und dem Nahteilmaterial entsprechend ausgestaltet werden. Hierbei wird einmal im Fernteil eine Asphäre eingebracht und einmal im Nahteil. Der Übergang des Bereichs mit höchster Sehschärfe 8 in den normalen Bereich des Brillenglases 2 mit leicht reduzierter Sehschärfe kann entweder abrupt an einer Kante oder auch durch einen weichen bzw. 'fließenden Übergang erfolgen. Für einen derart fließenden Übergang werden Gleitsichtgläser eingesetzt.
Unter Gleitsichtglas versteht man ein Brillenglas 2 mit einer nicht rotationssymmetrischen Fläche mit kontinuierlicher Änderung der fokussierenden Wirkung über einen Teil oder den gesamten Bereich des Brillenglases 2. Hierbei wird zur Korrektur der sphärischen Aberration bei Gleitsichtgläsern jeweils die Umgebung der beiden Durchblickspunkte für die Ferne und für die Nähe modifiziert. Es ist auch möglich, wenn gewünscht, die Progressionszone mit einzubeziehen.
Figur 5 zeigt die sphärische Aberration eines rechtsichtigen (emmetropen) Auges 1 in Abhängigkeit vom Pupillendurchmesser p. Es ist zu erkennen, dass die sphärische Aberration mit der Größe des Pupillendurchmessers p korreliert . Das bedeutet, dass bei größer werdender Pupille 5 auch die sphärische Aberration anwächst. In diesem Ausführungsbeispiel besitzt der Pupillendurchmesser p eine Größe von 6 mm. Für Strahlen 3 in der Nähe des Pupillenrandes ist das Auge 1 kurzsichtig mit einer Fehlsichtigkeit von ca. -0,5 dpt. Bei einem Pupillendurchmesser p von 2 mm beträgt die sphärische Aberration ca. -0,075 dpt. Der Abbildungsfehler höherer Ordnung bzw. die sphärische Aberration wird in dem Ausführungsbeispiel als rotationssymmetrisch über die Pupille 5 angenommen und kann deshalb durch seinen Querschnitt repräsentiert werden.
Figur 6 stellt die Pfeilhöhe h der Korrektur der sphärischen Aberration in Abhängigkeit vom Pupillendurchmesser p mit einem Brillenglas 2 der Durchbiegung 0 dpt und der Brechzahl n = 1.6 dar. Die Pfeilhöhe h wird für den Abstand zwischen dem Scheitel S einer gekrümmten brechenden Fläche und dem Fußpunkt L der Senkrechten auf der optischen Achse durch den Einfallspunkt A eines in der Höhe H auftreffenden Strahls bezeichnet (Figur 7). Es ist in diesem Ausführungsbeispiel dargestellt, welche Korrektur auf der augenseitigen Fläche 9 des Brillenglases 2, welches in Figur 4 dargestellt ist, aufgebracht werden muss, um die in Figur 5 beschriebene sphärische Aberration zu korrigieren. Es ist leicht zu erkennen, dass es sich hierbei um eine von der Kugelform abweichende, also asphärische Fläche handelt.
Die Linse 2 weist refraktive und/oder diffraktive Strukturen in wenigstens einer brechenden Fläche auf, welche sowohl zur dioptrischen Korrektur einer Fehlsichtigkeit als auch zur Korrektur zumindest eines Abbildungsfehlers höherer Ordnung für wenigstens eine Blickrichtung dienen. Bevorzugt ist nur eine Fläche 9 oder 10 der Linse 2, insbesondere des Brillenglases, mit derartigen Strukturen zu versehen. Bevorzugt weist diese Fläche 9 oder 10 nur refraktive Strukturen auf. Diffraktive Strukturen können beispielsweise für Kontaktlinsen und Brillengläser eingesetzt werden. So kann man auf die Rückseite einer Kontaktlinse sehr viele konzentrisch angeordnete Ringe in mikroskopisch feinen Abstufungen anbringen. Mit dem bloßen Auge kann man diese "Rillen" nicht sehen und spüren. Sie füllen sich mit Tränenflüssigkeit. Beides zusammen erzeugt zusätzlich zur Lichtbrechung eine Lichtteilung. Es wird so eine Linse 2 mit Mehrstärkenwirkung mit übertragender Tiefenschärfe geschaffen. Es können Seheindrücke von nah bis fern gleichzeitig und mit unterschiedlicher Schärfe auf der Netzhaut 7 abgebildet werden. Durch den Einsatz von asphärischen Flächen kann somit die sphärische Aberration, aber auch jeder andere Abbildungsfehler höherer Ordnung, wesentlich reduziert bzw. beseitigt werden. Mindestens 50%, vorzugsweise 75%, der Fehler höherer Ordnung können allein durch die Korrektur der zentralen Abbildungsfehler, wie Sphäre, Zylinder und Achse, ausgeglichen werden. Denkbar wäre es, die Abbildungsfehler höherer Ordnung durch Korrekturmaßnahmen, wie z.B. Aufbringen einer entsprechend berechneten korrigierenden Fläche (Asphäre, Atorus oder Freiformfläche) auf wenigstens einer brechenden Fläche 9 und/oder 10 der Linse 2, vorzugsweise des Brillenglases, auszugleichen. Es konnte aber festgestellt werden, dass im Allgemeinen eine Korrektur z.B. des sphärischen Äquivalents (sph+zyl/2) bereits ausreicht, um mindestens 50% der sphärischen Aberration mit auszugleichen.
Mindestens 50%, vorzugsweise 85%, der sphärischen Aberration können allein durch die Korrektur der zentralen Abbildungsfehler ausgeglichen werden. Die Anzahl der bei der Linsenherstellung, insbesondere Brillenglasherstellung, zu beachtenden Parameter kann somit auf die zentralen Abbildungsfehler reduziert werden. Dadurch besteht die Möglichkeit komplexere Flächen, z.B. Freiformflächen, durch einfache strukturierte Flächen, z.B. eine rotationssymmetrische asphärische Fläche, zu ersetzen, was die Herstellung vereinfacht.

Claims

Patentansprüche :
1. Verfahren zur Herstellung einer Linse, insbesondere eines Brillenglases, wobei zentrale Abbildungsfehler eines zu korrigierenden Auges einer fehlsichtigen Person, wie Sphäre, Zylinder und Achse, ausgeglichen werden, dadurch gekennzeichnet, dass wenigstens eine brechende Fläche
(9,10) der Linse (2) so gestaltet wird, dass für wenigstens eine Blickrichtung sowohl eine dioptrische Korrektur der Fehlsichtigkeit erfolgt als auch Abbildungsfehler höherer Ordnung, deren Auswirkungen auf die Sehkraft und/oder das Kontrastsehen von der Größe der Pupillenöffnung (5) des zu korrigierenden Auges (1) abhängen, durch die Linse (2) korrigiert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Abbildungsfehler höherer Ordnung die sphärische Aberration korrigiert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Abbildungsfehler höherer Ordnung die Koma korrigiert wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Abbildungsfehler höherer Ordnung der Dreiblattfehler korrigiert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Korrektur der Abbildungsfehler benötigte Werte durch eine Messung der Sehschärfe, insbesondere durch eine Refraktionsbestimmung und/oder durch eine Messung der Wellenfront und/oder durch Skiaskopie, ermittelt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Messung der Wellenfront mit einem Hartmann-Shack- Sensor erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zur Korrektur der Abbildungsfehler, insbesondere der Abbildungsfehler höherer Ordnung, die Größe der Pupillenöffnung (5) bestimmt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens 50%, vorzugsweise mindestens 75%, der Abbildungsfehler höherer Ordnung allein durch eine Korrektur der zentralen Abbildungsfehler, wie Sphäre, Zylinder und Achse, ausgeglichen werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens 50%, vorzugsweise mindestens 85%, der sphärischen Aberration allein durch eine Korrektur der zentralen Abbildungsfehler, wie Sphäre, Zylinder und Achse, ausgeglichen werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Bereich höchster Sehschärfe (8) durch Einbringen wenigstens einer asphärischen Fläche gebildet wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein Bereich höchster Sehschärfe (8) durch Einbringen wenigstens einer atorischen Fläche gebildet wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass ein Bereich höchster Sehschärfe (8) durch Einbringen wenigstens einer Freiformfläche gebildet wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass ein Bereich in der Linse (2) für eine unendliche Objektentfernung korrigiert wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass ein Bereich in der Linse (2) für eine endliche Objektentfernung korrigiert wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass ein Übergang eines Bereichs mit höchster Sehschärfe (8) in einen Bereich mit leicht reduzierter Sehschärfe über eine Kante (11) erfolgt.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass ein Übergang eines Bereichs mit höchster Sehschärfe (8) in einen Bereich mit leicht reduzierter Sehschärfe fließend erfolgt.
17. Linse nach einem der vorhergehenden Verfahrensansprüchen 1 bis 16 hergestellt, gekennzeichnet durch eine Ausbildung als Brillenglas, Kontaktlinse oder Intraokularlinse.
18. Linse nach Anspruch 17, gekennzeichnet durch refraktive und/oder diffraktive Strukturen in wenigstens einer bre- chenden Fläche (9,10), sowohl zur dioptrischen Korrektur einer Fehlsichtigkeit als auch zur Korrektur zumindest eines Abbildungsfehlers höherer Ordnung für wenigstens eine Blickrichtung.
19. Linse nach Anspruch 17 oder 18, gekennzeichnet durch die Materialien Glas und/oder Kunststoff.
EP03807835A 2002-10-04 2003-10-02 Verfahren zur herstellung einer linse und danach hergestellte linse Withdrawn EP1546791A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10246324 2002-10-04
DE10246324 2002-10-04
PCT/EP2003/010955 WO2004034129A1 (de) 2002-10-04 2003-10-02 Verfahren zur herstellung einer linse und danach hergestellte linse

Publications (1)

Publication Number Publication Date
EP1546791A1 true EP1546791A1 (de) 2005-06-29

Family

ID=32086843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03807835A Withdrawn EP1546791A1 (de) 2002-10-04 2003-10-02 Verfahren zur herstellung einer linse und danach hergestellte linse

Country Status (8)

Country Link
US (1) US7556381B2 (de)
EP (1) EP1546791A1 (de)
JP (2) JP5096662B2 (de)
CN (1) CN100392473C (de)
AU (1) AU2003276034A1 (de)
CA (1) CA2501217C (de)
DE (1) DE10393231D2 (de)
WO (1) WO2004034129A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7434936B2 (en) * 2002-12-06 2008-10-14 Amo Manufacturing Usa, Llc Residual accommodation threshold for correction of presbyopia and other presbyopia correction using patient data
DE102004003688A1 (de) * 2004-01-24 2005-08-18 Carl Zeiss Verfahren und Sehtestgerät zur Ermittlung der Notwendigkeit einer Sehhilfe bei Dunkelheit und/oder Dämmerung sowie ein Set von Sehhilfen
DE102004029475A1 (de) * 2004-06-18 2006-01-26 Henkel Kgaa Neues enzymatisches Bleichsystem
US20060116763A1 (en) 2004-12-01 2006-06-01 Simpson Michael J Contrast-enhancing aspheric intraocular lens
EP2062553B1 (de) 2005-04-05 2010-08-25 Alcon, Inc. Optimale Formfaktoren für ophthalmische Linsen
AR062067A1 (es) * 2006-07-17 2008-10-15 Novartis Ag Lentes de contacto toricas con perfil de potencia optica controlado
EP2008575A1 (de) * 2007-06-27 2008-12-31 Essilor International Systeme und Verfahren zur Erhöhung der Aufnahmefähigkeit einer Person für eine Trainingssitzung zur Verbesserung der visuellen Wahrnehmung
US8747466B2 (en) 2007-08-27 2014-06-10 Amo Groningen, B.V. Intraocular lens having extended depth of focus
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US8740978B2 (en) 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
US20090062911A1 (en) * 2007-08-27 2009-03-05 Amo Groningen Bv Multizonal lens with extended depth of focus
WO2009076500A1 (en) * 2007-12-11 2009-06-18 Bausch & Lomb Incorporated Method and apparatus for providing eye optical systems with extended depths of field
EP2243052B1 (de) 2008-02-15 2011-09-07 AMO Regional Holdings System, brillenglas und verfahren zur erweiterung der fokustiefe
US8439498B2 (en) 2008-02-21 2013-05-14 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US7871162B2 (en) 2008-04-24 2011-01-18 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US8231219B2 (en) 2008-04-24 2012-07-31 Amo Groningen B.V. Diffractive lens exhibiting enhanced optical performance
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US20100079723A1 (en) * 2008-10-01 2010-04-01 Kingston Amanda C Toric Ophthalimc Lenses Having Selected Spherical Aberration Characteristics
US8331048B1 (en) 2009-12-18 2012-12-11 Bausch & Lomb Incorporated Methods of designing lenses having selected depths of field
CA2784771C (en) 2009-12-18 2018-12-04 Hendrik A. Weeber Single microstructure lens, systems and methods
US8430511B2 (en) * 2010-10-07 2013-04-30 Vicoh, Llc Kit of higher order aberration contact lenses and methods of use
US8894208B2 (en) * 2010-10-07 2014-11-25 Vicoh, Llc Kit of higher order aberration contact lenses and methods of use
AU2011336183B2 (en) 2010-12-01 2015-07-16 Amo Groningen B.V. A multifocal lens having an optical add power progression, and a system and method of providing same
US8894204B2 (en) 2010-12-17 2014-11-25 Abbott Medical Optics Inc. Ophthalmic lens, systems and methods having at least one rotationally asymmetric diffractive structure
US9931200B2 (en) 2010-12-17 2018-04-03 Amo Groningen B.V. Ophthalmic devices, systems, and methods for optimizing peripheral vision
EP2928413B1 (de) 2012-12-04 2019-08-14 AMO Groningen B.V. Linsen, systeme und verfahren zur personalisierten binokularen presbyopiekorrektur
AU2014228357B2 (en) 2013-03-11 2018-08-23 Johnson & Johnson Surgical Vision, Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US9636215B2 (en) 2014-03-10 2017-05-02 Amo Groningen B.V. Enhanced toric lens that improves overall vision where there is a local loss of retinal function
CN106714731B (zh) * 2014-04-21 2019-09-27 阿莫格罗宁根私营有限公司 改进周边视觉的眼科装置、系统和方法
KR102249250B1 (ko) 2014-09-09 2021-05-07 스타 서지컬 컴퍼니 확장된 피사계 심도 및 향상된 원거리 시력의 안과용 임플란트
CA3013858A1 (en) 2016-02-09 2017-08-17 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
KR102457572B1 (ko) 2016-03-09 2022-10-20 스타 서지컬 컴퍼니 확장된 피사계 심도 및 향상된 원거리 시력의 안과용 임플란트
US10588738B2 (en) 2016-03-11 2020-03-17 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
WO2017165700A1 (en) 2016-03-23 2017-09-28 Abbott Medical Optics Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band
WO2017165679A1 (en) 2016-03-23 2017-09-28 Abbott Medical Optics Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band with freeform refractive surfaces
WO2017182878A1 (en) 2016-04-19 2017-10-26 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
WO2018022042A1 (en) 2016-07-27 2018-02-01 Carl Zeiss Vision International Gmbh Method for determining an improved design for a progressive lens taking into account higher order aberrations of the eye
US11013594B2 (en) 2016-10-25 2021-05-25 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
WO2018167302A1 (en) 2017-03-17 2018-09-20 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
EP3639084A1 (de) 2017-06-28 2020-04-22 Amo Groningen B.V. Erweiterte reichweite und verwandte intraokularlinsen zur behandlung von presbyopie
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
WO2019106067A1 (en) 2017-11-30 2019-06-06 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
CN112867944A (zh) 2018-08-17 2021-05-28 斯塔尔外科有限公司 呈现折射率纳米梯度的聚合物组合物
CN110711050B (zh) * 2019-10-24 2024-08-23 西安眼得乐医疗科技有限公司 一种人工晶状体
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
WO2021136617A1 (en) 2019-12-30 2021-07-08 Amo Groningen B.V. Lenses having diffractive profiles with irregular width for vision treatment
JP2023529241A (ja) 2020-06-01 2023-07-07 アイケアーズ メディカス インコーポレイテッド 両面非球面回折多焦点レンズ、その製造、および使用
JP7505995B2 (ja) 2021-01-27 2024-06-25 ホヤ レンズ タイランド リミテッド 眼鏡レンズの設計方法、製造方法、及び設計システム
JP7505996B2 (ja) 2021-01-27 2024-06-25 ホヤ レンズ タイランド リミテッド 眼鏡レンズの設計方法、製造方法、及び設計システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030273A1 (en) * 2000-10-10 2002-04-18 University Of Rochester Determination of ocular refraction from wavefront aberration data

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1356670A (en) 1919-06-24 1920-10-26 American Optical Corp Lens
DE1805561C3 (de) * 1967-10-30 1980-10-23 Societe Des Lunetiers, Paris Ophthalmische Linse mit starker Brechkraft und vorgegebenem Astigmatismus
US4925518A (en) 1988-07-29 1990-05-15 Wasserman Nelson M Compliant lens blocks and method of using them
FR2635970A1 (fr) * 1988-09-06 1990-03-09 Essilor Int Systeme optique, a lentille ophtalmique et lentille intraoculaire, pour l'amelioration de la vision d'une personne atteinte de degenerescence maculaire
US5050981A (en) 1990-07-24 1991-09-24 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens
US5380387A (en) 1992-10-13 1995-01-10 Loctite Corporation Lens blocking/deblocking method
EP0663179A1 (de) 1994-01-12 1995-07-19 Ciba-Geigy Ag Dreidimensionales Refraktometer
DE69722398T2 (de) * 1996-03-21 2004-08-05 Sola International Holdings, Ltd., Lonsdale Verbesserte einstärkenlinsen
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
CN1196994A (zh) 1997-04-18 1998-10-28 王延年 光学玻璃平面超精密研抛方法及设备
FR2772489B1 (fr) * 1997-12-16 2000-03-10 Essilor Int Lentilles ophtalmiques multifocales a aberration spherique variable suivant l'addition et l'ametropie
JP2002511158A (ja) * 1998-06-04 2002-04-09 ソーラ・インターナショナル・ホールディングス・リミテッド 成形された眼科レンズ
US6183084B1 (en) * 1998-07-30 2001-02-06 Johnson & Johnson Vision Care, Inc. Progressive addition lenses
US6149271A (en) * 1998-10-23 2000-11-21 Innotech, Inc. Progressive addition lenses
US6224211B1 (en) * 1999-06-08 2001-05-01 Medjet, Inc. Super vision
DE10024080A1 (de) 2000-05-17 2001-11-22 Asclepion Meditec Ag Verfahren und Vorrichtung zur vollständigen Korrektur von Sehfehlern des menschlichen Auges
US6305802B1 (en) * 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
US6616275B1 (en) 1999-08-11 2003-09-09 Asclepion Meditec Gmbh Method and device for completely correcting visual defects of the human eye
DE19954523C2 (de) 1999-11-12 2002-01-31 Johannes Junger Verfahren zur Oberflächenbearbeitung einer Kontaktlinse zur individuellen Anpassung an das System Auge
US6695449B2 (en) * 2000-08-17 2004-02-24 Novartis Ag Lens design to enhance vision quality
US6554425B1 (en) * 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
US20020071095A1 (en) * 2000-12-08 2002-06-13 Roffman Jefrey H. Composite surface contact lenses
US6547391B2 (en) * 2000-12-08 2003-04-15 Johnson & Johnson Vision Care, Inc. Ocular aberration correction taking into account fluctuations due to biophysical rhythms
IL143503A0 (en) * 2001-05-31 2002-04-21 Visionix Ltd Aberration correction spectacle lens
US6836371B2 (en) * 2002-07-11 2004-12-28 Ophthonix, Inc. Optical elements and methods for making thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030273A1 (en) * 2000-10-10 2002-04-18 University Of Rochester Determination of ocular refraction from wavefront aberration data

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466507B2 (en) 2012-04-05 2019-11-05 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10209535B2 (en) 2012-04-05 2019-02-19 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US11809024B2 (en) 2012-04-05 2023-11-07 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US11644688B2 (en) 2012-04-05 2023-05-09 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10948743B2 (en) 2012-04-05 2021-03-16 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10203522B2 (en) 2012-04-05 2019-02-12 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10838235B2 (en) 2012-04-05 2020-11-17 Brien Holden Vision Institute Limited Lenses, devices, and methods for ocular refractive error
US9535263B2 (en) 2012-04-05 2017-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9575334B2 (en) 2012-04-05 2017-02-21 Brien Holden Vision Institute Lenses, devices and methods of ocular refractive error
US11320672B2 (en) 2012-10-07 2022-05-03 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US10534198B2 (en) 2012-10-17 2020-01-14 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9759930B2 (en) 2012-10-17 2017-09-12 Brien Holden Vision Institute Lenses, devices, systems and methods for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11333903B2 (en) 2012-10-17 2022-05-17 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10520754B2 (en) 2012-10-17 2019-12-31 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error

Also Published As

Publication number Publication date
CA2501217A1 (en) 2004-04-22
US7556381B2 (en) 2009-07-07
CA2501217C (en) 2013-01-08
JP2006502428A (ja) 2006-01-19
CN1729419A (zh) 2006-02-01
JP2011008287A (ja) 2011-01-13
CN100392473C (zh) 2008-06-04
US20050259222A1 (en) 2005-11-24
JP5096662B2 (ja) 2012-12-12
WO2004034129A1 (de) 2004-04-22
DE10393231D2 (de) 2005-09-01
AU2003276034A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
WO2004034129A1 (de) Verfahren zur herstellung einer linse und danach hergestellte linse
DE102007032001B4 (de) Vorrichtung und Verfahren zur Bestimmung der erforderlichen Korrektur der Fehlsichtigkeit eines Auges
DE69714273T2 (de) Serie progressiver ophtalmischer multifokaler linsen
DE69113178T2 (de) Methode zur Herstellung von Linsen.
EP2471441B1 (de) Verfahren und Vorrichtung zur Bestimmung der Augendrehpunktlage
EP2790567B1 (de) Helligkeitsabhängige anpassung eines brillenglases
EP2802935B1 (de) Brillenglasoptimierung mit individuellem augenmodell
DE102017007990B4 (de) Computerimplementierte Verfahren und Vorrichtungen zum Ermitteln individueller Aberrationsdaten oder zum Berechnen oder Optimieren eines Brillenglases für zumindest ein Auge eines Brillenträgers, Computerimplementiertes Verfahren zum Ermitteln optimierter sphärozylindrischer Werte für zumindest ein Auge eines Brillenträgers, Verfahren und Vorrichtung zum Herstellen eines Brillenglases, Brillengläser und Computerprogrammerzeugnis
EP2383603B1 (de) Verfahren zum Fertigen einer Brillenlinse
EP2023856B1 (de) Hornhautimplantat zur korrektur von fehlsichtigkeiten des menschlichen auges
EP3218762B1 (de) Optische sehhilfe mit zusätzlichem astigmatismus
EP1656581B1 (de) Individuelles einstärkenbrillenglas
DE102004010338B4 (de) Verfahren zum Herstellen eines Brillenglases
DE102005022683A1 (de) Kontaktlinsen zur Kompensation charakteristischer Abbildungsfehler zur Verbesserung der Abbildungsqualität optischer Systeme
DE102020115070B4 (de) Verfahren zur Herstellung einer Kontaktlinse oder einer Intraokularlinse
EP3355098A1 (de) Belegung eines augenmodells zur optimierung von brillengläsern mit messdaten
DE102013203288B4 (de) Verfahren zur Berechnung und Herstellung eines Brillenglases für ein fehlsichtiges Auge
DE102007004364A1 (de) Vorrichtung zur Herstellung eines optischen Elements zur Korrektur von altersbedingter Makuladegeneration (AMD) eines Auges
WO2017194712A1 (de) Verfahren zum näherungsweisen ermitteln einer dioptrischen gebrauchswirkung eines brillenglases und system
DE102010034658A1 (de) Verfahren zur Herstellung von an die Augen einer Person angepassten Kontaktlinsen
WO2016030337A1 (de) Verfahren zur bestimmung einer optischen korrektur für ein fehlsichtiges auge einer person, verfahren zur berechnung eines brillenglases und herstellung desselben
DE102009006023A1 (de) Sehhilfe zur Augenkorrektur von Aberrationen höherer Ordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: WELSCHER, MARKUS

Inventor name: KELCH, GERHARD

Inventor name: WIETSCHORKE, HELMUT

Inventor name: KRATZER, TIMO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WIETSCHORKE, HELMUT

Inventor name: KELCH, GERHARD

Inventor name: KRATZER, TIMO

Inventor name: WELSCHER, MARKUS

17Q First examination report despatched

Effective date: 20170103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170516