EP1544447B1 - Procédé et appareil pour commander un moteur à combustion interne - Google Patents

Procédé et appareil pour commander un moteur à combustion interne Download PDF

Info

Publication number
EP1544447B1
EP1544447B1 EP20040105682 EP04105682A EP1544447B1 EP 1544447 B1 EP1544447 B1 EP 1544447B1 EP 20040105682 EP20040105682 EP 20040105682 EP 04105682 A EP04105682 A EP 04105682A EP 1544447 B1 EP1544447 B1 EP 1544447B1
Authority
EP
European Patent Office
Prior art keywords
fuel
low
pressure pump
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20040105682
Other languages
German (de)
English (en)
Other versions
EP1544447A3 (fr
EP1544447A2 (fr
Inventor
Erwin Achleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1544447A2 publication Critical patent/EP1544447A2/fr
Publication of EP1544447A3 publication Critical patent/EP1544447A3/fr
Application granted granted Critical
Publication of EP1544447B1 publication Critical patent/EP1544447B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine.
  • Known internal combustion engines have a fuel supply device with a low pressure circuit comprising a low pressure pump and a regulator which sets a predetermined pressure in the low pressure circuit when the flow rate of the fuel flowing therethrough is less than a threshold value.
  • internal combustion engines are also equipped with a high-pressure pump, which is coupled on the input side with the low-pressure circuit and which promotes fuel into a fuel reservoir.
  • Injectors are coupled to the fuel accumulator and measure the fuel in the combustion chambers of the cylinders of the internal combustion engine. If the temperature of the fuel in the low-pressure circuit reaches very high levels, there is a risk that vapor bubbles will form there.
  • the object of the invention is to provide a method and a device for controlling the internal combustion engine, by means of which the load of the low-pressure pump can be kept as low as possible.
  • the invention is characterized by a method and a corresponding device for controlling an internal combustion engine having a fuel supply device with a low-pressure circuit, which comprises a low-pressure pump and a regulator.
  • the regulator adjusts a predetermined pressure in the low pressure circuit when the flow rate of the fuel flowing therethrough is less than a threshold value.
  • the internal combustion engine has a high-pressure pump, which is coupled on the input side with the low-pressure circuit and promotes the fuel in a fuel tank.
  • An amount is determined which is characteristic of the temperature of the fuel that the high pressure pump is delivering.
  • a predetermined condition is met when it is detected by the magnitude that the temperature of the fuel has exceeded a predetermined threshold.
  • the low-pressure pump is driven in terms of a higher flow rate of the fuel than when the temperature of the fuel is below the predetermined threshold, the higher flow rate is set so that there is a predeterminable pressure rise of the input-side pressure of the high-pressure pump ,
  • the invention makes use of the knowledge that the flow rate / fuel pressure characteristic of the regulator above a certain flow rate, which is the limit, leads to a significant increase in pressure.
  • the predetermined threshold value of the temperature of the fuel is usually exceeded in operating states of the internal combustion engine in which only a small amount of fuel is metered by means of the injection valves into the combustion chambers of the cylinders of the internal combustion engine.
  • the delivery rate of the low-pressure pump is adjusted so that a very high flow rate results through the regulator, which then the desired predetermined pressure increase of the input side Pressure of the high-pressure pump result.
  • a very simple regulator can be used which, for example, is merely a spring-loaded check valve with a characteristic curve which gives rise to a large increase in pressure as a function of the flow rate and nevertheless ensures that vapor bubble formation is avoided when the temperature of the fuel, which promotes the high-pressure pump, has exceeded the predetermined threshold. If the flow rate is not increased, the flow through the regulator will be much lower and the pressure will then be approximately independent of the flow rate through the regulator.
  • the regulator may also be designed for a correspondingly lower pressure because of the increase in pressure due to the increased flow rate. This then results in an increase in the efficiency of the internal combustion engine and at the same time the wear of the low-pressure pump is reduced. Furthermore, the low-pressure pump is driven for a predetermined period of time in terms of increased flow rate when the predetermined condition is met.
  • the predefinable time is determined depending on the integral of the metered fuel mass during the control of the low-pressure pump in terms of an increased flow rate.
  • the period of time within which vapor bubble formation is likely can thus be estimated very precisely and the load on the low-pressure pump can be kept so low.
  • the predetermined condition is that an operating state of the hot start or the hot idling of the internal combustion engine is taken.
  • This has the advantage that this is the operating conditions are the internal combustion engine, in which a vapor bubble formation can occur with high probability.
  • the operating state of the internal combustion engine is determined anyway for other control purposes and so no additional computational effort is necessary.
  • the control of the low-pressure pump if the predetermined condition is met, in terms of an approximately maximum flow rate of the low-pressure pump. This then results in a maximum increase in pressure in the low-pressure circuit and on the input side of the high-pressure pump.
  • the regulator can then be designed in this case to a corresponding to the maximum pressure increase reduced pressure for normal operation and so the efficiency of the engine can be further improved and the wear of the low pressure pump can be kept very low.
  • the activation of the low-pressure pump if the predetermined condition is met, is correspondingly reduced with decreasing temperature of the fuel.
  • the wear of the low-pressure pump can be further reduced while ensuring that no vapor bubble formation occurs.
  • An internal combustion engine ( FIG. 1 ) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the engine block 2 comprises a plurality of cylinders having pistons and connecting rods via which they are coupled to a crankshaft 21.
  • the cylinder head 3 includes a valvetrain having an intake valve, an exhaust valve and valve drivers.
  • the cylinder head 3 further includes an injection valve 34 and a spark plug.
  • a feed device 5 is provided for fuel. It comprises a fuel tank 50, which is connected via a first fuel line to a low-pressure pump 51.
  • the fuel line opens into a swirl pot 50a.
  • the low pressure pump 51 includes a suction jet pump that pumps fuel from the fuel tank 50 into the surge pot 50a. The suction jet pump is driven by the fuel delivered by the low pressure pump 51.
  • the low pressure pump 51 On the output side, the low pressure pump 51 is operatively connected to an inlet 53 of a high pressure pump 54. Furthermore, on the output side of the low-pressure pump 51, a mechanical regulator 52 is provided, which is connected on the output side via a further fuel line to the fuel tank 50.
  • the low-pressure pump 51, the mechanical regulator 52, the fuel line, the further fuel line and the inlet 53 form a low-pressure circuit.
  • the mechanical regulator 52 is preferably a simple spring-loaded valve in the manner of a check valve, wherein the spring constant is selected so that in the inlet 53, a predetermined low pressure of for example 3000 to 6000 hPa is not exceeded.
  • the regulator can regulate the pressure within a given flow rate range by it to the predetermined pressure, e.g. 4000 hPa when the flow rate is e.g. less than 100 1 / h. When the flow rate through the regulator is higher, the regulator can no longer adjust the pressure to the preset pressure and the pressure increases with increasing flow in the low pressure circuit.
  • the low-pressure pump 51 is preferably designed so that it always delivers a sufficiently high fuel quantity during operation of the internal combustion engine, which ensures that the predetermined low pressure is not exceeded.
  • the inlet 53 is guided to the high-pressure pump 54, which promotes the fuel on the output side to a fuel reservoir 55.
  • the high pressure pump 54 is usually driven by the camshaft and thus promotes a constant fuel volume at constant speed N of the crankshaft in the fuel accumulator 55th
  • the injection valves 34 are operatively connected to the fuel reservoir 55.
  • the fuel is thus supplied to the injection valves 34 via the fuel accumulator 55.
  • a volume flow control valve 56 is provided, by means of which the volume flow can be adjusted, which is supplied to the high-pressure pump.
  • the internal combustion engine may also be provided with an electromagnetic regulator on the output side of the fuel accumulator 54 and with a corresponding return line in the low-pressure circuit.
  • the volume flow control valve may be integrated into the high-pressure pump 54.
  • the internal combustion engine is assigned a control device 6, which in turn are assigned sensors that detect different measured variables and in each case determine the measured value of the measured variable.
  • the control device 6 determines dependent on at least one of the measured variables manipulated variables, which are then converted into corresponding control signals for controlling actuators by means of corresponding actuators.
  • the sensors are a pedal position sensor which detects the position of an accelerator pedal, a crankshaft angle sensor which detects a crankshaft angle and which is then assigned a rotational speed N, an air mass meter which detects the air mass flow, a pressure sensor 58 which detects the fuel pressure in the fuel reservoir 55, a first temperature sensor that detects the temperature T_IM of the intake air in the intake tract, a second temperature sensor that detects a temperature TCO of a coolant, preferably the cooling water, and a third temperature sensor that detects the temperature TCO of the engine oil.
  • any subset of the sensors or additional sensors may be present.
  • the actuators are formed, for example, as intake or exhaust valves, the injection valves 34, a spark plug, a throttle valve, the low-pressure pump 51 or the volume flow control valve 56.
  • the internal combustion engine also has other cylinders, which are then assigned corresponding actuators.
  • a program for controlling the internal combustion engine is executed in a step S1 (FIG. FIG. 2 ), in which variables are initialized if necessary.
  • a control signal SG for actuating the low-pressure pump 51 is preferably determined as a function of a fuel mass MFF to be metered and the rotational speed N.
  • the fuel mass to be metered is determined by another control function, which is executed in the control device 6, depending on the load applied to the internal combustion engine.
  • the control signal is determined in step S4 so that the delivery rate of the fuel through the low-pressure pump 51 is certainly sufficient to set the predetermined pressure in the low pressure circuit and on the other hand ensures that the flow rate through the regulator 52 is less than the limit, from he can no longer adjust the pressure in the low pressure circuit to the predetermined pressure.
  • the current operating state BZ of the internal combustion engine is dependent on the temperature TCO of the coolant and / or the temperature T_IM of the intake air in the intake tract 1 and / or the temperature TOIL of the engine oil and / or the rotational speed and optionally further operating variables of the internal combustion engine determined.
  • An operating state of the HS of the hot start is taken, for example, when the temperature of the fuel, which promotes the high-pressure pump has exceeded a predetermined threshold.
  • the threshold may be, for example, 80 ° C.
  • the operating state of the hot start occurs, for example, when the internal combustion engine is turned off after a longer period of operation and shortly after is restarted when the engine block is still at a high temperature. In this case, the fuel that is in the low-pressure circuit is then heated to the high temperature.
  • an operating state HIS of the hot idling in which only a small amount of fuel is metered by means of the injection valves 34 and thus the fuel located in the low-pressure circuit can heat up correspondingly high.
  • the operating state of the hot idle HIS is detected on the basis of the usual conditions for idling, ie based on the rotational speed N and possibly other variables and further depending on the temperature TCO of the coolant, and / or the temperature T_IM the intake air temperature and / or the temperature TOIL of the engine oil.
  • a corrected actuating signal SG_COR is determined in a step S10 as a function of the actuating signal SG, the current operating state BZ and preferably the time T_BZ since the current operating state BZ and preferably the fuel mass MFF to be metered are adopted.
  • the corrected control signal SG_COR is determined in such a way that the driving of the low-pressure pump 51 results in such an increased flow rate that a predetermined increase in pressure, e.g. results in 1000 hPa of the input-side pressure of the high-pressure pump 54 in comparison to a control with the control signal SG.
  • the corrected actuating signal SG_COR is then preferably determined by means of a characteristic field.
  • the corrected actuating signal SG_COR can be particularly easily equated to a maximum actuating signal SG_MAX. This can easily be achieved the maximum pressure increase.
  • a time period T_COR of an increased flow rate of the low-pressure pump 51 is determined.
  • This can be fixed in a simple embodiment, e.g. be between 30 seconds and 3 minutes, or depending on the time period T_BZ be determined since taking the current operating state BZ and the fuel mass MFF to be metered. This is preferably done by integrating the fuel mass MFF to be metered. As a result, a very good estimation of the time duration T_COR of the increased flow rate can be achieved, since the integral of the fuel mass to be metered is characteristic of the profile of the temperature T_F of the fuel in the low-pressure circuit.
  • a step S14 the low-pressure pump 51 is then driven in accordance with the control signal SG or with the corrected control signal SG_COR.
  • the control signal is preferably a pulse width modulated signal.
  • the control of the low pressure pump with the corrected control signal SG_COR takes place Preferably, for the period T_COR the increased flow rate, which was determined in step S12.
  • the corrected control signal SG_COR is then adjusted in step S14 for a changing metered fuel mass MFF corresponding to step S4 and possibly with increasing time T_BZ since taking the current operating state BZ.
  • step S14 the program pauses in step S16 for a predetermined waiting period T_W before the processing in step S4 is resumed.
  • a second embodiment of a program for controlling the internal combustion engine is started in a step S18 (FIG. FIG. 3 ).
  • the actuating signal SG is determined in accordance with step S4.
  • the fuel temperature T_F of the fuel which the high-pressure pump 54 delivers, depends on the temperature TCO of the coolant and / or the temperature T_IM of the intake air in the intake tract 1 and / or the temperature TOIL of the engine oil and / or the rotational speed and / or determines the fuel mass MFF to be metered. This is preferably done by means of a corresponding observer or by means of maps.
  • a step S24 it is then checked whether the fuel temperature T_F is greater than a threshold value T_F_THR. If this is not the case, the processing is continued in a step S30.
  • step S26 the corrected actuating signal SG_COR is determined in a step S26. This is preferably done depending on the fuel temperature T_F and optionally of the control signal SG and optionally of the fuel mass MFF to be metered.
  • the corrected actuating signal SG_COR can be set equal to the maximum actuating signal SG_MAX.
  • the time period T_COR of the increased flow rate is then preferably determined by integrating the fuel mass to be metered.
  • the time T_COR the increased flow rate can also be fixed.
  • step S30 the low-pressure pump 51 is then actuated either with the actuating signal SG or correspondingly with the corrected actuating signal SG_COR.
  • the fuel temperature T_F continues to be greater than the predetermined threshold T_F_THR and only then the fuel pump 51 continues to be driven with the corrected control signal SG_COR, if this is still the case.
  • the corrected control signal SG_COR is, like the control signal SG, adapted to a changing fuel mass MFF to be changed in accordance with step S20.
  • the corrected actuating signal for actuating the low-pressure pump 51 is also adapted in accordance with the calculation rule of step S26 with changing fuel temperature T_F in such a way that the delivery quantity of the low-pressure pump is reduced with decreasing fuel temperature T_F.
  • step S32 the program subsequently pauses for a predetermined waiting time before the processing is continued again in step S20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (5)

  1. Procédé de commande d'un moteur à combustion interne comprenant un dispositif d'alimentation en carburant (5) avec un circuit basse pression, qui comprend une pompe basse pression (51) et un régulateur (52), qui règle une pression prédéterminée dans le circuit basse pression lorsque le débit du carburant qui le traverse est inférieur à une valeur limite, et une pompe haute pression (54), qui est couplée côté entrée au circuit basse pression et achemine le carburant dans un accumulateur de carburant (55), dans lequel
    - on détermine une grandeur qui est caractéristique de la température (T_F) du carburant acheminé par la pompe haute pression (54),
    - une condition prédéterminée est remplie lorsqu'il est reconnu à l'aide de la grandeur que la température (T_F) du carburant a dépassé une valeur seuil prédéterminée (T_F_THR), et,
    - si la condition prédéterminée est remplie, la pompe basse pression (51) est actionnée dans le sens d'un débit du carburant supérieur à celui existant lorsque la température (T_F) du carburant se trouve en dessous de la valeur seuil prédéterminée (T_F_THR), le débit supérieur étant prédéterminé de manière à obtenir une augmentation prédéterminable de la pression côté entrée de la pompe haute pression (54),
    caractérisé en ce que
    la pompe basse pression (51) est actionnée sur une période de temps prédéterminable (T_COR) dans le sens du débit supérieur, la période de temps (T_COR) dépendant de l'intégrale de la masse de carburant mesurée (MFF) pendant l'actionnement de la pompe basse pression (51) dans le sens d'un débit supérieur.
  2. Procédé selon la revendication 1, dans lequel la condition prédéterminée est qu'un état de fonctionnement (BZ) du démarrage à chaud (HS) ou du ralenti à chaud (HIS) du moteur à combustion interne est adopté.
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'actionnement de la pompe basse pression (51) se fait dans le sens d'un débit supérieur pour obtenir un débit presque maximal de la pompe basse pression (51).
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'actionnement de la pompe basse pression (51) est adapté dans le sens d'un débit supérieur de manière que le débit de la pompe basse pression (51) soit réduit lorsque la température (T_F) du carburant baisse.
  5. Dispositif de commande d'un moteur à combustion interne comprenant un dispositif d'alimentation en carburant (5) avec un circuit basse pression, qui comprend une pompe basse pression (51) et un régulateur (52), qui régle une pression prédéterminée dans le circuit basse pression lorsque le débit de carburant qui le traverse est inférieur à une valeur limite, et une pompe haute pression (54), qui est couplée côté entrée au circuit basse pression et qui achemine le carburant dans un accumulateur de carburant (55), et des moyens
    - qui déterminent une grandeur qui est caractéristique de la température (T_F) du carburant acheminé par la pompe haute pression (54),
    - qui vérifient si une condition prédéterminée a été remplie, c'est-à-dire lorsqu'il est reconnu à l'aide de la grandeur que la température (T_F) du carburant a dépassé une valeur seuil prédéterminée (T_F_THR), et
    - qui, si la condition prédéterminée est remplie, actionnent la pompe basse pression (51) dans le sens d'un débit de carburant supérieur à celui existant lorsque la température (T_F) du carburant se trouve en dessous de la valeur seuil prédéterminée (T_F_THR), le débit supérieur étant prédéterminé de manière à obtenir une augmentation prédéterminable de la pression côté entrée de la pompe haute pression (54),
    ces moyens étant caractérisés en ce que,
    lorsque la condition est remplie, la pompe basse pression (51) est actionnée sur une période de temps prédéterminable (T_COR) dans le sens du débit supérieur, la période de temps (T_COR) dépendant de l'intégrale de la masse de carburant mesurée (MFF) pendant l'actionnement de la pompe basse pression (51) dans le sens d'un débit supérieur.
EP20040105682 2003-12-19 2004-11-11 Procédé et appareil pour commander un moteur à combustion interne Expired - Fee Related EP1544447B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360024 2003-12-19
DE2003160024 DE10360024A1 (de) 2003-12-19 2003-12-19 Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1544447A2 EP1544447A2 (fr) 2005-06-22
EP1544447A3 EP1544447A3 (fr) 2006-09-06
EP1544447B1 true EP1544447B1 (fr) 2009-10-14

Family

ID=34485534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040105682 Expired - Fee Related EP1544447B1 (fr) 2003-12-19 2004-11-11 Procédé et appareil pour commander un moteur à combustion interne

Country Status (2)

Country Link
EP (1) EP1544447B1 (fr)
DE (2) DE10360024A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285235A (ja) * 2006-04-18 2007-11-01 Honda Motor Co Ltd ディーゼルエンジンの燃料供給装置
DE102006029633B4 (de) * 2006-06-28 2019-05-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
DE102010004215B4 (de) * 2010-01-08 2013-06-06 Continental Automotive Gmbh Vorrichtung zur Verhinderung des Absterbens des Motors bei einem mit einem Dieseleinspritzsystem ausgestatteten Fahrzeug
DE102010002801A1 (de) 2010-03-12 2011-09-15 Robert Bosch Gmbh Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102015201414A1 (de) * 2015-01-28 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Starten einer Brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2024001B3 (es) 1988-10-28 1992-02-16 Siemens Ag Procedimiento para realiza un arranque en caliente
DE19539885A1 (de) * 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
DE19818421B4 (de) * 1998-04-24 2017-04-06 Robert Bosch Gmbh Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE19853823A1 (de) * 1998-11-21 2000-05-25 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19951410A1 (de) * 1999-10-26 2001-05-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Variation eines von einer Niederdruckpumpe erzeugten und an einer Hochdruckpumpe anliegenden Vordrucks
DE19957742A1 (de) * 1999-12-01 2001-06-07 Bosch Gmbh Robert Kraftstoffzuführvorrichtung für einen Verbrennungsmotor
DE10061856A1 (de) * 2000-12-12 2002-06-27 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE10148222A1 (de) * 2001-09-28 2003-04-17 Bosch Gmbh Robert Verfahren zum Betrieb einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE502004010225D1 (de) 2009-11-26
EP1544447A3 (fr) 2006-09-06
DE10360024A1 (de) 2005-07-21
EP1544447A2 (fr) 2005-06-22

Similar Documents

Publication Publication Date Title
EP1794433B1 (fr) Procede et dispositif pour commander un moteur a combustion interne
DE102010016079B4 (de) Kraftstoffeinspritzerfassungsvorrichtung
DE102008042412B4 (de) Steuergerät für ein Druckspeicherkraftstoffeinspritzsystem
DE102006000396B4 (de) Steuervorrichtung und Steuerverfahren für eine Direkteinspritzkraftmaschine
DE102011051062B4 (de) Kraftstoffeinspritzsteuersystem für eine interne Verbrennungsmaschine
DE102010064374B3 (de) Kraftstoffeinspritzsystem einer Brennkraftmaschine sowie dazugehöriges Druckregelverfahren, Steuergerät und Kraftfahrzeug
DE102016109772B4 (de) Steuervorrichtung und Steuerverfahren für eine Kraftmaschine
DE102010016093A1 (de) Kraftstoffeinspritzerfassungsvorrichtung
DE3436768A1 (de) Verfahren zur steuerung der kraftstoffeinspritzung bei brennkraftmaschinen und kraftstoffeinspritzsystem zur durchfuehrung des verfahrens
DE19860499A1 (de) Kraftstoffeinspritzsteuersystem
DE60022233T2 (de) Einrichtung zur Brennstoffdrucksteuerung
DE102008055747B4 (de) Verfahren und Vorrichtung zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine
EP1583900B1 (fr) Systeme d'injection de carburant et procede pour determiner la pression d'alimentation d'une pompe a carburant
EP2006521A1 (fr) Procédé de réglage de la pression du rail lors d'un processus de démarrage
DE102009018654B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006018164B3 (de) Verfahren und Vorrichtung zur Steuerung einer Einspritzanlage für eine Brennkraftmaschine
DE112014000612B4 (de) Steuervorrichtung für eine Hochdruckpumpe
DE10342268A1 (de) Pumpenanormalitätsdiagnosevorrichtung
EP1544447B1 (fr) Procédé et appareil pour commander un moteur à combustion interne
DE102004016943B4 (de) Verfahren zum Steuern einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE10036772C2 (de) Verfahren zum Betreiben eines Kraftstoffzumesssystems einer direkteinspritzenden Brennkraftmaschine
DE10155252B4 (de) Verfahren zur Überprüfung der Plausibilität eines von einem Drucksensor gelieferten Kraftstoffdruckwertes in eine Einspritzanlage für Brennkraftmaschinen und entsprechende Einspritzanlage
DE102006029633B4 (de) Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
DE10155249C1 (de) Einspritzanlage sowie Verfahren zur Regelung einer Kraftstoffpunpe
EP1266134A1 (fr) Procede pour faire fonctionner un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17P Request for examination filed

Effective date: 20070222

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070918

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004010225

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

26N No opposition filed

Effective date: 20100715

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004010225

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010225

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201130

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010225

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010225

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601