EP1543238B1 - Method for determining a position of a part in a stepped bore of a housing, and injector for injecting fuel - Google Patents

Method for determining a position of a part in a stepped bore of a housing, and injector for injecting fuel Download PDF

Info

Publication number
EP1543238B1
EP1543238B1 EP04706679A EP04706679A EP1543238B1 EP 1543238 B1 EP1543238 B1 EP 1543238B1 EP 04706679 A EP04706679 A EP 04706679A EP 04706679 A EP04706679 A EP 04706679A EP 1543238 B1 EP1543238 B1 EP 1543238B1
Authority
EP
European Patent Office
Prior art keywords
component
bore
distance
stepped bore
ferrule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04706679A
Other languages
German (de)
French (fr)
Other versions
EP1543238A1 (en
Inventor
Jürgen Dick
Willibald SCHÜRZ
Martin Simmet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to EP08008299A priority Critical patent/EP1965072B1/en
Publication of EP1543238A1 publication Critical patent/EP1543238A1/en
Application granted granted Critical
Publication of EP1543238B1 publication Critical patent/EP1543238B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49412Valve or choke making with assembly, disassembly or composite article making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49412Valve or choke making with assembly, disassembly or composite article making
    • Y10T29/49416Valve or choke making with assembly, disassembly or composite article making with material shaping or cutting
    • Y10T29/49417Valve or choke making with assembly, disassembly or composite article making with material shaping or cutting including molding or casting

Definitions

  • the invention proceeds from a method for determining a position of a second component in a stepped bore of a housing, in particular an injector housing, which has two bores with two different diameters, wherein the second component is arranged in the second bore with a predetermined distance to a first component is to be, which is already fixed in the smaller first bore and wherein in the larger second bore an embossing ring is inserted to a stage of the stepped bore, the squeezing a punch compresses until the predetermined distance is achieved to the first component and then wherein the second Component is inserted to the compressed stamping ring.
  • injectors for fuel injection into an internal combustion engine having a piezoelectric actuator as a drive unit must be manufactured with the greatest precision, since on the one hand, the change in length of the actuator generated by a voltage pulse is only in the micron range and thus extremely minimal.
  • the quantities of fuel to be injected must be precisely metered in order to optimize the combustion processes in the engine and to comply with the required emission limits.
  • the mechanical parts of the injector must be made with the utmost precision. Even length measures with tight manufacturing tolerances can add up to impermissible errors in the sum.
  • a method has become known in which a stamped disc is introduced into a stepped bore of an injector.
  • the embossing disc is placed on the stage, which adjusts at the transition of two holes of the stepped bore.
  • the embossing disk is then pressed together with an embossing tool until the desired distance to a first component already fixed in the stepped bore is reached.
  • an electrical sensor is installed isolated at the top of the embossing die, which delivers a shutdown signal to a drive unit of the embossing die, as soon as the fixed first component is touched.
  • the object of the invention is to position in a housing, in particular in an injector for the fuel injection, the position of the components which are to be installed in the housing, with a predetermined distance in a stepped bore of the housing exactly.
  • the object is to provide an improved injector. The object is achieved with the features of the independent claims 1 and 7.
  • the inventive method for setting a position of a second component in a stepped bore with the characterizing features of claim 1 has the advantage that the measuring point is outside the bore and the distance from the fixed part in the bore can be read on a probe, the one Reference dimension between the protruding end of the probe and a reference mark of the stamping die forms.
  • the measurement process can be controlled at any time in a simple manner, so that the manufacturing reliability improves. It is considered to be particularly advantageous that the embossing process can be continuously monitored and thus already the approximation to the reference dimension can be easily observed and checked.
  • the reference dimension can be greater by a predetermined value than the predetermined distance. This achieves in an advantageous manner that after installation, the two components have a certain distance from each other, which can be used as Leerhub for the actuator.
  • a particularly simple detection of the reference dimension is given with a known mechanical or optical measuring devices such as feeler gauge, dial gauge, eyepiece, camera, interference method, etc.
  • the measuring devices work reliably and are easy to operate even by untrained personnel.
  • a preferred and advantageous application of the method is seen in an injector for fuel injection, since here the distance between the components to be installed in the stepped bore of the injector housing must be maintained with particularly high precision.
  • a piezoelectric actuator due to its physical properties has only a very small change in length
  • maintaining the exact distance to a second component, such as a servo valve, a Düsenn redesign, a deflection or the like is particularly important to use the available change in length of the actuator as completely as possible to be able to.
  • the ring width of the stamping ring is greater than the step width of the stepped bore. This results in a better bearing surface for the second component, which can be positioned thereby safer and more accurate in the stepped bore.
  • a smooth and, in particular, polished bearing surfaces of the stamping ring also appear to be advantageous. Such precise surface would be very difficult to produce at the stage directly and with considerable additional effort, since the stage sits relatively deep in the hole and thus difficult to reach with a tool.
  • FIG. 1a shows two embodiments of the invention with an injector
  • FIG. 1b shows an enlarged section of the injector
  • FIG. 2 shows a longitudinal section through an injector.
  • FIG. 1a a housing 1 is shown in a schematic representation, which has a stepped bore 6 in the axial direction.
  • the housing 1 may very generally be an assembly into which two components 2, 10 are to be installed with a predetermined distance from each other exactly and with small tolerances.
  • an injector housing is used as the housing 1, in which the two components 2 and 10 are to be installed.
  • the first component 2 is, for example, an actuator, in particular a piezoelectric actuator.
  • a second component 10 should be installed with a predetermined distance H to the first component 2. But the first component 2 may also be a bottom plate of the actuator or the like.
  • the second component 10 is designed as an actuator, in particular it may be a Hubumramer, a nozzle body or an actuator of a servo valve or the like, which is to be actuated by the piezoelectric actuator 2.
  • the first component 2 Before the second component 10 can be installed, the first component 2 is first inserted and fixed in a first hole 6 a of the stepped bore 6 as accurately as possible at a designated location.
  • An underside 17 a of the first component 2 forms a first reference surface for the predetermined distance H.
  • the first bore 6 a is in the upper part of FIG. 1 recognizable and has a first diameter d1, which is smaller than a second diameter d2 of a second bore 6b.
  • the second bore 6b is arranged in the lower part of the stepped bore 6. At the transition between the two holes 6a, 6b forms an annular step 16 due to the different diameters d1, d2.
  • a stamping ring 3 is inserted into the second bore 6b with the larger diameter d2 until it rests on the annular step 16 of the stepped bore 6.
  • the stamping ring 3 is formed such that it does not impair the function of the second component 10 to be subsequently installed.
  • the underside 17a of the first component 2 fixed in the first bore 6a thus forms a reference base for a distance H at a lower annular surface 17 of the embossing ring 3, with which the second component 10 is to be retained in the second bore 6b after embossing of the embossing ring 3 ,
  • the height of the stamping ring 3 is selected so that by compressing the stamping ring 3, the distance H, which is predetermined as a nominal size and measured between the bottom 17 a of the first component 2 and the lower annular surface 17 of the stamping ring 3, are produced with a predetermined value can.
  • an embossing punch 4 is inserted into the second bore 6b to the lower annular surface 17 of the embossing ring 3.
  • the embossing punch 4 has a central longitudinal bore 18 with a diameter d into which a probe 5 can be inserted until its head end touches the underside 17 a of the first component 2.
  • the length of the probe 5 is dependent on the applied measuring method and is for example so dimensioned that an end piece E of the probe 5 protrudes a small distance from the longitudinal bore 18 of the die 4.
  • a first reference mark B for example as a planar measuring surface, is arranged on the embossing stamp 4. Furthermore, on the tail E of the probe 5, a second reference mark C is applied, which may also be formed as a reference surface. Thus, between the first reference mark B on the embossing punch 4 and the second reference mark C on the probe 5, a reference dimension x are measured or read.
  • the reference dimension x is chosen so that in the presence of the reference dimension x between the first and the second reference mark B, C, the lower annular surface 17 of the stamping ring 3 has the distance H to the bottom 17 a of the first component 2.
  • a marking or scaling 19 is applied to the end part E, at which the depth of the embossing or the distance between the bottom 17a of the first component 2 and the lower annular surface 17 of the embossing ring 3 can be monitored.
  • stamping ring 3 is deformed until the predetermined value x for the reference dimension and thus the distance H between the lower annular surface of the stamping ring 3 and the bottom 17 a of the first component 2 is achieved.
  • the stamping ring 3 is made for this purpose, for example, from a corresponding cold heading and Kaltf thoroughlypressstahl according to DIN 1654 for this purpose.
  • the pressing process can be stopped prematurely when the desired distance H + dx is reached with the mounting dimension x-dx.
  • the method described sets the distance to a precise value, so that the individual component tolerances are compensated effectively and cost-effectively.
  • a measuring device 7 As a measuring device 7, with the reference x or x-dx is detected, all per se known mechanical, optical or electrical measuring arrangements come into question.
  • an optical measuring device 7 of the LM series by Heidenhain GmbH is used, which can be used in particular in automation technology.
  • This measuring device 7 has a laser interferometric probe, with the measurement accuracies are achieved, which are in the nanometer range.
  • a He-Ne laser is used whose light is fed to a miniature interferometer, which is located at the measuring point.
  • the miniature interferometer detects the measuring movement of a measuring spindle, which correspond to the distance between the two reference marks B and C on the embossing punch 4 or on the probe 5, and converts this movement into an optical interference signal.
  • the optical measurement signal is then transmitted via an optical waveguide to an optical evaluation and supply unit and output as a measurement result either on a digital display or on the monitor of a computer.
  • the measuring signal is used to control or switch off the embossing device with the embossing punch 4 when the intended distance H or H + dx or the reference dimension x or x-dx has been reached.
  • an electrical contact can be made between the end piece E of the probe 5 and the die 4, which is easily visible and adjustable from the outside.
  • the electrical contact is adjusted so that it delivers a shutdown signal to the embossing device when reaching the intended reference dimension x or x-dx.
  • FIG. 1a a detail of such an electrical measuring arrangement is shown schematically.
  • a contact lug 31 is arranged, the contact is directed to the longitudinal bore 18.
  • the contact lug can be adjusted in height and optionally set a Leerhub dx.
  • the tail E of the probe 5 is slightly shorter in this case and executed isolated against the die 4.
  • the die 4 moves relative to the probe 5 upwards.
  • the contact lug 31 touches the probe 5, the reference dimension x-dx is reached.
  • the contact lug 31 closes a circuit I via the probe 5 and the punch 4. This signal is then used to complete the embossing process.
  • FIG. 1b shows in an enlarged view the embossing process.
  • the stamping ring 3 which adapts by the stamping process to the contour of the step 16 in the wall of the housing 1.
  • the die 4 which has a flat and smooth embossing surface, which is also precisely ground at 90 ° to the longitudinal axis, it follows that the embossed surface, ie the lower annular surface 17 of the embossing ring 3 is executed rectangular and smooth.
  • the inserted second component 10 lies exactly and without play on the embossing ring 3, so that a predetermined distance H or H + dx or the predetermined reference dimension x or x-dx can be exactly maintained.
  • the stamping ring 3 has accordingly FIG. 1b
  • a ring width d3 which is greater than the width of the step 16, which has a step width d4.
  • the step 16 itself is not as support surface for the second component 10 favorable, since their step width d4 on the one hand is relatively narrow and on the other hand their surface has a certain roughness and unevenness by the processing tools. Another disadvantage would be that the surface is difficult to plan because of the long stepped bore 6.
  • the embossing punch 4 is removed with the probe 5 from the second bore 6b and the second component 10 is inserted until it is placed on the lower annular surface 17 of the compressed embossing ring 3.
  • FIG. 2 shows a schematic representation of a longitudinal section through an injector for fuel injection for an internal combustion engine of a motor vehicle.
  • an injector 1 with a stepped bore 6 can be seen.
  • the step 16 results on the step 16 of the stamping ring 3 is inserted and stamped to the desired thickness with the Einstellcher 12.
  • a piezoelectric actuator has been inserted into the smaller, first bore 6a and attached to the upper part of the housing 1 at a connection point A with the housing 1.
  • the underside 17a of the piezoelectric actuator 2 has, in relation to the lower annular surface 17 of the stamping ring 3, a predetermined installation dimension 15 for the first component 2, the actuator.
  • the Einstellflop 12 of the stamping ring results from the two dimensions 15 and 12 of the predetermined distance H as a measure between the bottom 17 a of the actuator 2 and the lower annular surface 17 of the stamping ring.
  • the second component 10 is designed as a lifting transformer, which acts as a Hubumrocker.
  • the Hubumrocker is free of play on the lower annular surface 17 of the stamping ring 3 and moves according to the arrows shown its lower part upwards when the actuator 2 expands downwards.
  • the Hubumrocker 10 presses on a Plunger 13 on a servo valve 20 so that it is closed.
  • the servo valve 20 controls the fuel drain from a control chamber 21, which is supplied via an inlet throttle with fuel.
  • the control chamber 21 is bounded by a movably mounted nozzle needle 14.
  • the fuel pressure biases the nozzle needle 14 to a sealing seat 24. In this position, the injection holes 25 of the injection valve are closed, which are arranged as seen in the flow direction after the sealing seat of the servo valve 20.
  • the nozzle needle 14 is arranged in the control chamber 21, which is supplied via a supply line 22.
  • the Hubumchurcher 10 is located directly on the bottom 17 a of the actuator 2.
  • an idle stroke between the actuator 2 and the Hubumshifter 10 may be provided.
  • the actuator 2 is activated by applying a voltage, then the actuator 2 expands and presses on the Hubumschreiber 10.
  • the Hubumnovaer moves the plunger 13 upwards, so that lifts off because of the acting fuel pressure, the closing member of the servo valve 20 from the sealing seat. This opens the servo valve 20, so that fuel flows from the control chamber 21. Although it flows through an inlet throttle simultaneously fuel into the control chamber 21, but the inflow is less than the drain. Thus, the pressure in the control chamber 21 decreases. The nozzle needle 14 is thus relieved.
  • Fuel pressure which acts on pressure surfaces of the nozzle needle 14, lifts the nozzle needle 14 from the sealing seat 24.
  • the injection holes 25 are opened and fuel is injected into the combustion chamber of the engine. If the actuator is de-energized, then the servo valve 20 is closed, the pressure in the control chamber 21 increases and the nozzle needle 14 is pressed onto the sealing seat 24. This ends the injection.

Abstract

The invention relates to a method and an injector for determining a position of a second part (10) inside a stepped boring (6). This part should assume an exact distance (H) from a first part (2). In order to determine the distance (H) between both parts (2, 10), a collar (3) is firstly introduced into a second boring (6b) of the stepped boring (6) until it rests upon a step (16) of the stepped boring (6). Afterwards, a punch (4), together with a touch probe (5), which is located inside a longitudinal boring (d), is placed upon a lower annular surface (17) of the collar (3) or on an underside (17a) of the first part (2), and the collar (3) is compressed until the predetermined distance (H) is obtained. The distance (H) is measured to a reference measure (x) between a projecting end piece (E) of the touch probe (5) and a reference mark (B) outside of the punch (4). The stamping process is stopped once the reference measure (x) has been obtained.

Description

Die Erfindung geht aus von einem Verfahren zum Festlegen einer Position eines zweiten Bauteils in einer Stufenbohrung eines Gehäuses, insbesondere eines Injektorgehäuses, das zwei Bohrungen mit zwei unterschiedlichen Durchmessern aufweist, wobei das zweite Bauteil in der zweiten Bohrung mit einem vorgegebenen Abstand zu einem ersten Bauteil angeordnet werden soll, das bereits in der kleineren ersten Bohrung fixiert ist und wobei in die größere zweite Bohrung ein Prägering bis zu einer Stufe der Stufenbohrung eingelegt wird, den ein Prägestempel soweit zusammendrückt, bis der vorgegebene Abstand zum ersten Bauteil erreicht wird und wobei anschließend das zweite Bauteil bis zum zusammengedrückten Prägering eingeführt wird.The invention proceeds from a method for determining a position of a second component in a stepped bore of a housing, in particular an injector housing, which has two bores with two different diameters, wherein the second component is arranged in the second bore with a predetermined distance to a first component is to be, which is already fixed in the smaller first bore and wherein in the larger second bore an embossing ring is inserted to a stage of the stepped bore, the squeezing a punch compresses until the predetermined distance is achieved to the first component and then wherein the second Component is inserted to the compressed stamping ring.

Insbesondere müssen Injektoren für die Kraftstoffeinspritzung in einen Verbrennungsmotor, die einen piezoelektrischen Aktor als Antriebseinheit aufweisen, mit größter Präzision gefertigt werden, da einerseits die durch einen Spannungsimpuls erzeugte Längenänderung des Aktor nur im µm-Bereich liegt und somit äußerst minimal ist. Andererseits müssen die einzuspritzenden Kraftstoffmengen exakt dosiert werden, um die Verbrennungsabläufe im Motor zu optimieren und die geforderten Emissionsgrenzen einzuhalten. Um diese Forderungen erfüllen zu können, müssen insbesondere die mechanischen Einzelteile des Injektors mit größter Präzision gefertigt werden. Selbst Längenmaße mit engen Fertigungstoleranzen können sich in der Summe zu unzulässigen Fehlern addieren.In particular, injectors for fuel injection into an internal combustion engine having a piezoelectric actuator as a drive unit must be manufactured with the greatest precision, since on the one hand, the change in length of the actuator generated by a voltage pulse is only in the micron range and thus extremely minimal. On the other hand, the quantities of fuel to be injected must be precisely metered in order to optimize the combustion processes in the engine and to comply with the required emission limits. In order to meet these requirements, in particular the mechanical parts of the injector must be made with the utmost precision. Even length measures with tight manufacturing tolerances can add up to impermissible errors in the sum.

Bisher wurde beispielsweise dieses Problem dadurch gelöst, dass die einzelnen Bauteile exakt ausgemessen und dann präzise gefertigte Ausgleichsscheiben in die Bohrung eingesetzt wurden, mit denen die berechneten Fehlmaße bei der exakten Positionierung einzelner Bauteile in dem Injektor ausgeglichen werden konnten. Diese Methode erfordert eine Lagerhaltung von vielen unterschiedlichen Ausgleichsscheiben. Dieses Vorgehen ist daher sehr aufwändig und erhöht die Herstellkosten für den Injektor in erheblichem Maße.So far, for example, this problem was solved in that the individual components were measured exactly and then precisely manufactured shims were inserted into the hole, with which the calculated incorrect dimensions in the exact Positioning of individual components in the injector could be compensated. This method requires storage of many different shims. This procedure is therefore very complex and increases the manufacturing costs for the injector to a considerable extent.

Aus der DE 199 56 256 A1 ist des weiteren ein Verfahren bekannt geworden, bei dem in eine Stufenbohrung eines Injektors eine Prägescheibe eingeführt wird. Die Prägescheibe wird auf die Stufe aufgelegt, die sich am Übergang von zwei Bohrungen der Stufenbohrung einstellt. Mit einem Prägewerkzeug wird dann die Prägescheibe soweit zusammengepresst, bis der gewünschte Abstand zu einem bereits in der Stufenbohrung fixierten ersten Bauteil erreicht ist. Um den Prägevorgang kontrollieren zu können, ist an der Spitze des Prägestempels ein elektrischer Sensor isoliert eingebaut, der ein Abschaltsignal an eine Antriebseinheit des Prägestempels liefert, sobald das fixierte erste Bauteil berührt wird. Ungünstig erscheint hierbei, dass die Messstelle des elektrischen Sensors an der Spitze des Prägestempels während des Pressvorganges nicht sichtbar ist, da sie sich innerhalb der Stufenbohrung befindet und dort nicht beobachtet werden kann. Das kann zu Fehlsteuerungen führen, wenn sich beispielsweise ein Schmutzpartikel auf dem Sensorkopf abgesetzt hat und als Folge dessen der Sensor die Antriebseinheit zu früh abschaltet. Da praktisch keine Kontrollmöglichkeit besteht, kann dieses leicht zu einem unerkannten Fertigungsfehler führen.From the DE 199 56 256 A1 Furthermore, a method has become known in which a stamped disc is introduced into a stepped bore of an injector. The embossing disc is placed on the stage, which adjusts at the transition of two holes of the stepped bore. The embossing disk is then pressed together with an embossing tool until the desired distance to a first component already fixed in the stepped bore is reached. In order to control the embossing process, an electrical sensor is installed isolated at the top of the embossing die, which delivers a shutdown signal to a drive unit of the embossing die, as soon as the fixed first component is touched. Unfavorable here appears that the measuring point of the electrical sensor at the top of the stamping die during the pressing process is not visible, since it is located within the stepped bore and can not be observed there. This can lead to faulty control if, for example, a dirt particle has settled on the sensor head and as a result the sensor shuts off the drive unit too early. Since there is virtually no control, this can easily lead to an unrecognized manufacturing error.

Die Aufgabe der Erfindung besteht darin, in einem Gehäuse, insbesondere in einem Injektor für die Kraftstoffeinspritzung die Position der Bauteile, die in das Gehäuse einzubauen sind, mit einem vorgegebenen Abstand in einer Stufenbohrung des Gehäuses exakt zu positionieren. Zudem besteht die Aufgabe darin, einen verbesserten Injektor bereitzustellen. Die Aufgabe wird mit den Merkmalen der nebengeordneten Ansprüche 1 und 7 gelöst.The object of the invention is to position in a housing, in particular in an injector for the fuel injection, the position of the components which are to be installed in the housing, with a predetermined distance in a stepped bore of the housing exactly. In addition, the object is to provide an improved injector. The object is achieved with the features of the independent claims 1 and 7.

Das erfindungsgemäße Verfahren zum Festlegen einer Position eines zweiten Bauteils in einer Stufenbohrung mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass die Messstelle außerhalb der Bohrung liegt und der Abstand von dem in der Bohrung fixierten Bauteil an einem Messtaster abgelesen werden kann, der ein Referenzmaß zwischen dem herausragenden Endstück des Messtasters und einer Bezugsmarke des Prägestempels bildet. Dadurch kann auf einfache Weise der Messvorgang jederzeit kontrolliert werden, so dass sich die Fertigungssicherheit verbessert. Als besonders vorteilhaft wird angesehen, dass der Prägevorgang kontinuierlich beobachtet werden kann und somit bereits das Annähern an das Referenzmaß einfach beobachtet und überprüft werden kann.The inventive method for setting a position of a second component in a stepped bore with the characterizing features of claim 1 has the advantage that the measuring point is outside the bore and the distance from the fixed part in the bore can be read on a probe, the one Reference dimension between the protruding end of the probe and a reference mark of the stamping die forms. As a result, the measurement process can be controlled at any time in a simple manner, so that the manufacturing reliability improves. It is considered to be particularly advantageous that the embossing process can be continuously monitored and thus already the approximation to the reference dimension can be easily observed and checked.

Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des in Anspruch 1 angegebenen Verfahrens gegeben.The measures listed in the dependent claims advantageous refinements and improvements of the method given in claim 1 are given.

Als besonders vorteilhaft wird angesehen, dass das Referenzmaß um einen vorgegebenen Wert größer sein kann als der vorgegebene Abstand. Dadurch wird in vorteilhafter Weise erreicht, dass nach dem Einbau die beiden Bauteile einen gewissen Abstand zueinander aufweisen, der als Leerhub für den Aktor genutzt werden kann.It is considered to be particularly advantageous that the reference dimension can be greater by a predetermined value than the predetermined distance. This achieves in an advantageous manner that after installation, the two components have a certain distance from each other, which can be used as Leerhub for the actuator.

Eine besonders einfache Erfassung des Referenzmaßes ist mit einer bekannten mechanischen oder optischen Messeinrichtungen wie Fühlerlehre, Messuhr, Okular, Kamera, Interferenzverfahren usw. gegeben. Die Messeinrichtungen arbeiten zuverlässig und sind auch von ungeübtem Personal leicht bedienbar.A particularly simple detection of the reference dimension is given with a known mechanical or optical measuring devices such as feeler gauge, dial gauge, eyepiece, camera, interference method, etc. The measuring devices work reliably and are easy to operate even by untrained personnel.

Im Zuge einer automatischen Serienfertigung erscheint besonders günstig, das Referenzmaß mit einer elektrischen Messeinrichtung, beispielsweise mit einem einfachen elektrischen Kontakt zu erfassen. Dabei ist besonders vorteilhaft, dass der Messvorgang automatisiert werden kann, so dass weniger qualifiziertes Personal benötigt wird und die Fertigungskosten reduziert werden können.In the course of an automatic series production appears particularly favorable to capture the reference dimension with an electrical measuring device, for example with a simple electrical contact. It is particularly advantageous that the measurement process can be automated so that less qualified personnel is needed and the manufacturing costs can be reduced.

Eine bevorzugte und vorteilhafte Anwendung des Verfahrens wird bei einem Injektor für die Kraftstoffeinspritzung gesehen, da hier der Abstand der in der Stufenbohrung des Injektorgehäuses einzubauenden Bauteile mit besonders hoher Präzision einzuhalten ist.A preferred and advantageous application of the method is seen in an injector for fuel injection, since here the distance between the components to be installed in the stepped bore of the injector housing must be maintained with particularly high precision.

Da ein piezoelektrischer Aktor auf Grund seiner physikalischen Eigenschaften eine nur sehr geringe Längenänderung aufweist, ist das Einhalten des exakten Abstandes zu einem zweiten Bauteil, beispielsweise einem Servoventil, einem Düsennkörper, einer Umlenkeinrichtung oder dergleichen besonders wichtig, um die verfügbare Längenänderung der Aktors möglichst vollständig nutzen zu können.Since a piezoelectric actuator due to its physical properties has only a very small change in length, maintaining the exact distance to a second component, such as a servo valve, a Düsennkörper, a deflection or the like is particularly important to use the available change in length of the actuator as completely as possible to be able to.

Bei dem Injektor für die Kraftstoffeinspritzung wird als besonders vorteilhaft angesehen, dass die Ringbreite des Prägeringes größer ist als die Stufenbreite der Stufenbohrung. Dadurch ergibt sich eine bessere Auflagefläche für das zweite Bauteil, das dadurch sicherer und exakter in der Stufenbohrung positioniert werden kann.In the injector for the fuel injection is considered particularly advantageous that the ring width of the stamping ring is greater than the step width of the stepped bore. This results in a better bearing surface for the second component, which can be positioned thereby safer and more accurate in the stepped bore.

Für eine spielfreie Positionierung des zweiten Bauteils erscheint auch eine glatte und insbesondere polierte Auflageflächen des Prägeringes von Vorteil. Derartige präzise Fläche wären an der Stufe direkt nur sehr schwer und mit erheblichem Mehraufwand herstellbar, da die Stufe relativ tief in der Bohrung sitzt und somit mit einem Werkzeug schwer erreichbar ist.For a clearance-free positioning of the second component, a smooth and, in particular, polished bearing surfaces of the stamping ring also appear to be advantageous. Such precise surface would be very difficult to produce at the stage directly and with considerable additional effort, since the stage sits relatively deep in the hole and thus difficult to reach with a tool.

Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.Several embodiments of the invention are illustrated in the drawings and will be explained in more detail in the following description.

Figur 1a zeigt zwei Ausführungsbeispiele der Erfindung mit einem Injektor,
Figur 1b zeigt einen vergrößerten Ausschnitt des Injektorgehäuses und
Figur 2 zeigt einen Längsschnitt durch einen Injektor.
FIG. 1a shows two embodiments of the invention with an injector,
FIG. 1b shows an enlarged section of the injector and
FIG. 2 shows a longitudinal section through an injector.

In Figur 1a ist in schematischer Darstellung ein Gehäuse 1 dargestellt, das in axialer Richtung eine Stufenbohrung 6 aufweist. Das Gehäuse 1 kann ganz allgemein eine Baugruppe sein, in die zwei Bauteile 2,10 mit einem vorgegebenen Abstand zueinander exakt und mit geringen Toleranzen eingebaut werden sollen.In FIG. 1a a housing 1 is shown in a schematic representation, which has a stepped bore 6 in the axial direction. The housing 1 may very generally be an assembly into which two components 2, 10 are to be installed with a predetermined distance from each other exactly and with small tolerances.

Bei der bevorzugten erfindungsgemäßen Anwendung wird als Gehäuse 1 ein Injektorgehäuse verwendet, in das die beiden Bauteile 2 und 10 einzubauen sind. Das erste Bauteil 2 ist beispielsweise ein Aktor, insbesondere ein piezoelektrischer Aktor. Ein zweites Bauteil 10 soll mit einem vorgegebenen Abstand H zum ersten Bauteil 2 eingebaut werden soll. Das erste Bauteil 2 kann aber auch eine Bodenplatte des Aktors oder dergleichen sein.In the preferred application of the invention, an injector housing is used as the housing 1, in which the two components 2 and 10 are to be installed. The first component 2 is, for example, an actuator, in particular a piezoelectric actuator. A second component 10 should be installed with a predetermined distance H to the first component 2. But the first component 2 may also be a bottom plate of the actuator or the like.

Das zweite Bauteil 10 ist als Stellglied ausgebildet, insbesondere kann es ein Hubumkehrer, ein Düsenkörper oder ein Betätigungselement eines Servoventils oder dergleichen sein, das von dem piezoelektrischen Aktor 2 betätigt werden soll.The second component 10 is designed as an actuator, in particular it may be a Hubumkehrer, a nozzle body or an actuator of a servo valve or the like, which is to be actuated by the piezoelectric actuator 2.

Bevor das zweite Bauteil 10 eingebaut werden kann, wird zunächst das erste Bauteil 2 in eine erste Bohrung 6a der Stufenbohrung 6 möglichst genau an einer dafür vorgesehenen Stelle einsetzt und fixiert. Eine Unterseite 17a des ersten Bauteils 2 bildet eine erste Bezugsfläche für den vorgegebenen Abstand H. Die erste Bohrung 6a ist im oberen Teil von Figur 1 erkennbar und weist einen ersten Durchmesser d1 auf, der kleiner ist als ein zweiter Durchmesser d2 einer zweiten Bohrung 6b. Die zweite Bohrung 6b ist im unteren Teil der Stufenbohrung 6 angeordnet. Am Übergang zwischen den beiden Bohrungen 6a,6b bildet sich auf Grund der unterschiedlichen Durchmesser d1, d2 eine ringförmige Stufe 16 aus.Before the second component 10 can be installed, the first component 2 is first inserted and fixed in a first hole 6 a of the stepped bore 6 as accurately as possible at a designated location. An underside 17 a of the first component 2 forms a first reference surface for the predetermined distance H. The first bore 6 a is in the upper part of FIG. 1 recognizable and has a first diameter d1, which is smaller than a second diameter d2 of a second bore 6b. The second bore 6b is arranged in the lower part of the stepped bore 6. At the transition between the two holes 6a, 6b forms an annular step 16 due to the different diameters d1, d2.

In einem nächsten Schritt wird in die zweite Bohrung 6b mit dem größeren Durchmesser d2 ein Prägering 3 soweit eingeführt, bis dieser auf der ringförmigen Stufe 16 der Stufenbohrung 6 aufliegt. Der Prägering 3 ist derart ausgeformt, dass er die Funktion des nachfolgend einzubauenden zweiten Bauteils 10 nicht beeinträchtigt.In a next step, a stamping ring 3 is inserted into the second bore 6b with the larger diameter d2 until it rests on the annular step 16 of the stepped bore 6. The stamping ring 3 is formed such that it does not impair the function of the second component 10 to be subsequently installed.

Die Unterseite 17a des in der ersten Bohrung 6a fixierten ersten Bauteils 2 bildet somit zu einer unteren Ringfläche 17 des Prägeringes 3 eine Bezugsbasis für einen Abstand H, mit dem das zweite Bauteil 10 nach der Prägung des Prägeringes 3 in der zweiten Bohrung 6b gehaltert werden soll.The underside 17a of the first component 2 fixed in the first bore 6a thus forms a reference base for a distance H at a lower annular surface 17 of the embossing ring 3, with which the second component 10 is to be retained in the second bore 6b after embossing of the embossing ring 3 ,

Die Höhe des Prägeringes 3 ist so gewählt, dass durch Zusammenpressen des Prägeringes 3 der Abstand H, der als Sollmaß vorgegeben ist und zwischen der Unterseite 17a des erste Bauteils 2 und der unteren Ringfläche 17 des Prägeringes 3 gemessen wird, mit einem vorgegebenen Wert hergestellt werden kann.The height of the stamping ring 3 is selected so that by compressing the stamping ring 3, the distance H, which is predetermined as a nominal size and measured between the bottom 17 a of the first component 2 and the lower annular surface 17 of the stamping ring 3, are produced with a predetermined value can.

Nachdem der Prägering 3 auf die Stufe 16 aufgelegt wurde, wird ein Prägestempel 4 in die zweite Bohrung 6b bis zur unteren Ringfläche 17 des Prägeringes 3 eingeführt. Der Prägestempel 4 weist eine zentrale Längsbohrung 18 mit einem Durchmesser d auf, in die ein Messtaster 5 so weit eingeführt werden kann, bis sein Kopfende die Unterseite 17a des ersten Bauteils 2 berührt. Die Länge des Messtasters 5 ist abhängig vom angewendeten Messverfahren und ist beispielsweise so bemessen, dass ein Endstück E des Messtasters 5 ein kleines Stück aus der Längsbohrung 18 des Prägestempels 4 herausragt.After the embossing ring 3 has been placed on the step 16, an embossing punch 4 is inserted into the second bore 6b to the lower annular surface 17 of the embossing ring 3. The embossing punch 4 has a central longitudinal bore 18 with a diameter d into which a probe 5 can be inserted until its head end touches the underside 17 a of the first component 2. The length of the probe 5 is dependent on the applied measuring method and is for example so dimensioned that an end piece E of the probe 5 protrudes a small distance from the longitudinal bore 18 of the die 4.

Um durch Prägen des Prägeringes 3 den gewünschten Abstand H herstellen zu können, ist an dem Prägestempel 4 eine erste Bezugsmarke B, beispielsweise als ebene Messfläche angeordnet. Des weiteren ist auf dem Endstück E des Messtasters 5 ist eine zweite Bezugsmarke C aufgebracht, die ebenfalls als Bezugsfläche ausgebildet sein kann. Somit kann zwischen der ersten Bezugsmarke B an dem Prägestempel 4 und der zweiten Bezugsmarke C an dem Messtaster 5 ein Referenzmaß x gemessen beziehungsweise abgelesen werden. Das Referenzmaß x ist dabei so gewählt, dass bei Vorliegen des Referenzmasses x zwischen der ersten und der zweiten Bezugsmarke B, C die untere Ringfläche 17 des Prägeringes 3 den Abstand H zur Unterseite 17a des ersten Bauteils 2 aufweist.In order to be able to produce the desired distance H by embossing the embossing ring 3, a first reference mark B, for example as a planar measuring surface, is arranged on the embossing stamp 4. Furthermore, on the tail E of the probe 5, a second reference mark C is applied, which may also be formed as a reference surface. Thus, between the first reference mark B on the embossing punch 4 and the second reference mark C on the probe 5, a reference dimension x are measured or read. The reference dimension x is chosen so that in the presence of the reference dimension x between the first and the second reference mark B, C, the lower annular surface 17 of the stamping ring 3 has the distance H to the bottom 17 a of the first component 2.

In alternativer Ausgestaltung der Erfindung ist auf dem Endteil E eine Markierung oder Skalierung 19 aufgebracht, an der die Tiefe der Prägung beziehungsweise der Abstand zwischen der Unterseite 17a des ersten Bauteils 2 und der unteren Ringfläche 17 des Prägeringes 3 überwacht werden kann.In an alternative embodiment of the invention, a marking or scaling 19 is applied to the end part E, at which the depth of the embossing or the distance between the bottom 17a of the first component 2 and the lower annular surface 17 of the embossing ring 3 can be monitored.

Mit einer in der Figur 1a nicht dargestellten, bekannten Prägeeinrichtung wird nun der Prägering 3 so weit verformt, bis der vorgegebene Wert x für das Referenzmaß und damit der Abstand H zwischen der unteren Ringfläche des Prägerings 3 und der Unterseite 17a des ersten Bauteils 2 erreicht wird. Der Prägering 3 ist zu diesem Zweck beispielsweise aus einem entsprechenden Kaltstauch- und Kaltfließpressstahl nach DIN 1654 gefertigt.With one in the FIG. 1a Not shown, known embossing device is now the stamping ring 3 is deformed until the predetermined value x for the reference dimension and thus the distance H between the lower annular surface of the stamping ring 3 and the bottom 17 a of the first component 2 is achieved. The stamping ring 3 is made for this purpose, for example, from a corresponding cold heading and Kaltfließpressstahl according to DIN 1654 for this purpose.

Alternativ ist auch vorgesehen, die Verformung des Prägeringes 3 schon etwas früher zu beenden. Der Prägeweg ist in diesem Fall etwas kürzer. Damit wird ein Abstand H+dx eingestellt, dem ein Referenzmaß mit dem Wert x-dx entspricht. Dieses ist von Vorteil, wenn zum Beispiel die beiden Bauteile 2,10 berührungsfrei mit einem gewissen Abstand zueinander eingebaut werden sollen. Für den Aktor 2 ergibt sich dadurch ein Leerhub mit dem Wert dx.Alternatively, it is also provided to finish the deformation of the stamping ring 3 a little earlier. The embossing path is slightly shorter in this case. This sets a distance H + dx, which corresponds to a reference dimension with the value x-dx. This is advantageous if, for example, the two components 2.10 are to be installed without contact with a certain distance from each other. For the actuator 2, this results in an idle stroke with the value dx.

Da während des Pressvorganges das gewünschte Referenzmaß kontinuierlich beobachtet werden kann, kann bei Erreichen des gewünschten Abstandes H+dx mit dem Montagemaß x-dx der Pressvorgang vorzeitig gestoppt werden. Durch das beschriebene Verfahren wird der Abstand auf einen präzisen Wert eingestellt, so dass die einzelnen Bauteiletoleranzen wirkungsvoll und kostengünstig kompensiert sind.Since the desired reference dimension can be continuously observed during the pressing process, the pressing process can be stopped prematurely when the desired distance H + dx is reached with the mounting dimension x-dx. The method described sets the distance to a precise value, so that the individual component tolerances are compensated effectively and cost-effectively.

Als Messeinrichtung 7, mit der das Referenzmaß x beziehungsweise x-dx erfasst wird, kommen alle per se bekannten mechanischen, optischen oder elektrischen Messanordnungen in Frage. In einer bevorzugten Ausführungsform wird beispielsweise eine optische Messeinrichtung 7 der LM-Serie von der Firma Heidenhain GmbH verwendet, die insbesondere in der Automatisierungstechnik einsetzbar ist. Diese Messeinrichtung 7 weist einen laserinterferometrischen Messtaster auf, mit dem Messgenauigkeiten erzielt werden, die im Nanometerbereich liegen. Für die Messung wird ein He-Ne-Laser verwendet, dessen Licht einem Miniaturinterferometer zugeführt wird, das sich an der Messstelle befindet. Das Miniaturinterferometer erfasst die Messbewegung einer Messpinole, die dem Abstand der beiden Bezugsmarken B und C an dem Prägestempel 4 beziehungsweise an dem Messtaster 5 entsprechen, und setzt diese Bewegung in ein optisches Interferenzsignal um. Das optische Messsignal wird dann über einen Lichtwellenleiter zu einer optischen Auswerte- und Versorgungseinheit übertragen und als Messergebnis entweder auf einer digitalen Anzeige oder auf dem Monitor eines Computers ausgegeben. Des weiteren wird das Messsignal verwendet, um die Prägevorrichtung mit dem Prägestempel 4 zu steuern beziehungsweise abzuschalten, wenn der vorgesehene Abstand H beziehungsweise H+dx oder das Referenzmaß x oder x-dx erreicht ist.As a measuring device 7, with the reference x or x-dx is detected, all per se known mechanical, optical or electrical measuring arrangements come into question. In a preferred embodiment, for example, an optical measuring device 7 of the LM series by Heidenhain GmbH is used, which can be used in particular in automation technology. This measuring device 7 has a laser interferometric probe, with the measurement accuracies are achieved, which are in the nanometer range. For the measurement, a He-Ne laser is used whose light is fed to a miniature interferometer, which is located at the measuring point. The miniature interferometer detects the measuring movement of a measuring spindle, which correspond to the distance between the two reference marks B and C on the embossing punch 4 or on the probe 5, and converts this movement into an optical interference signal. The optical measurement signal is then transmitted via an optical waveguide to an optical evaluation and supply unit and output as a measurement result either on a digital display or on the monitor of a computer. Furthermore, the measuring signal is used to control or switch off the embossing device with the embossing punch 4 when the intended distance H or H + dx or the reference dimension x or x-dx has been reached.

Alternativ kann zwischen dem Endstück E des Messtasters 5 und dem Prägestempel 4 ein elektrischer Kontakt angebracht werden, der von außen gut einsichtbar und justierbar ist. Der elektrische Kontakt wird dabei so justiert, dass er bei Erreichen des vorgesehenen Referenzmaßes x oder x-dx ein Abschaltsignal an die Prägeeinrichtung liefert. Im unteren Teil von Figur 1a ist ausschnittsweise eine solche elektrische Messanordnung schematisch dargestellt. An dem Prägestempel 4 ist eine Kontaktfahne 31 angeordnet, deren Kontakt auf die Längsbohrung 18 gerichtet ist. Mittels einer Stellschraube 31 kann die Kontaktfahne in der Höhe justiert und gegebenenfalls ein Leerhub dx eingestellt werden. Das Endstück E des Messtasters 5 ist in diesem Fall etwas kürzer ausgebildet und gegen den Prägestempel 4 isoliert ausgeführt. Beim Prägen der Prägescheibe 3 bewegt sich der Prägestempel 4 relativ zum Messtaster 5 nach oben. Wenn die Kontaktfahne 31 den Messtaster 5 berührt, ist das Referenzmaß x-dx erreicht. Die Kontaktfahne 31 schließt dabei einen Stromkreis I über den Messtaster 5 und den Prägestempel 4. Dieses Signal wird dann zum Beenden des Prägevorgangs genutzt.Alternatively, an electrical contact can be made between the end piece E of the probe 5 and the die 4, which is easily visible and adjustable from the outside. The electrical contact is adjusted so that it delivers a shutdown signal to the embossing device when reaching the intended reference dimension x or x-dx. In the lower part of FIG. 1a a detail of such an electrical measuring arrangement is shown schematically. On the die 4, a contact lug 31 is arranged, the contact is directed to the longitudinal bore 18. By means of an adjusting screw 31, the contact lug can be adjusted in height and optionally set a Leerhub dx. The tail E of the probe 5 is slightly shorter in this case and executed isolated against the die 4. When embossing the embossing disc 3, the die 4 moves relative to the probe 5 upwards. When the contact lug 31 touches the probe 5, the reference dimension x-dx is reached. The contact lug 31 closes a circuit I via the probe 5 and the punch 4. This signal is then used to complete the embossing process.

Figur 1b zeigt in einer vergrößerten Darstellung den Prägevorgang. Man erkennt den Prägering 3, der sich durch den Prägevorgang an die Kontur der Stufe 16 in der Wandung des Gehäuses 1 anpasst. Durch die Verwendung des Prägestempels 4, der eine plane und glatte Prägefläche aufweist, die zudem präzise im 90° Winkel zur Längsachse geschliffen ist, ergibt sich, dass die geprägte Fläche, d.h. die untere Ringfläche 17 des Prägeringes 3 rechtwinklig und glatt ausgeführt ist. Dadurch liegt das eingeführte zweite Bauteil 10 genau und spielfrei auf dem Prägering 3 auf, so dass ein vorgegebene Abstand H oder H+dx beziehungsweise das vorgegebene Referenzmaß x oder x-dx exakt eingehalten werden kann. FIG. 1b shows in an enlarged view the embossing process. It can be seen the stamping ring 3, which adapts by the stamping process to the contour of the step 16 in the wall of the housing 1. By using the die 4, which has a flat and smooth embossing surface, which is also precisely ground at 90 ° to the longitudinal axis, it follows that the embossed surface, ie the lower annular surface 17 of the embossing ring 3 is executed rectangular and smooth. As a result, the inserted second component 10 lies exactly and without play on the embossing ring 3, so that a predetermined distance H or H + dx or the predetermined reference dimension x or x-dx can be exactly maintained.

Der Prägering 3 weist entsprechend Figur 1b vorzugsweise eine Ringbreite d3 auf, die größer ist als die Breite der Stufe 16, die eine Stufenbreite d4 aufweist. Die Stufe 16 selbst ist als Auflagefläche für das zweite Bauteil 10 nicht so günstig, da ihre Stufenbreite d4 einerseits relativ schmal ist und andererseits ihre Oberfläche durch die Bearbeitungswerkzeuge eine gewisse Rauhigkeit und Unebenheit aufweist. Nachteilig wäre auch, dass sich wegen der langen Stufenbohrung 6 die Oberfläche nur schwer plan bearbeiten lässt.The stamping ring 3 has accordingly FIG. 1b Preferably, a ring width d3, which is greater than the width of the step 16, which has a step width d4. The step 16 itself is not as support surface for the second component 10 favorable, since their step width d4 on the one hand is relatively narrow and on the other hand their surface has a certain roughness and unevenness by the processing tools. Another disadvantage would be that the surface is difficult to plan because of the long stepped bore 6.

Nach Erreichen des vorgegebenen Referenzmaßes x-dx wird der Prägestempel 4 mit dem Messtaster 5 aus der zweiten Bohrung 6b herausgenommen und das zweite Bauteil 10 bis zum Aufsetzen auf der unteren Ringfläche 17 des zusammengepressten Prägering 3 eingeschoben.After reaching the predetermined reference dimension x-dx, the embossing punch 4 is removed with the probe 5 from the second bore 6b and the second component 10 is inserted until it is placed on the lower annular surface 17 of the compressed embossing ring 3.

Figur 2 zeigt in schematischer Darstellung einen Längsschnitt durch einen Injektor für die Kraftstoffeinspritzung für einen Verbrennungsmotor eines Kraftfahrzeugs. Zunächst ist ein Injektorgehäuse 1 mit einer Stufenbohrung 6 erkennbar. Durch die beiden Bohrungen 6a,6b der Stufenbohrung 6 mit ihren unterschiedlichen Durchmessern ergibt sich die Stufe 16. Auf die Stufe 16 ist der Prägering 3 eingelegt und auf die gewünschte Dicke mit dem Einstellmaß 12 geprägt worden. Als erstes Bauteil 2 wurde ein piezoelektrischer Aktor in die kleinere, erste Bohrung 6a eingefügt und am oberen Teil des Gehäuses 1 an einer Verbindungsstelle A mit dem Gehäuse 1 befestigt. Die Unterseite 17a des piezoelektrischen Aktors 2 weist in Bezug auf die untere Ringfläche 17 des Prägeringes 3 ein vorgegebenes Einbaumaß 15 für das erste Bauteil 2, den Aktor auf. Zusammen mit dem Einstellmaß 12 des Prägeringes ergibt sich aus den beiden Maßen 15+12 der vorgegebene Abstand H als Maß zwischen der Unterseite 17a des Aktors 2 und der unteren Ringfläche 17 des Prägeringes 3. FIG. 2 shows a schematic representation of a longitudinal section through an injector for fuel injection for an internal combustion engine of a motor vehicle. First, an injector 1 with a stepped bore 6 can be seen. Through the two holes 6a, 6b of the stepped bore 6 with their different diameters, the step 16 results on the step 16 of the stamping ring 3 is inserted and stamped to the desired thickness with the Einstellmaß 12. As the first component 2, a piezoelectric actuator has been inserted into the smaller, first bore 6a and attached to the upper part of the housing 1 at a connection point A with the housing 1. The underside 17a of the piezoelectric actuator 2 has, in relation to the lower annular surface 17 of the stamping ring 3, a predetermined installation dimension 15 for the first component 2, the actuator. Together with the Einstellmaß 12 of the stamping ring results from the two dimensions 15 and 12 of the predetermined distance H as a measure between the bottom 17 a of the actuator 2 and the lower annular surface 17 of the stamping ring. 3

Gemäß eines Ausführungsbeispiels der Erfindung ist das zweite Bauteil 10 als Hubtransformator ausgebildet, der als Hubumkehrer wirkt. Der Hubumkehrer liegt spielfrei an der unteren Ringfläche 17 des Prägeringes 3 an und bewegt entsprechend der dargestellten Pfeile sein unteres Teil nach oben, wenn sich der Aktor 2 nach unten ausdehnt. Im nicht aktivierten Zustand des Aktors 2 drückt der Hubumkehrer 10 über einen Stößel 13 auf ein Servoventil 20, so dass dieses geschlossen ist. Das Servoventil 20 regelt den Kraftstoffabfluss aus einer Steuerkammer 21, die über eine Zulaufdrossel mit Kraftstoff versorgt wird. Die Steuerkammer 21 wird von einer beweglich gelagerten Düsennadel 14 begrenzt. Der Kraftstoffdruck spannt die Düsennadel 14 auf einen Dichtsitz 24 vor. In dieser Position sind die Einspritzlöcher 25 des Einspritzventils verschlossen, die in Fließrichtung gesehen nach dem Dichtsitz des Servoventils 20 angeordnet sind. Die Düsennadel 14 ist in der Steuerkammer 21 angeordnet, die über eine Zuleitung 22 versorgt wird.According to one embodiment of the invention, the second component 10 is designed as a lifting transformer, which acts as a Hubumkehrer. The Hubumkehrer is free of play on the lower annular surface 17 of the stamping ring 3 and moves according to the arrows shown its lower part upwards when the actuator 2 expands downwards. In the non-activated state of the actuator 2, the Hubumkehrer 10 presses on a Plunger 13 on a servo valve 20 so that it is closed. The servo valve 20 controls the fuel drain from a control chamber 21, which is supplied via an inlet throttle with fuel. The control chamber 21 is bounded by a movably mounted nozzle needle 14. The fuel pressure biases the nozzle needle 14 to a sealing seat 24. In this position, the injection holes 25 of the injection valve are closed, which are arranged as seen in the flow direction after the sealing seat of the servo valve 20. The nozzle needle 14 is arranged in the control chamber 21, which is supplied via a supply line 22.

In dem dargestellten Ausführungsbeispiel liegt der Hubumkehrer 10 direkt an der Unterseite 17a des Aktors 2 an. Alternativ kann auch ein Leerhub zwischen dem Aktor 2 und dem Hubumkehrer 10 vorgesehen sein. Wird der Aktor 2 durch Anlegen einer Spannung aktiviert, dann dehnt sich der Aktor 2 aus und drückt auf den Hubumkehrer 10. Der Hubumkehrer bewegt den Stößel 13 nach oben, so dass sich wegen des einwirkenden Kraftstoffdrucks das Schließglied des Servoventils 20 vom Dichtsitz abhebt. Damit öffnet das Servoventil 20, so dass Kraftstoff aus der Steuerkammer 21 abfließt. Es fließt zwar über eine Zulaufdrossel gleichzeitig Kraftstoff in die Steuerkammer 21, aber der Zufluss ist geringer als der Abfluss. Damit sinkt der Druck in der Steuerkammer 21. Die Düsennadel 14 wird somit entlastet. Kraftstoffdruck, der an Druckflächen der Düsennadel 14 angreift, hebt die Düsennadel 14 vom Dichtsitz 24 ab. Damit werden die Einspritzlöcher 25 geöffnet und Kraftstoff wird in den Brennraum des Motors eingespritzt. Wird der Aktor entstromt, dann wird das Servoventil 20 geschlossen, der Druck in der Steuerkammer 21 erhöht und die Düsennadel 14 auf den Dichtsitz 24 gedrückt. Damit endet die Einspritzung.In the illustrated embodiment, the Hubumkehrer 10 is located directly on the bottom 17 a of the actuator 2. Alternatively, an idle stroke between the actuator 2 and the Hubumkehrer 10 may be provided. If the actuator 2 is activated by applying a voltage, then the actuator 2 expands and presses on the Hubumkehrer 10. The Hubumkehrer moves the plunger 13 upwards, so that lifts off because of the acting fuel pressure, the closing member of the servo valve 20 from the sealing seat. This opens the servo valve 20, so that fuel flows from the control chamber 21. Although it flows through an inlet throttle simultaneously fuel into the control chamber 21, but the inflow is less than the drain. Thus, the pressure in the control chamber 21 decreases. The nozzle needle 14 is thus relieved. Fuel pressure, which acts on pressure surfaces of the nozzle needle 14, lifts the nozzle needle 14 from the sealing seat 24. Thus, the injection holes 25 are opened and fuel is injected into the combustion chamber of the engine. If the actuator is de-energized, then the servo valve 20 is closed, the pressure in the control chamber 21 increases and the nozzle needle 14 is pressed onto the sealing seat 24. This ends the injection.

Claims (7)

  1. Method for determining the position of a second component (10) in a stepped bore (6) of a housing (1), in particular an injector housing, having two bores (6a, 6b) with two different diameters (d1, d2), the second component (10) to be arranged in the second bore (6b) at a predefined distance (H) from a lower side (17a) of a first component (2), which is already fixed in the first bore (6a) with a smaller diameter (d1) and a ferrule (3) being inserted into the larger second bore (6b) up to a step (17) of the stepped bore (6), a lower annular surface (17) of the ferrule (3) being compressed by a die (4) until the predefined distance (H) is achieved between the lower annular surface (17) of the ferrule (3) and the first component (2), characterized in that a longitudinal bore (18) is arranged in the die (4), into which a probe (5) is inserted until it comes into contact with the first component (2), a first reference mark (B) is marked on the die (4) and a second reference mark (C) is marked on an end piece (E) of the probe (5), a reference measurement (x) being created for the predefined distance (H) between the two reference marks (B, C) and the stamping process being terminated when a value is achieved for the reference measurement (x) which corresponds to a required distance (H).
  2. Method according to claim 1, characterised in that
    - the ferrule (3) has an annular width (d3) which is greater than the width of the step (16) in the stepped bore (6) and
    - the ferrule (3) essentially adjusts to the contour of the step (16) by means of the embossing process.
  3. Method according to claim 1 or 2, characterised in that during compression of the ferrule (3) the reference measurement (x) is monitored using a mechanical or optical measuring device (7).
  4. Method according to claim 1 or 2, characterised in that the reference measurement (x) is recorded using an electrical measuring device (7).
  5. Method according to one of the preceding claims, characterised in that the two components (2, 10) are inserted into a stepped bore (d1, d2) of a housing (1) of a fuel injector.
  6. Method according to one of the preceding claims, characterised in that the first component (2) is configured as a piezo-electric actuator.
  7. Method according to one of the preceding claims, characterised in that the first component (2) is configured as the base plate of the actuator.
EP04706679A 2003-02-04 2004-01-30 Method for determining a position of a part in a stepped bore of a housing, and injector for injecting fuel Expired - Fee Related EP1543238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08008299A EP1965072B1 (en) 2003-02-04 2004-01-30 Injector for a fuel injection system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10304458A DE10304458A1 (en) 2003-02-04 2003-02-04 Method for exact positioning of a component in a stepped bore of a housing and injector for fuel injection
DE10304458 2003-02-04
PCT/EP2004/000906 WO2004070196A1 (en) 2003-02-04 2004-01-30 Method for determining a position of a part in a stepped bore of a housing, and injector for injecting fuel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP08008299A Division EP1965072B1 (en) 2003-02-04 2004-01-30 Injector for a fuel injection system

Publications (2)

Publication Number Publication Date
EP1543238A1 EP1543238A1 (en) 2005-06-22
EP1543238B1 true EP1543238B1 (en) 2009-03-11

Family

ID=32730729

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04706679A Expired - Fee Related EP1543238B1 (en) 2003-02-04 2004-01-30 Method for determining a position of a part in a stepped bore of a housing, and injector for injecting fuel
EP08008299A Expired - Fee Related EP1965072B1 (en) 2003-02-04 2004-01-30 Injector for a fuel injection system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08008299A Expired - Fee Related EP1965072B1 (en) 2003-02-04 2004-01-30 Injector for a fuel injection system

Country Status (4)

Country Link
US (1) US7543382B2 (en)
EP (2) EP1543238B1 (en)
DE (3) DE10304458A1 (en)
WO (1) WO2004070196A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038470B4 (en) * 2005-08-13 2022-08-25 Eckold Gmbh & Co. Kg Forming tool and method for positioning the forming tool
DE602006009822D1 (en) * 2006-11-02 2009-11-26 Continental Automotive Gmbh Injector for metering fluid and method for mounting the injector
EP2921838B1 (en) * 2014-03-19 2017-10-11 Ansaldo Energia IP UK Limited Probe for measuring pressure oscillations in the combustor of a gas turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991475U (en) * 1982-12-13 1984-06-21 株式会社ボッシュオートモーティブ システム Fuel injection valve adjustment device
JPH01187363A (en) * 1988-01-21 1989-07-26 Toyota Motor Corp Fuel injection valve for internal combustion engine
WO1996041947A1 (en) * 1995-06-08 1996-12-27 Siemens Automotive Corporation Method of adjusting a solenoid air gap
US5775600A (en) 1996-07-31 1998-07-07 Wildeson; Ray Method and fuel injector enabling precision setting of valve lift
DE19821768C2 (en) * 1998-05-14 2000-09-07 Siemens Ag Dosing device and dosing method
DE19856617A1 (en) * 1998-12-08 2000-06-21 Siemens Ag Element for transmitting a movement and injection valve with such an element
DE19902807C1 (en) * 1999-01-25 2000-06-08 Siemens Ag Play setting between actuator and servovalve driven by actuator in fuel injector
DE19921242C1 (en) 1999-05-07 2000-10-26 Siemens Ag Method of positioning control drive in common rail fuel injector for motor vehicle internal combustion engine
DE19928916B4 (en) * 1999-06-24 2017-12-14 Robert Bosch Gmbh Fuel injector
DE19956256B4 (en) * 1999-11-23 2004-04-08 Siemens Ag Idle stroke setting between an actuator and a transmission element of a valve in a fuel injector

Also Published As

Publication number Publication date
EP1965072B1 (en) 2010-05-26
WO2004070196A1 (en) 2004-08-19
DE502004011222D1 (en) 2010-07-08
US7543382B2 (en) 2009-06-09
DE502004009123D1 (en) 2009-04-23
US20060005388A1 (en) 2006-01-12
EP1965072A1 (en) 2008-09-03
EP1543238A1 (en) 2005-06-22
DE10304458A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
DE10024662B4 (en) Method for operating an injection valve
EP3362699B1 (en) Monitoring device for a disk brake of a motor vehicle
DE3441641A1 (en) SENSORS WITH OPTICAL FIBERS FOR DETECTING OPERATING STATES AND METHOD FOR THE PRODUCTION THEREOF
DE102008033269A1 (en) check valve
DE4138305C2 (en) Method of manufacturing a valve seat in the transverse wall of a nozzle
EP0915327A1 (en) Pressure sensor
EP1103718B1 (en) Stroke adjustment between an actuator and a transmission element for a valve in a fuel injector
EP0244886A2 (en) Process and apparatus for the control and acquisition of dimensions, changes of dimensions, positions or changes of position of work pieces, controlling elements or the like
DE102008055053A1 (en) Measuring device for measuring fuel inner pressure in fuel injection valve utilized for fuel injection directly in combustion chamber of internal combustion engine, has sensor elements recording widening of sleeve, and attached at sleeve
EP1543238B1 (en) Method for determining a position of a part in a stepped bore of a housing, and injector for injecting fuel
DE10037570A1 (en) Fuel injector and method for adjusting it
EP1332280B1 (en) Fuel injection valve and method for adjustment thereof
DE3227989A1 (en) FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
DE10244760A1 (en) Pressure sensor structural component for a motor vehicle brake unit has electric connection for measuring element, contact carrier and threading funnel for inserting a contact pin
EP2612018A1 (en) Method and device for setting an idle stroke of an actuating drive of an injection valve, and injector assembly
DE102010014057A1 (en) Insertion part for valve e.g. adjustment valve, has outer cap comprising opening in longitudinal axle direction, and inner cap whose material and dimension are provided in optimized manner related to sensor device functional principle
DE1963988C3 (en) Flow button
DE102016226135A1 (en) Fuel injector
EP2432982B1 (en) Method for measuring the armature lift in a fuel injector
EP1651928B1 (en) Measuring device and method for recording the position of an electrically-conducting object for measurement
EP1381773A1 (en) Fuel-injection valve for internal combustion engines
DE102012206484A1 (en) Fuel injector has device for measuring stroke movement of armature, where spindle is arranged on front surface of armature by runoff support, and guiding disk is mounted on runoff support and spindle is guided through recess in guiding disk
DE102020209321A1 (en) Fuel injector and method of making same
DE102014100383A1 (en) Screw fastening component and its manufacturing method
EP0609525B1 (en) Pressure sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050726

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004009123

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130131

Year of fee payment: 10

Ref country code: FR

Payment date: 20130213

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009123

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131