EP1543170B1 - Rapid cooling method for parts by convective and radiative transfer - Google Patents
Rapid cooling method for parts by convective and radiative transfer Download PDFInfo
- Publication number
- EP1543170B1 EP1543170B1 EP03712227A EP03712227A EP1543170B1 EP 1543170 B1 EP1543170 B1 EP 1543170B1 EP 03712227 A EP03712227 A EP 03712227A EP 03712227 A EP03712227 A EP 03712227A EP 1543170 B1 EP1543170 B1 EP 1543170B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- gas
- cooling gas
- heat transfer
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/613—Gases; Liquefied or solidified normally gaseous material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/767—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2241/00—Treatments in a special environment
- C21D2241/01—Treatments in a special environment under pressure
Definitions
- the present invention generally relates to the heat treatment of metals and more particularly to the gaseous quenching operation of steel parts having previously undergone a heat treatment (such heating before quenching, annealing, tempering) or thermochemical (such cementation, carbonitriding) .
- a heat treatment such heating before quenching, annealing, tempering
- thermochemical such cementation, carbonitriding
- gas quenching is generally accomplished by circulating pressurized gas in a closed circuit between a charge and a cooling circuit.
- gas quenching plants generally operate at pressures between four and twenty times the atmospheric pressure (4 to 20 bar or 4000 to 20000 hectopascals). To designate the pressure, the bar will be used in this description as unit, it being understood that a bar is equal to 1000 hPa.
- FIG. 1 very schematically represents an example of a gas quenching installation.
- This installation 1 contains a charge 2 to be cooled arranged in a sealed enclosure 3.
- the charge is typically surrounded by deflection plates 4 to guide the flow of gas.
- a gas inlet 5 makes it possible to introduce under pressure a desired gaseous mixture, it being understood that it is possible, for example, to introduce the cooling gases in the form of a pre-formed mixture or that several separate gas inlets can be provided. to separately introduce various cooling gases. It is commonly provided vacuum access of the enclosure (not shown).
- a turbine 6 actuated by a motor 7 makes it possible to ensure the circulation of the gases, for example by passing from a cooling circuit 9 to the charge to be cooled 2.
- the cooling circuit 9 is commonly constituted of pipes in which a fluid circulates cooling.
- Figure 1 The installation of Figure 1 has been represented as an example of one of many possible and existing structures to ensure the circulation of a gas of cooling in an enclosure.
- the pressure is of the order of 4 to 20 bar during the cooling phase. Numerous variations are possible with regard to the arrangement of the charge, the direction of circulation of the gases and the mode of circulation of these gases.
- the most commonly used gas for cooling is nitrogen since it is an inert and inexpensive gas.
- its density is well suited to simple installations with blowers or turbines and its heat transfer coefficient is sufficiently satisfactory.
- the descent in temperature must be as fast as possible for the steel to be processed satisfactorily from the austenitic phase to the martensitic phase without going through pearlitic and / or bainitic phases.
- one of the objects of the present invention is to provide a quenching process using a cooling gas which is thermally more effective than nitrogen but which is inexpensive and easy to use, making it possible to cool the most demanding materials. .
- Another object of the present invention is to provide a cooling method using a gas compatible with existing installations currently operating with nitrogen (and therefore not requiring any significant modification of the installation).
- the present invention provides, in a method of rapidly cooling metal parts using a pressurized cooling gas, the use of a cooling gas which comprises one or more gases absorbing the gas. infrared radiation according to claim 1 below.
- the invention also relates to the use in a rapid cooling installation of metal parts using a pressurized cooling gas, a cooling gas comprising 20 to 80% of a gas absorbing radiation below and from 80 to 20% hydrogen or helium or mixtures thereof, as claimed in claim 11 below.
- an infra-red radiation absorbing gas or a mixture based on such infra-red radiation absorbing gases such as dioxide. of carbon (CO 2 )
- additive gas one or more gases having a good ability to convective heat transfer selected from helium or hydrogen.
- Such a mixture has the advantage over conventional gas or quench gas mixtures using infrared-transparent gases, such as nitrogen, hydrogen, and helium, to absorb heat at low temperatures. both by convective and radiative phenomena, thus increasing the global heat flux extracted from a charge to be cooled.
- infrared-transparent gases such as nitrogen, hydrogen, and helium
- a complementary gas such as nitrogen
- a simple carrier gas envisaged both as a simple carrier gas and in a more active role allowing, as will be seen later, to optimize properties of the gas mixture such as density, thermal conductivity, viscosity etc.
- FIGS. 2A and 2B it is proposed to use certain gas mixtures as defined above, which moreover have better coefficients of convective heat transfer (k H ) in Watt per square meter and per Kelvin that each of the gases taken separately.
- k H coefficients of convective heat transfer
- the composition of the cooling gas will be adjusted so as to "optimize" the convective transfer coefficient with respect to the transfer coefficients. convective of each of the components of the cooling gas taken individually.
- a mixture of absorbent gas (and optionally additive gas), possibly with the addition of additional gases under optimized density conditions.
- additional gases such as can be quenched in quenching plants usually provided and optimized to operate in the presence of nitrogen.
- carbon dioxide is mixed with helium, taken as an additive gas, so as to combine an optimization of the convective heat transfer coefficient and an average density of the mixture which is of the same order of magnitude as that of the nitrogen.
- Existing installations can then be used with comparable ventilation speeds and powers and the existing ventilation and gas deflection structures, without having to make any significant changes to the installation.
- FIG. 2A represents, for pressures of 5, 10 and 20 bar, the coefficient of convective heat transfer k H of a mixture of CO 2 and helium, for various proportions of CO 2 in the mixture.
- the abscissas give the ratio between the concentration of CO 2 , c (CO 2 ), and the total concentration of CO 2 and He, c (CO 2 + He).
- the convective heat transfer coefficient has a maximum for CO 2 concentration values of between approximately 40 and 70%, in this case approximately 650 W / m 2 / K at 20 bar for a concentration. about 60%.
- the mixture has not only the advantage of having a density close to that of nitrogen but in addition to having a convective thermal transfer coefficient higher than that of pure CO 2 .
- Figure 2B shows similar curves for mixtures of carbon dioxide (CO 2 ) and hydrogen (H 2 ). It can be seen that there is a maximum of the convective heat transfer coefficient k H for CO 2 concentration values between about 30 to 50%, in this case about 850 W / m 2 / K at 20 bars for a concentration of about 40%. In addition, it is noted that the convective heat transfer coefficient k H is better for a mixture of carbon dioxide and hydrogen than for a mixture of CO 2 and helium.
- Another advantage of using such a mixture of carbon dioxide and hydrogen is that, under the usual quenching conditions of steel parts, endothermic chemical reactions occur between the CO 2 and the hydrogen, which further contributes to the rapidity of cooling.
- endothermic chemical reactions occur between the CO 2 and the hydrogen, which further contributes to the rapidity of cooling.
- FIG. 3 illustrates the result of calculations simulating convective transfer cooling of a steel cylinder with various cooling gases in the case of the flow of the mixture parallel to the length of the cylinders (cylinders simulating the case of elongate parts).
- Curves for pure nitrogen (N 2 ), 60% CO 2 and 40% helium for pure hydrogen, and 40% CO 2 and 60 are shown. % hydrogen. It is found that it is this last mixture that gives the best results, that is to say the fastest cooling rate between 850 and 500 ° C.
- the improvement of the quenching rate is of the order of 20% relative to the hydrogen alone and of the order of 100% relative to the nitrogen alone.
- the present invention is capable of various variants and modifications which will appear to those skilled in the art, in particular as regards the choice of gases, the optimization of the proportions of each gas, it being understood that the If desired, it is possible to use ternary mixtures such as CO 2 -H e -H 2 and possibly other gases, referred to as higher complementary gases, may be added.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Furnace Details (AREA)
- Radiation Pyrometers (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Gas Separation By Absorption (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
La présente invention vise de façon générale le traitement thermique des métaux et plus particulièrement l'opération de trempe gazeuse de pièces en acier ayant subi au préalable un traitement thermique (tel chauffage avant trempe, recuit, revenu) ou thermochimique (tel cémentation, carbonitruration). De telles trempes gazeuses sont généralement réalisées en faisant circuler un gaz sous pression en circuit fermé entre une charge et un circuit de refroidissement. Pour des raisons pratiques, les installations de trempe au gaz fonctionnent généralement sous des pressions comprises entre quatre et vingt fois la pression atmosphérique (4 à 20 bars ou 4000 à 20000 hectopascals). Pour désigner la pression, on utilisera dans la présente description comme unité le bar, étant entendu qu'un bar est égal à 1000 hPa.The present invention generally relates to the heat treatment of metals and more particularly to the gaseous quenching operation of steel parts having previously undergone a heat treatment (such heating before quenching, annealing, tempering) or thermochemical (such cementation, carbonitriding) . Such gas quenching is generally accomplished by circulating pressurized gas in a closed circuit between a charge and a cooling circuit. For practical reasons, gas quenching plants generally operate at pressures between four and twenty times the atmospheric pressure (4 to 20 bar or 4000 to 20000 hectopascals). To designate the pressure, the bar will be used in this description as unit, it being understood that a bar is equal to 1000 hPa.
La figure 1 représente de façon très schématique un exemple d'installation de trempe gazeuse. Cette installation 1 contient une charge 2 à refroidir disposée dans une enceinte étanche 3. La charge est typiquement entourée de plaques de déflection 4 pour guider la circulation de gaz. Une entrée de gaz 5 permet d'introduire sous pression un mélange gazeux souhaité étant entendu que l'on peut par exemple introduire les gaz de refroidissement sous forme d'un mélange pré-formé ou que l'on peut prévoir plusieurs entrées de gaz distinctes pour introduire séparément divers gaz de refroidissement. Il est couramment prévu un accès de mise sous vide de l'enceinte (non représenté). Une turbine 6 actionnée par un moteur 7 permet d'assurer la circulation des gaz, par exemple en passant d'un circuit de refroidissement 9 vers la charge à refroidir 2. Le circuit de refroidissement 9 est couramment constitué de tuyaux dans lesquels circule un fluide de refroidissement.FIG. 1 very schematically represents an example of a gas quenching installation. This
L'installation de la figure 1 n'a été représentée qu'à titre d'exemple de l'une de nombreuses structures possibles et existantes pour assurer la circulation d'un gaz de refroidissement dans une enceinte. De façon classique, la pression est de l'ordre de 4 à 20 bars pendant la phase de refroidissement. De nombreuses variantes sont possibles, quant à la disposition de la charge, au sens de circulation des gaz et au mode de mise en circulation de ces gaz.The installation of Figure 1 has been represented as an example of one of many possible and existing structures to ensure the circulation of a gas of cooling in an enclosure. In a conventional manner, the pressure is of the order of 4 to 20 bar during the cooling phase. Numerous variations are possible with regard to the arrangement of the charge, the direction of circulation of the gases and the mode of circulation of these gases.
Pour des raisons pratiques, le gaz le plus couramment utilisé pour assurer le refroidissement est l'azote étant donné qu'il s'agit d'un gaz inerte et peu coûteux. En outre, sa densité est bien adaptée à des installations simples à soufflantes ou turbines et son coefficient de transfert thermique est suffisamment satisfaisant. En effet, il est connu, dans les systèmes de trempe gazeuse, que la descente en température doit être la plus rapide possible pour que la transformation de l'acier se fasse de façon satisfaisante de la phase austénitique à la phase martensitique sans passer par des phases perlitique et/ou bainitique.For practical reasons, the most commonly used gas for cooling is nitrogen since it is an inert and inexpensive gas. In addition, its density is well suited to simple installations with blowers or turbines and its heat transfer coefficient is sufficiently satisfactory. Indeed, it is known, in gas quenching systems, that the descent in temperature must be as fast as possible for the steel to be processed satisfactorily from the austenitic phase to the martensitic phase without going through pearlitic and / or bainitic phases.
Toutefois, on s'aperçoit que dans certains cas critiques, les installations de trempe à l'azote ne permettent pas d'obtenir une vitesse de décroissance en température suffisante. On a donc essayé des trempes à l'hydrogène ou à l'hélium. Un inconvénient de l'utilisation de ces gaz est que les installations existantes, dimensionnées pour la trempe sous azote, en particulier en ce qui concerne la puissance de ventilation, ne sont pas optimisées pour l'utilisation de gaz de densité sensiblement différente. En outre, l'hélium est un gaz sensiblement plus coûteux que l'azote, tandis que l'hydrogène présente des risques d'inflammabilité et son utilisation nécessite de prendre des précautions particulières.However, it can be seen that, in certain critical cases, the nitrogen quenching plants do not make it possible to obtain a decay rate in sufficient temperature. We have therefore tried quenching with hydrogen or helium. A disadvantage of the use of these gases is that the existing installations, dimensioned for quenching under nitrogen, in particular with regard to the ventilation power, are not optimized for the use of gas with a substantially different density. In addition, helium is a gas significantly more expensive than nitrogen, while hydrogen has flammability risks and its use requires special precautions.
Il faut d'ailleurs souligner que toutes ces approches antérieures (telles celles recommandant l'utilisation d'hydrogène ou d'hélium) étaient basées sur une recherche d'amélioration du seul transfert convectif au sein de la chambre de traitement.It should also be emphasized that all these previous approaches (such as those recommending the use of hydrogen or helium) were based on a search for improvement of the only convective transfer within the treatment chamber.
Pour illustrer l'art antérieur, on peut également citer l'approche particulière du document
On peut également citer le cas du document
Toujours dans le domaine du CO2, on pourra également se reporter aux deux documents suivants où lorsque CO2 est évoqué dans des opérations de trempe c'est dans une toute autre application (par exemple en plasturgie comme dans le document
Dans ce contexte un des objets de la présente invention est de prévoir un procédé de trempe utilisant un gaz de refroidissement thermiquement plus efficace que l'azote mais qui soit peu coûteux et simple à utiliser, permettant d'assurer le refroidissement des matériaux les plus exigeants.In this context, one of the objects of the present invention is to provide a quenching process using a cooling gas which is thermally more effective than nitrogen but which is inexpensive and easy to use, making it possible to cool the most demanding materials. .
Un autre objet de la présente invention est de prévoir un procédé de refroidissement utilisant un gaz compatible avec les installations existantes fonctionnant actuellement à l'azote (et donc ne nécessitant aucune modification significative d'installation).Another object of the present invention is to provide a cooling method using a gas compatible with existing installations currently operating with nitrogen (and therefore not requiring any significant modification of the installation).
Pour atteindre ces objets, la présente invention prévoit, dans un procédé de refroidissement rapide de pièces métalliques à l'aide d'un gaz dé refroidissement sous pression, l'utilisation d'un gaz de refroidissement qui comprend un ou plusieurs gaz absorbant le rayonnement infra-rouge conformément à la revendication 1 ci-après.To achieve these objects, the present invention provides, in a method of rapidly cooling metal parts using a pressurized cooling gas, the use of a cooling gas which comprises one or more gases absorbing the gas. infrared radiation according to
On conçoit que la notion d' « amélioration par rapport aux conditions traditionnelles de refroidissement sous azote » doit s'entendre selon l'invention comme comparant des conditions identiques de pression, température ou encore installation de trempe.It is conceivable that the concept of "improvement over traditional conditions of cooling under nitrogen" must be understood according to the invention as comparing identical conditions of pressure, temperature or quenching installation.
Le procédé selon l'invention pourra par ailleurs adopter l'une ou plusieurs des caractéristiques techniques suivante :
- le gaz de refroidissement comprend en outre un gaz complémentaire.
- la composition du gaz de refroidissement est ajustée également de façon à optimiser le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement.
- l'opération de refroidissement est menée au sein d'une enceinte où sont disposées les pièces à traiter, munie d'un système d'agitation de gaz, et la composition du gaz de refroidissement est ajustée de façon à obtenir une densité moyenne du gaz de refroidissement ainsi constitué qui soit adaptée audit système d'agitation de l'enceinte , sans qu'il soit nécessaire d'y apporter des modifications significatives.
- la composition du gaz de refroidissement est ajustée également de façon à ce qu'il puisse se produire, durant la phase de refroidissement des pièces, des réactions chimiques endothermiques entre le ou un des gaz absorbant et un autre des constituants du gaz de refroidissement.
- ledit gaz absorbant le rayonnement infra-rouge est le CO2.
- ledit gaz absorbant le rayonnement infra-rouge est choisi dans le groupe formé des hydrocarbures saturés ou insaturés, de CO, H2O, NH3, NO, N2O, NO2 et leurs mélanges.
- le gaz de refroidissement est un mélange binaire CO2-He, dont la teneur en CO2 est comprise entre 30 et 80%.
- le gaz de refroidissement est un mélange binaire CO2-H2, dont la teneur en CO2 est comprise entre 30 et 60%.
- on effectue une opération de recyclage du gaz de refroidissement après usage, apte à re-comprimer le gaz avant une utilisation ultérieure, et le cas échéant également à séparer et/ou épurer pour ainsi récupérer tout ou partie des constituants du gaz de refroidissement.
- the cooling gas further comprises a complementary gas.
- the composition of the cooling gas is also adjusted so as to optimize the convective transfer coefficient with respect to the convective transfer coefficients of each constituent of the cooling gas taken individually.
- the cooling operation is conducted within an enclosure where the parts to be treated are arranged, provided with a gas stirring system, and the composition of the cooling gas is adjusted so as to obtain an average density of the gas cooling device thus formed which is adapted to said stirring system of the enclosure, without it being necessary to make significant changes thereto.
- the composition of the cooling gas is also adjusted so that, during the cooling phase of the parts, endothermic chemical reactions can take place between the one or one of the absorbing gases and another one of the constituents of the cooling gas.
- said gas absorbing infra-red radiation is CO 2 .
- said infrared absorbing gas is selected from the group consisting of saturated or unsaturated hydrocarbons, CO, H 2 O, NH 3 , NO, N 2 O, NO 2 and mixtures thereof.
- the cooling gas is a binary CO 2 -He mixture, whose CO 2 content is between 30 and 80%.
- the cooling gas is a binary CO 2 -H 2 mixture whose CO 2 content is between 30 and 60%.
- an operation is carried out for recycling the cooling gas after use, able to repress the gas before further use, and if necessary also to separate and / or purify so as to recover all or part of the constituents of the cooling gas.
L'invention concerne également l'utilisation dans une installation de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, d'un gaz de refroidissement comprenant de 20 à 80% d'un gaz absorbant le rayonnement infra-rouge et de 80 à 20% d'hydrogène ou d'hélium ou de leurs mélanges, telle que revendiquée en revendication 11 ci-après.The invention also relates to the use in a rapid cooling installation of metal parts using a pressurized cooling gas, a cooling gas comprising 20 to 80% of a gas absorbing radiation below and from 80 to 20% hydrogen or helium or mixtures thereof, as claimed in claim 11 below.
Comme on l'aura compris les notions selon l'invention de « choix » du ou des gaz absorbant, ou encore d' « ajustement » pour atteindre des propriétés souhaitées de coefficient de transfert, ou de densité ou encore de caractère endothermique, doit s'entendre comme concernant la nature des constituants du mélange et/ou leur teneur dans ce mélange.As will be understood the concepts according to the invention of "choice" of the absorbing gas or of "adjustment" to achieve desired properties of transfer coefficient, or density or endothermic nature, must s 'hear as concerning the nature of the constituents of the mixture and / or their content in this mixture.
C'est donc le mérite de la présente invention de s'être démarquée de l'approche traditionnelle de l'art antérieur d'amélioration simple des conditions de transfert convectif, pour se rendre compte que la part du transfert radiatif dans le transfert thermique global est située entre environ 7 et 10% (dans la gamme allant de 400 à 1050 °C), donc très significative, et qu'il était donc tout à fait avantageux de s'intéresser à cet aspect du transfert pour le prendre en compte et l'exploiter.It is therefore the merit of the present invention to have distinguished from the traditional approach of the prior art of simple improvement of the convective transfer conditions, to realize that the share of radiative transfer in the global heat transfer is between about 7 and 10% (in the range of 400 to 1050 ° C), so very significant, and it was therefore quite advantageous to look at this aspect of the transfer to take it into account and exploit it.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
- la figure 1, décrite précédemment, représente un exemple d'installation de trempe au gaz ;
- les figures 2A et 2B représentent le coefficient de transfert thermique convectif de différents mélanges de gaz à diverses pressions, dans le cas d'un fluide en écoulement parallèle entre des cylindres; et
- la figure 3 représente des courbes de variation de température en fonction du temps pour divers gaz de trempe utilisés dans les mêmes conditions.
- FIG. 1, previously described, represents an example of a gas quenching installation;
- FIGS. 2A and 2B show the convective heat transfer coefficient of different gas mixtures at various pressures, in the case of a fluid in parallel flow between cylinders; and
- FIG. 3 shows temperature variation curves as a function of time for various quenching gases used under the same conditions.
Selon la présente invention, on propose d'utiliser comme gaz de trempe un gaz absorbant le rayonnement infra-rouge ou un mélange à base de tels gaz absorbant le rayonnement infra-rouge (ci-après désigné par gaz absorbant), tel que le dioxyde de carbone (CO2), et additionné d'un ou de plusieurs gaz présentant une bonne aptitude au transfert de chaleur convectif (ci-après désigné par gaz additif) choisi parmi l'hélium ou l'hydrogène.According to the present invention, it is proposed to use as quenching gas an infra-red radiation absorbing gas or a mixture based on such infra-red radiation absorbing gases (hereinafter referred to as absorbing gas), such as dioxide. of carbon (CO 2 ), and added one or more gases having a good ability to convective heat transfer (hereinafter referred to as additive gas) selected from helium or hydrogen.
Un tel mélange présente l'avantage, par rapport aux gaz ou mélanges de gaz de trempe traditionnels utilisant des gaz transparents aux rayonnements infra-rouges, comme l'azote, l'hydrogène, et l'hélium, d'absorber de la chaleur à la fois par phénomènes convectif et radiatif, augmentant ainsi le flux de chaleur global extrait d'une charge à refroidir.Such a mixture has the advantage over conventional gas or quench gas mixtures using infrared-transparent gases, such as nitrogen, hydrogen, and helium, to absorb heat at low temperatures. both by convective and radiative phenomena, thus increasing the global heat flux extracted from a charge to be cooled.
On peut éventuellement ajouter à ce mélange, d'autres gaz, ci-après désignés par gaz complémentaire, tel que l'azote, envisagé aussi bien comme simple gaz porteur que dans un rôle plus actif permettant comme on le verra plus loin d'optimiser les propriétés du mélange de gaz comme la densité, la conductivité thermique, la viscosité etc..It is possible to add to this mixture, other gases, hereinafter referred to as a complementary gas, such as nitrogen, envisaged both as a simple carrier gas and in a more active role allowing, as will be seen later, to optimize properties of the gas mixture such as density, thermal conductivity, viscosity etc.
Selon un des modes de réalisation de la présente invention, tel qu'illustré en figures 2A et 2B, on propose d'utiliser certains mélanges de gaz tels que définis ci-dessus, qui présentent en outre de meilleurs coefficients de transfert thermique convectif (kH) en Watt par mètre carré et par Kelvin que chacun des gaz pris séparément. Comme on l'a vu précédemment en effet, selon un des modes avantageux de mise en oeuvre de l'invention, on va ajuster la composition du gaz de refroidissement de façon à « optimiser » le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement. On doit entendre alors par « optimisation » ici le fait de se situer au maximum de la courbe considérée, ou bien plus bas (par exemple pour des raisons économique) mais en tout état de cause de façon à disposer d'un coefficient de transfert convectif qui soit meilleur que chacun des coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement.According to one of the embodiments of the present invention, as illustrated in FIGS. 2A and 2B, it is proposed to use certain gas mixtures as defined above, which moreover have better coefficients of convective heat transfer (k H ) in Watt per square meter and per Kelvin that each of the gases taken separately. As has been seen previously, in one of the advantageous embodiments of the invention, the composition of the cooling gas will be adjusted so as to "optimize" the convective transfer coefficient with respect to the transfer coefficients. convective of each of the components of the cooling gas taken individually. We must then understand by "optimization" here being at the maximum of the curve considered, or much lower (for example for economic reasons) but in any case to have a convective transfer coefficient which is better than each of the convective transfer coefficients of each of the components of the cooling gas taken individually.
Selon un autre mode avantageux de mise en oeuvre de la présente invention, il est proposé d'utiliser un mélange de gaz absorbant (et le cas échéant de gaz additif), avec éventuellement l'ajout de gaz complémentaires, dans des conditions optimisées de densité telles que l'on peut effectuer une trempe dans des installations de trempe habituellement prévues et optimisées pour fonctionner en présence d'azote. Pour cela, on mélange par exemple au dioxyde de carbone de l'hélium, pris comme gaz additif, de telle sorte à combiner une optimisation du coefficient de transfert de chaleur par convection et une densité moyenne du mélange qui soit du même ordre de grandeur que celle de l'azote. On peut alors utiliser les installations existantes avec des vitesses et puissances de ventilation comparables et les structures de ventilation et de déflection de gaz existantes, sans avoir à apporter de modifications significatives à l'installation.According to another advantageous embodiment of the present invention, it is proposed to use a mixture of absorbent gas (and optionally additive gas), possibly with the addition of additional gases, under optimized density conditions. such as can be quenched in quenching plants usually provided and optimized to operate in the presence of nitrogen. For this purpose, for example, carbon dioxide is mixed with helium, taken as an additive gas, so as to combine an optimization of the convective heat transfer coefficient and an average density of the mixture which is of the same order of magnitude as that of the nitrogen. Existing installations can then be used with comparable ventilation speeds and powers and the existing ventilation and gas deflection structures, without having to make any significant changes to the installation.
Ceci présente l'avantage que, dans une installation donnée, optimisée pour une trempe à l'azote, l'utilisateur pourra, en temps normal, quand cela convient aux matériaux envisagés, utiliser l'azote comme gaz de trempe et, seulement dans des cas particuliers des matériaux plus exigeants, i.e quand les conditions spécifiques des pièces ou des aciers à traiter nécessitent des traitements particuliers, utiliser par exemple le mélange de dioxyde de carbone et d'hélium donné en exemple ou encore le mélange de dioxyde de carbone et d'hydrogène également exemplifié ici.This has the advantage that, in a given installation, optimized for nitrogen quenching, the user can, in normal times, when it is suitable for the materials envisaged, use nitrogen as a quenching gas and, only in particular cases of more demanding materials, ie when the specific conditions of the parts or steels to be treated require particular treatments, for example using the mixture of carbon dioxide and helium given as example or the mixture of carbon dioxide and carbon dioxide. hydrogen also exemplified here.
Bien entendu comme il apparaîtra clairement à l'homme du métier, si l'invention a tout particulièrement été illustrée dans ce qui précède à l'aide du CO2, d'autres gaz absorbant le rayonnement IR sont également envisageables ici sans sortir à aucun moment du cadre de la présente invention tels les hydrocarbures saturés ou insaturés, CO, H2O, NH3, NO, N2O, NO2 et leurs mélanges.Of course, as will be clear to one skilled in the art, if the invention has been particularly illustrated in the foregoing with the aid of CO 2 , other gases absorbing IR radiation are also conceivable here without going out to any timing of the present invention such as saturated or unsaturated hydrocarbons, CO, H 2 O, NH 3 , NO, N 2 O, NO 2 and mixtures thereof.
La figure 2A représente, pour des pressions de 5, 10 et 20 bars, le coefficient de transfert thermique convectif kH d'un mélange de CO2 et d'hélium, pour diverses proportions de CO2 dans le mélange. Ainsi, les abscisses donnent le rapport entre la concentration de CO2, c(CO2), et la concentration totale de CO2 et He, c(CO2+He). On s'aperçoit que le coefficient de transfert thermique convectif présente un maximum pour des valeurs de concentration de CO2 comprises entre environ 40 et 70%, en l'occurrence d'environ 650 W/m2/K à 20 bars pour une concentration de l'ordre de 60%. Ainsi, le mélange présente non seulement l'avantage d'avoir une densité voisine de celle de l'azote mais en plus de présenter un coefficient de transfert thermique convectif plus élevé que celui de CO2 pur.FIG. 2A represents, for pressures of 5, 10 and 20 bar, the coefficient of convective heat transfer k H of a mixture of CO 2 and helium, for various proportions of CO 2 in the mixture. Thus, the abscissas give the ratio between the concentration of CO 2 , c (CO 2 ), and the total concentration of CO 2 and He, c (CO 2 + He). It can be seen that the convective heat transfer coefficient has a maximum for CO 2 concentration values of between approximately 40 and 70%, in this case approximately 650 W / m 2 / K at 20 bar for a concentration. about 60%. Thus, the mixture has not only the advantage of having a density close to that of nitrogen but in addition to having a convective thermal transfer coefficient higher than that of pure CO 2 .
La figure 2B représente des courbes similaires pour des mélanges de dioxyde de carbone (CO2) et d'hydrogène (H2). On s'aperçoit que l'on a un maximum du coefficient de transfert thermique convectif kH pour des valeurs de concentration de CO2 comprises entre environ 30 à 50%, en l'occurrence d'environ 850 W/m2/K à 20 bars pour une concentration de l'ordre de 40%. En outre, on note que le coefficient de transfert thermique convectif kH est meilleur pour un mélange de dioxyde de carbone et d'hydrogène que pour un mélange de CO2 et d'hélium.Figure 2B shows similar curves for mixtures of carbon dioxide (CO 2 ) and hydrogen (H 2 ). It can be seen that there is a maximum of the convective heat transfer coefficient k H for CO 2 concentration values between about 30 to 50%, in this case about 850 W / m 2 / K at 20 bars for a concentration of about 40%. In addition, it is noted that the convective heat transfer coefficient k H is better for a mixture of carbon dioxide and hydrogen than for a mixture of CO 2 and helium.
Un autre avantage de l'utilisation d'un tel mélange de dioxyde de carbone et d'hydrogène est que, dans les conditions usuelles de trempe de pièces en acier, il se produit des réactions chimiques endothermiques entre le CO2 et l'hydrogène, ce qui contribue encore à la rapidité du refroidissement. Par ailleurs, on constate que, en présence de CO2 le risque d'explosion lié à l'hydrogène est sensiblement réduit, même s'il se produit une introduction malencontreuse d'oxygène.Another advantage of using such a mixture of carbon dioxide and hydrogen is that, under the usual quenching conditions of steel parts, endothermic chemical reactions occur between the CO 2 and the hydrogen, which further contributes to the rapidity of cooling. In addition, it is found that in the presence of CO 2 the risk hydrogen-related explosion is substantially reduced, even if an unfortunate introduction of oxygen occurs.
La figure 3 illustre le résultat de calculs simulant le refroidissement par transfert convectif d'un cylindre en acier avec divers gaz de refroidissement dans le cas de l'écoulement du mélange parallèlement à la longueur des cylindres (cylindres simulant le cas de pièces allongées). On a représenté des courbes pour l'azote pur (N2), pour un mélange à 60% de CO2 et 40% d'hélium, pour de l'hydrogène pur, et pour un mélange à 40% de CO2 et 60% d'hydrogène. On constate que c'est ce dernier mélange qui donne les meilleurs résultats, c'est-à-dire la plus grande vitesse de refroidissement entre 850 et 500°C. Pour ce dernier mélange, l'amélioration de la vitesse de trempe est de l'ordre de 20% par rapport à l'hydrogène seul et de l'ordre de 100% par rapport à l'azote seul.FIG. 3 illustrates the result of calculations simulating convective transfer cooling of a steel cylinder with various cooling gases in the case of the flow of the mixture parallel to the length of the cylinders (cylinders simulating the case of elongate parts). Curves for pure nitrogen (N 2 ), 60% CO 2 and 40% helium for pure hydrogen, and 40% CO 2 and 60 are shown. % hydrogen. It is found that it is this last mixture that gives the best results, that is to say the fastest cooling rate between 850 and 500 ° C. For this last mixture, the improvement of the quenching rate is of the order of 20% relative to the hydrogen alone and of the order of 100% relative to the nitrogen alone.
Bien entendu, comme déjà souligné précédemment, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme du métier, notamment en ce qui concerne le choix des gaz, l'optimisation des proportions de chaque gaz, étant entendu que l'on pourra si on le souhaite utiliser des mélanges ternaires tels CO2-He-H2 et que l'on pourra éventuellement rajouter d'autres gaz, appelés plus haut gaz complémentaires.Of course, as already pointed out above, the present invention is capable of various variants and modifications which will appear to those skilled in the art, in particular as regards the choice of gases, the optimization of the proportions of each gas, it being understood that the If desired, it is possible to use ternary mixtures such as CO 2 -H e -H 2 and possibly other gases, referred to as higher complementary gases, may be added.
Claims (11)
- Method for rapidly cooling metal parts using a pressurized cooling gas, in which method the following measures are implemented:- the cooling gas comprises a content of between 5% and 80% by volume, preferably between 20% and 80% by volume, of one or a plurality of gases absorbing infrared radiation, selected from the group formed of saturated or unsaturated hydrocarbons, CO2, CO, H2O, NH3, NO, N2O, NO2, and mixtures thereof, so as to improve the heat transfer to the part by combining radiative and convective heat transfer phenomena, and so as to improve the convective heat transfer coefficient in comparison with conventional conditions of cooling under nitrogen;- the cooling gas also comprises an additive gas having a good convective heat transfer capability, selected from helium or hydrogen or mixtures thereof;the composition of the cooling as being also adjusted so as to obtain an average density of the cooling gas thus produced which is close to that of nitrogen.
- Cooling method according to Claim 1, characterized in that the cooling gas further comprises a supplementary gas.
- Cooling method according to Claim 1 or 2, characterized in that the composition of the cooling gas is also adjusted so as to optimize the convective heat transfer coefficient in comparison with the convective heat transfer coefficients of each of the components of the cooling gas considered individually.
- Cooling method according to one of the preceding claims, characterized in that the cooling operation is carried out in a vessel in which the parts to be treated are disposed, the vessel being equipped with a gas stirring system, and in that the said adjustment making it possible to obtain an average density of the cooling gas thus produced which is close to that of nitrogen makes it possible to obtain an average density of the cooling gas thus produced which is adapted to said stirring system of the vessel, without the need to make significant changes to said vessel.
- Cooling method according to one of the preceding claims, characterized in that the composition of the cooling gas is also adjusted so that, during the parts cooling phase, endothermic chemical reactions can occur between the absorbent gas or one of the absorbent gases and another of the components of the cooling gas.
- Cooling method according to one of the preceding claims, characterized in that said infrared absorbing gas is CO2.
- Cooling method according to one of Claims 1 to 5, characterized in that said infrared absorbing gas is selected from the group formed of saturated or unsaturated hydrocarbons, CO, H2O, NH3, NO, N2O, NO2, and mixtures thereof.
- Cooling method according to one of Claims 1 to 6, characterized in that the cooling gas is a binary CO2/He mixture, of which the CO2 content is between 30 and 80%.
- Cooling method according to one of Claims 1 to 6, characterized in that the cooling gas is a binary CO2/H2 mixture, of which the CO2 content is between 30 and 60%.
- Cooling method according to one of the preceding claims, characterized in that an operation of recycling of the cooling gas is carried out after use, suitable for recompressing the gas before a subsequent use, and, as required, also for separating and/or purifying it, thereby to recover all or part of the components of the cooling gas.
- Use, in an installation for rapidly cooling metal parts using a pressurized cooling gas, which installation is equipped with a stirring system, of a cooling gas comprising from 20 to 80% of an infrared absorbing gas, selected from the group formed of saturated or unsaturated hydrocarbons, CO2, CO, H2O, NH3, NO, N2O, NO2, and mixtures thereof, and comprising from 80 to 20% of hydrogen or helium or mixtures thereof, the composition of the cooling gas being adjusted so as to obtain an average density of the cooling gas thus produced which is close to that of nitrogen, thus making it possible to obtain an average density of the cooling gas thus produced which is adapted to said stirring system so as to make significant changes to the installation unnecessary.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0211680 | 2002-09-20 | ||
FR0211680A FR2844809B1 (en) | 2002-09-20 | 2002-09-20 | RAPID COOLING PROCESS OF PARTS BY CONVECTIVE AND RADIATIVE TRANSFER |
PCT/FR2003/000053 WO2004027098A1 (en) | 2002-09-20 | 2003-01-09 | Rapid cooling method for parts by convective and radiative transfer |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1543170A1 EP1543170A1 (en) | 2005-06-22 |
EP1543170B1 true EP1543170B1 (en) | 2007-12-05 |
EP1543170B8 EP1543170B8 (en) | 2008-04-23 |
Family
ID=31970862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03712227A Expired - Lifetime EP1543170B8 (en) | 2002-09-20 | 2003-01-09 | Rapid cooling method for parts by convective and radiative transfer |
Country Status (14)
Country | Link |
---|---|
US (1) | US20060048868A1 (en) |
EP (1) | EP1543170B8 (en) |
JP (1) | JP4490270B2 (en) |
KR (1) | KR100953818B1 (en) |
CN (1) | CN100567516C (en) |
AT (1) | ATE380256T1 (en) |
AU (1) | AU2003216799A1 (en) |
BR (1) | BRPI0314597B1 (en) |
CA (1) | CA2498929C (en) |
DE (1) | DE60317912T2 (en) |
ES (1) | ES2297138T3 (en) |
FR (1) | FR2844809B1 (en) |
MX (1) | MXPA05002716A (en) |
WO (1) | WO2004027098A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004054627A1 (en) * | 2004-11-11 | 2006-05-18 | Linde Ag | Device for cooling long objects |
FR2890979B1 (en) * | 2005-09-16 | 2007-11-02 | Air Liquide | METHOD FOR PREVENTING THE FORMATION OF CARBON MONOXIDE DURING A GAS TREATMENT OPERATION |
DE102006012985A1 (en) * | 2006-03-21 | 2007-10-11 | Linde Ag | Method and device for rapid cooling of workpieces |
CN107275251B (en) * | 2016-04-08 | 2020-10-16 | 上海新昇半导体科技有限公司 | Method for reducing temperature of chip in pre-pumping cavity and chip cooling device |
CH713765A1 (en) | 2017-05-10 | 2018-11-15 | Synhelion Sa C/O Avv Luca Tenchio | Method for operating a receiver and receiver for carrying out the method. |
EP3649420B1 (en) | 2017-07-07 | 2023-06-07 | Synhelion SA | Method for transferring the heat contained in a gas, and heat exchanger for this purpose |
KR102080934B1 (en) | 2018-04-18 | 2020-02-24 | (주)알룩스메뉴펙처링 | air quenching device for cylinder block and cylinder head |
CH715527A2 (en) * | 2018-11-08 | 2020-05-15 | Eni Spa | Procedure for operating a receiver and receiver for executing the procedure. |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173124A (en) * | 1990-06-18 | 1992-12-22 | Air Products And Chemicals, Inc. | Rapid gas quenching process |
DE4208485C2 (en) * | 1992-03-17 | 1997-09-04 | Wuenning Joachim | Method and device for quenching metallic workpieces |
SE504320C2 (en) * | 1995-06-22 | 1997-01-13 | Aga Ab | Process and plant for treating components with a gas mixture |
FR2746112B1 (en) * | 1996-03-13 | 1998-06-05 | METHOD OF CONTINUOUS HEAT TREATMENT OF METAL STRIPS IN ATMOSPHERES OF DIFFERENT NATURE | |
DE19709957A1 (en) * | 1997-03-11 | 1998-09-17 | Linde Ag | Process for gas quenching of metallic workpieces after heat treatments |
DE19920297A1 (en) * | 1999-05-03 | 2000-11-09 | Linde Tech Gase Gmbh | Process for the heat treatment of metallic workpieces |
DE59903032D1 (en) * | 1999-09-24 | 2002-11-14 | Ipsen Int Gmbh | Process for the heat treatment of metallic workpieces |
GB0029281D0 (en) * | 2000-11-30 | 2001-01-17 | Boc Group Plc | Quenching Method & Apparatus |
US20020104589A1 (en) * | 2000-12-04 | 2002-08-08 | Van Den Sype Jaak | Process and apparatus for high pressure gas quenching in an atmospheric furnace |
-
2002
- 2002-09-20 FR FR0211680A patent/FR2844809B1/en not_active Expired - Lifetime
-
2003
- 2003-01-09 AU AU2003216799A patent/AU2003216799A1/en not_active Abandoned
- 2003-01-09 JP JP2004537189A patent/JP4490270B2/en not_active Expired - Lifetime
- 2003-01-09 KR KR1020057004677A patent/KR100953818B1/en active IP Right Grant
- 2003-01-09 ES ES03712227T patent/ES2297138T3/en not_active Expired - Lifetime
- 2003-01-09 US US10/511,785 patent/US20060048868A1/en not_active Abandoned
- 2003-01-09 CN CNB038222221A patent/CN100567516C/en not_active Expired - Lifetime
- 2003-01-09 MX MXPA05002716A patent/MXPA05002716A/en active IP Right Grant
- 2003-01-09 WO PCT/FR2003/000053 patent/WO2004027098A1/en active IP Right Grant
- 2003-01-09 EP EP03712227A patent/EP1543170B8/en not_active Expired - Lifetime
- 2003-01-09 BR BRPI0314597-2A patent/BRPI0314597B1/en not_active IP Right Cessation
- 2003-01-09 DE DE60317912T patent/DE60317912T2/en not_active Expired - Lifetime
- 2003-01-09 CA CA2498929A patent/CA2498929C/en not_active Expired - Lifetime
- 2003-01-09 AT AT03712227T patent/ATE380256T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1543170B8 (en) | 2008-04-23 |
AU2003216799A1 (en) | 2004-04-08 |
WO2004027098A1 (en) | 2004-04-01 |
KR20050084565A (en) | 2005-08-26 |
CA2498929C (en) | 2011-04-19 |
CA2498929A1 (en) | 2004-04-01 |
BR0314597A (en) | 2005-08-09 |
BRPI0314597B1 (en) | 2015-06-09 |
US20060048868A1 (en) | 2006-03-09 |
ATE380256T1 (en) | 2007-12-15 |
FR2844809B1 (en) | 2007-06-29 |
WO2004027098A8 (en) | 2005-09-29 |
JP2005539142A (en) | 2005-12-22 |
ES2297138T3 (en) | 2008-05-01 |
KR100953818B1 (en) | 2010-04-21 |
CN100567516C (en) | 2009-12-09 |
DE60317912T2 (en) | 2008-06-12 |
AU2003216799A8 (en) | 2004-04-08 |
DE60317912D1 (en) | 2008-01-17 |
EP1543170A1 (en) | 2005-06-22 |
FR2844809A1 (en) | 2004-03-26 |
JP4490270B2 (en) | 2010-06-23 |
CN1681947A (en) | 2005-10-12 |
MXPA05002716A (en) | 2005-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1543170B1 (en) | Rapid cooling method for parts by convective and radiative transfer | |
EP2038210B1 (en) | Reactor with a thermal gradient controlled for the production of pure hydrogen | |
CH634112A5 (en) | STEEL FUEL PROCESS. | |
CA2171793A1 (en) | Nitrogen generation process and plant for thermal processing | |
CA1215901A (en) | Process for superficial hardening of metal products | |
CA2039515A1 (en) | Method and installation for the thermal cure of objects with insertion in a gazeous mixture | |
EP0795616A1 (en) | Process for continuously heat treating metal strip in different atmospheres | |
FR2810340A1 (en) | GAS QUENCHING CELL | |
CA2766788A1 (en) | Cryogenic treatment of martensitic steel with mixed hardening | |
EP1844169B1 (en) | Gas quenching cell for steel parts | |
WO2005108629A1 (en) | Gas quenching method | |
CA2444399C (en) | Method for enhancing the metallurgical quality of products treated in a furnace | |
BE1006163A4 (en) | Method for heat treatment of metal objects in protective atmosphere. | |
FR2722212A1 (en) | Carburisation or carbonitriding with min. carbon di:oxide and no cyanide emissions | |
Dolinsky et al. | Permeation of deuterium and tritium through the martensitic steel F82H | |
EP0375491A1 (en) | Method and installation for heat treatment for case-hardening, carbonitriding or heating before the quenching of metallic work pieces | |
BE1015309A3 (en) | Annealing process for sheet metal. | |
Biggemann et al. | Near infra-red photoluminescence of Nd3+ in hydrogenated amorphous silicon sub-nitrides a-SiNx: H | |
EP2800723B1 (en) | Method for generating a mixture of gas containing substantially equal proportions of carbon monoxide and hydrogen | |
WO2007031667A1 (en) | Method for preventing formation of carbon monoxide during a gas quenching operation | |
BE1020489A3 (en) | INSTALLATION AND METHOD FOR ENERGY RECOVERY USING SUPERCRITICAL CO2. | |
Liu et al. | Infrared studies of laser induced oxide on (1 0 0) Si and SiGe layers | |
BE461261A (en) | ||
BE507085A (en) | ||
BE397523A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050420 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20060406 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E Owner name: ETUDES ET CONSTRUCTIONS MECANIQUES |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E Owner name: ETUDES ET CONSTRUCTIONS MECANIQUES |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60317912 Country of ref document: DE Date of ref document: 20080117 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080227 |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: GOLDSTEINAS, AYMERIC Inventor name: PELISSIER, LAURENT Inventor name: DOMERGUE, DIDIER Inventor name: CHAFFOTTE, FLORENT Inventor name: LEFEVRE, LINDA |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080305 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2297138 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: LEFEVRE, LINDA Inventor name: PELISSIER, LAURENT Inventor name: GOLDSTEINAS, AYMERIC Inventor name: CHAFFOTTE, FLORENT Inventor name: DOMERGUE, DIDIER |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 |
|
BERE | Be: lapsed |
Owner name: ETUDES ET CONSTRUCTIONS MECANIQUES Effective date: 20080131 Owner name: L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATIO Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080505 |
|
26 | Opposition filed |
Opponent name: ALD VACUUM TECHNOLOGIES GMBH Effective date: 20080625 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080306 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080305 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080606 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080109 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20110221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 60317912 Country of ref document: DE Effective date: 20110221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220119 Year of fee payment: 20 Ref country code: DE Payment date: 20220119 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220107 Year of fee payment: 20 Ref country code: SK Payment date: 20220110 Year of fee payment: 20 Ref country code: IT Payment date: 20220120 Year of fee payment: 20 Ref country code: FR Payment date: 20220119 Year of fee payment: 20 Ref country code: ES Payment date: 20220325 Year of fee payment: 20 Ref country code: CZ Payment date: 20211231 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60317912 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230109 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230108 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MK4A Ref document number: E 5971 Country of ref document: SK Expiry date: 20230109 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230109 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230110 |