EP1543170B1 - Rapid cooling method for parts by convective and radiative transfer - Google Patents

Rapid cooling method for parts by convective and radiative transfer Download PDF

Info

Publication number
EP1543170B1
EP1543170B1 EP03712227A EP03712227A EP1543170B1 EP 1543170 B1 EP1543170 B1 EP 1543170B1 EP 03712227 A EP03712227 A EP 03712227A EP 03712227 A EP03712227 A EP 03712227A EP 1543170 B1 EP1543170 B1 EP 1543170B1
Authority
EP
European Patent Office
Prior art keywords
cooling
gas
cooling gas
heat transfer
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03712227A
Other languages
German (de)
French (fr)
Other versions
EP1543170B8 (en
EP1543170A1 (en
Inventor
Didier Domergue
Florent Chaffotte
Aymeric Goldsteinas
Laurent Pelissier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Etudes et Constructions Mecaniques SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
Etudes et Constructions Mecaniques SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31970862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1543170(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, Etudes et Constructions Mecaniques SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1543170A1 publication Critical patent/EP1543170A1/en
Application granted granted Critical
Publication of EP1543170B1 publication Critical patent/EP1543170B1/en
Publication of EP1543170B8 publication Critical patent/EP1543170B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2241/00Treatments in a special environment
    • C21D2241/01Treatments in a special environment under pressure

Definitions

  • the present invention generally relates to the heat treatment of metals and more particularly to the gaseous quenching operation of steel parts having previously undergone a heat treatment (such heating before quenching, annealing, tempering) or thermochemical (such cementation, carbonitriding) .
  • a heat treatment such heating before quenching, annealing, tempering
  • thermochemical such cementation, carbonitriding
  • gas quenching is generally accomplished by circulating pressurized gas in a closed circuit between a charge and a cooling circuit.
  • gas quenching plants generally operate at pressures between four and twenty times the atmospheric pressure (4 to 20 bar or 4000 to 20000 hectopascals). To designate the pressure, the bar will be used in this description as unit, it being understood that a bar is equal to 1000 hPa.
  • FIG. 1 very schematically represents an example of a gas quenching installation.
  • This installation 1 contains a charge 2 to be cooled arranged in a sealed enclosure 3.
  • the charge is typically surrounded by deflection plates 4 to guide the flow of gas.
  • a gas inlet 5 makes it possible to introduce under pressure a desired gaseous mixture, it being understood that it is possible, for example, to introduce the cooling gases in the form of a pre-formed mixture or that several separate gas inlets can be provided. to separately introduce various cooling gases. It is commonly provided vacuum access of the enclosure (not shown).
  • a turbine 6 actuated by a motor 7 makes it possible to ensure the circulation of the gases, for example by passing from a cooling circuit 9 to the charge to be cooled 2.
  • the cooling circuit 9 is commonly constituted of pipes in which a fluid circulates cooling.
  • Figure 1 The installation of Figure 1 has been represented as an example of one of many possible and existing structures to ensure the circulation of a gas of cooling in an enclosure.
  • the pressure is of the order of 4 to 20 bar during the cooling phase. Numerous variations are possible with regard to the arrangement of the charge, the direction of circulation of the gases and the mode of circulation of these gases.
  • the most commonly used gas for cooling is nitrogen since it is an inert and inexpensive gas.
  • its density is well suited to simple installations with blowers or turbines and its heat transfer coefficient is sufficiently satisfactory.
  • the descent in temperature must be as fast as possible for the steel to be processed satisfactorily from the austenitic phase to the martensitic phase without going through pearlitic and / or bainitic phases.
  • one of the objects of the present invention is to provide a quenching process using a cooling gas which is thermally more effective than nitrogen but which is inexpensive and easy to use, making it possible to cool the most demanding materials. .
  • Another object of the present invention is to provide a cooling method using a gas compatible with existing installations currently operating with nitrogen (and therefore not requiring any significant modification of the installation).
  • the present invention provides, in a method of rapidly cooling metal parts using a pressurized cooling gas, the use of a cooling gas which comprises one or more gases absorbing the gas. infrared radiation according to claim 1 below.
  • the invention also relates to the use in a rapid cooling installation of metal parts using a pressurized cooling gas, a cooling gas comprising 20 to 80% of a gas absorbing radiation below and from 80 to 20% hydrogen or helium or mixtures thereof, as claimed in claim 11 below.
  • an infra-red radiation absorbing gas or a mixture based on such infra-red radiation absorbing gases such as dioxide. of carbon (CO 2 )
  • additive gas one or more gases having a good ability to convective heat transfer selected from helium or hydrogen.
  • Such a mixture has the advantage over conventional gas or quench gas mixtures using infrared-transparent gases, such as nitrogen, hydrogen, and helium, to absorb heat at low temperatures. both by convective and radiative phenomena, thus increasing the global heat flux extracted from a charge to be cooled.
  • infrared-transparent gases such as nitrogen, hydrogen, and helium
  • a complementary gas such as nitrogen
  • a simple carrier gas envisaged both as a simple carrier gas and in a more active role allowing, as will be seen later, to optimize properties of the gas mixture such as density, thermal conductivity, viscosity etc.
  • FIGS. 2A and 2B it is proposed to use certain gas mixtures as defined above, which moreover have better coefficients of convective heat transfer (k H ) in Watt per square meter and per Kelvin that each of the gases taken separately.
  • k H coefficients of convective heat transfer
  • the composition of the cooling gas will be adjusted so as to "optimize" the convective transfer coefficient with respect to the transfer coefficients. convective of each of the components of the cooling gas taken individually.
  • a mixture of absorbent gas (and optionally additive gas), possibly with the addition of additional gases under optimized density conditions.
  • additional gases such as can be quenched in quenching plants usually provided and optimized to operate in the presence of nitrogen.
  • carbon dioxide is mixed with helium, taken as an additive gas, so as to combine an optimization of the convective heat transfer coefficient and an average density of the mixture which is of the same order of magnitude as that of the nitrogen.
  • Existing installations can then be used with comparable ventilation speeds and powers and the existing ventilation and gas deflection structures, without having to make any significant changes to the installation.
  • FIG. 2A represents, for pressures of 5, 10 and 20 bar, the coefficient of convective heat transfer k H of a mixture of CO 2 and helium, for various proportions of CO 2 in the mixture.
  • the abscissas give the ratio between the concentration of CO 2 , c (CO 2 ), and the total concentration of CO 2 and He, c (CO 2 + He).
  • the convective heat transfer coefficient has a maximum for CO 2 concentration values of between approximately 40 and 70%, in this case approximately 650 W / m 2 / K at 20 bar for a concentration. about 60%.
  • the mixture has not only the advantage of having a density close to that of nitrogen but in addition to having a convective thermal transfer coefficient higher than that of pure CO 2 .
  • Figure 2B shows similar curves for mixtures of carbon dioxide (CO 2 ) and hydrogen (H 2 ). It can be seen that there is a maximum of the convective heat transfer coefficient k H for CO 2 concentration values between about 30 to 50%, in this case about 850 W / m 2 / K at 20 bars for a concentration of about 40%. In addition, it is noted that the convective heat transfer coefficient k H is better for a mixture of carbon dioxide and hydrogen than for a mixture of CO 2 and helium.
  • Another advantage of using such a mixture of carbon dioxide and hydrogen is that, under the usual quenching conditions of steel parts, endothermic chemical reactions occur between the CO 2 and the hydrogen, which further contributes to the rapidity of cooling.
  • endothermic chemical reactions occur between the CO 2 and the hydrogen, which further contributes to the rapidity of cooling.
  • FIG. 3 illustrates the result of calculations simulating convective transfer cooling of a steel cylinder with various cooling gases in the case of the flow of the mixture parallel to the length of the cylinders (cylinders simulating the case of elongate parts).
  • Curves for pure nitrogen (N 2 ), 60% CO 2 and 40% helium for pure hydrogen, and 40% CO 2 and 60 are shown. % hydrogen. It is found that it is this last mixture that gives the best results, that is to say the fastest cooling rate between 850 and 500 ° C.
  • the improvement of the quenching rate is of the order of 20% relative to the hydrogen alone and of the order of 100% relative to the nitrogen alone.
  • the present invention is capable of various variants and modifications which will appear to those skilled in the art, in particular as regards the choice of gases, the optimization of the proportions of each gas, it being understood that the If desired, it is possible to use ternary mixtures such as CO 2 -H e -H 2 and possibly other gases, referred to as higher complementary gases, may be added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Furnace Details (AREA)
  • Radiation Pyrometers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Gas Separation By Absorption (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Rapid cooling of metal components is carried with a cooling gas under pressure. The cooling gas includes one or more gases that absorb infrared radiation, to improve the heat transfer of the component in conjunction with the phenomena of radiation and convection transfer, and to improve the coefficient of convection transfer. A Independent claim is given for utilization of the method in an installation for the rapid cooling of metal components with the aid of a gas under pressure, optimized to operate with nitrogen, using a cooling gas including 20-80% of a gas absorbing infrared radiation and 80-20% of hydrogen and/or helium. The composition of the gas is adjusted so that it is not necessary to provide any significant modifications to the installation.

Description

La présente invention vise de façon générale le traitement thermique des métaux et plus particulièrement l'opération de trempe gazeuse de pièces en acier ayant subi au préalable un traitement thermique (tel chauffage avant trempe, recuit, revenu) ou thermochimique (tel cémentation, carbonitruration). De telles trempes gazeuses sont généralement réalisées en faisant circuler un gaz sous pression en circuit fermé entre une charge et un circuit de refroidissement. Pour des raisons pratiques, les installations de trempe au gaz fonctionnent généralement sous des pressions comprises entre quatre et vingt fois la pression atmosphérique (4 à 20 bars ou 4000 à 20000 hectopascals). Pour désigner la pression, on utilisera dans la présente description comme unité le bar, étant entendu qu'un bar est égal à 1000 hPa.The present invention generally relates to the heat treatment of metals and more particularly to the gaseous quenching operation of steel parts having previously undergone a heat treatment (such heating before quenching, annealing, tempering) or thermochemical (such cementation, carbonitriding) . Such gas quenching is generally accomplished by circulating pressurized gas in a closed circuit between a charge and a cooling circuit. For practical reasons, gas quenching plants generally operate at pressures between four and twenty times the atmospheric pressure (4 to 20 bar or 4000 to 20000 hectopascals). To designate the pressure, the bar will be used in this description as unit, it being understood that a bar is equal to 1000 hPa.

La figure 1 représente de façon très schématique un exemple d'installation de trempe gazeuse. Cette installation 1 contient une charge 2 à refroidir disposée dans une enceinte étanche 3. La charge est typiquement entourée de plaques de déflection 4 pour guider la circulation de gaz. Une entrée de gaz 5 permet d'introduire sous pression un mélange gazeux souhaité étant entendu que l'on peut par exemple introduire les gaz de refroidissement sous forme d'un mélange pré-formé ou que l'on peut prévoir plusieurs entrées de gaz distinctes pour introduire séparément divers gaz de refroidissement. Il est couramment prévu un accès de mise sous vide de l'enceinte (non représenté). Une turbine 6 actionnée par un moteur 7 permet d'assurer la circulation des gaz, par exemple en passant d'un circuit de refroidissement 9 vers la charge à refroidir 2. Le circuit de refroidissement 9 est couramment constitué de tuyaux dans lesquels circule un fluide de refroidissement.FIG. 1 very schematically represents an example of a gas quenching installation. This installation 1 contains a charge 2 to be cooled arranged in a sealed enclosure 3. The charge is typically surrounded by deflection plates 4 to guide the flow of gas. A gas inlet 5 makes it possible to introduce under pressure a desired gaseous mixture, it being understood that it is possible, for example, to introduce the cooling gases in the form of a pre-formed mixture or that several separate gas inlets can be provided. to separately introduce various cooling gases. It is commonly provided vacuum access of the enclosure (not shown). A turbine 6 actuated by a motor 7 makes it possible to ensure the circulation of the gases, for example by passing from a cooling circuit 9 to the charge to be cooled 2. The cooling circuit 9 is commonly constituted of pipes in which a fluid circulates cooling.

L'installation de la figure 1 n'a été représentée qu'à titre d'exemple de l'une de nombreuses structures possibles et existantes pour assurer la circulation d'un gaz de refroidissement dans une enceinte. De façon classique, la pression est de l'ordre de 4 à 20 bars pendant la phase de refroidissement. De nombreuses variantes sont possibles, quant à la disposition de la charge, au sens de circulation des gaz et au mode de mise en circulation de ces gaz.The installation of Figure 1 has been represented as an example of one of many possible and existing structures to ensure the circulation of a gas of cooling in an enclosure. In a conventional manner, the pressure is of the order of 4 to 20 bar during the cooling phase. Numerous variations are possible with regard to the arrangement of the charge, the direction of circulation of the gases and the mode of circulation of these gases.

Pour des raisons pratiques, le gaz le plus couramment utilisé pour assurer le refroidissement est l'azote étant donné qu'il s'agit d'un gaz inerte et peu coûteux. En outre, sa densité est bien adaptée à des installations simples à soufflantes ou turbines et son coefficient de transfert thermique est suffisamment satisfaisant. En effet, il est connu, dans les systèmes de trempe gazeuse, que la descente en température doit être la plus rapide possible pour que la transformation de l'acier se fasse de façon satisfaisante de la phase austénitique à la phase martensitique sans passer par des phases perlitique et/ou bainitique.For practical reasons, the most commonly used gas for cooling is nitrogen since it is an inert and inexpensive gas. In addition, its density is well suited to simple installations with blowers or turbines and its heat transfer coefficient is sufficiently satisfactory. Indeed, it is known, in gas quenching systems, that the descent in temperature must be as fast as possible for the steel to be processed satisfactorily from the austenitic phase to the martensitic phase without going through pearlitic and / or bainitic phases.

Toutefois, on s'aperçoit que dans certains cas critiques, les installations de trempe à l'azote ne permettent pas d'obtenir une vitesse de décroissance en température suffisante. On a donc essayé des trempes à l'hydrogène ou à l'hélium. Un inconvénient de l'utilisation de ces gaz est que les installations existantes, dimensionnées pour la trempe sous azote, en particulier en ce qui concerne la puissance de ventilation, ne sont pas optimisées pour l'utilisation de gaz de densité sensiblement différente. En outre, l'hélium est un gaz sensiblement plus coûteux que l'azote, tandis que l'hydrogène présente des risques d'inflammabilité et son utilisation nécessite de prendre des précautions particulières.However, it can be seen that, in certain critical cases, the nitrogen quenching plants do not make it possible to obtain a decay rate in sufficient temperature. We have therefore tried quenching with hydrogen or helium. A disadvantage of the use of these gases is that the existing installations, dimensioned for quenching under nitrogen, in particular with regard to the ventilation power, are not optimized for the use of gas with a substantially different density. In addition, helium is a gas significantly more expensive than nitrogen, while hydrogen has flammability risks and its use requires special precautions.

Il faut d'ailleurs souligner que toutes ces approches antérieures (telles celles recommandant l'utilisation d'hydrogène ou d'hélium) étaient basées sur une recherche d'amélioration du seul transfert convectif au sein de la chambre de traitement.It should also be emphasized that all these previous approaches (such as those recommending the use of hydrogen or helium) were based on a search for improvement of the only convective transfer within the treatment chamber.

Pour illustrer l'art antérieur, on peut également citer l'approche particulière du document EP-1 050 592 , qui prévoit la présence de gaz tels CO2 ou NH3 dans le gaz de trempe, mais en ne notant pas d'amélioration supplémentaire dans l'efficacité de trempe par rapport aux mélanges inertes déjà pratiqués, l'utilité de leur présence étant surtout liée d'après le document à deux aspects, d'une part l'obtention simultanée d'effets thermochimiques (oxydation, nitruration etc. ...) ce que l'on conçoit et d'autre part l'intégration physique facilité dans un procédé global de traitement thermique (eux : dans un procédé de cémentation) puisque la trempe en aval peut alors utiliser les même gaz que le traitement proprement dit situé en amont.To illustrate the prior art, mention may also be made of the particular approach of the document EP-1 050 592 , who predict the presence of gases such CO 2 or NH 3 in the quenching gas, but not noting further improvement in the quenching efficiency compared to the inert mixtures already practiced, the utility of their presence being mostly related to after the two-aspect document, on the one hand the simultaneous obtaining of thermochemical effects (oxidation, nitriding, etc., etc.), which is conceived, and on the other hand the physical integration facilitated in a global process of heat treatment (them: in a cementation process) since downstream quenching can then use the same gases as the actual processing upstream.

On peut également citer le cas du document EP-1 211 329 où incidemment CO2 ou CO sont présents, mais sans qu'aucune considération volontariste ou recherche d'optimisation des coefficients de transfert ne soit effectuée.We can also mention the case of the document EP-1,211,329 where incidentally CO 2 or CO are present, but without any voluntaristic consideration or search for optimization of the transfer coefficients is carried out.

Toujours dans le domaine du CO2, on pourra également se reporter aux deux documents suivants où lorsque CO2 est évoqué dans des opérations de trempe c'est dans une toute autre application (par exemple en plasturgie comme dans le document WO 00/07790 ) ou encore sous forme liquide comme dans le document WO 97/15420 .Still in the field of CO 2 , reference may also be made to the following two documents where when CO 2 is mentioned in quenching operations it is in a completely different application (for example in plastics as in the document WO 00/07790 ) or in liquid form as in the document WO 97/15420 .

Dans ce contexte un des objets de la présente invention est de prévoir un procédé de trempe utilisant un gaz de refroidissement thermiquement plus efficace que l'azote mais qui soit peu coûteux et simple à utiliser, permettant d'assurer le refroidissement des matériaux les plus exigeants.In this context, one of the objects of the present invention is to provide a quenching process using a cooling gas which is thermally more effective than nitrogen but which is inexpensive and easy to use, making it possible to cool the most demanding materials. .

Un autre objet de la présente invention est de prévoir un procédé de refroidissement utilisant un gaz compatible avec les installations existantes fonctionnant actuellement à l'azote (et donc ne nécessitant aucune modification significative d'installation).Another object of the present invention is to provide a cooling method using a gas compatible with existing installations currently operating with nitrogen (and therefore not requiring any significant modification of the installation).

Pour atteindre ces objets, la présente invention prévoit, dans un procédé de refroidissement rapide de pièces métalliques à l'aide d'un gaz dé refroidissement sous pression, l'utilisation d'un gaz de refroidissement qui comprend un ou plusieurs gaz absorbant le rayonnement infra-rouge conformément à la revendication 1 ci-après.To achieve these objects, the present invention provides, in a method of rapidly cooling metal parts using a pressurized cooling gas, the use of a cooling gas which comprises one or more gases absorbing the gas. infrared radiation according to claim 1 below.

On conçoit que la notion d' « amélioration par rapport aux conditions traditionnelles de refroidissement sous azote » doit s'entendre selon l'invention comme comparant des conditions identiques de pression, température ou encore installation de trempe.It is conceivable that the concept of "improvement over traditional conditions of cooling under nitrogen" must be understood according to the invention as comparing identical conditions of pressure, temperature or quenching installation.

Le procédé selon l'invention pourra par ailleurs adopter l'une ou plusieurs des caractéristiques techniques suivante :

  • le gaz de refroidissement comprend en outre un gaz complémentaire.
  • la composition du gaz de refroidissement est ajustée également de façon à optimiser le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement.
  • l'opération de refroidissement est menée au sein d'une enceinte où sont disposées les pièces à traiter, munie d'un système d'agitation de gaz, et la composition du gaz de refroidissement est ajustée de façon à obtenir une densité moyenne du gaz de refroidissement ainsi constitué qui soit adaptée audit système d'agitation de l'enceinte , sans qu'il soit nécessaire d'y apporter des modifications significatives.
  • la composition du gaz de refroidissement est ajustée également de façon à ce qu'il puisse se produire, durant la phase de refroidissement des pièces, des réactions chimiques endothermiques entre le ou un des gaz absorbant et un autre des constituants du gaz de refroidissement.
  • ledit gaz absorbant le rayonnement infra-rouge est le CO2.
  • ledit gaz absorbant le rayonnement infra-rouge est choisi dans le groupe formé des hydrocarbures saturés ou insaturés, de CO, H2O, NH3, NO, N2O, NO2 et leurs mélanges.
  • le gaz de refroidissement est un mélange binaire CO2-He, dont la teneur en CO2 est comprise entre 30 et 80%.
  • le gaz de refroidissement est un mélange binaire CO2-H2, dont la teneur en CO2 est comprise entre 30 et 60%.
  • on effectue une opération de recyclage du gaz de refroidissement après usage, apte à re-comprimer le gaz avant une utilisation ultérieure, et le cas échéant également à séparer et/ou épurer pour ainsi récupérer tout ou partie des constituants du gaz de refroidissement.
The method according to the invention may also adopt one or more of the following technical characteristics:
  • the cooling gas further comprises a complementary gas.
  • the composition of the cooling gas is also adjusted so as to optimize the convective transfer coefficient with respect to the convective transfer coefficients of each constituent of the cooling gas taken individually.
  • the cooling operation is conducted within an enclosure where the parts to be treated are arranged, provided with a gas stirring system, and the composition of the cooling gas is adjusted so as to obtain an average density of the gas cooling device thus formed which is adapted to said stirring system of the enclosure, without it being necessary to make significant changes thereto.
  • the composition of the cooling gas is also adjusted so that, during the cooling phase of the parts, endothermic chemical reactions can take place between the one or one of the absorbing gases and another one of the constituents of the cooling gas.
  • said gas absorbing infra-red radiation is CO 2 .
  • said infrared absorbing gas is selected from the group consisting of saturated or unsaturated hydrocarbons, CO, H 2 O, NH 3 , NO, N 2 O, NO 2 and mixtures thereof.
  • the cooling gas is a binary CO 2 -He mixture, whose CO 2 content is between 30 and 80%.
  • the cooling gas is a binary CO 2 -H 2 mixture whose CO 2 content is between 30 and 60%.
  • an operation is carried out for recycling the cooling gas after use, able to repress the gas before further use, and if necessary also to separate and / or purify so as to recover all or part of the constituents of the cooling gas.

L'invention concerne également l'utilisation dans une installation de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, d'un gaz de refroidissement comprenant de 20 à 80% d'un gaz absorbant le rayonnement infra-rouge et de 80 à 20% d'hydrogène ou d'hélium ou de leurs mélanges, telle que revendiquée en revendication 11 ci-après.The invention also relates to the use in a rapid cooling installation of metal parts using a pressurized cooling gas, a cooling gas comprising 20 to 80% of a gas absorbing radiation below and from 80 to 20% hydrogen or helium or mixtures thereof, as claimed in claim 11 below.

Comme on l'aura compris les notions selon l'invention de « choix » du ou des gaz absorbant, ou encore d' « ajustement » pour atteindre des propriétés souhaitées de coefficient de transfert, ou de densité ou encore de caractère endothermique, doit s'entendre comme concernant la nature des constituants du mélange et/ou leur teneur dans ce mélange.As will be understood the concepts according to the invention of "choice" of the absorbing gas or of "adjustment" to achieve desired properties of transfer coefficient, or density or endothermic nature, must s 'hear as concerning the nature of the constituents of the mixture and / or their content in this mixture.

C'est donc le mérite de la présente invention de s'être démarquée de l'approche traditionnelle de l'art antérieur d'amélioration simple des conditions de transfert convectif, pour se rendre compte que la part du transfert radiatif dans le transfert thermique global est située entre environ 7 et 10% (dans la gamme allant de 400 à 1050 °C), donc très significative, et qu'il était donc tout à fait avantageux de s'intéresser à cet aspect du transfert pour le prendre en compte et l'exploiter.It is therefore the merit of the present invention to have distinguished from the traditional approach of the prior art of simple improvement of the convective transfer conditions, to realize that the share of radiative transfer in the global heat transfer is between about 7 and 10% (in the range of 400 to 1050 ° C), so very significant, and it was therefore quite advantageous to look at this aspect of the transfer to take it into account and exploit it.

Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1, décrite précédemment, représente un exemple d'installation de trempe au gaz ;
  • les figures 2A et 2B représentent le coefficient de transfert thermique convectif de différents mélanges de gaz à diverses pressions, dans le cas d'un fluide en écoulement parallèle entre des cylindres; et
  • la figure 3 représente des courbes de variation de température en fonction du temps pour divers gaz de trempe utilisés dans les mêmes conditions.
These and other objects, features, and advantages of the present invention will be set forth in detail in the following description of particular embodiments given as a non-limiting example in connection with the accompanying drawings in which:
  • FIG. 1, previously described, represents an example of a gas quenching installation;
  • FIGS. 2A and 2B show the convective heat transfer coefficient of different gas mixtures at various pressures, in the case of a fluid in parallel flow between cylinders; and
  • FIG. 3 shows temperature variation curves as a function of time for various quenching gases used under the same conditions.

Selon la présente invention, on propose d'utiliser comme gaz de trempe un gaz absorbant le rayonnement infra-rouge ou un mélange à base de tels gaz absorbant le rayonnement infra-rouge (ci-après désigné par gaz absorbant), tel que le dioxyde de carbone (CO2), et additionné d'un ou de plusieurs gaz présentant une bonne aptitude au transfert de chaleur convectif (ci-après désigné par gaz additif) choisi parmi l'hélium ou l'hydrogène.According to the present invention, it is proposed to use as quenching gas an infra-red radiation absorbing gas or a mixture based on such infra-red radiation absorbing gases (hereinafter referred to as absorbing gas), such as dioxide. of carbon (CO 2 ), and added one or more gases having a good ability to convective heat transfer (hereinafter referred to as additive gas) selected from helium or hydrogen.

Un tel mélange présente l'avantage, par rapport aux gaz ou mélanges de gaz de trempe traditionnels utilisant des gaz transparents aux rayonnements infra-rouges, comme l'azote, l'hydrogène, et l'hélium, d'absorber de la chaleur à la fois par phénomènes convectif et radiatif, augmentant ainsi le flux de chaleur global extrait d'une charge à refroidir.Such a mixture has the advantage over conventional gas or quench gas mixtures using infrared-transparent gases, such as nitrogen, hydrogen, and helium, to absorb heat at low temperatures. both by convective and radiative phenomena, thus increasing the global heat flux extracted from a charge to be cooled.

On peut éventuellement ajouter à ce mélange, d'autres gaz, ci-après désignés par gaz complémentaire, tel que l'azote, envisagé aussi bien comme simple gaz porteur que dans un rôle plus actif permettant comme on le verra plus loin d'optimiser les propriétés du mélange de gaz comme la densité, la conductivité thermique, la viscosité etc..It is possible to add to this mixture, other gases, hereinafter referred to as a complementary gas, such as nitrogen, envisaged both as a simple carrier gas and in a more active role allowing, as will be seen later, to optimize properties of the gas mixture such as density, thermal conductivity, viscosity etc.

Selon un des modes de réalisation de la présente invention, tel qu'illustré en figures 2A et 2B, on propose d'utiliser certains mélanges de gaz tels que définis ci-dessus, qui présentent en outre de meilleurs coefficients de transfert thermique convectif (kH) en Watt par mètre carré et par Kelvin que chacun des gaz pris séparément. Comme on l'a vu précédemment en effet, selon un des modes avantageux de mise en oeuvre de l'invention, on va ajuster la composition du gaz de refroidissement de façon à « optimiser » le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement. On doit entendre alors par « optimisation » ici le fait de se situer au maximum de la courbe considérée, ou bien plus bas (par exemple pour des raisons économique) mais en tout état de cause de façon à disposer d'un coefficient de transfert convectif qui soit meilleur que chacun des coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement.According to one of the embodiments of the present invention, as illustrated in FIGS. 2A and 2B, it is proposed to use certain gas mixtures as defined above, which moreover have better coefficients of convective heat transfer (k H ) in Watt per square meter and per Kelvin that each of the gases taken separately. As has been seen previously, in one of the advantageous embodiments of the invention, the composition of the cooling gas will be adjusted so as to "optimize" the convective transfer coefficient with respect to the transfer coefficients. convective of each of the components of the cooling gas taken individually. We must then understand by "optimization" here being at the maximum of the curve considered, or much lower (for example for economic reasons) but in any case to have a convective transfer coefficient which is better than each of the convective transfer coefficients of each of the components of the cooling gas taken individually.

Selon un autre mode avantageux de mise en oeuvre de la présente invention, il est proposé d'utiliser un mélange de gaz absorbant (et le cas échéant de gaz additif), avec éventuellement l'ajout de gaz complémentaires, dans des conditions optimisées de densité telles que l'on peut effectuer une trempe dans des installations de trempe habituellement prévues et optimisées pour fonctionner en présence d'azote. Pour cela, on mélange par exemple au dioxyde de carbone de l'hélium, pris comme gaz additif, de telle sorte à combiner une optimisation du coefficient de transfert de chaleur par convection et une densité moyenne du mélange qui soit du même ordre de grandeur que celle de l'azote. On peut alors utiliser les installations existantes avec des vitesses et puissances de ventilation comparables et les structures de ventilation et de déflection de gaz existantes, sans avoir à apporter de modifications significatives à l'installation.According to another advantageous embodiment of the present invention, it is proposed to use a mixture of absorbent gas (and optionally additive gas), possibly with the addition of additional gases, under optimized density conditions. such as can be quenched in quenching plants usually provided and optimized to operate in the presence of nitrogen. For this purpose, for example, carbon dioxide is mixed with helium, taken as an additive gas, so as to combine an optimization of the convective heat transfer coefficient and an average density of the mixture which is of the same order of magnitude as that of the nitrogen. Existing installations can then be used with comparable ventilation speeds and powers and the existing ventilation and gas deflection structures, without having to make any significant changes to the installation.

Ceci présente l'avantage que, dans une installation donnée, optimisée pour une trempe à l'azote, l'utilisateur pourra, en temps normal, quand cela convient aux matériaux envisagés, utiliser l'azote comme gaz de trempe et, seulement dans des cas particuliers des matériaux plus exigeants, i.e quand les conditions spécifiques des pièces ou des aciers à traiter nécessitent des traitements particuliers, utiliser par exemple le mélange de dioxyde de carbone et d'hélium donné en exemple ou encore le mélange de dioxyde de carbone et d'hydrogène également exemplifié ici.This has the advantage that, in a given installation, optimized for nitrogen quenching, the user can, in normal times, when it is suitable for the materials envisaged, use nitrogen as a quenching gas and, only in particular cases of more demanding materials, ie when the specific conditions of the parts or steels to be treated require particular treatments, for example using the mixture of carbon dioxide and helium given as example or the mixture of carbon dioxide and carbon dioxide. hydrogen also exemplified here.

Bien entendu comme il apparaîtra clairement à l'homme du métier, si l'invention a tout particulièrement été illustrée dans ce qui précède à l'aide du CO2, d'autres gaz absorbant le rayonnement IR sont également envisageables ici sans sortir à aucun moment du cadre de la présente invention tels les hydrocarbures saturés ou insaturés, CO, H2O, NH3, NO, N2O, NO2 et leurs mélanges.Of course, as will be clear to one skilled in the art, if the invention has been particularly illustrated in the foregoing with the aid of CO 2 , other gases absorbing IR radiation are also conceivable here without going out to any timing of the present invention such as saturated or unsaturated hydrocarbons, CO, H 2 O, NH 3 , NO, N 2 O, NO 2 and mixtures thereof.

La figure 2A représente, pour des pressions de 5, 10 et 20 bars, le coefficient de transfert thermique convectif kH d'un mélange de CO2 et d'hélium, pour diverses proportions de CO2 dans le mélange. Ainsi, les abscisses donnent le rapport entre la concentration de CO2, c(CO2), et la concentration totale de CO2 et He, c(CO2+He). On s'aperçoit que le coefficient de transfert thermique convectif présente un maximum pour des valeurs de concentration de CO2 comprises entre environ 40 et 70%, en l'occurrence d'environ 650 W/m2/K à 20 bars pour une concentration de l'ordre de 60%. Ainsi, le mélange présente non seulement l'avantage d'avoir une densité voisine de celle de l'azote mais en plus de présenter un coefficient de transfert thermique convectif plus élevé que celui de CO2 pur.FIG. 2A represents, for pressures of 5, 10 and 20 bar, the coefficient of convective heat transfer k H of a mixture of CO 2 and helium, for various proportions of CO 2 in the mixture. Thus, the abscissas give the ratio between the concentration of CO 2 , c (CO 2 ), and the total concentration of CO 2 and He, c (CO 2 + He). It can be seen that the convective heat transfer coefficient has a maximum for CO 2 concentration values of between approximately 40 and 70%, in this case approximately 650 W / m 2 / K at 20 bar for a concentration. about 60%. Thus, the mixture has not only the advantage of having a density close to that of nitrogen but in addition to having a convective thermal transfer coefficient higher than that of pure CO 2 .

La figure 2B représente des courbes similaires pour des mélanges de dioxyde de carbone (CO2) et d'hydrogène (H2). On s'aperçoit que l'on a un maximum du coefficient de transfert thermique convectif kH pour des valeurs de concentration de CO2 comprises entre environ 30 à 50%, en l'occurrence d'environ 850 W/m2/K à 20 bars pour une concentration de l'ordre de 40%. En outre, on note que le coefficient de transfert thermique convectif kH est meilleur pour un mélange de dioxyde de carbone et d'hydrogène que pour un mélange de CO2 et d'hélium.Figure 2B shows similar curves for mixtures of carbon dioxide (CO 2 ) and hydrogen (H 2 ). It can be seen that there is a maximum of the convective heat transfer coefficient k H for CO 2 concentration values between about 30 to 50%, in this case about 850 W / m 2 / K at 20 bars for a concentration of about 40%. In addition, it is noted that the convective heat transfer coefficient k H is better for a mixture of carbon dioxide and hydrogen than for a mixture of CO 2 and helium.

Un autre avantage de l'utilisation d'un tel mélange de dioxyde de carbone et d'hydrogène est que, dans les conditions usuelles de trempe de pièces en acier, il se produit des réactions chimiques endothermiques entre le CO2 et l'hydrogène, ce qui contribue encore à la rapidité du refroidissement. Par ailleurs, on constate que, en présence de CO2 le risque d'explosion lié à l'hydrogène est sensiblement réduit, même s'il se produit une introduction malencontreuse d'oxygène.Another advantage of using such a mixture of carbon dioxide and hydrogen is that, under the usual quenching conditions of steel parts, endothermic chemical reactions occur between the CO 2 and the hydrogen, which further contributes to the rapidity of cooling. In addition, it is found that in the presence of CO 2 the risk hydrogen-related explosion is substantially reduced, even if an unfortunate introduction of oxygen occurs.

La figure 3 illustre le résultat de calculs simulant le refroidissement par transfert convectif d'un cylindre en acier avec divers gaz de refroidissement dans le cas de l'écoulement du mélange parallèlement à la longueur des cylindres (cylindres simulant le cas de pièces allongées). On a représenté des courbes pour l'azote pur (N2), pour un mélange à 60% de CO2 et 40% d'hélium, pour de l'hydrogène pur, et pour un mélange à 40% de CO2 et 60% d'hydrogène. On constate que c'est ce dernier mélange qui donne les meilleurs résultats, c'est-à-dire la plus grande vitesse de refroidissement entre 850 et 500°C. Pour ce dernier mélange, l'amélioration de la vitesse de trempe est de l'ordre de 20% par rapport à l'hydrogène seul et de l'ordre de 100% par rapport à l'azote seul.FIG. 3 illustrates the result of calculations simulating convective transfer cooling of a steel cylinder with various cooling gases in the case of the flow of the mixture parallel to the length of the cylinders (cylinders simulating the case of elongate parts). Curves for pure nitrogen (N 2 ), 60% CO 2 and 40% helium for pure hydrogen, and 40% CO 2 and 60 are shown. % hydrogen. It is found that it is this last mixture that gives the best results, that is to say the fastest cooling rate between 850 and 500 ° C. For this last mixture, the improvement of the quenching rate is of the order of 20% relative to the hydrogen alone and of the order of 100% relative to the nitrogen alone.

Bien entendu, comme déjà souligné précédemment, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme du métier, notamment en ce qui concerne le choix des gaz, l'optimisation des proportions de chaque gaz, étant entendu que l'on pourra si on le souhaite utiliser des mélanges ternaires tels CO2-He-H2 et que l'on pourra éventuellement rajouter d'autres gaz, appelés plus haut gaz complémentaires.Of course, as already pointed out above, the present invention is capable of various variants and modifications which will appear to those skilled in the art, in particular as regards the choice of gases, the optimization of the proportions of each gas, it being understood that the If desired, it is possible to use ternary mixtures such as CO 2 -H e -H 2 and possibly other gases, referred to as higher complementary gases, may be added.

Claims (11)

  1. Method for rapidly cooling metal parts using a pressurized cooling gas, in which method the following measures are implemented:
    - the cooling gas comprises a content of between 5% and 80% by volume, preferably between 20% and 80% by volume, of one or a plurality of gases absorbing infrared radiation, selected from the group formed of saturated or unsaturated hydrocarbons, CO2, CO, H2O, NH3, NO, N2O, NO2, and mixtures thereof, so as to improve the heat transfer to the part by combining radiative and convective heat transfer phenomena, and so as to improve the convective heat transfer coefficient in comparison with conventional conditions of cooling under nitrogen;
    - the cooling gas also comprises an additive gas having a good convective heat transfer capability, selected from helium or hydrogen or mixtures thereof;
    the composition of the cooling as being also adjusted so as to obtain an average density of the cooling gas thus produced which is close to that of nitrogen.
  2. Cooling method according to Claim 1, characterized in that the cooling gas further comprises a supplementary gas.
  3. Cooling method according to Claim 1 or 2, characterized in that the composition of the cooling gas is also adjusted so as to optimize the convective heat transfer coefficient in comparison with the convective heat transfer coefficients of each of the components of the cooling gas considered individually.
  4. Cooling method according to one of the preceding claims, characterized in that the cooling operation is carried out in a vessel in which the parts to be treated are disposed, the vessel being equipped with a gas stirring system, and in that the said adjustment making it possible to obtain an average density of the cooling gas thus produced which is close to that of nitrogen makes it possible to obtain an average density of the cooling gas thus produced which is adapted to said stirring system of the vessel, without the need to make significant changes to said vessel.
  5. Cooling method according to one of the preceding claims, characterized in that the composition of the cooling gas is also adjusted so that, during the parts cooling phase, endothermic chemical reactions can occur between the absorbent gas or one of the absorbent gases and another of the components of the cooling gas.
  6. Cooling method according to one of the preceding claims, characterized in that said infrared absorbing gas is CO2.
  7. Cooling method according to one of Claims 1 to 5, characterized in that said infrared absorbing gas is selected from the group formed of saturated or unsaturated hydrocarbons, CO, H2O, NH3, NO, N2O, NO2, and mixtures thereof.
  8. Cooling method according to one of Claims 1 to 6, characterized in that the cooling gas is a binary CO2/He mixture, of which the CO2 content is between 30 and 80%.
  9. Cooling method according to one of Claims 1 to 6, characterized in that the cooling gas is a binary CO2/H2 mixture, of which the CO2 content is between 30 and 60%.
  10. Cooling method according to one of the preceding claims, characterized in that an operation of recycling of the cooling gas is carried out after use, suitable for recompressing the gas before a subsequent use, and, as required, also for separating and/or purifying it, thereby to recover all or part of the components of the cooling gas.
  11. Use, in an installation for rapidly cooling metal parts using a pressurized cooling gas, which installation is equipped with a stirring system, of a cooling gas comprising from 20 to 80% of an infrared absorbing gas, selected from the group formed of saturated or unsaturated hydrocarbons, CO2, CO, H2O, NH3, NO, N2O, NO2, and mixtures thereof, and comprising from 80 to 20% of hydrogen or helium or mixtures thereof, the composition of the cooling gas being adjusted so as to obtain an average density of the cooling gas thus produced which is close to that of nitrogen, thus making it possible to obtain an average density of the cooling gas thus produced which is adapted to said stirring system so as to make significant changes to the installation unnecessary.
EP03712227A 2002-09-20 2003-01-09 Rapid cooling method for parts by convective and radiative transfer Expired - Lifetime EP1543170B8 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0211680 2002-09-20
FR0211680A FR2844809B1 (en) 2002-09-20 2002-09-20 RAPID COOLING PROCESS OF PARTS BY CONVECTIVE AND RADIATIVE TRANSFER
PCT/FR2003/000053 WO2004027098A1 (en) 2002-09-20 2003-01-09 Rapid cooling method for parts by convective and radiative transfer

Publications (3)

Publication Number Publication Date
EP1543170A1 EP1543170A1 (en) 2005-06-22
EP1543170B1 true EP1543170B1 (en) 2007-12-05
EP1543170B8 EP1543170B8 (en) 2008-04-23

Family

ID=31970862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03712227A Expired - Lifetime EP1543170B8 (en) 2002-09-20 2003-01-09 Rapid cooling method for parts by convective and radiative transfer

Country Status (14)

Country Link
US (1) US20060048868A1 (en)
EP (1) EP1543170B8 (en)
JP (1) JP4490270B2 (en)
KR (1) KR100953818B1 (en)
CN (1) CN100567516C (en)
AT (1) ATE380256T1 (en)
AU (1) AU2003216799A1 (en)
BR (1) BRPI0314597B1 (en)
CA (1) CA2498929C (en)
DE (1) DE60317912T2 (en)
ES (1) ES2297138T3 (en)
FR (1) FR2844809B1 (en)
MX (1) MXPA05002716A (en)
WO (1) WO2004027098A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054627A1 (en) * 2004-11-11 2006-05-18 Linde Ag Device for cooling long objects
FR2890979B1 (en) * 2005-09-16 2007-11-02 Air Liquide METHOD FOR PREVENTING THE FORMATION OF CARBON MONOXIDE DURING A GAS TREATMENT OPERATION
DE102006012985A1 (en) * 2006-03-21 2007-10-11 Linde Ag Method and device for rapid cooling of workpieces
CN107275251B (en) * 2016-04-08 2020-10-16 上海新昇半导体科技有限公司 Method for reducing temperature of chip in pre-pumping cavity and chip cooling device
CH713765A1 (en) 2017-05-10 2018-11-15 Synhelion Sa C/O Avv Luca Tenchio Method for operating a receiver and receiver for carrying out the method.
EP3649420B1 (en) 2017-07-07 2023-06-07 Synhelion SA Method for transferring the heat contained in a gas, and heat exchanger for this purpose
KR102080934B1 (en) 2018-04-18 2020-02-24 (주)알룩스메뉴펙처링 air quenching device for cylinder block and cylinder head
CH715527A2 (en) * 2018-11-08 2020-05-15 Eni Spa Procedure for operating a receiver and receiver for executing the procedure.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173124A (en) * 1990-06-18 1992-12-22 Air Products And Chemicals, Inc. Rapid gas quenching process
DE4208485C2 (en) * 1992-03-17 1997-09-04 Wuenning Joachim Method and device for quenching metallic workpieces
SE504320C2 (en) * 1995-06-22 1997-01-13 Aga Ab Process and plant for treating components with a gas mixture
FR2746112B1 (en) * 1996-03-13 1998-06-05 METHOD OF CONTINUOUS HEAT TREATMENT OF METAL STRIPS IN ATMOSPHERES OF DIFFERENT NATURE
DE19709957A1 (en) * 1997-03-11 1998-09-17 Linde Ag Process for gas quenching of metallic workpieces after heat treatments
DE19920297A1 (en) * 1999-05-03 2000-11-09 Linde Tech Gase Gmbh Process for the heat treatment of metallic workpieces
DE59903032D1 (en) * 1999-09-24 2002-11-14 Ipsen Int Gmbh Process for the heat treatment of metallic workpieces
GB0029281D0 (en) * 2000-11-30 2001-01-17 Boc Group Plc Quenching Method & Apparatus
US20020104589A1 (en) * 2000-12-04 2002-08-08 Van Den Sype Jaak Process and apparatus for high pressure gas quenching in an atmospheric furnace

Also Published As

Publication number Publication date
EP1543170B8 (en) 2008-04-23
AU2003216799A1 (en) 2004-04-08
WO2004027098A1 (en) 2004-04-01
KR20050084565A (en) 2005-08-26
CA2498929C (en) 2011-04-19
CA2498929A1 (en) 2004-04-01
BR0314597A (en) 2005-08-09
BRPI0314597B1 (en) 2015-06-09
US20060048868A1 (en) 2006-03-09
ATE380256T1 (en) 2007-12-15
FR2844809B1 (en) 2007-06-29
WO2004027098A8 (en) 2005-09-29
JP2005539142A (en) 2005-12-22
ES2297138T3 (en) 2008-05-01
KR100953818B1 (en) 2010-04-21
CN100567516C (en) 2009-12-09
DE60317912T2 (en) 2008-06-12
AU2003216799A8 (en) 2004-04-08
DE60317912D1 (en) 2008-01-17
EP1543170A1 (en) 2005-06-22
FR2844809A1 (en) 2004-03-26
JP4490270B2 (en) 2010-06-23
CN1681947A (en) 2005-10-12
MXPA05002716A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
EP1543170B1 (en) Rapid cooling method for parts by convective and radiative transfer
EP2038210B1 (en) Reactor with a thermal gradient controlled for the production of pure hydrogen
CH634112A5 (en) STEEL FUEL PROCESS.
CA2171793A1 (en) Nitrogen generation process and plant for thermal processing
CA1215901A (en) Process for superficial hardening of metal products
CA2039515A1 (en) Method and installation for the thermal cure of objects with insertion in a gazeous mixture
EP0795616A1 (en) Process for continuously heat treating metal strip in different atmospheres
FR2810340A1 (en) GAS QUENCHING CELL
CA2766788A1 (en) Cryogenic treatment of martensitic steel with mixed hardening
EP1844169B1 (en) Gas quenching cell for steel parts
WO2005108629A1 (en) Gas quenching method
CA2444399C (en) Method for enhancing the metallurgical quality of products treated in a furnace
BE1006163A4 (en) Method for heat treatment of metal objects in protective atmosphere.
FR2722212A1 (en) Carburisation or carbonitriding with min. carbon di:oxide and no cyanide emissions
Dolinsky et al. Permeation of deuterium and tritium through the martensitic steel F82H
EP0375491A1 (en) Method and installation for heat treatment for case-hardening, carbonitriding or heating before the quenching of metallic work pieces
BE1015309A3 (en) Annealing process for sheet metal.
Biggemann et al. Near infra-red photoluminescence of Nd3+ in hydrogenated amorphous silicon sub-nitrides a-SiNx: H
EP2800723B1 (en) Method for generating a mixture of gas containing substantially equal proportions of carbon monoxide and hydrogen
WO2007031667A1 (en) Method for preventing formation of carbon monoxide during a gas quenching operation
BE1020489A3 (en) INSTALLATION AND METHOD FOR ENERGY RECOVERY USING SUPERCRITICAL CO2.
Liu et al. Infrared studies of laser induced oxide on (1 0 0) Si and SiGe layers
BE461261A (en)
BE507085A (en)
BE397523A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20060406

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

Owner name: ETUDES ET CONSTRUCTIONS MECANIQUES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

Owner name: ETUDES ET CONSTRUCTIONS MECANIQUES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60317912

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080227

RIN2 Information on inventor provided after grant (corrected)

Inventor name: GOLDSTEINAS, AYMERIC

Inventor name: PELISSIER, LAURENT

Inventor name: DOMERGUE, DIDIER

Inventor name: CHAFFOTTE, FLORENT

Inventor name: LEFEVRE, LINDA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2297138

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RIN2 Information on inventor provided after grant (corrected)

Inventor name: LEFEVRE, LINDA

Inventor name: PELISSIER, LAURENT

Inventor name: GOLDSTEINAS, AYMERIC

Inventor name: CHAFFOTTE, FLORENT

Inventor name: DOMERGUE, DIDIER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

BERE Be: lapsed

Owner name: ETUDES ET CONSTRUCTIONS MECANIQUES

Effective date: 20080131

Owner name: L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATIO

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080505

26 Opposition filed

Opponent name: ALD VACUUM TECHNOLOGIES GMBH

Effective date: 20080625

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080306

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080109

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20110221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 60317912

Country of ref document: DE

Effective date: 20110221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220119

Year of fee payment: 20

Ref country code: DE

Payment date: 20220119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220107

Year of fee payment: 20

Ref country code: SK

Payment date: 20220110

Year of fee payment: 20

Ref country code: IT

Payment date: 20220120

Year of fee payment: 20

Ref country code: FR

Payment date: 20220119

Year of fee payment: 20

Ref country code: ES

Payment date: 20220325

Year of fee payment: 20

Ref country code: CZ

Payment date: 20211231

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60317912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230109

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230108

REG Reference to a national code

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 5971

Country of ref document: SK

Expiry date: 20230109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230109

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230110