EP1537926B1 - Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit - Google Patents

Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit Download PDF

Info

Publication number
EP1537926B1
EP1537926B1 EP04105685A EP04105685A EP1537926B1 EP 1537926 B1 EP1537926 B1 EP 1537926B1 EP 04105685 A EP04105685 A EP 04105685A EP 04105685 A EP04105685 A EP 04105685A EP 1537926 B1 EP1537926 B1 EP 1537926B1
Authority
EP
European Patent Office
Prior art keywords
tundish
process according
melt
metal melt
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04105685A
Other languages
English (en)
French (fr)
Other versions
EP1537926A1 (de
Inventor
Gerald Hohenbichler
Gerald Eckerstorfer
Markus Brummayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Siemens VAI Metals Technologies GmbH and Co
Siemens VAI Metals Technologies GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies GmbH and Co, Siemens VAI Metals Technologies GmbH Austria filed Critical Siemens VAI Metals Technologies GmbH and Co
Priority to AT04105685T priority Critical patent/ATE437710T1/de
Publication of EP1537926A1 publication Critical patent/EP1537926A1/de
Application granted granted Critical
Publication of EP1537926B1 publication Critical patent/EP1537926B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/02Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by volume

Definitions

  • the invention relates to a method for producing a cast high-purity metal strand from a molten metal, preferably a molten steel, wherein the molten metal is supplied from a melt container controlled a distribution vessel and controlled by this distribution vessel is discharged into a continuous casting mold and wherein the molten metal at least in the distribution vessel during the stationary Casting operation is covered with a covering.
  • the invention relates to a starting method for a continuous casting plant for producing a cast high-purity metal strand from a molten metal, in particular a molten steel.
  • the continuous casting plant can be equipped with a mold of any type.
  • the cross-sectional format of the metal strand to be cast can also be arbitrary. However, especially in the production of thin metal strips with strip thicknesses below 6.0 mm and strip widths above 800 mm, special demands are made of the starting phase of the casting process in order to be able to produce a strip after the first few meters of cast strip which meets high quality standards.
  • the invention particularly, but not exclusively, relates to strip casting with a two-roll caster according to the vertical two-roll casting process.
  • the liquid metal is usually supplied from a ladle via at least one intermediate vessel or distribution vessel of a cooled mold in which the solidification process of the molten metal to a metal strand is at least initiated.
  • the transfer of the molten metal from the ladle into the tundish takes place predominantly by means of shadow tubes and from the distributor into the mold through dip tubes, which dive into the melt pool of the respective downstream vessel in the stationary casting operation, thus ensuring as steady and uniform a flow and forwarding of the molten metal as far as possible allow the mold.
  • the molten metal accumulated in the tundish and, if appropriate, in the mold, is covered by a slag layer which protects the metal bath surface from oxidation.
  • the object of the invention is therefore to avoid these disadvantages and difficulties of the prior art and to propose a method of the type described above, with which a metal strand of high purity can be poured with the beginning of the quasi-stationary casting phases, in which the start phase of Casting process can be kept as short as possible and at least mitigate the effects of non-stationary casting phases as quickly as possible.
  • the term "distribution vessel” here is not limited to the receiving vessel for molten metal, through which the transfer or distribution of molten metal is made possible in a mold, thus directly preceded by a mold, but may include all melt vessels between the ladle and the mold, in where the molten metal can be covered with a covering.
  • Another expedient measure for rapidly achieving the at least approximately stationary runner bath level is that the supply of the molten metal into the distribution vessel until reaching a distributor bath level of 5% to 50%, preferably 10% to 30%, of the at least approximately stationary runner bath level takes place at approximately maximum filling rate and then the supply of molten metal in the distribution vessel, until reaching the at least approximately stationary Angussbadadorière, with respect to the approximately maximum filling rate reduced filling rate.
  • approximately maximum fill rate is meant that the supply of the molten metal into the tundish at maximum or near maximum opening of the pan pusher.
  • An approximately maximum filling rate in the context of the invention is given when 80% or more of a theoretically possible filling rate is achieved. This also prevents freezing of the slide slide opening in the Ang collectphase or a significant narrowing of the flow opening and thus reducing the flow rate.
  • the equivalent filling weight of the molten metal in the distribution vessel can also be used as the determining measured variable, for example for the supply amount of molten metal with maximum filling rate.
  • the reduced filling rate does not represent a constant value over the remaining filling time, but follows a continuous or stepwise decreasing time course, whereby the flow conditions in the distribution vessel continuously calm down.
  • the supply of molten metal into the distribution vessel is interrupted for a certain period of time upon reaching the at least approximately stationary runner bath level height.
  • the closing of the pan slide after reaching the at least approximately stationary Angussbadaptaptproof altar has the advantage that existing foreign inclusions, especially non-metallic inclusions, float much faster at the bathroom mirror and in the slag, if a covering was already abandoned, can be deposited.
  • the short-term interruption of the supply of melt is a good way to increase the quality of the molded product, while at the same time ensuring that the reopening of the pan slide is assured after this calming and deposition phase.
  • the period of interruption of the melt supply is between 8 seconds and 10 minutes, preferably between 60 and 270 seconds.
  • Covering agents usually consist of a cover powder and form a slag layer.
  • a favorable time for the abandonment of a covering means is given if within a period of time which precedes the time of reaching the at least approximately stationary sprue level, the lowest possible filling rate is set and kept constant and, within this period, in particular in the second half thereof Covering agent is applied to the melt bath.
  • a further expedient possibility for the task of a covering means is given when the initial covering of the free bath surface with a covering means begins within the period of interruption of the supply of melt.
  • the covering is applied only at a time at which already a substantial calming of the bath mirror has occurred.
  • an application of the covering at maximum filling rate would lead to a significant entry of foreign particles in the melt and an inhomogeneous distribution of the covering on the melt bath, since the velocities of the liquid phase at the bath level are quite 5 to 10 times higher than the largely stationary operation.
  • the intensity of the surface turbulence increases with the square of the surface velocity.
  • this transient phase also pronounced Badaptwellmaschineen be expected, which favors the flooding of the covering in the metal bath.
  • Appropriately begins the first time covering the free bath surface with a covering in a period of time from 30 seconds, preferably from 8 seconds, before the resumption of the supply of melt after the interruption of the supply of melt.
  • the covering of the free bath surface with a covering at the earliest in a period of time before the beginning of the derivation of Molten metal from the distribution vessel begins which preferably corresponds to at most half of the period of interruption of the supply of molten metal.
  • a further advantageous embodiment results when the covering of the free bath surface with a covering agent begins only after casting of the continuous casting mold.
  • the covering means is not drawn into the molten metal along the outer wall of the shadow tube in the vicinity of the shadow tube immersed in the molten metal, it is expedient if the region of the free bath surface surrounding the shadow tube in the distribution vessel is shielded by a covering with a covering means becomes.
  • shielding are formed by wall elements that either dip from above into the melt bath or protrude from below from the melt bath and surround the shadow tube at a distance. This purposefully creates a "hot spot" around the shadow tube and it is expedient if the wall elements form a closed chamber in which the shadow tube is integrated and the atmosphere enclosed in the chamber is rendered inert.
  • this supply of molten metal into the tundish is quantitatively regulated in response to the discharge of the molten metal from the tundish.
  • the transfer of the molten metal from the distribution vessel into the downstream mold begins in time with the resumption of the supply of molten metal into the distribution vessel.
  • the amount of molten metal supplied to the tundish and the amount of molten metal discharged from the tundish are substantially stationary when a steel strip is cast, with a casting thickness of 1.0 - 5.0 mm and a casting width of 1.0 m to 2.0 m Casting operation between 0.5 t / min and 4.0 t / min, preferably between 0.8 t / min and 2.0 t / min.
  • This information refers to the use of a two-roll casting machine with the desired cast product and appropriate design.
  • the capping agent is applied to the bath surface of the molten metal in the tundish in a surface area of low surface flow rate, waviness of the bath surface, and turbulence intensity.
  • a case by case manual task of the cover means requires adequate accessibility of the distribution vessel for the operator and also brings with the disadvantage of additional slag inclusions by the sudden local task of a larger amount of the covering with it.
  • the covering agent is therefore applied in fine-grained form or in powder form, preferably with a semi-automatic or fully automatic feeding device.
  • the interior of the distribution vessel is shielded by a distributor cover against the free atmosphere, wherein it is expedient if during or before the Clearress an inerting of the distribution vessel takes place in order to largely eliminate the reactive oxygen inside the distribution vessel.
  • the setting and monitoring of the operating casting level height is preferably carried out via a distributor weight measurement or with an equivalent measuring method for level measurement.
  • the runner level or the at least approximately steady runner level may also be determined by other direct or indirect measuring methods, such as, e.g. with floats, optical observation of the bath mirror surface, sound level measurement, eddy current measurement and similar measuring methods.
  • the distribution vessel is free of molten metal at the beginning of the first filling phase and expediently also free of covering agents or slags, as well as refractory residues.
  • Fig. 1 shows a schematic representation of a Zweiwalzeng tellmaschine as a way to carry out the method according to the invention with the essential structural components for feeding the molten metal in the two oppositely rotating casting rolls 1, 2 and the end faces of the casting rollers can be pressed side plates 3 continuous casting mold 4.
  • the molten metal is from a melt container 5, which is usually formed by a replaceable supported on fork arms 6 of a ladle turret ladle, passed through a shadow tube 7 in a distribution vessel 8.
  • the shade tube 7 is associated with a slide closure 9 as a control element for the flow rate. From the distribution vessel 8, the molten metal flows through a submersible pouring tube 10 into the mold cavity 11 of the continuous casting mold 4.
  • the submersible pouring tube 10 is also associated with a slide closure 12 for controlling the quantity of melt to be supplied to the continuous casting mold 4.
  • the closure members can also be formed by plugs, which, projecting from above through the melt bath, controllably close the outflow opening of the respective melt container.
  • the amount of intermediate metal melt stored in the distribution vessel 8 is kept as constant as possible during the stationary casting process. This is achieved by setting a predetermined pouring height h of the molten metal in the distributor vessel and by keeping this level of pouring means largely intact by means of an inflow quantity control. A largely constant G fauxLiteLitewait ensures a uniform melt transfer into the continuous casting mold. 4
  • melt pool strand shells On the cooled cylinder jacket surfaces of the casting rolls 1, 2 are formed in the melt pool strand shells, which are rolled in the narrowest cross section between the casting rolls to a metal strand 13 of predetermined thickness and width, which is further discharged continuously from the casting plant.
  • the continuous casting mold is prepared for the casting start, wherein the casting gap between the casting rolls is closed by a starter strand or appropriate provisions are made for a casting start without startup strand.
  • a start-up method without using a Anfahrstranges is for example in the previously unpublished Austrian patent application A 1367/2002 described.
  • a melt container filled with molten metal is introduced into its pouring position above the distributor vessel.
  • the filling process of the distribution vessel takes place in a possible embodiment according to the in Fig. 2 illustrated filling curve course.
  • the molten metal is passed into the distributor vessel at the greatest possible opening of the slide closure, ie the molten metal enters the distribution vessel at approximately maximum filling rate ⁇ fill, max , the slide closure being kept closed on the outlet side of the distributor vessel becomes.
  • Fig. 3 shows a further embodiment of a possible Gresvenverlaufes, wherein the fill rate ⁇ fill after reaching about 40% of at least approximately stationary Angussbadaptaptiere at time t 1 gradually decreased in several stages is, wherein the reduction of the filling rate in the individual times t 1 to t 5 takes place so that a degressive approximation of the BadLite Eck h pool to the Angussbadaptaptiere h pool, op is done.
  • Fig. 4 shows the increase of the distributor weight m v over the filling time, starting from the empty weight m 0 of the distributor vessel to the distributor weight m 5 , which is achieved upon reaching the at least approximately stationary Angussbadaptaptiere Little h pool, op .
  • the distribution vessel 8 is covered with a distributor cover 16, with which the interior of the distribution vessel is shielded from the atmosphere ( Fig.1 ). This also gives the possibility to carry out an inerting of the interior even before the supply of molten metal.
  • the introduction of the molten metal into the continuous casting mold, or its filling and the initiation of the continuous casting operation begins.
  • the amount of metal melt supplied to the distributor vessel is set as a function of the amount of melt introduced into the continuous casting mold.
  • An operating bath level for the stationary casting operation may well deviate from the runner bath level and will be adjusted in the first phase of the stationary casting operation or as needed.
  • Deviations of the bath level from the desired at least approximately stationary sprue level or operating bath level are detected via a manifold weight measurement.
  • a measured variable characteristic of the level of the bath level is continuously determined and used in a supply control loop for controlling the inflowing molten metal quantity as a control variable.
  • the distribution vessel 8 is supported via measuring cells 17 on a support frame 18, for example a movable distribution carriage.
  • Fig. 5 shows in analogy to Fig. 2 the filling process of the distribution vessel on the basis of the filling rate ⁇ v and the Badadormai Little h pool in the time-dependent course.
  • the molten metal is introduced in a filling phase t 0 to t 1 at the maximum opening of the slide valve closure on the melt vessel in the manifold and the filling process then continued with decaying filling rate in the period t 1 to t 4 .
  • op which extends in the time interval t 4 to t 5 , the supply of melt takes place at a filling rate which is substantially reduced compared with the maximum filling rate but largely kept constant.
  • the task of covering means P on the melt bath in the distribution vessel begins. From the time t 5 of the casting operation begins with the filling of the continuous casting mold, wherein the filling rate of the mold ⁇ m has a time course, such as in Fig. 5 shown in the bottom diagram. At the same time, the fill rate in the distribution vessel ⁇ v is adjusted to an operating bath level h pool, op .
  • a possibility is shown which is intended to largely exclude the entry of masking agent applied to the melt bath into the interior of the melt bath in the region of the outer wall of the shadow tube 7.
  • molten metal flows through the vertically immersed in the melt shadow tube 7 more molten metal from the melt container 5 to continuously.
  • the inflowing molten metal creates a suction action along the shadow tube 7 and, if necessary, draws slag / covering agent collected in this area downward into the molten metal.
  • a cover 21 which is cup-shaped, which surrounds the shadow tube with a radial distance to this and projects from above into the molten metal, the formed slag layer 20 is kept away from the critical area near the shadow tube.
  • This upwardly closed cover 21 can over the Inert gas line 22 are rendered inert if necessary.
  • the shadow tube 7 is located in the outflow direction of the molten metal only schematically illustrated flow-damping element 23 (turbo stop) firmly anchored in the distribution vessel, whereby the inflowing metal beam is strongly braked and redirected targeted.
  • the starting method described has been found to be particularly successful in connection with a distribution vessel, which in the WO 03/051560 is described and has a geometry that promotes the deposition of extraneous particles especially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit aus einer Metallschmelze, vorzugsweise einer Stahlschmelze, wobei die Metallschmelze von einem Schmelzenbehälter geregelt einem Verteilergefäß zugeführt und von diesem Verteilergefäß geregelt in eine Stranggießkokille abgeführt wird und wobei die Metallschmelze zumindest im Verteilergefäß während des stationären Gießbetriebes mit einem Abdeckmittel bedeckt ist.
  • Im speziellen betrifft die Erfindung ein Startverfahren für eine Stranggießanlage zur Herstellung eines gegossenen Metallstranges hoher Reinheit aus einer Metallschmelze, insbesondere einer Stahlschmelze. Die Stranggießanlage kann mit einer Kokille beliebiger Bauart ausgestattet sein. Auch das Querschnittsformat des zu gießenden Metallstranges kann beliebig sein. Jedoch ergeben sich speziell bei der Herstellung von dünnen Metallbändern mit Banddicken unter 6,0 mm und Bandbreiten über 800 mm besondere Anforderungen an die Startphase des Gießprozesses, um bereits nach den ersten Metern gegossenen Bandes ein Band herstellen zu können, welches hohen Qualitätsansprüchen entspricht. Die Erfindung bezieht sich insbesondere, aber nicht ausschließlich, auf das Bandgießen mit einer Zweiwalzengießanlage nach dem vertikalen Zweiwalzen-Gießverfahren.
  • Bei der Herstellung eines gegossenen Metallstranges hoher Reinheit mit einer beliebigen Stranggießanlage wird das flüssige Metall üblicherweise von einer Gießpfanne über zumindest ein Zwischengefäß oder Verteilergefäß einer gekühlten Kokille zugeführt, in der der Erstarrungsprozess der Metallschmelze zu einem Metallstrang zumindest eingeleitet wird. Die Überleitung der Metallschmelze von der Gießpfanne in das Verteilergefäß erfolgt vorwiegend durch Schattenrohre und aus dem Verteiler in die Kokille durch Tauchrohre, die im stationären Gießbetrieb in den Schmelzenpool des jeweils nachgeordneten Gefäßes eintauchen und so eine möglichst beruhigte und gleichmäßige Strömung und Weiterleitung der Metallschmelze bis in die Kokille ermöglichen. Üblicherweise ist die in der Gießpfanne, dem Zwischengefäß und gegebenenfalls in der Kokille angesammelte Metallschmelze von einer Schlackenschicht bedeckt, durch die die Metallbadoberfläche vor Oxidation geschützt wird. Die grundsätzliche Anordnung der Schmelzenaufnahmegefäße bei einer mehrsträngigen Stranggießanlage für Stahl ist beispielsweise aus der US-A 5,887,647 bekannt. Je intensiver die Metallbadbewegung in den einzelnen Schmelzengefäßen abläuft, desto mehr Schlackepartikel werden von der die Metallschmelze bedeckenden Schlackenschicht in das Metallbad eingetragen und desto mehr Partikel des Feuerfestmaterials aus der Ausmauerung der Schmelzengefäße werden durch Erosion ebenfalls dem Metallbad zugeführt. Gleichzeitig wird das Abscheiden von Fremdstoffpartikel aus der Metallschmelze an die Metallbadoberfläche oder in die Schlackenschicht durch zu intensive Metallbadbewegung behindert. Bei großformatigen Metallsträngen bleibt auch in der Kokille noch Zeit zur Abscheidung von Fremdstoffen an die Badoberfläche. Bei kleinformatigen Strängen und insbesondere bei Bändern geringer Dicke muss der Eintrag von Fremdpartikeln in die Kokille möglichst vermieden werden, da in der Kokille die Möglichkeiten für eine Abscheidung von Fremdpartikeln sehr beschränkt sind.
  • Generell ist bekannt, dass die Qualität des gegossenen Stranges herabgesetzt ist, wenn starke Badspiegelschwankungen auftreten, wie sie in der Startphase des Gießprozesses bei der Erstfüllung des Verteilergefäßes unvermeidbar sind, oder wie sie während der Durchführung des Pfannenwechsel beim Sequenzgießen auftreten, bei dem üblicherweise mit der im Verteiler vorrätigen Metallschmelze die Wechselzeit der Pfanne überbrückt wird und daher mit kontinuierlich abnehmender Verteiler-Badspiegelhöhe gegossen wird. Die Stabilität der Schmelzenströmung im Verteilergefäß ist dadurch stark beeinträchtigt und die Metallschmelze ist unerwünschtem Schlackeneintrag ausgesetzt.
  • Aufgabe der Erfindung ist es daher diese Nachteile und Schwierigkeiten des bekannten Standes der Technik zu vermeiden und ein Verfahren der eingangs beschriebenen Art vorzuschlagen, mit dem bereits unmittelbar mit Beginn der quasi-stationären Gießphasen ein Metallstrang hoher Reinheit gegossen werden kann, bei dem die Startphase des Gießprozesses möglichst kurz gehalten werden kann und bei dem zumindest Auswirkungen aus nicht-stationären Gießphasen möglichst schnell abklingen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die sich in einer Erstfüllphase im Verteilergefäß ausbildende freie Badoberfläche der Metallschmelze nach Erreichen einer vorbestimmten wenigstens annähernd stationären Angussbadspiegelhöhe zumindest teilweise mit einem Abdeckmittel bedeckt wird. Als Abdeckmittel kommen alle pulverförmigen oder flüssigen Mittel in Frage, die auf der Metallbadoberfläche aufschwimmend eine weitgehend geschlossene Schutzschicht bilden und damit Reoxidation an der Metallbadoberfläche behindern bzw. vollständig verhindern.
  • Der Begriff "Verteilergefäß" ist hier nicht nur auf das Aufnahmegefäß für Metallschmelze beschränkt, durch welches die Überleitung oder Verteilung von Metallschmelze in eine Kokille ermöglicht wird, somit einer Kokille direkt vorgeordnet ist, sondern kann alle Schmelzengefäße zwischen der Gießpfanne und der Kokille umfassen, in denen die Metallschmelze mit einem Abdeckmittel abgedeckt werden kann.
  • Um möglichst schnell die wenigstens annähernd stationäre Angussbadspiegelhöhe zu erreichen und damit die Zeitspanne äußert turbulenter und unkontrollierter Badbewegung in Verteilergefäß schnell zu durchfahren, ist es zweckmäßig, dass bis zum Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe Metallschmelze in das Verteilergefäß zugeführt, jedoch keine Metallschmelze aus dem Verteilergefäß abgeführt wird.
  • Eine weitere zweckmäßige Maßnahme zur schnellen Erreichung der wenigstens annähernd stationären Angussbadspiegelhöhe besteht darin, dass die Zufuhr der Metallschmelze in das Verteilergefäß bis zum Erreichen einer Verteiler-Badspiegelhöhe von 5% bis 50%, vorzugsweise von 10% bis 30%, der wenigstens annähernd stationären Angussbadspiegelhöhe mit annähernd maximaler Füllrate erfolgt und die Zufuhr der Metallschmelze in das Verteilergefäß anschließend, bis zum Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe, mit gegenüber der annähernd maximalen Füllrate reduzierten Füllrate erfolgt. Unter "annähernd maximaler Füllrate" ist zu verstehen, dass die Zufuhr der Metallschmelze in das Verteilergefäß bei maximaler oder annähernd maximaler Öffnung des Pfannenschiebers erfolgt. Eine annähernd maximale Füllrate im Sinne der Erfindung ist gegeben, wenn 80% oder mehr einer theoretisch möglichen Füllrate erreicht wird. Damit wird auch ein Zufrieren der Pfannenschieberöffnung in der Angießphase bzw. eine markante Verengung der Durchflussöffnung und damit Reduzierung der Durchflussmenge vermieden.
  • Anstelle der Badspiegelhöhe im Verteilergefäß kann auch das dazu äquivalente Füllgewicht der Metallschmelze im Verteilergefäß als bestimmende Messgröße herangezogen werden, beispielsweise für die Zufuhrmenge an Metallschmelze mit maximaler Füllrate.
  • Die reduzierte Füllrate stellt über die Restfüllzeit keinen konstanten Wert dar, sondern folgt einem kontinuierlich oder schrittweise abnehmenden zeitlichen Verlauf, wodurch sich die Strömungsverhältnisse im Verteilergefäß kontinuierlich beruhigen.
  • Es ist auch vorteilhaft, wenn die Zufuhr der Metallschmelze in das Verteilergefäß bis zum Eintauchen des Schattenrohres in die in das Verteilergefäß eingebrachte Metallschmelze mit annähernd maximaler Füllrate erfolgt und die Zufuhr der Metallschmelze in das Verteilergefäß anschließend bis zum Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe mit einer gegenüber der annähernd maximalen Füllrate reduzierten Füllrate erfolgt. Das Einbringen der Metallschmelze unterhalb des Badspiegels reduziert die Badbewegung an der Metallbadoberfläche wesentlich.
  • Zur Beruhigung der Metallschmelze im Verteilergefäß ist es zweckmäßig, wenn die Zufuhr von Metallschmelze in das Verteilergefäß mit Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe für eine bestimmte Zeitspanne unterbrochen wird. Das Schließen des Pfannenschiebers nach Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe hat den Vorteil, dass vorhandene Fremdeinschlüsse, insbesondere nichtmetallische Einschlüsse, am Badspiegel wesentlich schneller aufschwimmen und in die Schlacke, falls ein Abdeckmittel bereits aufgegeben wurde, abgeschieden werden können. Die kurzzeitige Unterbrechung der Schmelzenzufuhr stellt eine gut Möglichkeit dar, die Qualität des gegossenen Produktes zu erhöhen, wenn gleichzeitig sichergestellt ist, dass das Wiederöffnen des Pfannenschiebers nach dieser Beruhigungs- und Abscheidephase sicher gewährleistet ist.
  • Es ist aber auch durchaus möglich, die Schmelzenzufuhr in das Verteilergefäß nicht zu unterbrechen und unmittelbar nach dem Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe mit dem Füllen der Stranggießkokille zu beginnen und damit den stationären Gießbetrieb einzuleiten. Damit steht allerdings eine reduzierte Zeitspanne für die Abscheidung von Fremdpartikel zur Verfügung, die allerdings durch eine andere Verteilung der Füllrate ausgeglichen werden kann.
  • Vorzugsweise beträgt die Zeitspanne der Unterbrechung der Schmelzenzufuhr zwischen 8 sec und 10 min, vorzugsweise zwischen 60 und 270 sec.
  • Zur Vermeidung von Reoxidation an der Metallbadoberfläche wird üblicherweise ein Abdeckmittel auf das Schmelzenbad aufgebracht. Abdeckmittel bestehen üblicherweise aus einem Abdeckpulver und bilden eine Schlackenschicht.
  • Ein günstiger Zeitpunkt für die Aufgabe eines Abdeckmittels ist gegeben, wenn innerhalb einer Zeitspanne, die dem Zeitpunkt des Erreichens der wenigstens annähernd stationären Angussbadspiegelhöhe vorgelagert ist, eine möglichst geringe Füllrate eingestellt und konstant gehalten wird und innerhalb dieser Zeitspanne, insbesondere in deren zweiten Hälfte, das Abdeckmittel auf das Schmelzenbad aufgegeben wird.
  • Eine weitere zweckmäßige Möglichkeit für die Aufgabe eines Abdeckmittels ist gegeben, wenn das erstmalige Abdecken der freien Badoberfläche mit einem Abdeckmittel innerhalb der Zeitspanne der Unterbrechung der Schmelzenzufuhr beginnt. Damit wird das Abdeckmittel erst zu einem Zeitpunkt aufgebracht, bei dem bereits eine weitgehende Beruhigung des Badspiegels eingetreten ist. Demgegenüber würde eine Aufbringung des Abdeckmittels bei maximaler Füllrate zu einem wesentlichen Eintrag vom Fremdpartikeln in das Schmelzenbad und zu einer inhomogenen Verteilung des Abdeckmittels auf dem Schmelzenbad führen, da die Geschwindigkeiten der Flüssigphase am Badspiegel durchaus 5 bis 10-mal höher liegen als bei der weitgehend stationären Betriebsweise. Die Intensität der Oberflächenturbulenzen steigt mit dem Quadrat der Oberflächengeschwindigkeit. Zusätzlich ist in dieser transienten Phase auch mit ausgeprägten Badspiegelwelligkeiten zu rechnen, die das Einschwemmen des Abdeckmittels in das Metallbad begünstigt.
  • Zweckmäßig beginnt das erstmalige Abdecken der freien Badoberfläche mit einem Abdeckmittel in einer Zeitspanne ab 30 sec, vorzugsweise ab 8 sec, vor der Wiederaufnahme der Schmelzenzufuhr nach der Unterbrechung der Schmelzenzufuhr.
  • Zweckmäßig ist es auch, wenn das Abdecken der freien Badoberfläche mit einem Abdeckmittel frühestens in einer Zeitspanne vor dem Beginn des Ableitens von Metallschmelze aus dem Verteilergefäß beginnt, die vorzugsweise höchstens der Hälfte der Zeitspanne der Unterbrechung der Zufuhr von Metallschmelze entspricht.
  • Eine weitere vorteilhafte Ausführungsform ergibt sich, wenn das Abdecken der freien Badoberfläche mit einem Abdeckmittel erst nach dem Angießen der Stranggießkokille beginnt.
  • Damit das Abdeckmittel im Nahbereich des in die Metallschmelze eintauchenden Schattenrohres nicht - auch nur partiell - entlang der Außenwand des Schattenrohres in die Metallschmelze eingezogen wird, ist es zweckmäßig, wenn der das Schattenrohr umgebende Bereich der freien Badoberfläche im Verteilergefäß von einer Abdeckung mit einem Abdeckmittel abgeschirmt wird. Dies erfolgt vorzugsweise durch Abschirmmittel, die von Wandelementen gebildet sind, die entweder von oben in das Schmelzenbad eintauchen oder von unten aus dem Schmelzenbad herausragen und das Schattenrohr mit Abstand umgeben. Damit wird gezielt ein "hot spot" rund um das Schattenrohr erzeugt und es ist zweckmäßig, wenn die Wandelemente eine geschlossene Kammer bilden, in die das Schattenrohr integriert und die in der Kammer eingeschlossene Atmosphäre inertisiert ist.
  • Nach der Wiederaufnahme der Zufuhr von Metallschmelze in das Verteilergefäß wird diese Zufuhr von Metallschmelze in das Verteilergefäß mengenmäßig in Abhängigkeit von der Abfuhr der Metallschmelze aus dem Verteilergefäß geregelt. Die Überleitung der Metallschmelze vom Verteilergefäß in die nachgeordnete Kokille beginnt zeitlich mit der Wiederaufnahme der Zufuhr von Metallschmelze in das Verteilergefäß. Damit wird die quasi-stationäre Angussbadspiegelhöhe weitgehend auf einem konstanten Niveau gehalten.
  • Die Menge der dem Verteilergefäß zugeführten Metallschmelze und die Menge der aus dem Verteilergefäß abgeführten Metallschmelze beträgt beim Gießen eines Stahlbandes, bei einer Gießdicke von 1,0 - 5,0 mm und einer Gießbreite von 1,0 m bis 2,0 m im weitgehend stationärem Gießbetrieb zwischen 0,5 t/min und 4,0 t/min, vorzugsweise zwischen 0,8 t/min und 2,0 t/min. Diese Angaben beziehen sich auf die Verwendung einer Zweiwalzengießmaschine mit dem angestrebten Gussprodukt und entsprechende Auslegung.
  • Vorzugsweise erfolgt die Aufgabe des Abdeckmittels auf die Badoberfläche der Metallschmelze im Zwischengefäß in einem Oberflächenbereich mit geringer Oberflächenströmungsgeschwindigkeit, Welligkeit der Badoberfläche und Turbulenzintensität.
  • Eine fallweise manuelle Aufgabe des Abdeckmittels erfordert eine ausreichende Zugänglichkeit des Verteilergefäßes für das Bedienungspersonal und bringt zusätzlich den Nachteil zusätzlicher Schlackeneinschlüsse durch die plötzliche lokale Aufgabe einer größeren Menge des Abdeckmittels mit sich. Das Abdeckmittel wird daher in feinkörniger Form oder pulverförmig, vorzugsweise mit einer halb- oder vollautomatischen Aufgabeeinrichtung, aufgebracht.
  • Der Innenraum des Verteilergefäßes ist durch einen Verteilerdeckel gegen die freie Atmosphäre abgeschirmt, wobei es zweckmäßig ist, wenn während oder vor der Erstfüllphase eine Inertisierung des Verteilergefäßes erfolgt, um den reaktiven Sauerstoff im Inneren des Verteilergefäßes weitgehend zu eliminieren.
  • Die Einstellung und Überwachung der Betriebsgießspiegelhöhe erfolgt vorzugsweise über eine Verteiler-Gewichtsmessung oder mit einem äquivalenten Messverfahren zur Füllstandsmessung. Die Betriebsgießspiegelhöhe oder die wenigstens annähernd stationäre Angussbadspiegelhöhe kann mit anderen direkten oder indirekten Messverfahren ebenfalls ermittelt werden, wie z.B. mit Schwimmern, optische Beobachtung der Badspiegeloberfläche, Schallpegelmessung, Wirbelstrommessung und ähnlichen Messverfahren.
  • Bei einem Neustart der Gießanlage ist das Verteilergefäß bei Beginn der Erstfüllphase frei von Metallschmelze und zweckmäßig auch frei von Abdeckmittel bzw. Schlacken, sowie Feuerfest- Reststoffen.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht einschränkender Ausführungsbeispiele, wobei auf die beiliegenden Figuren Bezug genommen wird, die folgendes zeigen:
  • Fig. 1
    eine schematische Darstellung einer Zweiwalzengießanlage mit einem Schmelzenbehälter und einem Verteilergefäß zur Durchführung des erfindungsgemäßen Verfahrens,
    Fig. 2
    den Verlauf einer Anfahrkurve für das Füllen des Verteilergefäßes (Füllrate) nach dem erfindungsgemäßen Verfahren in einer ersten Ausführungsform,
    Fig. 3
    den Verlauf einer Anfahrkurve für das Füllen des Verteilergefäßes (Füllrate) nach dem erfindungsgemäßen Verfahren in einer zweiten Ausführungsform,
    Fig. 4
    den zeitlichen Verlauf des Verteilergewichtes während des Füllens des Verteilergefäßes,
    Fig. 5
    den Verlauf von Anfahrkurven für das Füllen des Verteilergefäßes und der Stranggießkokille nach einer dritten Ausführungsform,
    Fig. 6
    ein Schattenrohr mit einer mechanischen Abschirmung gegen Kontakt mit Schlacke.
  • Fig. 1 zeigt in einer schematischen Darstellung eine Zweiwalzengießmaschine als eine Möglichkeit zur Durchführung des erfindungsgemäßen Verfahrens mit den wesentlichen baulichen Komponenten zur Zuführung der Metallschmelze in die von zwei gegensinnig rotierenden Gießwalzen 1, 2 und an die Stirnseiten der Gießwalzen anpressbaren Seitenplatten 3 gebildeten Stranggießkokille 4. Die Metallschmelze wird aus einem Schmelzenbehälter 5, der zumeist von einer auswechselbaren auf Gabelarmen 6 eines Pfannendrehturmes abgestützten Gießpfanne gebildet ist, durch ein Schattenrohr 7 in ein Verteilergefäß 8 übergeleitet. Dem Schattenrohr 7 ist ein Schieberverschluss 9 als Regelorgan für die Durchflussmenge zugeordnet. Aus dem Verteilergefäß 8 strömt die Metallschmelze mengengeregelt durch ein Tauchgießrohr 10 in den Formhohlraum 11 der Stranggießkokille 4. Dem Tauchgießrohr 10 ist ebenfalls ein Schieberverschluss 12 zur Regelung der der Stranggießkokille 4 zuzuführenden Schmelzenmenge zugeordnet. Die Verschlussorgane können auch von Stopfen gebildet werden, die, von oben durch das Schmelzenbad ragend, die Ausflussöffnung des jeweiligen Schmelzenbehälters regelbar verschließen.
  • Die Menge der im Verteilergefäß 8 zwischengelagerten Metallschmelze wird während des stationären Gießvorganges möglichst konstant gehalten. Dies wird dadurch erreicht, dass im Verteilergefäß eine vorbestimmte Gießspiegelhöhe h der Metallschmelze eingestellt wird und diese Gießspiegelhöhe durch eine Zuflussmengenregelung weitgehend gehalten wird. Eine weitgehend gleichbleibende Gießspiegelhöhe sichert eine gleichmäßige Schmelzenüberleitung in die Stranggießkokille 4.
  • An den gekühlten Zylindermantelflächen der Gießwalzen 1, 2 bilden sich im Schmelzenpool nicht dargestellte Strangschalen aus, die im engsten Querschnitt zwischen den Gießwalzen zu einem Metallstrang 13 vorbestimmter Dicke und Breite verwalzt werden, der im Weiteren kontinuierlich aus der Gießanlage ausgefördert wird.
  • Bevor der Gießvorgang mit der Schmelzenzufuhr eingeleitet wird, wird die Stranggießkokille für den Gießstart vorbereitet, wobei der Gießspalt zwischen den Gießwalzen durch einen Anfahrstrang verschlossen wird oder entsprechende Vorkehrungen für einen Gießstart ohne Anfahrstrang getroffen werden. Eine derartige Anfahrmethode ohne Verwendung eines Anfahrstranges ist beispielsweise in der bisher unveröffentlichten österreichischen Patentanmeldung A 1367/2002 beschrieben.
  • Ein mit Metallschmelze gefüllter Schmelzenbehälter wird oberhalb des Verteilergefäßes in seine Gießposition eingebracht. Der Füllvorgang des Verteilergefäßes erfolgt in einer möglichen Ausführungsvariante nach dem in Fig. 2 dargestellten Füllkurvenverlauf. Die Metallschmelze wird in der ersten Füllphase (Zeitspanne t0 -t1) bei größtmöglicher Öffnung des Schieberverschlusses in das Verteilergefäß geleitet, d.h. die Metallschmelze tritt mit annähernd maximaler Füllrate fill,max in das Verteilergefäß ein, wobei der Schieberverschluss ausgangsseitig des Verteilergefäßes geschlossen gehalten wird. Ab Erreichen einer Badspiegelhöhe hpool, die zum Zeitpunkt t1 etwa 40% einer wenigstens annähernd stationären Angussbadspiegelhöhe h pool, op entspricht, wird die Füllrate im Wesentlichen kontinuierlich zurückgenommen, bis die wenigstens annähernd stationäre Angussbadspiegelhöhe h pool,op erreicht ist.
  • Fig. 3 zeigt eine weitere Ausführungsvariante eines möglichen Füllkurvenverlaufes, wobei die Füllrate fill nach Erreichen von etwa 40% der wenigstens annähernd stationären Angussbadspiegelhöhe zum Zeitpunkt t1 schrittweise in mehreren Stufen zurückgenommen wird, wobei die Reduzierung der Füllrate in den einzelnen Zeitpunkten t1 bis t5 so erfolgt, dass eine degressive Annäherung der Badspiegelhöhe hpool an die Angussbadspiegelhöhe h pool,op erfolgt.
  • Fig. 4 zeigt die Zunahme des Verteilergewichtes mv über die Füllzeit, ausgehend vom Leergewicht m0 des Verteilergefäßes bis zum Verteilergewicht m5, das mit Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe h pool,op erzielt wird.
  • Diese dargestellten Füllkurvenverläufe begünstigen bereits während des kontinuierlichen Füllvorganges ein Abklingen der heftigen Badbewegung im Verteilergefäß und beruhigen insbesondere die Metallbadoberfläche. Diese Beruhigungsphase im Verteilergefäß wird verstärkt, indem nach dem Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe die Schmelzenzufuhr für vorzugsweise einige Minuten unterbrochen wird. Innerhalb dieser Zeitspanne wird mit der Aufgabe eines Abdeckmittels auf die Metallbadoberfläche begonnen, die mit einer halb- oder vollautomatischen Aufgabeeinrichtung 15 erfolgt, deren Auslassöffnung oberhalb des Badspiegels in einem Bereich des Verteilergefäßes mit wenig Oberflächenturbulenzen mündet (Fig. 1). Das feinkörnige bis staubförmige Abdeckmittel wird in einem kontinuierlichen Rieselvorgang auf die Metallschmelze aufgebracht. Dieser Vorgang wird bis zur vollständigen Abdeckung des Metallbades im Verteilergefäß fortgesetzt und bei Bedarf jederzeit während des Gießvorganges wiederholt.
  • Zusätzlich ist das Verteilergefäß 8 mit einem Verteilerdeckel 16 abgedeckt, mit dem der Innenraum des Verteilergefäßes gegenüber der Atmosphäre abgeschirmt wird (Fig.1). Damit wird auch die Möglichkeit gegeben, noch vor der Zufuhr von Metallschmelze eine Inertisierung des Innenraumes durchzuführen.
  • Im Wesentlichen zeitgleich mit der Wiederaufnahme der Schmelzenzufuhr in das Verteilergefäß beginnt die Einleitung der Metallschmelze in die Stranggießkokille, bzw. deren Füllung und die Einleitung des kontinuierlichen Gießbetriebes. Hierbei wird die Menge der dem Verteilergefäß zugeführten Metallschmelze in Abhängigkeit von der in die Stranggießkokille eingeleiteten Schmelzenmenge eingestellt. Eine Betriebsbadspiegelhöhe für den stationären Gießbetrieb kann durchaus von der Angussbadspiegelhöhe abweichen und wird in der ersten Phase des stationären Gießbetriebes oder bei Bedarf eingestellt.
  • Abweichungen der Badspiegelhöhe von der gewünschten wenigstens annähernd stationären Angussbadspiegelhöhe oder einer Betriebsbadspiegelhöhe werden über eine Verteilergewichtsmessung erfasst. Dadurch wird kontinuierlich eine für die Badspiegelhöhe charakteristische Messgröße ermittelt und in einem Zuflussregelkreis zur Regelung der zufließenden Metallschmelzenmenge als Regelgröße herangezogen. Das Verteilergefäß 8 ist hierzu über Messzellen 17 auf einem Traggerüst 18, beispielsweise einem verfahrbaren Verteilerwagen, abgestützt.
  • Fig. 5 zeigt in Analogie zu Fig. 2 den Füllvorgang des Verteilergefäßes anhand der Füllrate v und der Badspiegelhöhe hpool im zeitabhängigen Verlauf. Die Metallschmelze wird in einer Füllphase t0 bis t1 bei maximaler Öffnung des Schieberverschlusses am Schmelzengefäß in den Verteiler eingebracht und der Füllvorgang anschließend mit abklingender Füllrate im Zeitabschnitt t1 bis t4 fortgesetzt. In einer Zeitspanne vor dem Erreichen der wenigstens annähernd stationären Badspiegelhöhe hpool,op , die sich im Zeitabschnitt t4 bis t5 erstreckt, erfolgt die Schmelzenzufuhr mit einer gegenüber der maximalen Füllrate wesentlich reduzierten aber weitgehend konstant gehaltenen Füllrate. Die zuvor beschriebene Unterbrechung der Schmelzenzufuhr entfällt hier. Zeitlich etwa in der Mitte zwischen t4 und t5 beginnt die Aufgabe des Abdeckmittels P auf des Schmelzenbad im Verteilergefäß. Ab dem Zeitpunkt t5 beginnt der Gießbetrieb mit dem Füllen der Stranggießkokille, wobei die Füllrate der Kokille m einen zeitlichen Verlauf aufweist, wie beispielsweise in Fig. 5 im untersten Diagramm dargestellt. Gleichzeitig wird die Füllrate im Verteilergefäß v auf eine Betriebsbadspiegelhöhe hpool,op eingeregelt.
  • In Fig. 6 ist eine Möglichkeit aufgezeigt, die den Eintrag von auf das Schmelzenbad aufgebrachten Abdeckmittel in das Innere des Schmelzenbades im Bereich der Außenwand des Schattenrohres 7 weitgehend ausschließen soll. Zu der bereits im Verteilergefäß 8 angesammelten Metallschmelze strömt durch das vertikal in die Schmelze eintauchende Schattenrohr 7 weitere Metallschmelze aus dem Schmelzenbehälter 5 kontinuierlich zu. Die zufließende Metallschmelze erzeugt eine Sogwirkung entlang des Schattenrohres 7 und zieht gegebenenfalls in diesem Bereich gesammelte Schlacke / Abdeckmittel nach unten in die Metallschmelze. Mit einer Abdeckung 21, die topfförmig ausgebildet ist, die das Schattenrohr mit radialem Abstand zu diesem umgibt und von oben in die Metallschmelze ragt, wird die gebildete Schlackenschicht 20 vom kritischen Bereich nahe dem Schattenrohr ferngehalten. Das Innere dieser nach oben geschlossenen Abdeckung 21 kann über die Schutzgasleitung 22 bei Bedarf inertisiert werden. Dem Schattenrohr 7 liegt in Ausströmrichtung der Metallschmelze ein nur andeutungsweise dargestelltes strömungsdämpfendes Element 23 (Turbostop) im Verteilergefäß fest verankert gegenüber, wodurch der einströmende Metallstrahl stark gebremst und gezielt umgeleitet wird.
  • Das beschriebene Startverfahren hat sich als besonders erfolgreich in Verbindung mit einem Verteilergefäß gezeigt, welches in der WO 03/051560 beschrieben ist und eine Geometrie aufweist, die die Abscheidung von schmelzenfremden Partikeln besonders fördert.

Claims (20)

  1. Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit aus einer Metallschmelze, vorzugsweise einer Stahlschmelze, wobei die Metallschmelze von einem Schmelzenbehälter (5) geregelt einem Verteilergefäß (8) zugeführt und von diesem Verteilergefäß geregelt in eine Stranggießkokille (4) abgeführt wird und wobei die Metallschmelze zumindest im Verteilergefäß während des stationären Gießbetriebes mit einem Abdeckmittel bedeckt ist, dadurch gekennzeichnet, dass die sich in einer Erstfüllphase im Verteilergefäß ausbildende freie Badoberfläche der Metallschmelze nach Erreichen einer vorbestimmten wenigstens annähernd stationären Angussbadspiegelhöhe (h pool,op) zumindest teilweise mit einem Abdeckmittel bedeckt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bis zum Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe Metallschmelze in das Verteilergefäß zugeführt, jedoch keine Metallschmelze aus dem Verteilergefäß abgeführt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zufuhr der Metallschmelze in das Verteilergefäß bis zum Erreichen einer Badspiegelhöhe von 5% bis 50%, vorzugsweise von 10% bis 30%, der wenigstens annähernd stationären Angussbadspiegelhöhe mit annähernd maximaler Füllrate ( fill,max) erfolgt und die Zufuhr der Metallschmelze in das Verteilergefäß anschließend bis zum Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe mit gegenüber der annähernd maximalen Füllrate reduzierten Füllrate erfolgt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die reduzierte Füllrate einem kontinuierlich oder schrittweise abnehmenden zeitlichen Verlauf folgt.
  5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Zufuhr der Metallschmelze in das Verteilergefäß bis zum Eintauchen des Schattenrohres in die in das Verteilergefäß eingebrachte Metallschmelze mit maximaler Füllrate erfolgt und die Zufuhr der Metallschmelze in das Verteilergefäß anschließend bis zum Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe mit einer gegenüber der annähernd maximalen Füllrate reduzierten Füllrate erfolgt.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass innerhalb einer Zeitspanne, die dem Zeitpunkt des Erreichens der wenigstens annähernd stationäre Angussbadspiegelhöhe vorgelagert ist, eine möglichst geringe Füllrate eingestellt und weitgehend konstant gehalten wird und innerhalb dieser Zeitspanne, insbesondere in deren zweiten Hälfte, das Abdeckmittel auf das Schmelzenbad aufgegeben wird.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Zufuhr von Metallschmelze in das Verteilergefäß mit Erreichen der wenigstens annähernd stationären Angussbadspiegelhöhe für eine Zeitspanne unterbrochen wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Zeitspanne der Unterbrechung der Schmelzenzufuhr zwischen 8 sec und 10 min, vorzugsweise zwischen 60 und 270 sec beträgt.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erstmalige Abdecken der freien Badoberfläche mit einem Abdeckmittel innerhalb der Zeitspanne der Unterbrechung der Schmelzenzufuhr beginnt.
  10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das erstmalige Abdecken der freien Badoberfläche mit einem Abdeckmittel in einer Zeitspanne ab 30 sec, vorzugsweise ab 8 sec, vor der Wiederaufnahme der Schmelzenzufuhr nach der Unterbrechung der Schmelzenzufuhr beginnt.
  11. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Abdecken der freien Badoberfläche mit einem Abdeckmittel frühestens in einer Zeitspanne vor dem Beginn der Abführung von Metallschmelze aus dem Verteilergefäß beginnt, die vorzugsweise höchstens der Hälfte der Zeitspanne der Unterbrechung der Zufuhr von Metallschmelze entspricht.
  12. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Abdecken der freien Badoberfläche mit einem Abdeckmittel erst nach dem Angießen der Stranggießkokille beginnt.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der das Schattenrohr umgebende Bereich der freien Badoberfläche im Verteilergefäß von einer Abdeckung mit einem Abdeckmittel freigehalten wird.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der Wiederaufnahme der Zufuhr von Metallschmelze in das Verteilergefäß diese Zufuhr von Metallschmelze in das Verteilergefäß mengenmäßig in Abhängigkeit von der Abfuhr der Metallschmelze aus dem Verteilergefäß geregelt wird.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Menge der dem Verteilergefäß zugeführten Metallschmelze und die Menge der aus dem Verteilergefäß abgeführten Metallschmelze beim Gießen eines Stahlbandes auf einer Zweiwalzengießanlage im weitgehend stationärem Gießbetrieb zwischen 0,5 t/min und 4,0 t/min, vorzugsweise zwischen 0,8 t/min und 2,0 t/min, beträgt.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aufgabe des Abdeckmittels auf die Badoberfläche der Metallschmelze in einem Oberflächenbereich mit geringer Oberflächenströmungsgeschwindigkeit, Welligkeit der Badoberfläche und Turbulenzintensität erfolgt.
  17. Verfahren nach einen der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Abdeckmittel in feinkörniger Form oder pulverförmig, vorzugsweise mit einer halb- oder vollautomatischen Aufgabeeinrichtung, aufgebracht wird.
  18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der Erstfüllphase eine Inertisierung des Verteilergefäßes erfolgt.
  19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass die Einstellung und Überwachung der Betriebsgießspiegelhöhe über eine Verteiler-Gewichtsmessung oder mit einem äquivalenten Messverfahren zur Füllstandsmessung erfolgt.
  20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verteilergefäß bei Beginn der Erstfüllphase frei von Metallschmelze ist.
EP04105685A 2003-12-02 2004-11-11 Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit Not-in-force EP1537926B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT04105685T ATE437710T1 (de) 2003-12-02 2004-11-11 Verfahren zur herstellung eines gegossenen metallstranges hoher reinheit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0192603A AT413196B (de) 2003-12-02 2003-12-02 Verfahren zur herstellung eines gegossenen metallstranges hoher reinheit
AT19262003 2003-12-02

Publications (2)

Publication Number Publication Date
EP1537926A1 EP1537926A1 (de) 2005-06-08
EP1537926B1 true EP1537926B1 (de) 2009-07-29

Family

ID=34437852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04105685A Not-in-force EP1537926B1 (de) 2003-12-02 2004-11-11 Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit

Country Status (4)

Country Link
EP (1) EP1537926B1 (de)
KR (1) KR101148594B1 (de)
AT (2) AT413196B (de)
DE (1) DE502004009818D1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT365497B (de) * 1980-03-05 1982-01-25 Voest Alpine Ag Verfahren zum ermitteln der in einem zwischengefaess befindlichen schlackenmenge waehrend des stranggiessens sowie einrichtung zur durchfuehrung des verfahrens
US5887647A (en) * 1996-05-01 1999-03-30 Weirton Steel Corporation Decreasing contamination of molten metal prior to solidification casting
DE19922829A1 (de) * 1999-05-19 2000-11-23 Sms Demag Ag Vorrichtung zur Reinigung von Stahlschmelzen
KR20010017275A (ko) * 1999-08-10 2001-03-05 이구택 턴디쉬에서 타이어코드강의 청정도 향상방법

Also Published As

Publication number Publication date
EP1537926A1 (de) 2005-06-08
DE502004009818D1 (de) 2009-09-10
AT413196B (de) 2005-12-15
KR20050053321A (ko) 2005-06-08
ATE437710T1 (de) 2009-08-15
ATA19262003A (de) 2005-05-15
KR101148594B1 (ko) 2012-05-21

Similar Documents

Publication Publication Date Title
DE19637402C2 (de) Bandgießen
DE10042078A1 (de) Verfahren und Vorrichtung zum kontinuierlichen Gießen von Stahlband aus Stahlschmelze
DE2043882A1 (en) Flat cast object formed with a spray of - atomised metal
AT413084B (de) Sequenzgiessverfahren zur herstellung eines gegossenen metallstranges hoher reinheit
EP1077782B1 (de) Verfahren und vorrichtung zum endabmessungsnahen giessen von metall
EP3993921B1 (de) Schmelzezuführung für bandgussanlagen
EP1537926B1 (de) Verfahren zur Herstellung eines gegossenen Metallstranges hoher Reinheit
DE4403048C1 (de) Stranggießanlage und Verfahren zur Erzeugung von Rechteck-Dünnbrammen
EP0005820A1 (de) Verfahren und Vorrichtung zum Stranggiessen von Metall in Ein- oder Mehrstranganlagen
DE10195658B4 (de) Vorrichtung und Verfahren zum Zuführen von geschmolzenem Metall in eine Form beim Stranggießen
DE2853868A1 (de) Verfahren und vorrichtungen zum stranggiessen unzertrennter straenge aus stahl sowie dementsprechend hergestellte strangerzeugnisse
EP0906163B1 (de) Stranggiessanlage für knüppel
DE3002347A1 (de) Neues gusstahlprodukt und verfahren zu seiner herstellung
WO2019011776A1 (de) Verfahren und anlage zur herstellung von gussblöcken aus metall
DE19633620C2 (de) Stranggießanlage für Knüppel
DE2935840A1 (de) Giesskopf fuer stranggiesskokillen
DE4410511A1 (de) Verfahren und Vorrichtung zum endabmessungsnahen Vergießen von Schmelzen
DE2024747C3 (de) Verfahren zum halbkontinuierllchen Stranggießen, insbesondere von Stahl, und Vorrichtung zur Durchführung des Verfahrens *
EP3519124B1 (de) Verfahren zum mehrfachgiessen von metallsträngen
DE3736956C2 (de)
DE19748923C2 (de) Verfahren und Vorrichtung zum Angießen eines Endlosstranges
DE2830523C2 (de) Verfahren zum Gießen eines Metallblocks in einer Kokille und Vorrichtung zum Durchführen des Verfahrens
DE4404858A1 (de) Verfahren und Vorrichtung zum Gießen von Blechen und Bändern
DE3216205A1 (de) Verfahren zum kontinuierlichen stranggiessen von metallen und anlage fuer dessen durchfuehrung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17P Request for examination filed

Effective date: 20050711

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071026

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH & CO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUMMAYER, MARKUS

Inventor name: HOHENBICHLER, GERALD

Inventor name: ECKERSTORFER, GERALD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004009818

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20100503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091030

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20121126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20121113

Year of fee payment: 9

Ref country code: GB

Payment date: 20121115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121105

Year of fee payment: 9

Ref country code: FR

Payment date: 20121214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121217

Year of fee payment: 9

BERE Be: lapsed

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH & CO

Effective date: 20131130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131111

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004009818

Country of ref document: DE

Representative=s name: HEYERHOFF GEIGER & PARTNER PATENTANWAELTE PART, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004009818

Country of ref document: DE

Representative=s name: HEYERHOFF GEIGER & PARTNER PATENTANWAELTE PART, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009818

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS VAI METALS TECHNOLOGIES GMBH & CO., LINZ, AT

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 437710

Country of ref document: AT

Kind code of ref document: T

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH, AT

Effective date: 20200120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211118

Year of fee payment: 18

Ref country code: AT

Payment date: 20211119

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211119

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009818

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 437710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601