EP1534886A1 - Structure fibreuse resistante a la coupure et a l'abrasion - Google Patents

Structure fibreuse resistante a la coupure et a l'abrasion

Info

Publication number
EP1534886A1
EP1534886A1 EP03765592A EP03765592A EP1534886A1 EP 1534886 A1 EP1534886 A1 EP 1534886A1 EP 03765592 A EP03765592 A EP 03765592A EP 03765592 A EP03765592 A EP 03765592A EP 1534886 A1 EP1534886 A1 EP 1534886A1
Authority
EP
European Patent Office
Prior art keywords
strand
strands
cut
aramid
fibrous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03765592A
Other languages
German (de)
English (en)
Inventor
Serge Rebouillat
Antonio Manuel Jimenez Maroto
Joan Llivina Carbonell
Veronique Bernat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP1534886A1 publication Critical patent/EP1534886A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • A41D19/01505Protective gloves resistant to mechanical aggressions, e.g. cutting. piercing
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/24Resistant to mechanical stress, e.g. pierce-proof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/041Gloves

Definitions

  • the present invention relates to a high abrasion resistant fibrous structure comprising a specific construction of a non composite p-aramid strand and a nylon strand.
  • This structure can be used to manufacture protective clothing having a high cut resistance and a high abrasion resistance.
  • Aramids and more specifically para-aramids are a relatively new class of materials, which finds application in the domain of mechanical and thermal protection. High cut protection performance can be obtained from textile assemblies made of the para-aramid fibers. Therefore, para-aramid fibers are often used in the manufacture of protective clothing for industrial workers, firemen, sportsmen, military and police officers.
  • para-aramid fibers tend to suffer from a relatively low abrasion resistance due to their fibrillation tendency.
  • the risk associated with this modest abrasion resistance is the reduction of the cut performance of the protective clothing with time under service.
  • nylons are superior but they do not offer a sufficient cut performance.
  • abrasion resistance of a fabric There are many factors that influence the abrasion resistance of a fabric.
  • the abrasion performance may be tailored by the selection of the type of fiber components, the fiber properties, the textile structures, the fabric mass per unit area, the number of fibers per unit volume or the relaxation allowance of the fiber components within the fiber bundle.
  • the addition of abrasion resistance materials in a given structure containing cut resistance components generally provides higher abrasion performance at the expense of the cut resistance.
  • U.S. 5, 319, 950 discloses a reinforcing component which is a composite yarn made of a nylon twisted yarn helically wrapped by another nylon twisted yarn, this reinforcing component being knitted in a plaited relationship with a body yarn. The manufacture of such a yarn is complex and necessitates several steps. Moreover, the reinforced fabric thus obtained is still not satisfactory as regards cut resistance.
  • One aspect of the invention is a fibrous structure comprising at least one non composite para-aramid strand and at least one nylon strand maintained in a parallel relationship to each other, the non composite para-aramid strand being present in the structure in an amount ranging from about 20 % to about 99.9 % by weight, relative to the weight of the structure.
  • Another aspect of the invention is a process to manufacture the structure above comprising the step of processing a non composite para-aramid strand and a nylon strand in a parallel relationship to each other.
  • Another aspect of the invention is a process for providing a fibrous structure having high cut and abrasion resistance, comprising:
  • a further aspect of the invention is a high cut and abrasion resistant protective clothing, in particular gloves, aprons or sleeves, made of the fibrous structure above.
  • the fibrous structure of the invention has a high resistance to abrasion. It also has a very high resistance to cutting. With the structure of the invention, it is possible to manufacture high cut and abrasion resistant protective clothing like working gloves.
  • the gloves made of the fibrous structure of the invention are comfortable and, by wearing them, the user does not lose the natural dexterity of his hands.
  • the fibrous structure of the invention also finds use in the ballistic area: it has a very good puncture resistance. Moreover, since the para-aramid strand of the invention is a non composite one, the manufacturing process of the fibrous structure is very simple and direct and does not require any previous treatment or arrangement of the strand. The manufacturing process can therefore be completed in a minimum number of steps, allowing for a rapid, easy and cost effective realization of any fibrous structure.
  • Fibrous structure includes two or three- dimensional structures comprising fibrous material.
  • this structure includes knitted fabrics, woven fabrics, unidirectionals, nonwovens, and/or combinations thereof.
  • combinations is meant that structures of different nature and/or construction may be assembled together, either in the same plane or not, as a multilayer structure for instance, by any assembling means like sewing, gluing, stitching and the like.
  • nonwovens is meant fibrous materials combined to a binding matrix of polyethylene, polypropylene, polyamides, phenols, epoxy resins, polyester or mixtures thereof.
  • Fibrous material includes endless fibers such as filaments, short fibrous structures, short cut fibers, microfibers, multifilaments, cords, yarns, fibers, pulps.
  • the fibers may be made into yarns of short fibrous structures which are spun into staple fibers, into yarns of endless fibers or into stretchbroken yarns which can be described as intermediate yarns between staple and continuous yarns.
  • “Strand”, as used herein, means an ordered assemblage of fibrous material having a high ratio of length to diameter, preferably having a length at least 1000 times its diameter.
  • the strand may be round, flat or may have another cross-sectional shape or it may be a hollow fiber.
  • non composite strand is meant a single simple strand by opposition to assembled strands like cotwisted strands, cotextured strands, intermingled strands, core-spun strands and combinations thereof.
  • the structure of the invention comprises at least one non composite para-aramid strand.
  • Aramids are polymers that are partially, preponderantly or
  • aramids may be elucidated by the following general formula of repeating units: (-NH-A1-NH-CO-A2-CO)n wherein A1 and A2 are the same or different and signify aromatic and/or polyaromatic and/or heteroaromatic rings, that may also be substituted.
  • A1 and A2 may independently from each other be selected from 1 ,4-phenylene, 1 ,3-phenylene, 1 ,2-phenylene, 4,4'-biphenylene, 2,6-naphthylene, 1 ,5-naphthylene, 1 ,4-naphthylene, phenoxyphenyl-4,4'- diyelen, phenoxyphenyl-3,4'-diylen, 2,5-pyridylene and 2,6-quinolylene which may or may not be substituted by one or more substituents which may comprise halogen, C1-C4-alkyl, phenyl, carboalkoxyl, C1-C4-alkoxyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxyl and sulfonyl.
  • the -CONH- group may also be replaced by a carbonyl-hydrazide (-CONHNH-) group,
  • aramids are generally prepared by polymerization of diacid chloride, or the corresponding diacid, and diamine.
  • Examples of aramids are poly-m-phenylene-isophthalamide and poly-p-phenylene-terephthalamide.
  • Additional suitable aromatic polyamides are of the following structure:
  • R represents H, C1-C4-alkyl and Ar1 and Ar2 which may be same or different are selected from 1 ,2-phenylene, 1 ,3-phenylene and 1 ,4-phenylene and in which at least one hydrogen atom may be substituted with halogen and/or C1-C4-alkyl.
  • Additives may be used with the aramid and, in fact, it has been found that up to as much as 10% by weight, of other polymeric materials may be blended with the aramid or that copolymers may be used having as much as 10% of other diamine substituted for the diamine of the aramid or as much as 10% of other diacid chloride substituted for the diacid chloride of the aramid.
  • the non composite para-aramid strand of the invention preferably has an elongation equal to or less than 5%, measured according to ASTM D885-98.
  • the para-aramid strands have a modulus of about 10 to about 2500 g/den, preferably of about 1000 to about 2500 g/den, and a tenacity of about 3 to about 50 g/den, preferably of about 3 to about 38 g/den. The modulus and the tenacity are measured according to the ASTM D 885-98 method.
  • the structure of the invention may comprise several para-aramid strands. In such a case, these strands are independent from each other.
  • the para-aramid strands are present in the structure of the invention in an amount ranging from about 20 to about 99.9%, preferably from about 30% to about 70% by weight, relative to the total weight of the structure.
  • the strands are generally spun from an anisotropic spin dope using an air gap spinning process such as is well-known and is described in U.S. Patent No. 3,767,756 or 4,340,559.
  • the structure of the invention also comprises at least one nylon strand.
  • nylon is meant a strand made from aliphatic polyamide polymers. Suitable nylons in the present invention include polyhexamethylene adipamide (nylon 66), polycaprolactam (nylon 6), polybutyrolactam (nylon 4), poly(9-aminononanoic acid) (nylon 9), polyenantholactam (nylon 7), polycapryllactam (nylon 8) and polyhexamethylene sebacamide (nylon 6,10).
  • Preferred nylon is polyhexamethylene adipamide (nylon 66).
  • the nylon strand is a textured strand.
  • textured strand is meant a strand which has undergone a treatment, like air-injection for instance, in order to intermingle the originally parallel filaments constituting the strand.
  • Preferred nylon strands of the invention have an elongation equal to or less than 18%, and a tenacity equal to or less than 10 gpd. The elongation and the tenacity are measured according to ASTM D885-98.
  • Nylon strands are generally spun by extrusion of a melt of the polymer through a capillary into a gaseous congealing medium. Such processes are well-known. Suitable nylon strands of the invention include the product sold under the tradename "Cordura®" by E. I. du Pont de Nemours and Company, Delaware.
  • the structure of the invention may comprise several nylon strands.
  • the non composite para-aramid strand and the nylon strand are maintained in a parallel relationship to each other in the structure of the invention.
  • Parallel means that the angle between one strand along the entirety of its running length and any other strand along the entirety of its running length is about zero. All the strands remain independent and separate from each other. They are not intimately blended, they are not cotwisted, they are not intermingled, not commingled, not interlaced, not intermixed nor textured. One does not wrap any other one, they do not form a core-spun fiber nor a sheath core.
  • the non composite para-aramid strand is present in an amount ranging from about 30% to about 70% by weight and the nylon strand is present in an amount ranging from about 30% to about 70% by weight, relative to the weight of the structure.
  • the structure of the invention may comprise additional man-made or natural strands.
  • additional strands include polyethylene strands, polyester strands, acrylic strands, acetate strands, meta-aramid strands, glass strands, steel strands, ceramic strands, polytetrafluoroethylene strands, cellulosic strands, cotton strands, silk strands, wool strands and mixtures thereof.
  • additional strands may be present in an amount ranging from about 0.25 weight % to about 25 weight %, relative to the total weight of the structure, as long as their presence in the structure of the invention does not negatively impact the specific high abrasion and cut resistance of the structure of the invention. These additional strands are also maintained in a parallel relationship to any other strand present in the structure.
  • the structure of the invention shows a very good cut resistance.
  • the structure of the invention shows a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 g/mm, more preferably equal or greater than 90 g/mm.
  • the structure of the invention also shows a very good abrasion resistance.
  • the structure shows an abrasion resistance, measured according to EN 388 method, equal or greater than 1000 cycles, more preferably equal or greater than 3000 cycles.
  • the structure shows both a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 and an abrasion resistance, measured according to EN 388, equal or greater than 1000 cycles.
  • the structure of the invention preferably shows a medium weight ranging from about 200 g/m 2 to about 1500 g/m 2 , preferably ranging from about 300 g/m 2 to about 800 g/m 2 , measured according to EN 388 method.
  • the structure of the invention is prepared according to any classical textile process allowing for parallel alignment of the strands making the structure: knitting, weaving, unidirectionally laying down, combining the strands with a binding matrix to form a nonwoven.
  • the strands are fed directly to the knitting machine or the weaving machine without any prior assembly of any sort.
  • the order in which the strands are fed into the needles of the knitting machine remains the same during the whole knitting process.
  • Preferred process for making the structure of the invention is the knitting process.
  • the structure of the invention may be used in the manufacture of gloves, aprons, sleeves and any protective clothing requiring a high cut resistance and a high abrasion resistance.
  • the abrasion resistance of the samples was measured according to the Standard European Method EN388, July 1994, section untitled “Protective Gloves against Mechanical Risks", subsection 6 "Abrasion resistance”.
  • the apparatus was the Martindale wear and abrasion tester, designed to give a controlled amount of abrasion between the fabric surface and the selected abradant at relatively low contact pressure of (9 +/- 0.2) kPa in continuously changing directions.
  • the circular samples were abraded against a standard abrasive glass paper (grade F2 grit 100 quality 117).
  • the abrasion was continued and the samples were examined at suitable intervals without removing them from their holder.
  • the rub-through situation was characterized by broken threads and the average values of cycle to reach this breakdown was registered and averaged for 6 samples.
  • the test is conducted at (23 +/- 2) °C and (50 +/-5) % relative humidity.
  • the cut resistance was measured according to the "Standard test Method for Measuring Cut Resistance of Materials Used in protective Clothing", ASTM Standard F 1790-97.
  • a cutting edge under a specified force, was dravx n one time across a sample mounted on a cylindrical mandrel.
  • the distance drawn from initial contact to cut through was recorded and a graph was constructed of force as a function of distance to cut through. From the graph, the forces (in grams) were determined to cut through at a distance of 25.4 millimeters, and 10 millimeters, and were normalized to validate the consistency of the blades. These normalized forces are hereinafter respectively referred to as NL1 (for the 25.4 mm distance) and NL2 (for the 10 mm distance).
  • the blades were stainless steel cutter blades with a sharp edge of 70 mm, which were calibrated using a load of 4 N on a neoprene sheet of about (1.57 +/- 10%) mm and a hardness of (50 +/- 5) shore A. This was performed at the beginning and at the end of the test. A new blade was used for each measurement, i.e. each load.
  • the sample was a rectangular piece of textile of 50x100 millimeters placed at a react of 45 degrees.
  • the mandrel was a rounded electroconductive bar with a radius of 38 millimeters and the sample was mounted onto it using double-face tapes.
  • the cutting edge was drawn across the textile on the mandrel at a right angle with the longitudinal axis of the mandrel. Cut through was recorded when the cutting edge makes electrical contact with the mandrel.
  • the normalized forces were reported as the cut resistance forces, respectively NL1 and NL2 expressed in grams for a cut length of 25.4 mm and 10 mm.
  • the test is conducted at (23 +/- 2) °C and (50 +/-5) % relative humidity.
  • the 25.4 millimeters cut can be classified as a tear-like-cut and the 10 millimeters cut can be classified as a puncture-like-cut. These two belong to different regions of the cut-length - cut-force relationship, which is a non-linear curve. It was therefore convenient to define a combined index, which has the merit to compound the two behaviors. This index is hereafter referred to as the Combined Tear Puncture Cut Performance Index, CTPCPI. It was computed as per the following equation:
  • CTPCPI 12 « ⁇ 25.4 10 mm
  • This index was further normalized for a constant weight of fabric composition, hereafter selected at 800 grams per square meters. This mass per square area is a realistic value with regard to the protective clothing applications such as gloves for industrial usage.
  • This combined normalized index is given in grams per millimeter of cut length. The higher this index is, the higher is the cut resistance of the sample. For each example, 12 samples were tested. The result is the average of the results of the 12 tests.
  • the synthetic fiber staples were produced from short para-aramid fibers of 38 mm length as per the state of the art spinning process used for the production of para-aramid staple yarns.
  • the para-aramid short fibers were obtained by cutting continuous filament para-aramid yarns made of 1000 filaments of 1.5 dpf (1.6dtex) each.
  • the synthetic fiber staples were produced from short aliphatic polyamide nylon 66 fibers of 38 mm length as per the state of the art spinning process used for the production of aliphatic polyamide staple yarns.
  • the aliphatic polyamide short fibers were obtained by cutting continuous filament yarns made filaments of 1.9 dtex each.
  • Examples 1 and 2 are comparative Examples.
  • Example 3 is an example according to the invention. In order for the results to be comparative, all three examples were realized for a relatively constant value of the total dtex (which is representative of the linear density of a fiber) and a relatively constant value of the mass per surface area.
  • Example 1 (Comparative)
  • the samples were cut to the adequate dimensions and shapes, circular for the abrasion testing and rectangular for the cut performance measurement, to perform 6 abrasion tests and 12 cut tests. Each sample had therefore a total dtex of 3570 (five times 714 dtex).
  • the abrasion resistance measured was 900 cycles.
  • the forces measured in the cut resistance test were 821 g for a cut length of 25.4 mm and 1666 g for a cut distance of 10 mm.
  • the combined CTPCPI.N normalized index was given by the following calculation [(821/25.4 + 1666/10)/2]x800/800 and equaled 99 g/mm.
  • the samples were cut to the adequate dimensions and shapes, circular for the abrasion testing and rectangular for the cut performance measurement, to perform 6 abrasion tests and 12 cut tests.
  • the abrasion resistance measured was 3000 cycles.
  • the forces measured in the cut resistance test were 759 g for a cut length of 25.4 mm and 923 g for a cut distance of 10 mm.
  • the combined CTPCPI.N normalized index was given by the following calculation [(759/25.4 + 923/10)/2]x800/826 and equaled 59 g/mm.
  • CTPCPI.N of example 2 reveals an approximate 40% inferior cut resistance compared to example 1. On the other side the abrasion resistance of example 2 is three times superior to the one of example 1.
  • Example 3 Three independent non composite para-aramid strands A and four independent nylon strands B were fed to the same circular knitting machine as the one used in Example 1 without prior assembling of any sort. A sleeve of sufficient length was knitted to obtain a uniform and reproducible pattern of a mass per surface area close to 843 g/m 2 . The samples were cut to the adequate dimensions and shapes, circular for the abrasion testing and rectangular for the cut performance measurement, to perform 6 abrasion tests and 12 cut tests.
  • Each sample had therefore a total dtex of 3622 (three times 714 dtex plus four times 370 dtex).
  • Each sample comprised 50.1 % by weight, of non composite para-aramid strand relative to the weight of the sample, and 40.1 % by weight, of nylon strand, relative to the weight of the sample.
  • the abrasion resistance measured was 6000 cycles.
  • the forces measured in the cut resistance test were 1170 g for a cut length of 25.4 mm and 1400 g for a cut distance of 10 mm.
  • the combined CTPCPI.N normalized index was given by the following calculation [(1170/25.4 + 1400/10)/2]x800/843 and equaled 88 g/mm.
  • CTPCPI.N of Example 3 reveals an approximate equal cut resistance compared to Example 1.
  • the abrasion resistance of Example 3 is six times superior to the one of Example 1 and surprisingly two times superior to the one of Example 2.

Abstract

L'invention concerne une structure fibreuse comprenant au moins un faisceau de fibres de para-aramide non composite et au moins un faisceau de fibres de nylon maintenus parallèles, le faisceau de fibres de para-aramide non composite étant présent dans la matière textile selon une quantité comprise entre environ 20 % et 99,9 % en poids, relativement au poids de la structure. L'invention concerne également un procédé de fabrication de ladite structure et un vêtement de protection, à résistance élevée à la coupure et à l'abrasion, constitué par ladite structure, tel que des gants, des tabliers et des manchons.
EP03765592A 2002-07-18 2003-07-15 Structure fibreuse resistante a la coupure et a l'abrasion Withdrawn EP1534886A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/198,614 US20040011088A1 (en) 2002-07-18 2002-07-18 Cut and abrasion resistant fibrous structure
US198614 2002-07-18
PCT/US2003/022126 WO2004009893A1 (fr) 2002-07-18 2003-07-15 Structure fibreuse resistante a la coupure et a l'abrasion

Publications (1)

Publication Number Publication Date
EP1534886A1 true EP1534886A1 (fr) 2005-06-01

Family

ID=30443149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03765592A Withdrawn EP1534886A1 (fr) 2002-07-18 2003-07-15 Structure fibreuse resistante a la coupure et a l'abrasion

Country Status (10)

Country Link
US (1) US20040011088A1 (fr)
EP (1) EP1534886A1 (fr)
JP (1) JP2005533198A (fr)
KR (1) KR20050025614A (fr)
CN (1) CN1668798A (fr)
AU (1) AU2003249277A1 (fr)
BR (1) BR0312748A (fr)
CA (1) CA2492819A1 (fr)
MX (1) MXPA05000589A (fr)
WO (1) WO2004009893A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241709B2 (en) * 2002-08-26 2007-07-10 E. I Du Pont De Nemours And Company Penetration resistant life protection articles
GB2417253B (en) * 2004-08-19 2009-05-20 Dale Techniche Ltd Cut-resistant knitted fabric
GB0608126D0 (en) * 2006-04-24 2006-06-07 Imerys Minerals Ltd Barrier compositions
US20080085411A1 (en) * 2006-10-10 2008-04-10 Larry John Prickett Multidenier fiber cut resistant fabrics and articles and processes for making same
US20080286513A1 (en) * 2007-05-15 2008-11-20 Invista North America S A R L Knit fabrics and socks made therefrom incorporating high tensile nylon staple
GB2479730B (en) * 2010-04-19 2014-08-13 Mir Concepts Ltd Protective garment for a limb
US8978162B2 (en) * 2010-10-01 2015-03-17 Banom, Inc. Cut resistant garment
DE202011108595U1 (de) * 2011-12-02 2013-03-04 Rökona-Textilwerk Gesellschaft mit beschränkter Haftung, Wirkerei - Ausrüstung Schnittschutzlage für eine Schnittschutztextilie, Schnittschutztextilie und diese aufweisende Arbeitsschutzbekleidung
CN106418816A (zh) * 2016-08-31 2017-02-22 佛山市特纶纤维科技有限公司 一种防护手套的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143197A (en) * 1977-05-11 1979-03-06 J. P. Stevens & Co., Inc. Aramid yarn fabrics and method of dimensional stabilization of same by heat setting
US4918912A (en) * 1989-05-19 1990-04-24 E. I. Du Pont De Nemours And Company Cut and abrasion resistant spun yarns and fabrics
US5763043A (en) * 1990-07-05 1998-06-09 Bay Mills Limited Open grid fabric for reinforcing wall systems, wall segment product and methods of making same
US5888609A (en) * 1990-12-18 1999-03-30 Valtion Teknillinen Tutkimuskeskus Planar porous composite structure and method for its manufacture
GB2259661A (en) * 1991-09-18 1993-03-24 Ibm Depositing solder on printed circuit boards
US5321960A (en) * 1993-01-28 1994-06-21 Kayser-Roth Corporation Abrasion resistant reinforced fabric
US5319950A (en) * 1993-02-22 1994-06-14 Kayser-Roth Corporation Abrasion resistant reinforced fabric
US5395683A (en) * 1993-03-26 1995-03-07 Alliedsignal Inc. Protective pad
TW360678B (en) * 1995-05-03 1999-06-11 Ciba Sc Holding Ag Synergistic stabilizer mixture for polyolefins
US5918319A (en) * 1996-07-22 1999-07-06 Baxter; Hal Thomas Protective garment incorporating an abrasion-resistant fabric
US5965223A (en) * 1996-10-11 1999-10-12 World Fibers, Inc. Layered composite high performance fabric
US5845476A (en) * 1997-06-04 1998-12-08 Kolmes; Nathaniel H. Composite yarn with fiberglass core
US6044493A (en) * 1997-08-27 2000-04-04 Rubotech, Inc. Stretchable protective garments and method for making same
JP2000080506A (ja) * 1998-06-26 2000-03-21 Atom Kk メリヤス補強手袋
US6263629B1 (en) * 1998-08-04 2001-07-24 Clark Schwebel Tech-Fab Company Structural reinforcement member and method of utilizing the same to reinforce a product
DE29901430U1 (de) * 1999-01-28 1999-05-06 Friedrich Seiz Gmbh Stichhemmende Textilware
US6455449B1 (en) * 1999-09-03 2002-09-24 Bradford Industries, Inc. Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004009893A1 *

Also Published As

Publication number Publication date
BR0312748A (pt) 2005-04-26
JP2005533198A (ja) 2005-11-04
CA2492819A1 (fr) 2004-01-29
WO2004009893A1 (fr) 2004-01-29
MXPA05000589A (es) 2005-04-19
AU2003249277A1 (en) 2004-02-09
CN1668798A (zh) 2005-09-14
US20040011088A1 (en) 2004-01-22
KR20050025614A (ko) 2005-03-14

Similar Documents

Publication Publication Date Title
US20040011087A1 (en) Cut and abrasion resistant fibrous structure comprising an elastic nylon
JP4786857B2 (ja) 着心地のよい、耐切断性−耐摩耗性繊維組成物
AU2001275348B2 (en) Cut resistant fabric
KR101394876B1 (ko) 상이한 데니어의 아라미드 섬유들을 포함하는 내절단성 천 및 이로부터의 용품의 제조 방법
JP4537711B2 (ja) 高性能繊維を含有する物品のリサイクル方法
US20040011088A1 (en) Cut and abrasion resistant fibrous structure
KR101445408B1 (ko) 다중데니어 섬유 내절단성 천 및 용품과 이의 제조 방법
RU2178470C2 (ru) Устойчивые к разрезанию пряжа, материал и предмет одежды

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20070719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071130