EP1534414B1 - Method and device for injecting two-phase co2 in a transfer gaseous medium - Google Patents

Method and device for injecting two-phase co2 in a transfer gaseous medium Download PDF

Info

Publication number
EP1534414B1
EP1534414B1 EP03763931A EP03763931A EP1534414B1 EP 1534414 B1 EP1534414 B1 EP 1534414B1 EP 03763931 A EP03763931 A EP 03763931A EP 03763931 A EP03763931 A EP 03763931A EP 1534414 B1 EP1534414 B1 EP 1534414B1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
gas
gaseous medium
injector
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03763931A
Other languages
German (de)
French (fr)
Other versions
EP1534414A2 (en
Inventor
Dominique Bras
José Buil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1534414A2 publication Critical patent/EP1534414A2/en
Application granted granted Critical
Publication of EP1534414B1 publication Critical patent/EP1534414B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/09Mixing systems, i.e. flow charts or diagrams for components having more than two different of undetermined agglomeration states, e.g. supercritical states
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/12Mixing gases with gases with vaporisation of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/30Mixing gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/834Mixing in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/911Axial flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/918Counter current flow, i.e. flows moving in opposite direction and colliding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87652With means to promote mixing or combining of plural fluids

Definitions

  • the invention relates to a method and a device for injecting two- phase CO 2 , "solid gas” into a transfer gas medium.
  • CO 2 is used in many industrial applications; Carbonation, pH regulation and the neutralization of Basque agents are examples of others.
  • the carbon dioxide can be injected into a liquid medium or a gaseous medium.
  • the CO 2 is injected in gaseous form, or liquid depending on the case.
  • CO 2 in solid form, or dry ice for cleaning surfaces.
  • US 4,747,421 discloses the use of solid CO 2 in the field of the semiconductor industry for the removal of a photoresist film on the surface of a substrate.
  • EP 0 631 846 discloses an apparatus for producing an aerosol for cleaning the interior surfaces of a tool chamber.
  • EP 0 288 263 discloses an apparatus for removing small particles from the surface of a substrate using a mixture of solid and gaseous carbon dioxide.
  • US 4,389,820 discloses a machine for generating an accelerated sublimated particle flux for surface etching.
  • the use of CO 2 avoids surface contamination as well as atmospheric contamination.
  • FR 2 198 778 discloses a method and apparatus for the preparation of foundry molds, wherein carbon dioxide gas is used for the delivery of gaseous components in a catalytic amount, both in the gasification of the mixture of liquid chemical components and in the adjustment of the quantities of components to be added.
  • WO 02/24316 A discloses a cooling device using an inverse carnot type cycle to generate an aerosol consisting of solid CO2 particles for cleaning microelectronic surfaces.
  • US 5,616,067 describes surface cleaning equipment intended in particular for the printing and electronics industries, using abrasive CO2 particles injected together with pressurized air.
  • An object of the present invention is to provide a solution to the problem of carbon dioxide injection in particular in large quantities, in enclosures containing a gaseous medium reactive or not, in transit under pressure.
  • Another object is to propose an injection device capable of implementing this method.
  • the injected carbon dioxide is in the form "gas + solid", the injection is done directly in the gaseous medium to be treated, through a wall of the enclosure which closes the medium to be treated.
  • the enclosure may be for example a pipe or pipe present in a circuit.
  • the transformation of liquid carbon dioxide into two-phase carbon dioxide involves a direct expansion device known as cryogenic expansion.
  • the device, of the variable flow valve type firstly restricts the flow of the fluid, then an increase in the flow diameter has the effect of relieving the gas causing a loss of pressure so that the pressure in output of the device corresponds to that of the triple point of CO 2 .
  • Liquid CO 2 is transformed into a mixture of CO 2 gas and solid CO 2 (dry ice).
  • the process of the invention uses a cryogenic fluid with a density at least twenty times greater than its gas phase.
  • the injection of carbon dioxide involves an injector which is stitched into the wall of the chamber and transfers the mixture "gas + solid" to the center of the transfer channel of the gaseous medium.
  • the injection of a gas inerting in carbon dioxide, at the outlet of the cryogenic valve prevents clogging at the outlet of said valve and at the outlet of the injector, in the gaseous medium.
  • the inerting gas providing a gas sweep at the different elements of the device in which the two- phase CO 2 circulates, prevents pollution by foreign bodies, in particular moisture, and avoids the accumulation of dry ice at points where the geometry that its circulation would be difficult without entrainment by the inerting gas.
  • the liquid CO 2 is made available at a pressure generally of between 10 ⁇ 10 5 and 22 ⁇ 10 5 Pa (ie between 10 and 22 bar) and at a temperature generally of between -35 ° C. and -20 ° C.
  • the two-phase carbon dioxide is injected so that it is injected into the center of the gaseous medium and distributed partly at the current and partly at the counter-current of the gaseous flow.
  • the mixing and entrainment of the CO 2 is best ensured, thus avoiding its accumulation.
  • the risk of formation of plugs is very large given the temperature of this CO 2 (-80 ° C), so it is essential to immediately disperse it in the gaseous medium to be treated.
  • the presence of the inerting gas injected into the two- phase CO 2 according to the invention also makes it possible to limit the risk of plugging.
  • This inerting gas must be inert with respect to the chemical species present as well as regulators (flow control valves, injector specific to the invention, etc ). It is particularly advantageous to use as carbon dioxide inerting gas from the vaporization of a fraction of the liquid carbon dioxide provided, and taken upstream of the device. cryogenic relaxation. It should be noted that CO 2 not introducing a new chemical species can by extension also be considered as an inert gas.
  • the quantity of carbon dioxide injected is preferably regulated as a function of a target of a physical or chemical parameter to be reached, the measurement of this parameter is carried out in the gaseous medium, downstream of the injection point.
  • the cryogenic valve variable rate of the invention is controlled according to this set.
  • a cryogenic safety valve of the all-or-nothing type can also be placed upstream of the variable-flow cryogenic valve to cut off the supply of liquid CO 2 in the event of a malfunction, for example if the pressure is too high. high in the gaseous medium to be treated, if the temperature is too low or if another parameter considered major has exceeded a warning threshold.
  • the operator of the installation can also control this valve. When the supply of the variable rate cryogenic valve is cut off, the protection of the sensitive elements of the device by a low flow rate of the inerting gas is maintained.
  • the injector enters the enclosure over a length equivalent to half the width of said enclosure and according to a preferred variant, the device comprises, for supplying the inerting gas of the injection device, upstream cryogenic expansion device, means for sampling and vaporization of a fraction of the liquid carbon dioxide provided.
  • the device can therefore operate by being connected to a single source of carbon dioxide feed. It is also possible to use an inert gas present at the place of application or compressed air, it being understood that the inerting gas must not modify the behavior of the mixture obtained, and must not be contraindicated for the equipment .
  • Figure 1 is a schematic view of a device according to the invention and by Figures 2 and 2A which represent an example of an injector according to the invention, the Figure 2A being a sectional view along the axis AA of the end of the injector of the Figure 2 .
  • the injection device 1 is intended to supply two-phase carbon dioxide "gas + liquid" in a gaseous medium 2, under pressure transfer in a chamber 3, and this from a storage tank 4 of carbon dioxide liquid in which the liquid carbon dioxide is stored at a pressure between 14.10 5 and 20.10 5 Pa (between 14 and 20 bar) and at a temperature between -35 ° C and -20 ° C
  • the device 1 comprises a liquid CO 2 supply line formed of a liquid line 5 extending from the tank 4 to a variable rate cryogenic valve 6 which regulates a parameter "A" measured in the medium. gas 2 downstream of the injection point.
  • a filter 7 equipped with a stainless steel filter cartridge is placed upstream of the valve 6, it provides filtration of liquid carbon dioxide to protect the valve seat of solid impurities that may be present in the pipes.
  • a cryogenic expansion valve not shown in the Figure, protects the line downstream of the safety valve 8 after closing thereof.
  • the device 1 further comprises an inerting gas feed line, which in this case is gaseous CO 2 ; the line is constituted in the order of one vaporizer 10, an expander 11, a manually-controlled flow valve 12, a flowmeter with transmitter 13 and a non-return valve 14.
  • an inerting gas feed line which in this case is gaseous CO 2 ; the line is constituted in the order of one vaporizer 10, an expander 11, a manually-controlled flow valve 12, a flowmeter with transmitter 13 and a non-return valve 14.
  • a tee 15, fed in upper part with two- phase CO 2 coming from the ejector situated at the outlet of the valve 6, on the side of inerting gas (CO 2 gas) is connected at the bottom to an injector 16 ensuring the injecting the two- phase CO 2 mixture into the gaseous medium 2 by transfer under pressure into the chamber 3.
  • the injector 16 carries out the transfer of the CO 2 towards the center of the transfer channel of the gaseous medium.
  • the inside of the tee 15 and the injector 16 are protected from the medium to be treated thanks to a low but permanent flow of the inerting gas.
  • a control-regulating unit of the parameter "A” ensures the measurement of the value of the parameter "A” in the transfer line, processes -via the control member 9- the signal received from “A” as well as the signals which come from the various safety parameters monitored (temperature and pressure of the gaseous medium to be treated, etc.). It controls according to “A” the opening level of the variable rate cryogenic valve 6 to maintain the "A” parameter at its set point; it also controls the closing of the cryogenic safety valve 8 in the event of a major defect affecting a safety parameter, or in the event of refusal of treatment authorization by the operator, as well as the opening or closing of the vent valve according to the operating mode, generally synchronous with the other valves.
  • This control of the control unit is ensured on the basis of information communicated by the measurement transmitters AIT (measurement of the "A” parameter), PIT (measurement of the pressure in the gaseous medium 2), TT (measurement of the temperature middle 2) not referenced.
  • AIT measurement of the "A” parameter
  • PIT measurement of the pressure in the gaseous medium 2
  • TT measurement of the temperature middle 2
  • the Figure 2 represents in more detail an example of an injector according to the invention.
  • the injector 16 is supplied with two- phase CO 2 coming from the ejector 17 at the outlet of the valve 6 and inerting gas consisting of gaseous CO 2 . This feed is performed via the tee 15 which receives CO 2 inerting at the side entry 18 and the two- phase CO 2 from 17 in the upper part.
  • the injector 16 made of a thermo-insulating material, for example polysulfone, conducts the "gas + solid" mixture towards the center of the channel 3 for transfer of the gaseous medium 2.
  • the method of the invention is implemented for the enrichment in CO 2 of natural gas combustion fumes.
  • the "A" parameter to be regulated is the CO 2 content of these fumes. Initially at about 8% CO 2 , the fumes are enriched by the process of the invention to levels of between 12 and 18% for subsequent use in a papermaking process. The flow of smoke is of the order of 12 000 m 3 / h. The amount of CO 2 used is about 1200 m 3 / h CO 2 (gas equivalent) to reach 16% CO 2 in the flue gases. The fumes thus enriched are intended in particular for the manufacture of calcium carbonate.
  • the process of the invention is particularly applicable in many fields using CO 2 as raw material.
  • the enrichment implemented according to the invention does not milling using CO 2 gas emerges sizing constraints and disadvantages related thereto.
  • the invention is thus particularly suitable for industrial installations with fumes containing CO 2 , polluting agent in the state, and also using CO 2 as raw material.
  • the process of the invention can also be used in cases where it is desired to treat a transfer gas medium with CO 2 .
  • the process of the invention can thus advantageously be applied to the enrichment of CO 2 with fumes for the manufacture of calcium carbonate for the paper industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method and an apparatus for injecting two-phase (gas+solid) carbon dioxide into a gas stream. Liquid carbon dioxide is cryogenically expanded into two-phase carbon dioxide, which is then injected into the center of the stream. An inerting gas is also injected into the stream along with the two-phase carbon dioxide.

Description

L'invention concerne un procédé et un dispositif d'injection de CO2 diphasique, « gaz+solide » dans un milieu gazeux en transfert.The invention relates to a method and a device for injecting two- phase CO 2 , "solid gas" into a transfer gas medium.

Le CO2 est utilisé dans de nombreuses applications industrielles ; la carbonatation, la régulation de pH, la neutralisation d'agents basques en sont des exemples parmi d'autres. Le dioxyde de carbone peut être injecté dans un milieu liquide ou un milieu gazeux.CO 2 is used in many industrial applications; Carbonation, pH regulation and the neutralization of Basque agents are examples of others. The carbon dioxide can be injected into a liquid medium or a gaseous medium.

Dans un milieu liquide, le CO2 est injecté sous forme gazeuse, ou liquide suivant les cas.In a liquid medium, the CO 2 is injected in gaseous form, or liquid depending on the case.

Lorsqu'il s'agit d'injecter du dioxyde de carbone dans un milieu gazeux, la solution habituelle consiste à l'injecter sous forme monophasique gazeuse. Le plus souvent livré sous forme liquéfiée et stocké sous cette forme dans un réservoir, à une pression de l'ordre de 14 à 20 bars et à une température de l'ordre de -35 à -20 °C, il est donc nécessaire de le vaporiser. Cette vaporisation nécessite la présence sur site d'un vaporiseur ; ce qui implique un coût important, à là fois de fonctionnement, mais aussi d'investissement, que l'énergie soit d'origine électrique ou fournie par de la vapeur disponible sur le suite. Par ailleurs, la ligne d'alimentation en dioxyde de carbone gazeux, ainsi que les accessoires associés (vannes, soupapes, etc...) sont volumineux et coûteux. Ainsi, les dispositifs classiques d'injection de dioxyde de carbone dans un milieu gazeux ne sont pas optimisés ; ces dispositifs ne sont notamment pas adaptés dans le cas de l'injection de quantités importantes de CO2.When it comes to injecting carbon dioxide into a gaseous medium, the usual solution is to inject it in gaseous monophasic form. Most often delivered in liquefied form and stored in this form in a tank, at a pressure of the order of 14 to 20 bar and at a temperature of the order of -35 to -20 ° C, it is therefore necessary to spray it. This vaporization requires the presence on site of a vaporizer; which implies a significant cost, at the time of operation, but also of investment, that the energy is of electric origin or provided by the available steam on the continuation. In addition, the gaseous carbon dioxide feed line and the associated accessories (valves, valves, etc.) are bulky and expensive. Thus, conventional devices for injecting carbon dioxide into a gaseous medium are not optimized; these devices are not particularly suitable in the case of the injection of large amounts of CO 2 .

On connaît par ailleurs l'utilisation de CO2 sous forme solide, ou de neige carbonique pour le nettoyage de surfaces.Also known is the use of CO 2 in solid form, or dry ice for cleaning surfaces.

US 4,747,421 décrit l'utilisation de CO2 solide dans le domaine de l'industrie des semi-conducteurs pour l'élimination d'un film photorésistant à la surface d'un substrat. US 4,747,421 discloses the use of solid CO 2 in the field of the semiconductor industry for the removal of a photoresist film on the surface of a substrate.

EP 0 631 846 décrit un appareil destiné à produire un aérosol pour nettoyer les surfaces intérieures d'une chambre à outils. EP 0 631 846 discloses an apparatus for producing an aerosol for cleaning the interior surfaces of a tool chamber.

EP 0 288 263 décrit un appareil pour éliminer des petites particules de la surface d'un substrat en utilisant un mélange de dioxyde de carbone solide et gazeux. EP 0 288 263 discloses an apparatus for removing small particles from the surface of a substrate using a mixture of solid and gaseous carbon dioxide.

US 4,389,820 décrit une machine destinée à générer un flux de particules sublimables accélérées pour le décapage de surface. L'utilisation de CO2 évite la contamination des surfaces ainsi que la contamination atmosphérique. US 4,389,820 discloses a machine for generating an accelerated sublimated particle flux for surface etching. The use of CO 2 avoids surface contamination as well as atmospheric contamination.

Par ailleurs, FR 2 198 778 décrit un procédé et un appareillage pour la préparation de moules de fonderie, procédé dans lequel du dioxyde de carbone gazeux est utilisé pour la délivrance de composants gazeux en quantité catalytique, à la fois lors de la gazéification du mélange de composants chimiques liquides et lors de l'ajustement des quantités de composants à ajouter.Otherwise, FR 2 198 778 discloses a method and apparatus for the preparation of foundry molds, wherein carbon dioxide gas is used for the delivery of gaseous components in a catalytic amount, both in the gasification of the mixture of liquid chemical components and in the the adjustment of the quantities of components to be added.

WO 02/24316 A décrit un dispositif de refroidissement utilisant un cycle de type carnot inverse pour générer un aérosol constitué de particules de CO2 solide destiné au nettoyage de surfaces microélectroniques. US 5,616,067 décrit un matériel de nettoyage de surface destiné notamment aux industries de l'impression et électronique, utilisant des particules de CO2 abrasives injectées conjointement avec de l'air sous pression. WO 02/24316 A discloses a cooling device using an inverse carnot type cycle to generate an aerosol consisting of solid CO2 particles for cleaning microelectronic surfaces. US 5,616,067 describes surface cleaning equipment intended in particular for the printing and electronics industries, using abrasive CO2 particles injected together with pressurized air.

Rependant aucun des documents cités n'a pour objet l'enrichissement en CO2 d'un milieu gazeux en transfert.The purpose of any of the documents cited is to enrich CO 2 in a gaseous transfer medium.

Un but de la présente invention est de proposer une solution au problème d'injection de dioxyde de carbone notamment en quantité importante, dans des enceintes contenant un milieu gazeux réactif ou non, en transit sous pression.An object of the present invention is to provide a solution to the problem of carbon dioxide injection in particular in large quantities, in enclosures containing a gaseous medium reactive or not, in transit under pressure.

Un autre but est de proposer un dispositif d'injection susceptible de mettre en oeuvre ce procédé.Another object is to propose an injection device capable of implementing this method.

Les caractéristiques et avantages de invention apparaîtront à la lecture de la description qui va suivre.The features and advantages of the invention will become apparent on reading the description which follows.

L'invention concerne tout d'abord un procédé d'injection de dioxyde de carbone dans un milieu gazeux en transfert sous pression à traiter, présent à l'intérieur d'une enceint, à partir de dioxyde de carbone liquide ; le procédé comportant les étapes de :

  • transformation du dioxyde de carbone liquide en dioxyde de carbone diphasique "gaz + solide" par un dispositif de détente directe,
  • injection du dioxyde de carbone diphasique ainsi formé dans le milieu gazeux à traiteur à l'aide d'un injecteur piqué dans la paroi de l'enceinte contenant ledit milieu gazeux en transfert sous pression à traiter,
  • ainsi qu'une étape d'injection d'un gaz d'inertage dans le dioxyde de carbone, entre le dispositif de détente directe et l'injecteur.
The invention firstly relates to a method for injecting carbon dioxide into a gaseous transfer pressure medium to be treated, present inside a pregnant, from liquid carbon dioxide; the process comprising the steps of:
  • transformation of liquid carbon dioxide into two-phase carbon dioxide "gas + solid" by a direct expansion device,
  • injection of the two-phase carbon dioxide thus formed in the gaseous medium to be treated using an injector stitched into the wall of the enclosure containing said gaseous medium in pressure transfer to be treated,
  • and a step of injecting an inerting gas into the carbon dioxide, between the direct expansion device and the injector.

Le dioxyde de carbone injecté est sous la forme "gaz+solide", l'injection se fait directement dans le milieu gazeux à traiter, au travers d'une paroi de l'enceinte qui referme le milieu à traiter. L'enceinte peut être par exemple une conduite ou canalisation présente dans un circuit. La transformation du dioxyde de carbone liquide en dioxyde de carbone diphasique fait intervenir un dispositif de détente directe dite détente cryogénique. Le dispositif, du type vanne à débit variable, provoque d'abord une restriction à l'écoulement du fluide, puis une augmentation du diamètre d'écoulement a pour effet de détende le gaz provoquant une perte de pression dé telle sorte que la pression en sortie du dispositif corresponde à celle du point triple du CO2. Le CO2 liquide se transforme en un mélange de CO2 gazeux et de CO2 solide (neige carbonique). Ainsi, lors de l'injection, le procédé de l'invention met en oeuvre un fluide cryogénique d'une densité au moins vingt fois plus grande que sa phase gaz. L'injection du dioxyde de carbone fait intervenir un injecteur qui est piqué dans la paroi de l'enceinte et transfère le mélange "gaz+solide" vers le centre de la canalisation de transfert du milieu gazeux. En outre, l'injection d'un gaz d'inertage dans le dioxyde de carbone, en sortie de la vanne cryogénique prévient les bouchages en sortie de ladite vanne et en sortie d'injecteur, dans le milieu gazeux. Le gaz d'inertage, assurant un balayage de gaz au niveau des différents éléments du dispositif où circule le CO2 diphasique prévient la pollution par des corps étrangers, notamment l'humidité et évite l'accumulation de neige carbonique en des points où la géométrie fait que sa circulation serait difficile sans l'entraînement par le gaz d'inertage.The injected carbon dioxide is in the form "gas + solid", the injection is done directly in the gaseous medium to be treated, through a wall of the enclosure which closes the medium to be treated. The enclosure may be for example a pipe or pipe present in a circuit. The transformation of liquid carbon dioxide into two-phase carbon dioxide involves a direct expansion device known as cryogenic expansion. The device, of the variable flow valve type, firstly restricts the flow of the fluid, then an increase in the flow diameter has the effect of relieving the gas causing a loss of pressure so that the pressure in output of the device corresponds to that of the triple point of CO 2 . Liquid CO 2 is transformed into a mixture of CO 2 gas and solid CO 2 (dry ice). Thus, during the injection, the process of the invention uses a cryogenic fluid with a density at least twenty times greater than its gas phase. The injection of carbon dioxide involves an injector which is stitched into the wall of the chamber and transfers the mixture "gas + solid" to the center of the transfer channel of the gaseous medium. In addition, the injection of a gas inerting in carbon dioxide, at the outlet of the cryogenic valve prevents clogging at the outlet of said valve and at the outlet of the injector, in the gaseous medium. The inerting gas, providing a gas sweep at the different elements of the device in which the two- phase CO 2 circulates, prevents pollution by foreign bodies, in particular moisture, and avoids the accumulation of dry ice at points where the geometry that its circulation would be difficult without entrainment by the inerting gas.

Le CO2 liquide est mis à disposition à une pression généralement comprise entre 10.105 et 22.105 Pa (soit entre 10 et 22 bars) et à une température généralement comprise entre-35°C et -20°C.The liquid CO 2 is made available at a pressure generally of between 10 × 10 5 and 22 × 10 5 Pa (ie between 10 and 22 bar) and at a temperature generally of between -35 ° C. and -20 ° C.

Selon un mode particulier, on injecte le dioxyde de carbone diphasique de telle sorte qu'il soit injecté au coeur du milieu gazeux et distribué pour partie à co courant et pour partie à contre-courant du flux gazeux. En injectant de la sorte le dioxyde de carbone au coeur du gaz, c'est-à-dire dans le courant gazeux loin des paroirs on assure au mieux le mélange et l'entraînement du CO2, évitant ainsi son accumulation. Or, le risque de formation de bouchons est très grand compte tenu de la température de ce CO2 (-80°C), il est donc essentiel de disperser immédiatement celui-ci dans le milieu gazeux à traiter. Outre la géométrie de l'injecteur, la présence du gaz d'inertage, injecté dans le CO2 diphasique selon l'invention permet aussi de limiter le risque de bouchons.According to one particular embodiment, the two-phase carbon dioxide is injected so that it is injected into the center of the gaseous medium and distributed partly at the current and partly at the counter-current of the gaseous flow. By injecting carbon dioxide into the gas core in the gas stream, that is to say in the gas stream far from the parquets, the mixing and entrainment of the CO 2 is best ensured, thus avoiding its accumulation. However, the risk of formation of plugs is very large given the temperature of this CO 2 (-80 ° C), so it is essential to immediately disperse it in the gaseous medium to be treated. In addition to the geometry of the injector, the presence of the inerting gas injected into the two- phase CO 2 according to the invention also makes it possible to limit the risk of plugging.

Ce gaz d'inertage doit être inerte vis-à-vis des espèces chimiques présentes ainsi que des organes de régulations (vannes de régulation de débit, injecteur spécifique à l'invention, etc...). Il est particulièrement avantageux d'utiliser en tant que gaz d'inertage du dioxyde de carbone provenant de la vaporisation d'une fraction du dioxyde de carbone liquide mis à disposition, et prélevé en amont du dispositif de détente cryogénique. On notera que le CO2 n'introduisant pas une nouvelle espèce chimique peut par extension être considéré aussi comme un gaz inerte.This inerting gas must be inert with respect to the chemical species present as well as regulators (flow control valves, injector specific to the invention, etc ...). It is particularly advantageous to use as carbon dioxide inerting gas from the vaporization of a fraction of the liquid carbon dioxide provided, and taken upstream of the device. cryogenic relaxation. It should be noted that CO 2 not introducing a new chemical species can by extension also be considered as an inert gas.

La quantité de dioxyde de carbone injectée est de préférence régulée en fonction d'une consigne d'un paramètre physique ou chimique à atteindre, la mesure de ce paramètre est réalisée dans le milieu gazeux, en aval du point d'injection. Ainsi, la vanne cryogénique à débit variable de l'invention est pilotée en fonction de cette consigne.The quantity of carbon dioxide injected is preferably regulated as a function of a target of a physical or chemical parameter to be reached, the measurement of this parameter is carried out in the gaseous medium, downstream of the injection point. Thus, the cryogenic valve variable rate of the invention is controlled according to this set.

Par ailleurs, une vanne cryogénique de sécurité du type tout ou rien peut aussi être placée en amont de la vanne cryogénique à débit variable pour réaliser la coupure de l'alimentation en CO2 liquide en cas de dysfonctionnement, par exemple si la pression est trop élevée dans le milieu gazeux à traiter, si la température y est trop basse ou si un autre paramètre, considéré comme majeur a dépassé un seuil d'alerte. L'exploitant de l'installation peut aussi commander cette vanne. Lorsque l'alimentation de la vanne cryogénique à débit variable est coupée, la protection des éléments sensibles du dispositif par un débit faible du gaz d'inertage est maintenu.In addition, a cryogenic safety valve of the all-or-nothing type can also be placed upstream of the variable-flow cryogenic valve to cut off the supply of liquid CO 2 in the event of a malfunction, for example if the pressure is too high. high in the gaseous medium to be treated, if the temperature is too low or if another parameter considered major has exceeded a warning threshold. The operator of the installation can also control this valve. When the supply of the variable rate cryogenic valve is cut off, the protection of the sensitive elements of the device by a low flow rate of the inerting gas is maintained.

L'invention concerne également un dispositif d'injection de dioxyde de carbone pour mettre en oeuvre l'un des procédés tels que définis précédemment, caractérisé en ce qu'il comprend :

  • une vanne de détente à débit variable (destinée à être alimentée en dioxyde de carbone liquide) et un injecteur correspondant piqué dans une paroi de l'enceinte et pénétrrant au coeur du milieu gazeux,
  • un té relié en partie supérieure à l'éjecteur de la vanne de détente (il est entendu par vanne de détente, la vanne à débit variable), sur le côte à une alimentation gazeuse et raccordé en partie basse à l'injecteur piqué dans ladite paroi,
  • des moyens d'alimentation de la vanne de détente en CO2 liquide,
  • des moyens d'alimentation du té en gaz d'inertage.
The invention also relates to a carbon dioxide injection device for carrying out one of the processes as defined above, characterized in that it comprises:
  • a variable-flow expansion valve (intended to be fed with liquid carbon dioxide) and a corresponding injector stitched into a wall of the enclosure and penetrating into the center of the gaseous medium,
  • a tee connected in the upper part to the ejector of the expansion valve (it is understood by expansion valve, the variable-rate valve), on the coast to a gas supply and connected in the lower part to the injector stitched in said wall,
  • means for supplying the expansion valve with liquid CO 2 ,
  • means for feeding the tee with inerting gas.

De manière judicieuse, l'extrémité de l'injecteur est constituée :

  • d'un déflecteur à deux pentes distribuant le CO2 diphasique pour partie à contre-courant du flux gazeux et pour partie à co-courant, de deux lumières d'échappement assurant l'éjection du CO2 diphasique et disposées de façon à le distribuer dans l'axe du transfert du flux gazeux.
In a judicious manner, the end of the injector consists of:
  • a two-slope deflector distributing the two- phase CO 2 partially counter-current of the gas stream and partly co-current, two exhaust ports ensuring the ejection of two- phase CO 2 and arranged to distribute it in the axis of the transfer of the gas flow.

De préférence, l'injecteur pénètre dans l'enceinte sur une longueur équivalente à la moitié de la largeur de ladite enceinte et selon une variante préférée, le dispositif comporte pour l'alimentation en gaz d'inertage du dispositif d'injection, en amont du dispositif de détente cryogénique, des moyens de prélèvement et de vaporisation d'une fraction du dioxyde de carbone liquide mis à disposition. Le dispositif peut donc fonctionner en étant relié à une seule source d'alimentation en dioxyde de carbone. On pourra aussi utiliser un gaz inerte présent sur le lieu de l'application ou de l'air comprimé étant entendu que le gaz d'inertage ne doit pas modifier le comportement du mélange obtenu, et ne doit pas être contre-indiqué pour le matériel.Preferably, the injector enters the enclosure over a length equivalent to half the width of said enclosure and according to a preferred variant, the device comprises, for supplying the inerting gas of the injection device, upstream cryogenic expansion device, means for sampling and vaporization of a fraction of the liquid carbon dioxide provided. The device can therefore operate by being connected to a single source of carbon dioxide feed. It is also possible to use an inert gas present at the place of application or compressed air, it being understood that the inerting gas must not modify the behavior of the mixture obtained, and must not be contraindicated for the equipment .

Un mode de réalisation de l'invention est donné à titre d'exemple non limitatif, illustré par la Figure 1 qui est une vue schématique d'un dispositif selon l'invention et par les Figures 2 et 2A qui représentent un exemple d'injecteur selon l'invention, la Figure 2A étant une vue en coupe selon l'axe AA de l'extrémité de l'injecteur de la Figure 2.One embodiment of the invention is given by way of non-limiting example, illustrated by the Figure 1 which is a schematic view of a device according to the invention and by Figures 2 and 2A which represent an example of an injector according to the invention, the Figure 2A being a sectional view along the axis AA of the end of the injector of the Figure 2 .

Le dispositif d'injection 1 est destiné à fournir du dioxyde de carbone diphasique "gaz+liquide" dans un milieu gazeux 2, en transfert sous pression dans une enceinte 3, et ceci à partir d'un réservoir de stockage 4 de dioxyde de carbone liquide dans lequel le dioxyde de carbone liquide est stocké à une pression comprise entre14.105 et 20.105 Pa (soit entre 14 et 20 bars) et à une température comprise entre -35°C et -20°CThe injection device 1 is intended to supply two-phase carbon dioxide "gas + liquid" in a gaseous medium 2, under pressure transfer in a chamber 3, and this from a storage tank 4 of carbon dioxide liquid in which the liquid carbon dioxide is stored at a pressure between 14.10 5 and 20.10 5 Pa (between 14 and 20 bar) and at a temperature between -35 ° C and -20 ° C

Le dispositif 1 comprend une ligne d'alimentation en CO2 liquide formée d'une conduite de liquide 5 s'étendant du réservoir 4 à une vanne cryogénique à débit variable 6 laquelle assure la régulation d'un paramètre "A" mesuré dans le milieu gazeux 2 en aval du point d'injection. Un filtre 7 équipé d'une cartouche filtrante en acier inoxydable est placé en amont de la vanne 6, il assure une filtration du dioxyde de carbone liquide afin de protéger le siège de vanne des impuretés solides pouvant être présentes dans les canalisations. Interposée sur la conduite 5, en amont du filtre 7, on trouve une vanne cryogénique de sécurité du type tout ou rien 8 laquelle réalise la coupure de l'alimentation en CO2 cryogénique de la vanne 6 lorsque l'organe de contrôle 9 détecte un dépassement de seuil d'un paramètre de sécurité sous contrôle. Une soupape cryogénique d'expansion, non représentée sur la Figure protège la ligne en aval de la vanne de sécurité 8 après la fermeture de celle-ci.The device 1 comprises a liquid CO 2 supply line formed of a liquid line 5 extending from the tank 4 to a variable rate cryogenic valve 6 which regulates a parameter "A" measured in the medium. gas 2 downstream of the injection point. A filter 7 equipped with a stainless steel filter cartridge is placed upstream of the valve 6, it provides filtration of liquid carbon dioxide to protect the valve seat of solid impurities that may be present in the pipes. Interposed on the pipe 5, upstream of the filter 7, there is a cryogenic safety valve of the all-or-nothing type 8 which cuts off the supply of cryogenic CO 2 from the valve 6 when the control member 9 detects a exceeding the threshold of a security parameter under control. A cryogenic expansion valve, not shown in the Figure, protects the line downstream of the safety valve 8 after closing thereof.

Le dispositif 1 comprend en outre une ligne d'alimentation en gaz d'inertage, lequel dans ce cas est du CO2 gazeux ; la ligne est constituée dans l'ordre d'un vaporiseur 10, d'un détendeur 11, d'une vanne de débit réglée manuellement 12, d'un débitmètre avec transmetteur 13 et d'un clapet anti-retour 14.The device 1 further comprises an inerting gas feed line, which in this case is gaseous CO 2 ; the line is constituted in the order of one vaporizer 10, an expander 11, a manually-controlled flow valve 12, a flowmeter with transmitter 13 and a non-return valve 14.

Un té 15, alimenté en partie supérieure en CO2 diphasique provenant de l'éjecteur situé en sortie de la vanne 6, sur le côté en gaz d'inertage (CO2 gazeux) est raccordé en partie basse à un injecteur 16 assurant l'injection du mélange de CO2 diphasique dans le milieu gazeux 2 en transfert sous pression dans l'enceinte 3.A tee 15, fed in upper part with two- phase CO 2 coming from the ejector situated at the outlet of the valve 6, on the side of inerting gas (CO 2 gas) is connected at the bottom to an injector 16 ensuring the injecting the two- phase CO 2 mixture into the gaseous medium 2 by transfer under pressure into the chamber 3.

L'injecteur 16 réalisé le transfert du CO2 vers le centre de la canalisation de transfert du milieu gazeux. Lorsqu'il n'y a pas d'injection de CO2, l'intérieur du té 15 et de l'injecteur 16 sont protégés du milieu à traiter grâce à un débit faible mais permanent du gaz d'inertage.The injector 16 carries out the transfer of the CO 2 towards the center of the transfer channel of the gaseous medium. When there is no CO 2 injection, the inside of the tee 15 and the injector 16 are protected from the medium to be treated thanks to a low but permanent flow of the inerting gas.

Une unité de contrôle-régulation du paramètre "A" assure la mesure de la valeur du paramètre "A" dans la, canalisation de transfert, traite -via l'organe de contrôle 9- le signal reçu de "A" ainsi que les signaux qui proviennent des différents paramètres de sécurité suivis (température et pression du milieu gazeux à traiter,...). Elle pilote en fonction de "A" le niveau d'ouverture de la vanne cryogénique à débit variable 6 pour assurer le maintien du paramètre "A" à sa valeur de consigne ; elle pilote aussi la fermeture de la vanne cryogénique de sécurité 8 en cas de défaut majeur affectant un paramètre de sécurité, ou en cas de refus d'autorisation de traitement de la part de l'exploitant, ainsi que l'ouverture ou la fermeture de la vanne de mise à l'air en fonction du mode de fonctionnement, en général synchrone des autres vannes. Ce pilotage de l'unité de contrôle est assuré à partir d'informations communiquées par les transmetteurs de mesure AIT (mesure du paramètre "A"), PIT (mesure de la pression dans le milieu gazeux 2), TT (mesure de la température du milieu 2) non référencés. D'autres éléments, non décrits peuvent être incorporés à cette unité de contrôle, notamment des informations binaires, du type autorisations
ou d'autres paramètres spécifiques du procédé.
A control-regulating unit of the parameter "A" ensures the measurement of the value of the parameter "A" in the transfer line, processes -via the control member 9- the signal received from "A" as well as the signals which come from the various safety parameters monitored (temperature and pressure of the gaseous medium to be treated, etc.). It controls according to "A" the opening level of the variable rate cryogenic valve 6 to maintain the "A" parameter at its set point; it also controls the closing of the cryogenic safety valve 8 in the event of a major defect affecting a safety parameter, or in the event of refusal of treatment authorization by the operator, as well as the opening or closing of the vent valve according to the operating mode, generally synchronous with the other valves. This control of the control unit is ensured on the basis of information communicated by the measurement transmitters AIT (measurement of the "A" parameter), PIT (measurement of the pressure in the gaseous medium 2), TT (measurement of the temperature middle 2) not referenced. Other elements, not described, may be incorporated in this control unit, in particular binary information, of the authorization type
or other specific parameters of the process.

La Figure 2 représente de façon plus détaillée un exemple d'injecteur selon l'invention.The Figure 2 represents in more detail an example of an injector according to the invention.

L'injecteur 16 est alimenté en CO2 diphasique provenant de l'éjecteur 17 en sortie de la vanne 6 et en gaz d'inertage constitué de CO2 gazeux. Cette alimentation est réalisée via le té 15 lequel reçoit le CO2 d'inertage au niveau de.l'entrée latérale 18 et le CO2 diphasique issu de 17 en partie supérieure. L'injecteur 16 réalisé dans une matière thermo-isolante, par exemple en polysulfone, conduit le mélange «gaz+solide» vers le centre de la canalisation 3 de transfert du milieu gazeux 2.The injector 16 is supplied with two- phase CO 2 coming from the ejector 17 at the outlet of the valve 6 and inerting gas consisting of gaseous CO 2 . This feed is performed via the tee 15 which receives CO 2 inerting at the side entry 18 and the two- phase CO 2 from 17 in the upper part. The injector 16 made of a thermo-insulating material, for example polysulfone, conducts the "gas + solid" mixture towards the center of the channel 3 for transfer of the gaseous medium 2.

L'injecteur 16 est muni:

  • à son extrémité d'un déflecteur 19 à deux pentes, formant un angle de 60° pour orienter une partie du CO2 diphasique à contre-courant du milieu gazeux 2 en circulation, et l'autre partie à co-courant
  • en sa partie basse de deux lumières d'échappement 20 lesquelles assurent l'éjection du CO2 diphasique, même à faible débit et sa distribution dans l'axe du transfert du milieu gazeux, sans en entraver la sortie grâce à leur disposition dans l'axe du transfert.
The injector 16 is provided with:
  • at its end of a deflector 19 with two slopes, forming an angle of 60 ° to orient a portion of the two- phase CO 2 counter-current of the gaseous medium 2 in circulation, and the other part to co-current
  • in its lower part of two exhaust ports 20 which ensure the ejection of the two- phase CO 2 , even at low flow and its distribution in the axis of the transfer of the gaseous medium, without hindering the output through their arrangement in the transfer axis.

EXEMPLEEXAMPLE

Le procédé de l'invention est mis en oeuvre pour l'enrichissement en CO2 de fumées de combustion de gaz naturel. Le paramètre "A" à réguler est la teneur en CO2 de ces fumées. Initialement à environ 8% de CO2, les fumées sont enrichies par le procédé de l'invention jusqu'à des teneurs comprises entre 12 et 18 %, pour leur utilisation ultérieure dans un procédé de fabrication du papier. Le débit de fumée est de l'ordre de 12 000 m3 /h. La quantité de CO2 utilisée est d'environ 1200 m3/h CO2 (équivalent gaz) pour atteindre 16% de CO2 dans les fumées. Les fumées ainsi enrichies sont destinées notamment à la fabrication de carbonate de calcium.The method of the invention is implemented for the enrichment in CO 2 of natural gas combustion fumes. The "A" parameter to be regulated is the CO 2 content of these fumes. Initially at about 8% CO 2 , the fumes are enriched by the process of the invention to levels of between 12 and 18% for subsequent use in a papermaking process. The flow of smoke is of the order of 12 000 m 3 / h. The amount of CO 2 used is about 1200 m 3 / h CO 2 (gas equivalent) to reach 16% CO 2 in the flue gases. The fumes thus enriched are intended in particular for the manufacture of calcium carbonate.

La présence de vapeur d'eau dans ces fumées crée en raison de l'interface entre les fumées chaudes et la source cryogénique des problèmes liés au risque de formation de glace, notamment au niveau des lumières de l'injecteur. Ce risque se trouve écarté grâce à l'inertage permanent de l'injecteur par un gaz neutre et sec.The presence of water vapor in these fumes creates, because of the interface between the hot fumes and the cryogenic source, problems related to the risk of ice formation, especially at the level of the injector ports. This risk is eliminated thanks to the permanent inerting of the injector by a neutral and dry gas.

Le procédé de l'invention est notamment applicable dans de nombreux domaines faisant appel au CO2 comme matière première. L'enrichissement mis en oeuvre selon l'invention ne fraisant pas appel au CO2 gazeux se dégage des contraintes de dimensionnements et des inconvénients qui y sont liés.The process of the invention is particularly applicable in many fields using CO 2 as raw material. The enrichment implemented according to the invention does not milling using CO 2 gas emerges sizing constraints and disadvantages related thereto.

L'invention est ainsi particulièrement adaptée pour des installations industrielles disposant de fumées contenant du CO2, agent polluant en l'état, et utilisant par ailleurs du CO2 comme matière première.The invention is thus particularly suitable for industrial installations with fumes containing CO 2 , polluting agent in the state, and also using CO 2 as raw material.

Le procédé de l'invention peut aussi être utilisé dans les cas où on souhaite traiter au CO2 un milieu gazeux en transfert.The process of the invention can also be used in cases where it is desired to treat a transfer gas medium with CO 2 .

Il est aussi apte à assurer une régulation de pH en utilisant des fumées dopées au CO2.It is also able to ensure a pH regulation using CO 2 doped fumes.

Le procédé de l'invention peut ainsi être applique avantageusement l'enrichissement en CO2 de fumées pour la fabrication de carbonate de calcium pour l'industrie papetière.The process of the invention can thus advantageously be applied to the enrichment of CO 2 with fumes for the manufacture of calcium carbonate for the paper industry.

Claims (10)

  1. Method for injecting carbon dioxide into a pressurized transferring gaseous medium (2), obtained to be treated present inside a chamber (3) from liquid carbon dioxide, with the following steps:
    - conversion of liquid carbon dioxide into two-phase "gas + solid" carbon dioxide by means of a direct expansion device (6); and,
    - injection of the two-phase carbon dioxide so formed into the gaseous medium to be treated with the aid of an injector (16) tapped into the wall of the chamber containing said pressurized transferring gaseous medium to be treated, which method includes a step of injecting (15) an inerting gas into the carbon dioxide between the direct expansion device and the injector.
  2. Method according to Claim 1, characterized in that the two-phase carbon dioxide is injected so that it is injected into the core of the gaseous medium and distributed partly cocurrently and partly countercurrently with the gas stream.
  3. Method according to either of Claims 1 and 2, characterized in that the inerting gas is carbon dioxide coming from the vaporization of a fraction of the available liquid carbon dioxide and drawn off upstream of the expansion device.
  4. Method according to one of Claims 1 to 3,
    characterized in that the quantity of carbon dioxide injected into the gaseous medium to be treated is regulated in relation to to a set value of a physical or chemical parameter (A) to be attained, measured in the gaseous medium, downstream of the injection point.
  5. Carbon dioxide injection device for implementing the method of one of Claims 1 to 4, comprising:
    - a variable-flow expansion valve (6) and a corresponding injector (16) tapped into a wall of the chamber (3) and penetrating into the core of the gaseous medium;
    - a T-piece (15) connected in the upper part to the ejector (17) of the expansion valve (6), on the side to a gas feed (18) and connected in the lower part to the injector (16) tapped into said wall;
    - means (5) for feeding the expansion valve with liquid carbon dioxide; and
    - means (5) for feeding the T-piece with inerting gas.
  6. Device according to Claim 5, characterized in that the end of the injector consists of:
    - a deflector (19) with two slopes distributing the two-phase CO2 partly countercurrently and partly cocurrently with the gas stream (2); and
    - two exhaust openings (20) for ejecting the two-phase CO2, arranged so as to distribute the mixture along the axis of transfer of the gas stream.
  7. Device according to either of Claims 5 and 6, characterized in that the injector (16) enters the chamber (3) over a length equivalent to half the width of said chamber.
  8. Device according to one of Claims 5 to 7,
    characterized in that it includes, for feeding the injection device with inerting gas, upstream of the cryogenic expansion device, means (10,11,12,13) for drawing off and vaporizing a fraction of the available liquid carbon dioxide.
  9. Application of the method according to one of claims 1 to 4 for enriching a gas stream with carbon dioxide obtained from liquid carbon dioxide.
  10. Application of the method according to Claim 9 for producing calcium carbonate.
EP03763931A 2002-07-11 2003-07-07 Method and device for injecting two-phase co2 in a transfer gaseous medium Expired - Lifetime EP1534414B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0208734 2002-07-11
FR0208734A FR2842123B1 (en) 2002-07-11 2002-07-11 METHOD AND DEVICE FOR INJECTING DIPHASIC CO2 INTO A TRANSFER GAS MEDIUM
PCT/FR2003/002097 WO2004007061A2 (en) 2002-07-11 2003-07-07 Method and device for injecting two-phase co2 in a transfer gaseous medium

Publications (2)

Publication Number Publication Date
EP1534414A2 EP1534414A2 (en) 2005-06-01
EP1534414B1 true EP1534414B1 (en) 2009-09-02

Family

ID=29763742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763931A Expired - Lifetime EP1534414B1 (en) 2002-07-11 2003-07-07 Method and device for injecting two-phase co2 in a transfer gaseous medium

Country Status (10)

Country Link
US (1) US7648569B2 (en)
EP (1) EP1534414B1 (en)
JP (1) JP2005532161A (en)
AT (1) ATE441472T1 (en)
AU (1) AU2003263267A1 (en)
BR (1) BR0312329B1 (en)
CA (1) CA2490662C (en)
DE (1) DE60329111D1 (en)
FR (1) FR2842123B1 (en)
WO (1) WO2004007061A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443739C (en) * 2005-12-16 2008-12-17 中海石油研究中心 System for jet feeding gas-solid, liquid-solid and liquid-liquid and its proportional transporation
DE102008052802A1 (en) * 2008-10-22 2010-04-29 Messer France S.A.S Arrangement for introducing liquid carbon dioxide into a medium
US20110265492A1 (en) * 2010-04-28 2011-11-03 Newman Michael D Freezer with cryogen injection control system
US20130074936A1 (en) * 2011-09-27 2013-03-28 Caterpillar Inc. Mis-fill prevention system
ITUB20160983A1 (en) 2016-02-23 2017-08-23 Soc It Acetilene E Derivati S I A D S P A In Breve Siad S P A DEVICE AND CORRESPONDING METHOD FOR THE DISTRIBUTION OF LIQUID CO2 IN PRESSURE ENVIRONMENTS LESS THAN THAT OF ITS TRIPLE POINT
US20230140807A1 (en) * 2021-11-03 2023-05-04 Biosenta Inc. Method and Apparatus for Producing Core-Shell Calcium Hydroxide-Calcium Carbonate Particles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791663A (en) * 1972-09-11 1973-03-16 Kohlensaurewerke C G Rommenholler Gmbh PROCESS AND APPARATUS FOR THE PRODUCTION OF GASEOUS REACTION COMPONENTS FOR THE PREPARATION OF MOLDS AND FOUNDRY CORES
US4389820A (en) * 1980-12-29 1983-06-28 Lockheed Corporation Blasting machine utilizing sublimable particles
US4747421A (en) * 1985-03-13 1988-05-31 Research Development Corporation Of Japan Apparatus for removing covering film
US4806171A (en) * 1987-04-22 1989-02-21 The Boc Group, Inc. Apparatus and method for removing minute particles from a substrate
DE4034076A1 (en) * 1990-10-26 1992-04-30 Linde Ag DEVICE FOR THE EXPANSION OF LIQUID GASES
US5486132A (en) * 1993-06-14 1996-01-23 International Business Machines Corporation Mounting apparatus for cryogenic aerosol cleaning
US5378312A (en) * 1993-12-07 1995-01-03 International Business Machines Corporation Process for fabricating a semiconductor structure having sidewalls
FR2787862B1 (en) * 1998-12-29 2001-01-26 Carboxyque Francaise METHOD AND DEVICE FOR REGULATED INJECTION OF LIQUID CARBON DIOXIDE INTO A PRESSURIZED LIQUID
KR100385432B1 (en) * 2000-09-19 2003-05-27 주식회사 케이씨텍 Surface cleaning aerosol production system

Also Published As

Publication number Publication date
BR0312329A (en) 2005-04-12
US20050268786A1 (en) 2005-12-08
WO2004007061A2 (en) 2004-01-22
DE60329111D1 (en) 2009-10-15
JP2005532161A (en) 2005-10-27
ATE441472T1 (en) 2009-09-15
EP1534414A2 (en) 2005-06-01
FR2842123A1 (en) 2004-01-16
WO2004007061A3 (en) 2004-04-08
AU2003263267A1 (en) 2004-02-02
CA2490662C (en) 2012-01-24
BR0312329B1 (en) 2011-08-23
US7648569B2 (en) 2010-01-19
FR2842123B1 (en) 2004-08-27
CA2490662A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP1716365B1 (en) Device and method for destroying liquid, powder or gaseous waste using an inductively coupled plasma
EP0376823B1 (en) Process and device for the flow rate control of liquid CO2, and their use in a cooling tunnel
EP2153130B1 (en) Low nox mixed injector
EP0755720B1 (en) Device for spraying a liquid
EP1534414B1 (en) Method and device for injecting two-phase co2 in a transfer gaseous medium
EP1247546B1 (en) Process and system for fire-fighting in a plane compartment equipped with said system
EP1140339B1 (en) Method for regulated injection of liquid carbon dioxide in a pressurised liquid
CA1141960A (en) Installation for generating a metal heat treatment atmosphere
WO2010119201A1 (en) Method and equipment for surface treatment by cryogenic fluid jets
CN102311099A (en) Surface oxidation treatment method and surface oxidation treatment device
FR2782023A1 (en) DEVICE AND METHOD FOR GRINDING CLOSED CONTAINERS CONTAINING POWDER
FR2778576A1 (en) FIRE EXTINGUISHING DEVICE COMPRISING A THERMOCHEMICAL GAS GENERATOR
WO2008142290A2 (en) Method and device for supplying a space propulsion engine with liquid cryogenic propellants
WO2012038408A1 (en) Device and method for producing nanopowder or ultrafine-powder suspensions or slurries
EP0318352A1 (en) Carbon dioxide lance for metallurgy
JP4426798B2 (en) Sprinkling system for exhaust gas cooling
EP1797963A1 (en) Mixing chamber and spraying device comprising said chamber
JP2808310B2 (en) Combustion furnace pressure fluctuation transmission prevention method
JPH10137774A (en) Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
EP0921102A1 (en) Apparatus for distributing CO2 and a method for treating an effluent and cleaning a surface with the same apparatus
FR3132032A1 (en) CARBON DIOXIDE CAPTURE METHOD AND SYSTEM
FR2702755A1 (en) Installation for transferring a volatile liquid product from an upstream storage tank to a downstream storage tank
WO2023280738A1 (en) Device and system for gasifying products containing organic matter
FR2765126A1 (en) Casting liquid metal through conduit incorporating two refractory components
FR2784171A1 (en) BURNER FOR HEATING A PULVERULENT PRODUCT, AND METHOD FOR VITRIFICATION OF A PULVERULENT PRODUCT USED BY MEANS OF SUCH A BURNER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061123

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR INJECTING TWO-PHASE CO2 IN A TRANSFER GASEOUS MEDIUM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60329111

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

26N No opposition filed

Effective date: 20100603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100707

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180723

Year of fee payment: 16

Ref country code: FR

Payment date: 20180725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180718

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60329111

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731