EP1532394B1 - Hybrid burner and corresponding operating method - Google Patents

Hybrid burner and corresponding operating method Download PDF

Info

Publication number
EP1532394B1
EP1532394B1 EP03729789.2A EP03729789A EP1532394B1 EP 1532394 B1 EP1532394 B1 EP 1532394B1 EP 03729789 A EP03729789 A EP 03729789A EP 1532394 B1 EP1532394 B1 EP 1532394B1
Authority
EP
European Patent Office
Prior art keywords
fuel
oxidation catalyst
partial oxidation
oxidator
hybrid burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03729789.2A
Other languages
German (de)
French (fr)
Other versions
EP1532394A1 (en
Inventor
Richard Carroni
Timothy Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP1532394A1 publication Critical patent/EP1532394A1/en
Application granted granted Critical
Publication of EP1532394B1 publication Critical patent/EP1532394B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/02Apparatus in which combustion takes place in the presence of catalytic material characterised by arrangements for starting the operation, e.g. for heating the catalytic material to operating temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/02Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in parallel arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03002Combustion apparatus adapted for incorporating a fuel reforming device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase

Definitions

  • the invention relates to a hybrid burner for a combustion chamber, in particular a power plant.
  • the invention also relates to a method of operating such a hybrid burner.
  • a method of combustion stabilization in which a conventional premix burner is supplied with a fuel-oxidizer mixture and the ignited mixture is introduced into a combustion chamber of a combustion chamber for complete combustion.
  • another fuel-oxidizer mixture is fed to a catalyst which is a hydrogen containing exhaust gas generated. This hydrogen-containing exhaust gas is then injected directly into the combustion chamber, in zones that are particularly suitable for flame stabilization.
  • the US 6,358,040 B1 shows a method in which a hydrogen-containing exhaust gas can be generated from a rich fuel-oxidizer mixture by means of a catalyst.
  • This hydrogen-containing exhaust gas is diluted with preheated oxidant so far that a lean fuel-oxidizer mixture is formed, which burns completely in a subsequent burner stage.
  • the EP 0 710 797 B1 shows a premix burner, in whose head a lance is arranged. This lance contains a catalyst at its exit end.
  • the WO96 / 41991 describes a burner which has two catalysts arranged in parallel
  • the invention deals with the problem of providing an improved embodiment for a burner or for an associated operating method.
  • a way is to be shown for such a burner to combine a comparatively low-emission catalytic combustion with a chemical flame stabilization in the combustion chamber.
  • the invention is based on the general idea of designing the burner as a hybrid burner, in that the burner comprises, on the one hand, a solid-state catalyst and, on the other hand, a partial oxidation catalyst, which are accommodated in a common housing in such a way that they can be flowed through in parallel.
  • a partial oxidation catalyst is used Catalyst understood, which is designed so that it oxidizes at least a portion of the fuel is not completely to CO 2 and H 2 O in a supplied rich fuel-oxidizer mixture, but only partially, so partially oxidized to H 2 and CO. It is clear that a different share of fuel can be fully implemented. As a rule, the only partially converted fuel fraction should predominate in the partial oxidation catalyst.
  • a partial oxidation catalyst works with rhodium.
  • the solid oxide catalyst is designed so that in a supplied lean fuel-oxidizer mixture regularly a predominant fuel fraction is completely oxidized or converted to CO 2 and H 2 O.
  • a Volloxidationskatalysator works for example with palladium.
  • the partial oxidation catalyst By this construction, it is particularly possible to supply the partial oxidation catalyst a rich fuel-oxidizer mixture which can be partially oxidized at relatively low temperatures. This partial oxidation generates heat that can be used to heat the Volloxidationskatalysators, so that there comparatively quickly the ignition temperature for a lean fuel-oxidizer mixture can be achieved.
  • the catalytic combustion in the hybrid burner according to the invention can thus be started relatively easily and runs comparatively stable.
  • the partial oxidation catalyst is formed, e.g. as a lance or in a lance, that it introduces its exhaust gases in a central recirculation zone, which forms in the combustion chamber.
  • the partial oxidation catalyst is supplied with a rich fuel-oxidizer mixture, its exhaust gas also has a fuel surplus, so that the injection or introduction of this rich exhaust gas into the recirculation zone leads to chemical flame stabilization. This effect can be significantly increased if the partial oxidation catalyst is designed to produce a hydrogen-containing exhaust gas.
  • the started partial oxidation can give off heat to the bulk oxidation catalyst, causing it to heat up rapidly and accordingly start the conversion in the second fuel-oxidizer mixture.
  • the heat release of the partial oxidation catalyst stabilizes the combustion reaction.
  • the partial oxidation catalyst pilot may be deactivated, for which it is necessary to stop the oxidizer supply before switching off the fuel supply, wherein it is basically possible to flush with an inert gas, eg N 2 .
  • the fuel fractions in the volumetric flows of the fuel-oxidizer mixtures are varied during the starting procedure in response to an inlet temperature of the hybrid combustor.
  • a hybrid burner 1 has a housing 2 which is connected on the input side to an oxidator feed 3 symbolized by an arrow and to two separately controllable fuel feeds 4 and 5, respectively.
  • natural gas is used as the fuel, and in principle other fuels are also possible.
  • the housing 2 is connected via a sudden cross-sectional widening 6 to a combustion chamber 7, which contains a combustion chamber 8.
  • the combustion chamber 7 leads to the hot exhaust gases of a gas turbine of a power plant plant generated with the aid of the hybrid burner 1.
  • the hybrid burner 1 has a full oxidation catalyst 9 and a partial oxidation catalyst 10, which are both arranged in the housing 2, such that they can be flowed through in parallel.
  • the partial oxidation catalyst 10 is designed such that it only carries out a partial oxidation of the fuel when it flows through with a supplied, symbolized by an arrow first fuel-oxidizer mixture 11, at least when it is a rich fuel-oxidizer mixture.
  • the partial oxidation catalyst 10 is designed so that its symbolized by an arrow exhaust gas 12 contains hydrogen.
  • the rich fuel-oxidizer mixture has z. B. a fuel / oxidizer ratio of ⁇ ⁇ 1 and preferably of ⁇ 0.5.
  • the Volloxidationskatalysator 9 is formed so that it flows through a fed, symbolized by arrows second fuel-oxidizer mixture 13, at least when it is a lean fuel-oxidizer mixture, substantially completely oxidized, where indicated by arrows exhaust gas 14 has an oxidant excess.
  • the lean fuel-oxidizer mixture has e.g. a fuel / oxidizer ratio of ⁇ > 1 and in particular of ⁇ > 2.
  • the two catalysts 9, 10 are expediently coupled to one another in a heat-transferring manner.
  • the full oxidation catalyst 9 is arranged annularly and coaxially around the centrally arranged partial oxidation catalyst 10.
  • the catalysts 9, 10 can each have a cylindrical outer contour.
  • each catalyst 9, 10 consists of a catalyst body containing a plurality of parallel-flow channels whose walls are catalytically active.
  • the centrally arranged partial oxidation catalyst 10 is designed here as a central lance. Accordingly, an exit end 15 of this lance or partial oxidation catalyst 10 is positioned downstream of an exit end 16 of the oxidation catalyst 9 in the housing 2.
  • the partial oxidation catalyst 10 may also be made shorter than the full oxidation catalyst 9. The outlet end of the partial oxidation catalyst 10 is then At the same time, it is possible for the outlet end 15 of the then "empty" lance to still be positioned downstream of the outlet end 16 of the solid oxide catalytic converter 9 in the housing 2.
  • the design of the partial oxidation catalyst 10 as a lance facilitates targeted introduction of the exhaust gases 12 of the partial oxidation catalyst 10 into certain zones within the combustion chamber 8.
  • the partial oxidation catalyst 10 e.g. by a corresponding orientation of the lance, designed so that it introduces its exhaust gas 12 in a central recirculation zone 17, which is formed in the combustion chamber 8.
  • the combustion in the recirculation zone 17 can be better stabilized.
  • a stable recirculation zone 17 in turn results in a stabilization of a flame front 18 in the combustion chamber 8.
  • the formation of such a recirculation zone 17 is favored, for example, by means of the cross-sectional jump 6.
  • the combustion chamber 7 operates with a so-called "vortex breakdown" in which a vortex generated in the hybrid burner 1 at the transition into the combustion chamber 8 due to the Queritesserweite-. 6 bursts.
  • a swirl generator 19 may be arranged in the housing 2 downstream of the solid oxidation catalytic converter 9, as here. It is also possible to integrate such a swirl generator already in the Volloxidationskatalysator 9. For example, this can be realized by a corresponding orientation of the channels of the Volloxidationskatalysators 9. In principle, such a swirl generator can also be connected downstream of the partial oxidation catalytic converter 10 or integrated into it.
  • the partial oxidation catalyst 10 By introducing or injecting the exhaust gases 12 of the partial oxidation catalyst 10 into the recirculation zone 17, the partial oxidation catalyst 10 has a type of pilot function for initiating and stabilizing the flame front 18.
  • the volumetric flow ratios in the two fuel-oxidizer mixtures 11, 13, ie in each case the ratio of the fuel fraction to the oxidant fraction in the volumetric flow, are varied.
  • the proportion of fuel in the volume flow of the first fuel-oxidizer mixture 11 decreases during the start-up procedure from a maximum value to a minimum value. This minimum value can not be arbitrarily small, since the first fuel-oxidizer mixture 11 must remain rich in order to avoid overheating and destruction of the partial oxidation catalyst 10.
  • an inert gas such as N 2 .
  • the operating as a pilot partial oxidation catalyst 10 remain switched on during the entire operation of the hybrid burner 1, including in normal or nominal operation.
  • the Oxidatorzu arrangement can be reduced to low values.
  • the proportion of fuel in the volume flow of the second fuel-oxidizer mixture 13 increases during the startup procedure, from a minimum value, which may also be zero, to a maximum value.
  • the variation of the volume flow conditions in the two fuel-oxidizer mixtures 11, 13 mainly takes place in that the individual fuel volume flows, which are fed to the catalysts 9, 10 via the first fuel feed 4 and via the second fuel feed 5, be varied.
  • the volume flow of the oxidant stream 20 can be increased during startup of the system, but this affects both fuel-oxidizer mixtures 11, 13.
  • another approach for varying the volumetric flow ratios in the fuel-oxidizer mixtures 11, 13 is possible, e.g. by adjustable oxidizer currents at constant fuel flows.
  • the volume flows of the fuel-oxidizer mixtures 11, 13 are varied as a function of an inlet temperature of the hybrid burner 1.
  • this inlet temperature has its lowest value, so that the volume flow of the first fuel-oxidizer mixture 11 assumes its maximum value, while the volume flow of the second fuel-oxidizer mixture 13 has its minimum value.
  • the first fuel-oxidizer mixture 11 is expediently selected so that a first fuel-oxidant ratio ⁇ 1 has a value less than 1, preferably less than 1 ⁇ 2, so that the partial oxidation catalyst 10 is fed with a rich fuel-oxidizer mixture 11 , With such a rich fuel-oxidizer mixture 11, the catalytic reaction in the partial oxidation catalyst 10 can be initiated even at a relatively low temperature.
  • the second fuel-oxidizer mixture 13 is selected so that a second fuel-oxidizer ratio ⁇ 2 is present, which is greater than 1, expediently even greater than 2, so that a lean fuel-oxidizer mixture 13 is present.
  • a lean fuel-oxidizer mixture 13 has a higher ignition temperature, which is reached relatively quickly due to the preheating by the partial oxidation catalyst 10, so that the catalytic reaction in Volloxidationskatalysator 9 can be started. Heat is also generated in this reaction, which further warms up the catalysts 9, 10 and thus the hybrid burner 1.
  • the fuel ratio in the volume flow ratio of the first fuel-oxidizer mixture 11 is further reduced while the fuel ratio in the volume flow ratio of the second fuel-oxidizer mixture 13 is further increased.
  • the fuel ratio in the volume flow ratio of the first fuel-oxidizer mixture 11 has its minimum value and the fuel ratio in the volume flow ratio of the second fuel-oxidizer mixture 13 its maximum value.
  • the first fuel volume flow can first decrease and then increase again or remain constant, or remain constant or increase from the beginning, since the absolute oxidizer volume flow generally increases during startup.
  • the first fuel-oxidant ratio ⁇ 1 is always ⁇ 1 in order to avoid overheating of the partial oxidation catalyst 10.
  • the partial oxidation catalyst 10 can continue to be supplied with a rich mixture 11, eg to reduce disturbing acoustic pulsations by chemical stabilization.
  • the first fuel supply 4 can be configured such that for the partial oxidation catalyst 10 there is a supply of preheated fuel.
  • Fig. 2 and 3 Examples of an embodiment of the first fuel supply 4 are shown, which allow a sufficient preheating of the fuel.
  • the first fuel supply 4 may have a heat exchanger 22.
  • This heat exchanger 22 has, on the one hand, a fuel path and, on the other hand, an oxidizer path, wherein the fuel path and the oxidizer path are coupled to one another in a heat-transmitting manner.
  • the oxidizer can deliver heat to the fuel.
  • the heat exchanger 22 is realized by a helical line section of the first fuel supply 4, which is acted upon on its outer side with the oxidizer stream 20.
  • the fuel path is thus inside the screw portion, while the oxidizer path is formed by the outside of the screw portion. It is also possible to preheat the fuel for the partial oxidation catalyst 10 in another way, in particular electrically.
  • a sufficient preheating of the fuel is achieved in that the introduction of the fuel into the oxidizer 20 relatively far upstream of the partial oxidation catalyst 10, so that the introduced fuel until the inlet of the partial oxidation catalyst 10 so far mixed with the oxidizer that a temperature compensation between results in the currents.
  • the partial oxidation catalyst 10 is extended at its inlet side with a supply channel 23 against the direction of flow in order to obtain a sufficiently large mixing path for the fuel supplied via the first fuel supply 4 and the oxidizer stream 20. It is clear that in the Fig. 2 and 3 shown exemplary measures for preheating the fuel supplied to the partial oxidation catalyst 10 can also be combined with each other.
  • the hybrid burner 1 in the embodiments of the Fig. 1 to 3 configured such that the reactive exhaust gases 12 of the partial oxidation catalyst 10 can be introduced into the central recirculation zone 17 of the combustion chamber 7.
  • Fig. 4 shows an embodiment in which the hybrid burner 1 is designed so that the exhaust gases 12 of the partial oxidation catalyst 10 can also be introduced into a dead water zone 21, which can form in the combustion chamber 8 in the region of the cross-sectional widening 6.
  • the dead water zone 21 is symbolized here by arrows which are to represent an annular vortex roll.
  • the partial oxidation catalyst 10 designed so that it surrounds the centrally disposed Volloxidationskatalysator 9 radially outside, in particular annular.
  • the housing 12 contains, downstream of the partial oxidation catalyst 10, an exhaust gas path 24 which starts at the outlet end 15 of the partial oxidation catalytic converter 10 and ends at the inlet of the combustion chamber 8.
  • the exhaust path 24 includes a main channel 24b, which extends substantially axially, ie in the main flow direction. From the main channel 24b branch off a plurality of secondary channels 24a, which lead to the cross-sectional widening 6 and open in the region of the dead water zone 21 into the combustion chamber 8.
  • the exhaust gas 12 of the partial oxidation catalyst 10 may divide into a main flow 12b following the main passage 24b and a sub flow 12a flowing through the sub passages 24a. Consequently, a portion of the exhaust gases 12 of the partial oxidation catalyst 10 may be introduced into the dead water zone 21.
  • the main flow 12b can be at least partially introduced into the recirculation zone 17.
  • the exhaust gas 12b of the partial oxidation catalytic converter 10 can in principle be directed to any desired point which makes sense for such exhaust gas supply, in particular the central and the lateral recirculation zones 17 and 21.
  • the respective catalyst 9, 10 both with catalytically active channels and with catalytically inactive channels.
  • the catalytically active channels and the catalytically inactive channels are then coupled to one another in a heat-transferring manner.
  • an alternating arrangement of the channels takes place within the respective catalyst structure.
  • both the catalytically active channels and the catalytically inactive channels are then flowed through by the respective fuel-oxidizer mixture 11 and 13, the mixture flow in the catalytically inactive channels being the catalytically active channels and thus the respective catalytic converter 9, 10 cools.
  • the arrangement of catalytically active channels and catalytically inactive channels in Volloxidationskatalysator 9, since this causes the nominal conversion point of the hybrid burner 1, the main reaction of the fuel.

Description

Technisches GebietTechnical area

Die Erfindung betrifft einen Hybridbrenner für eine Brennkammer, insbesondere einer Kraftwerksanlage. Die Erfindung betrifft außerdem ein Verfahren zum Betreiben eines derartigen Hybridbrenners.The invention relates to a hybrid burner for a combustion chamber, in particular a power plant. The invention also relates to a method of operating such a hybrid burner.

Stand der TechnikState of the art

Aus der EP 0 767 345 A2 ist es grundsätzlich bekannt, mit Hilfe eines Wasserstoff-Generators aus einem Brennstoff-Oxidator-Gemisch ein Wasserstoff enthaltendes Gas zu erzeugen und dieses einem Brennstoff-Oxidator-Gemisch beizumischen. Durch den Wasserstoff erhöht sich die Reaktivität des Brennstoff-Oxidator-Gemischs, wodurch die Verbrennung in einer katalytischen Brennerstufe verbessert werden kann. Der hierbei verwendete Wasserstoff-Generator fraktioniert den zugehörigen Brennstoff und erzeugt dadurch den Wasserstoff vorzugsweise mit Hilfe eines Katalysators.From the EP 0 767 345 A2 In principle, it is known to generate a hydrogen-containing gas from a fuel-oxidizer mixture by means of a hydrogen generator and to mix this with a fuel-oxidizer mixture. The hydrogen increases the reactivity of the fuel-oxidizer mixture, which can improve combustion in a catalytic burner stage. The hydrogen generator used in this case fractionates the associated fuel and thereby generates the hydrogen, preferably with the aid of a catalyst.

Aus der EP 0 849 451 A2 ist ein Verfahren zur Verbrennungsstabilisierung bekannt, bei dem ein üblicher Vormischbrenner mit einem Brennstoff-Oxidator-Gemisch versorgt und das gezündete Gemisch in einem Brennraum einer Brennkammer zur vollständigen Verbrennung eingeleitet wird. Parallel dazu wird ein anderes Brennstoff-Oxidator-Gemisch einem Katalysator zugeführt, der ein Wasserstoff enthaltendes Abgas erzeugt. Dieses wasserstoffhaltige Abgas wird dann direkt in den Brennraum eingedüst, und zwar in Zonen, die in besonderer Weise für eine Flammenstabilisierung geeignet sind.From the EP 0 849 451 A2 For example, a method of combustion stabilization is known in which a conventional premix burner is supplied with a fuel-oxidizer mixture and the ignited mixture is introduced into a combustion chamber of a combustion chamber for complete combustion. In parallel, another fuel-oxidizer mixture is fed to a catalyst which is a hydrogen containing exhaust gas generated. This hydrogen-containing exhaust gas is then injected directly into the combustion chamber, in zones that are particularly suitable for flame stabilization.

Die US 6,358,040 B1 zeigt ein Verfahren, bei dem aus einem fetten Brennstoff-Oxidator-Gemisch mittels eines Katalysators ein Wasserstoff enthaltendes Abgas erzeugt werden kann. Dieses wasserstoffhaltige Abgas wird mit vorgeheiztem Oxidator so weit verdünnt, dass ein mageres Brennstoff-Oxidator-Gemisch entsteht, das in einer nachfolgenden Brennerstufe vollständig verbrennt.The US 6,358,040 B1 shows a method in which a hydrogen-containing exhaust gas can be generated from a rich fuel-oxidizer mixture by means of a catalyst. This hydrogen-containing exhaust gas is diluted with preheated oxidant so far that a lean fuel-oxidizer mixture is formed, which burns completely in a subsequent burner stage.

Die EP 0 710 797 B1 zeigt einen Vormischbrenner, in dessen Kopf eine Lanze angeordnet ist. Diese Lanze enthält an ihrem Austrittsende einen Katalysator.The EP 0 710 797 B1 shows a premix burner, in whose head a lance is arranged. This lance contains a catalyst at its exit end.

Die WO96/41991 beschreibt einen Brenner, welcher zwei parallel angeordnete Katalysatoren aufweistThe WO96 / 41991 describes a burner which has two catalysts arranged in parallel

Darstellung der ErfindungPresentation of the invention

Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für einen Brenner bzw. für ein zugehöriges Betriebsverfahren eine verbesserte Ausführungsform anzugeben. Insbesondere soll für einen solchen Brenner ein Weg aufgezeigt werden, eine vergleichsweise emissionsarme katalytische Verbrennung mit einer chemischen Flammenstabilisierung im Brennraum zu kombinieren.The invention, as characterized in the claims, deals with the problem of providing an improved embodiment for a burner or for an associated operating method. In particular, a way is to be shown for such a burner to combine a comparatively low-emission catalytic combustion with a chemical flame stabilization in the combustion chamber.

Erfindungsgemäß wird dieses Problem durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, den Brenner als Hybridbrenner auszubilden, indem der Brenner zum einen einen Volloxdiationskatalysator und zum anderen einen Teiloxidationskatalysator umfasst, die in einem gemeinsamen Gehäuse so untergebracht sind, dass sie parallel durchströmbar sind. Im vorliegenden Zusammenhang wird unter einem Teiloxidationskatalysator ein Katalysator verstanden, der so gestaltet ist, dass er in einem zugeführten fetten Brennstoff-Oxidator-Gemisch zumindest einen Anteil des Brennstoffs nicht vollständig zu CO2 und H2O oxidiert, sondern nur teilweise, also partiell zu H2 und CO oxidiert. Es ist klar, dass dabei auch ein anderer Brennstoffanteil vollständig umgesetzt werden kann. Dabei soll in der Regel der nur partiell umgesetzte Brennstoffanteil beim Teiloxidationskatalysator deutlich überwiegen. Ein Teiloxidationskatalysator arbeitet z.B. mit Rhodium. Im Unterschied dazu ist der Volloxidationskatalysator so gestaltet, dass in einem zugeführten mageren Brennstoff-Oxidator-Gemisch regelmäßig ein überwiegender Brennstoffanteil vollständig zu CO2 und H2O oxidiert oder umgesetzt wird. Ein Volloxidationskatalysator arbeitet z.B. mit Palladium.The invention is based on the general idea of designing the burner as a hybrid burner, in that the burner comprises, on the one hand, a solid-state catalyst and, on the other hand, a partial oxidation catalyst, which are accommodated in a common housing in such a way that they can be flowed through in parallel. In the present context, a partial oxidation catalyst is used Catalyst understood, which is designed so that it oxidizes at least a portion of the fuel is not completely to CO 2 and H 2 O in a supplied rich fuel-oxidizer mixture, but only partially, so partially oxidized to H 2 and CO. It is clear that a different share of fuel can be fully implemented. As a rule, the only partially converted fuel fraction should predominate in the partial oxidation catalyst. For example, a partial oxidation catalyst works with rhodium. In contrast, the solid oxide catalyst is designed so that in a supplied lean fuel-oxidizer mixture regularly a predominant fuel fraction is completely oxidized or converted to CO 2 and H 2 O. A Volloxidationskatalysator works for example with palladium.

Durch diese Bauweise ist es insbesondere möglich, dem Teiloxidationskatalysator ein fettes Brennstoff-Oxidator-Gemisch zuzuführen, das bei vergleichsweise niedrigen Temperaturen partiell oxidiert werden kann. Diese partielle Oxidation erzeugt Wärme, die zur Erwärmung des Volloxidationskatalysators verwendet werden kann, so dass auch dort vergleichsweise rasch die Zündtemperatur für ein mageres Brennstoff-Oxidator-Gemisch erreicht werden kann. Die katalytische Verbrennung im erfindungsgemäßen Hybridbrenner kann somit relativ einfach gestartet werden und läuft vergleichsweise stabil.By this construction, it is particularly possible to supply the partial oxidation catalyst a rich fuel-oxidizer mixture which can be partially oxidized at relatively low temperatures. This partial oxidation generates heat that can be used to heat the Volloxidationskatalysators, so that there comparatively quickly the ignition temperature for a lean fuel-oxidizer mixture can be achieved. The catalytic combustion in the hybrid burner according to the invention can thus be started relatively easily and runs comparatively stable.

Zweckmäßig ist der Teiloxidationskatalysator so ausgebildet, z.B. als Lanze oder in einer Lanze, dass er seine Abgase in eine zentrale Rezirkulationszone einleitet, die sich im Brennraum ausbildet. Sofern der Teiloxidationskatalysator mit einem fetten Brennstoff-Oxidator-Gemisch versorgt wird, besitzt auch sein Abgas einen Brennstoffüberschuß, so dass die Eindüsung oder Einleitung dieses fetten Abgases in die Rezirkulationszone zu einer chemischen Flammenstabilisierung führt. Dieser Effekt kann erheblich gesteigert werden, wenn der Teiloxidationskatalysator so ausgebildet ist, dass er ein wasserstoffhaltiges Abgas erzeugt.Suitably, the partial oxidation catalyst is formed, e.g. as a lance or in a lance, that it introduces its exhaust gases in a central recirculation zone, which forms in the combustion chamber. If the partial oxidation catalyst is supplied with a rich fuel-oxidizer mixture, its exhaust gas also has a fuel surplus, so that the injection or introduction of this rich exhaust gas into the recirculation zone leads to chemical flame stabilization. This effect can be significantly increased if the partial oxidation catalyst is designed to produce a hydrogen-containing exhaust gas.

Von besonderem Interesse ist eine Ausführungsform der Erfindung, bei der während einer Startprozedur zum Starten des Hybridbrenners die durch die Katalysatoren geleiteten Volumenströme der Brennstoff-Oxidator-Gemische hinsichtlich ihres Brennstoffgehalts variiert werden, derart, dass im Verlauf der Startprozedur der Brennstoffanteil im Volumenstrom des dem Teiloxidationskatalysator zugeführten ersten Brennstoff-Oxidator-Gemischs abnimmt, während der Brennstoffanteil im Volumenstrom des dem Volloxidationskatalysator zugeführten zweiten Brennstoff-Oxidator-Gemischs zunimmt. Durch diese Vorgehensweise wird dem Umstand Rechnung getragen, dass die partielle Oxidation eines fetten ersten Brennstoff-Oxidator-Gemischs im Teiloxidationskatalysator bei kleineren Temperaturen startet und stabiler abläuft als die Volloxidation des mageren zweiten Brennstoff-Oxidator-Gemischs im Volloxidationskatalysator. Die gestartete partielle Oxidation kann Wärme an den Volloxidationskatalysator abgeben, wodurch dieser sich rasch erwärmt und dementsprechend die Konvertierung im zweiten Brennstoff-Oxidator-Gemisch startet. Beim Hochfahren des Volloxidationskatalysators stabilisiert die Wärmeabgabe des Teiloxidationskatalysators die Verbrennungsreaktion.Of particular interest is an embodiment of the invention wherein, during a start-up procedure for starting the hybrid burner, that through the catalysts guided volumetric flows of the fuel-oxidizer mixtures are varied in terms of their fuel content, such that in the course of the startup procedure, the fuel fraction in the volume flow of the partial oxidation catalyst supplied first fuel-oxidizer mixture decreases, while the fuel fraction in the volume flow of the Volloxidationskatalysator supplied second fuel-oxidizer Mixture increases. This procedure takes into account the fact that the partial oxidation of a rich first fuel-oxidizer mixture in the partial oxidation catalyst starts at lower temperatures and proceeds more stably than the full oxidation of the lean second fuel-oxidizer mixture in the oxidation-oxidation catalyst. The started partial oxidation can give off heat to the bulk oxidation catalyst, causing it to heat up rapidly and accordingly start the conversion in the second fuel-oxidizer mixture. When the all oxidation catalyst starts up, the heat release of the partial oxidation catalyst stabilizes the combustion reaction.

Bei dieser Vorgehensweise ist klar, dass der Brennstoffanteil im Volumenstrom des dem Teiloxidationskatalysator zugeführten fetten ersten Brennstoff-Oxidator-Gemischs nicht beliebig reduziert werden kann, da sonst das Brennstoff-Oxidator-Verhältnis λ zu groß werden würde, mit der Folge einer Überhitzung. Der Teiloxidationskatalysator dient dabei als Pilot und kann permanent aktiv sein, beispielsweise bei einem λ = 0,5. Alternativ kann der Teiloxidationskatalysator-Pilot deaktiviert werden, wozu es erforderlich ist, vor dem Ausschalten der Brennstoffzuführung die Oxidatorzuführung zu stoppen, wobei es grundsätzlich möglich ist, mit einem Inertgas, z.B. N2, zu spülen.In this approach, it is clear that the fuel fraction in the volumetric flow of the rich first fuel-oxidizer mixture supplied to the partial oxidation catalyst can not be arbitrarily reduced, otherwise the fuel-oxidizer ratio λ would become too high, with the result of overheating. The partial oxidation catalyst serves as a pilot and can be permanently active, for example at a λ = 0.5. Alternatively, the partial oxidation catalyst pilot may be deactivated, for which it is necessary to stop the oxidizer supply before switching off the fuel supply, wherein it is basically possible to flush with an inert gas, eg N 2 .

Vorzugsweise werden die Brennstoffanteile in den Volumenströmen der Brennstoff-Oxidator-Gemische während der Startprozedur in Abhängigkeit einer Einlaßtemperatur des Hybridbrenners variiert.Preferably, the fuel fractions in the volumetric flows of the fuel-oxidizer mixtures are varied during the starting procedure in response to an inlet temperature of the hybrid combustor.

Weitere wichtige Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus den Unteransprüchen, aus der Zeichnung und aus der zugehörigen Figurenbeschreibung anhand der Zeichnung.Further important features and advantages of the present invention will become apparent from the subclaims, from the drawing and from the associated description of the figures with reference to the drawing.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components.

Es zeigen, jeweils schematisch:

Fig. 1 bis 4
jeweils einen stark vereinfachten Längsschnitt durch einen erfindungsgemäßen Hybridbrenner, jedoch bei unterschiedlichen Ausführungsformen.
It show, each schematically:
Fig. 1 to 4
in each case a greatly simplified longitudinal section through a hybrid burner according to the invention, but in different embodiments.

Wege zur Ausführung der ErfindungWays to carry out the invention

Entsprechend Fig. 1 besitzt ein erfindungsgemäßer Hybridbrenner 1 ein Gehäuse 2, das eingangsseitig an eine durch einen Pfeil symbolisierte Oxidatorzuführung 3 sowie an zwei separat steuerbare Brennstoffzuführungen 4 bzw. 5 angeschlossen ist. In der Regel wird hierbei Erdgas als Brennstoff verwendet, wobei grundsätzlich auch andere Brennstoffe möglich sind. An seinem Ausgang ist das Gehäuse 2 über eine sprungartige Querschnittserweiterung 6 an eine Brennkammer 7 angeschlossen, die einen Brennraum 8 enthält. Zweckmäßig führt die Brennkammer 7 die mit Hilfe des Hybridbrenners 1 erzeugten heißen Abgase einer Gasturbine einer Kraftwerksanlage zu.Corresponding Fig. 1 a hybrid burner 1 according to the invention has a housing 2 which is connected on the input side to an oxidator feed 3 symbolized by an arrow and to two separately controllable fuel feeds 4 and 5, respectively. As a rule, natural gas is used as the fuel, and in principle other fuels are also possible. At its output, the housing 2 is connected via a sudden cross-sectional widening 6 to a combustion chamber 7, which contains a combustion chamber 8. Expediently, the combustion chamber 7 leads to the hot exhaust gases of a gas turbine of a power plant plant generated with the aid of the hybrid burner 1.

Erfindungsgemäß weist der Hybridbrenner 1 einen Volloxidationskatalysator 9 und einen Teiloxidationskatalysator 10 auf, die beide im Gehäuse 2 angeordnet sind, derart, dass sie parallel durchströmbar sind. Der Teiloxidationskatalysator 10 ist so ausgestaltet, dass er bei seiner Durchströmung mit einem zugeführten, durch einen Pfeil symbolisierten ersten Brennstoff-Oxidator-Gemisch 11, zumindest wenn es sich dabei um ein fettes Brennstoff-Oxidator-Gemisch handelt, nur eine Teiloxidation des Brennstoffs durchführt. Zweckmäßig ist der Teiloxidationskatalysator 10 so gestaltet, dass sein durch einen Pfeil symbolisiertes Abgas 12 Wasserstoff enthält. Das fette Brennstoff-Oxidator-Gemisch hat z. B. ein Brennstoff/Oxidator-Verhältnis von λ < 1 und vorzugsweise von < 0,5.According to the invention, the hybrid burner 1 has a full oxidation catalyst 9 and a partial oxidation catalyst 10, which are both arranged in the housing 2, such that they can be flowed through in parallel. The partial oxidation catalyst 10 is designed such that it only carries out a partial oxidation of the fuel when it flows through with a supplied, symbolized by an arrow first fuel-oxidizer mixture 11, at least when it is a rich fuel-oxidizer mixture. Suitably, the partial oxidation catalyst 10 is designed so that its symbolized by an arrow exhaust gas 12 contains hydrogen. The rich fuel-oxidizer mixture has z. B. a fuel / oxidizer ratio of λ <1 and preferably of <0.5.

Im Unterschied dazu ist der Volloxidationskatalysator 9 so ausgebildet, dass er bei seiner Durchströmung ein zugeführtes, durch Pfeile symbolisiertes zweites Brennstoff-Oxidator-Gemisch 13, zumindest wenn es sich um ein mageres Brennstoff-Oxidator-Gemisch handelt, im wesentlichen vollständig oxidiert, wobei sein durch Pfeile symbolisiertes Abgas 14 einen Oxidator-Überschuss aufweist. Das magere Brennstoff-Oxidator-Gemisch hat z.B. ein Brennstoff/Oxidator-Verhältnis von λ > 1 und insbesondere von λ > 2.In contrast, the Volloxidationskatalysator 9 is formed so that it flows through a fed, symbolized by arrows second fuel-oxidizer mixture 13, at least when it is a lean fuel-oxidizer mixture, substantially completely oxidized, where indicated by arrows exhaust gas 14 has an oxidant excess. The lean fuel-oxidizer mixture has e.g. a fuel / oxidizer ratio of λ> 1 and in particular of λ> 2.

Die beiden Katalysatoren 9, 10 sind zweckmäßig wärmeübertragend miteinander gekoppelt. Bei der hier gezeigten speziellen Ausführungsform ist der Volloxidationskatalysator 9 ringförmig und koaxial um den zentral angeordneten Teiloxidationskatalysator 10 angeordnet. Die Katalysatoren 9, 10 können dabei jeweils eine zylindrische Außenkontur aufweisen. Zweckmäßig besteht jeder Katalysator 9, 10 aus einem Katalysatorkörper, der eine Vielzahl parallel durchströmbarer Kanäle enthält, deren Wände katalytisch aktiv sind.The two catalysts 9, 10 are expediently coupled to one another in a heat-transferring manner. In the particular embodiment shown here, the full oxidation catalyst 9 is arranged annularly and coaxially around the centrally arranged partial oxidation catalyst 10. The catalysts 9, 10 can each have a cylindrical outer contour. Suitably, each catalyst 9, 10 consists of a catalyst body containing a plurality of parallel-flow channels whose walls are catalytically active.

Der zentral angeordnete Teiloxidationskatalysator 10 ist hier als zentrale Lanze ausgebildet. Dementsprechend ist ein Austrittsende 15 dieser Lanze bzw. des Teiloxidationskatalysators 10 stromab eines Austrittsendes 16 des Volioxidationskatalysators 9 im Gehäuse 2 positioniert. Bei einer anderen Ausführungsform kann der Teiloxidationskatalysator 10 auch kürzer ausgestaltet sein, als der Volloxidationskatalysator 9. Das Austrittsende des Teiloxidationskatalysators 10 liegt dann stromauf des Austrittsendes 16 des Volloxidationskatalysators 9. Gleichzeitig ist es möglich, dass Austrittsende 15 der dann "leeren" Lanze nach wie vor stromab des Austrittsendes 16 des Volloxidationskatalysators 9 im Gehäuse 2 zu positionieren.The centrally arranged partial oxidation catalyst 10 is designed here as a central lance. Accordingly, an exit end 15 of this lance or partial oxidation catalyst 10 is positioned downstream of an exit end 16 of the oxidation catalyst 9 in the housing 2. In another embodiment, the partial oxidation catalyst 10 may also be made shorter than the full oxidation catalyst 9. The outlet end of the partial oxidation catalyst 10 is then At the same time, it is possible for the outlet end 15 of the then "empty" lance to still be positioned downstream of the outlet end 16 of the solid oxide catalytic converter 9 in the housing 2.

Die Ausgestaltung des Teiloxidationskatalysators 10 als Lanze vereinfacht eine gezielte Einleitung der Abgase 12 des Teiloxidationskatalysators 10 in bestimmte Zonen innerhalb des Brennraums 8. Vorzugsweise ist der Teiloxidationskatalysator 10, z.B. durch eine entsprechende Ausrichtung der Lanze, so gestaltet, dass er sein Abgas 12 in eine zentrale Rezirkulationszone 17 einleitet, die sich im Brennraum 8 ausbildet. Durch diese Maßnahme kann die Verbrennung in der Rezirkulationszone 17 besser stabilisiert werden. Eine stabile Rezirkulationszone 17 hat ihrerseits eine Stabilisierung einer Flammenfront 18 im Brennraum 8 zur Folge. Die Ausbildung einer solchen Rezirkulationszone 17 wird beispielsweise mit Hilfe des Querschnittssprungs 6 begünstigt. Beispielsweise arbeitet die Brennkammer 7 mit einem sogenannten "vortex-breakdown", bei dem ein im Hybridbrenner 1 erzeugter Wirbel beim Übergang in den Brennraum 8 aufgrund der Querschnittserweite-. rung 6 aufplatzt. Zur Erzeugung eines solchen Wirbels, kann - wie hier - stromab des Volloxidationskatalysators 9 ein Drallerzeuger 19 im Gehäuse 2 angeordnet sein. Ebenso ist es möglich, einen derartigen Drallerzeuger bereits in den Volloxidationskatalysator 9 zu integrieren. Beispielsweise kann dies durch eine entsprechende Orientierung der Kanäle des Volloxidationskatalysators 9 realisiert werden. Ein solcher Drallerzeuger kann grundsätzlich auch dem Teiloxidationskatalysator 10 nachgeschaltet oder in diesen integriert werden.The design of the partial oxidation catalyst 10 as a lance facilitates targeted introduction of the exhaust gases 12 of the partial oxidation catalyst 10 into certain zones within the combustion chamber 8. Preferably, the partial oxidation catalyst 10, e.g. by a corresponding orientation of the lance, designed so that it introduces its exhaust gas 12 in a central recirculation zone 17, which is formed in the combustion chamber 8. By this measure, the combustion in the recirculation zone 17 can be better stabilized. A stable recirculation zone 17 in turn results in a stabilization of a flame front 18 in the combustion chamber 8. The formation of such a recirculation zone 17 is favored, for example, by means of the cross-sectional jump 6. For example, the combustion chamber 7 operates with a so-called "vortex breakdown" in which a vortex generated in the hybrid burner 1 at the transition into the combustion chamber 8 due to the Querschnittserweite-. 6 bursts. To produce such a vortex, a swirl generator 19 may be arranged in the housing 2 downstream of the solid oxidation catalytic converter 9, as here. It is also possible to integrate such a swirl generator already in the Volloxidationskatalysator 9. For example, this can be realized by a corresponding orientation of the channels of the Volloxidationskatalysators 9. In principle, such a swirl generator can also be connected downstream of the partial oxidation catalytic converter 10 or integrated into it.

Durch die Einleitung oder Eindüsung der Abgase 12 des Teiloxidationskatalysators 10 in die Rezirkulationszone 17 besitzt der Teiloxidationskatalysator 10 eine Art Pilotfunktion zur Initiierung und Stabilisierung der Flammenfront 18.By introducing or injecting the exhaust gases 12 of the partial oxidation catalyst 10 into the recirculation zone 17, the partial oxidation catalyst 10 has a type of pilot function for initiating and stabilizing the flame front 18.

Wenn eine solche Pilotfunktion nicht erforderlich ist, kann es zweckmäßig sein, die Abgase 12 des Teiloxidationskatalysators 10 möglichst intensiv mit den Abgasen 14 des Volloxidationskatalysators 9 zu vermischen, bevor das so gebildete Abgasgemisch der homogenen Verbrennung im Brennraum 8 zugeführt wird. Eine entsprechende Durchmischung kann dabei mit einer geeigneten, hier nicht gezeigten Mischeinrichtung erzielt werden.If such a pilot function is not required, it may be expedient to mix the exhaust gases 12 of the partial oxidation catalytic converter 10 as intensively as possible with the exhaust gases 14 of the solid oxide catalytic converter 9 before the exhaust gas mixture thus formed the homogeneous combustion in the combustion chamber 8 is supplied. A corresponding mixing can be achieved with a suitable, not shown mixing device.

Der erfindungsgemäße Hybridbrenner 1 arbeitet wie folgt:

  • Zum Starten des Hybridbrenners 1 wird eine Startprozedur durchgeführt. Hierbei wird den beiden Katalysatoren 9, 10 über die Oxidatorzuführung 3 ein durch Pfeile symbolisierter gemeinsamer Oxidatorstrom 20 zugeführt, der sich in Abhängigkeit der Querschnittsflächen und Durchströmungswiderstände auf die beiden Katalysatoren 9, 10 aufteilt. Der Volumenstrom des Oxidatorstroms 20 kann während der Startprozedur im wesentlichen konstant gehalten werden. Das erste Brennstoff-Oxidator-Gemisch 11 wird dadurch erzeugt, dass über die erste Brennstoffzuführung 4 ein entsprechender erster Brennstoffvolumenstrom dem Teiloxidationskatalysator 10 zugeführt wird. In entsprechender Weise kann das zweite Brennstoff-Oxidator-Gemisch 13 erzeugt werden, indem die zweite Brennstoffzuführung 5 einen zweiten Brennstoffvolumenstrom dem Volloxidationskatalysator 9 zuführt.
The hybrid burner 1 according to the invention operates as follows:
  • To start the hybrid burner 1, a startup procedure is performed. Here, the two catalysts 9, 10 via the Oxidatorzuführung 3 a symbolized by arrows common oxidant 20, which is divided depending on the cross-sectional areas and flow resistance to the two catalysts 9, 10. The volume flow of the oxidizer stream 20 can be kept substantially constant during the start-up procedure. The first fuel-oxidizer mixture 11 is produced by supplying a corresponding first fuel volume flow to the partial oxidation catalytic converter 10 via the first fuel feed 4. In a corresponding manner, the second fuel-oxidizer mixture 13 can be generated by the second fuel supply 5 supplying a second fuel volume flow to the full oxidation catalyst 9.

Während der Startprozedur werden die Volumenstromverhältnisse in den beiden Brennstoff-Oxidator-Gemischen 11, 13, also jeweils das Verhältnis des Brennstoffanteils zum Oxidatoranteil im Volumenstrom, variiert. Der Brennstoffanteil im Volumenstrom des ersten Brennstoff-Oxidator-Gemischs 11 nimmt während der Startprozedur von einem Maximalwert auf einen Minimalwert ab. Dieser Minimalwert kann dabei nicht beliebig klein werden, da das erste Brennstoff-Oxidator-Gemisch 11 fett bleiben muss, um eine Überhitzung und Zerstörung des Teiloxidationskatalysators 10 zu vermeiden. Um die Brennstoffzufuhr zum Teiloxidationskatalysator 10 auszuschalten, kann es zweckmäßig sein, das System mit einem Inertgas, wie z.B. N2, zu verdünnen. Alternativ kann der als Pilot arbeitende Teiloxidationskatalysator 10 auch während des gesamten Betriebs des Hybridbrenners 1, also auch im Normal- oder Nennbetrieb eingeschaltet bleiben. Ebenso kann die Oxidatorzuführung auf niedrige Werte reduziert werden. Im Unterschied dazu nimmt der Brennstoffanteil im Volumenstrom des zweiten Brennstoff-Oxidator-Gemischs 13 während der Startprozedur von einem Minimalwert, der auch Null sein kann, bis zu einem Maximalwert zu.During the start procedure, the volumetric flow ratios in the two fuel-oxidizer mixtures 11, 13, ie in each case the ratio of the fuel fraction to the oxidant fraction in the volumetric flow, are varied. The proportion of fuel in the volume flow of the first fuel-oxidizer mixture 11 decreases during the start-up procedure from a maximum value to a minimum value. This minimum value can not be arbitrarily small, since the first fuel-oxidizer mixture 11 must remain rich in order to avoid overheating and destruction of the partial oxidation catalyst 10. To turn off the fuel supply to the partial oxidation catalyst 10, it may be desirable to dilute the system with an inert gas, such as N 2 . Alternatively, the operating as a pilot partial oxidation catalyst 10 remain switched on during the entire operation of the hybrid burner 1, including in normal or nominal operation. Likewise, the Oxidatorzuführung can be reduced to low values. In contrast, the proportion of fuel in the volume flow of the second fuel-oxidizer mixture 13 increases during the startup procedure, from a minimum value, which may also be zero, to a maximum value.

Bei der hier gezeigten Ausführungsform erfolgt die Variation der Volumenstromverhältnisse in den beiden Brennstoff-Oxidator-Gemischen 11, 13 hauptsächlich dadurch, dass die einzelnen Brennstoffvolumenströme, die über die erste Brennstoffzuführung 4 bzw. über die zweite Brennstoffzuführung 5 den Katalysatoren 9, 10 zugeführt werden, variiert werden. Gleichzeitig kann beim Hochfahren der Anlage auch der Volumenstrom des Oxidatorstroms 20 erhöht werden, was sich aber auf beide Brennstoff-Oxidator-Gemische 11, 13 auswirkt. Es ist klar, dass grundsätzlich auch eine andere Vorgehensweise zur Variierung der Volumenstromverhältnisse in den Brennstoff-Oxidator-Gemischen 11, 13 möglich ist, z.B. durch einstellbare Oxidatorströme bei konstanten Brennstoffströmen.In the embodiment shown here, the variation of the volume flow conditions in the two fuel-oxidizer mixtures 11, 13 mainly takes place in that the individual fuel volume flows, which are fed to the catalysts 9, 10 via the first fuel feed 4 and via the second fuel feed 5, be varied. At the same time, the volume flow of the oxidant stream 20 can be increased during startup of the system, but this affects both fuel-oxidizer mixtures 11, 13. It will be appreciated that in principle, another approach for varying the volumetric flow ratios in the fuel-oxidizer mixtures 11, 13 is possible, e.g. by adjustable oxidizer currents at constant fuel flows.

Während der Startprozedur werden die Volumenströme der Brennstoff-Oxidator-Gemische 11, 13 in Abhängigkeit einer Eingangstemperatur des Hybridbrenners 1 variiert. Zu Beginn der Startprozedur besitzt diese Einlaßtemperatur ihren kleinsten Wert, so dass der Volumenstrom des ersten Brennstoff-Oxidator-Gemischs 11 seinen Maximalwert einnimmt, während der Volumenstrom des zweiten Brennstoff-Oxidator-Gemischs 13 seinen Minimalwert aufweist. Das erste Brennstoff-Oxidator-Gemisch 11 ist zweckmäßig so gewählt, dass ein erstes Brennstoff-Oxidator-Verhältnis λ1 einen Wert kleiner als 1, vorzugsweise kleiner ½, aufweist, so dass dem Teiloxidationskatalysator 10 ein fettes Brennstoff-Oxidator-Gemisch 11 zugeführt wird. Bei einem solchen fetten Brennstoff-Oxidator-Gemisch 11 kann die katalytische Reaktion im Teiloxidationskatalysator 10 schon bei einer relativ niedrigen Temperatur in Gang gesetzt werden. Bei dieser Reaktion entsteht Wärme, die der Teiloxidationskatalysator 10 zum einen in seine Umgebung abstrahlt und zum anderen über die Wärmekopplung an den Volloxidationskatalysator 9 abgibt. Hierdurch kann relativ schnell die Temperatur des Volloxidationskatalysators 9 angehoben werden. Gleichzeitig korreliert damit die Einlaßtemperatur des Hybridbrenners 1.During the starting procedure, the volume flows of the fuel-oxidizer mixtures 11, 13 are varied as a function of an inlet temperature of the hybrid burner 1. At the beginning of the starting procedure, this inlet temperature has its lowest value, so that the volume flow of the first fuel-oxidizer mixture 11 assumes its maximum value, while the volume flow of the second fuel-oxidizer mixture 13 has its minimum value. The first fuel-oxidizer mixture 11 is expediently selected so that a first fuel-oxidant ratio λ 1 has a value less than 1, preferably less than ½, so that the partial oxidation catalyst 10 is fed with a rich fuel-oxidizer mixture 11 , With such a rich fuel-oxidizer mixture 11, the catalytic reaction in the partial oxidation catalyst 10 can be initiated even at a relatively low temperature. In this reaction, heat is generated, which radiates the partial oxidation catalyst 10 on the one hand in its surroundings and on the other hand via the heat coupling to the Volloxidationskatalysator 9. As a result, the temperature of the Volloxidationskatalysators 9 can be raised relatively quickly. At the same time, the inlet temperature of the hybrid burner 1 correlates with it.

Mit zunehmender Temperatur wird der Volumenstrom des zweiten Brennstoff-Oxidator-Gemischs 13 ausgehend von seinem Minimalwert erhöht. Zweckmäßig wird das zweite Brennstoff-Oxidator-Gemisch 13 so gewählt, dass ein zweites Brennstoff-Oxidator-Verhältnis λ2 vorliegt, das größer ist als 1, zweckmäßig sogar größer als 2, so dass ein mageres Brennstoff-Oxidator-Gemisch 13 vorliegt. Ein solches mageres Brennstoff-Oxidator-Gemisch 13 besitzt eine höhere Zündtemperatur, die aufgrund der Vorwärmung durch den Teiloxidationskatalysator 10 relativ rasch erreicht ist, so dass auch die katalytische Reaktion im Volloxidationskatalysator 9 gestartet werden kann. Auch bei dieser Reaktion entsteht Wärme, welche die Katalysatoren 9, 10 und somit den Hybridbrenner 1 weiter aufwärmt.With increasing temperature, the volume flow of the second fuel-oxidizer mixture 13 is increased from its minimum value. Suitably, the second fuel-oxidizer mixture 13 is selected so that a second fuel-oxidizer ratio λ 2 is present, which is greater than 1, expediently even greater than 2, so that a lean fuel-oxidizer mixture 13 is present. Such a lean fuel-oxidizer mixture 13 has a higher ignition temperature, which is reached relatively quickly due to the preheating by the partial oxidation catalyst 10, so that the catalytic reaction in Volloxidationskatalysator 9 can be started. Heat is also generated in this reaction, which further warms up the catalysts 9, 10 and thus the hybrid burner 1.

Mit zunehmender Temperatur wird der Brennstoffanteil im Volumenstromverhältnis des ersten Brennstoff-Oxidator-Gemischs 11 weiter reduziert, während der Brennstoffanteil im Volumenstromverhältnis des zweiten Brennstoff-Oxidator-Gemischs 13 weiter erhöht wird. Am Ende der Startprozedur besitzt der Brennstoffanteil im Volumenstromverhältnis des ersten Brennstoff-Oxidator-Gemischs 11 seinen Minimalwert und der Brennstoffanteil im Volumenstromverhältnis des zweiten Brennstoff-Oxidator-Gemischs 13 seinen Maximalwert. Dabei kann der erste Brennstoffvolumenstrom absolut gesehen bei abnehmendem Relativanteil im Volumenstrom des ersten Brennstoff-Oxidator-Gemischs 11 zuerst abnehmen und dann wieder zunehmen oder konstant bleiben, oder von Anfang an konstant bleiben oder zunehmen, da der absolute Oxidatorvolumenstrom beim Hochfahren im allgemeinen zunimmt.As the temperature increases, the fuel ratio in the volume flow ratio of the first fuel-oxidizer mixture 11 is further reduced while the fuel ratio in the volume flow ratio of the second fuel-oxidizer mixture 13 is further increased. At the end of the start procedure, the fuel ratio in the volume flow ratio of the first fuel-oxidizer mixture 11 has its minimum value and the fuel ratio in the volume flow ratio of the second fuel-oxidizer mixture 13 its maximum value. In absolute terms, as the relative proportion in the volume flow of the first fuel-oxidizer mixture 11 decreases, the first fuel volume flow can first decrease and then increase again or remain constant, or remain constant or increase from the beginning, since the absolute oxidizer volume flow generally increases during startup.

Bei dieser Startprozedur muss gewährleistet werden, dass im ersten Brennstoff-Oxidator-Gemisch 11 das erste Brennstoff-Oxidator-Verhältnis λ1 stets < 1 ist, um eine Überhitzung des Teiloxidationskatalysators 10 zu vermeiden. Im Nennbetrieb kann der Teiloxidationskatalysator 10 weiterhin mit einem fetten Gemisch 11 versorgt werde, z.B. um durch eine chemische Stabilisierung störende akustische Pulsationen zu reduzieren.In this starting procedure, it must be ensured that in the first fuel-oxidizer mixture 11, the first fuel-oxidant ratio λ 1 is always <1 in order to avoid overheating of the partial oxidation catalyst 10. In nominal operation, the partial oxidation catalyst 10 can continue to be supplied with a rich mixture 11, eg to reduce disturbing acoustic pulsations by chemical stabilization.

Zweckmäßig erfolgt in allen Betriebsphasen des Hybridbrenners 1 die Zumischung des Brennstoffs so, dass die Abgase 12 des Teiloxidationskatalysators 10 und die Abgase 14 des Volloxidationskatalysators 9 insgesamt ein mageres Abgasgemisch erzeugen, das im Brennraum 8 emissionsarm verbrennen kann.Suitably takes place in all operating phases of the hybrid burner 1, the admixing of the fuel so that the exhaust gases 12 of the partial oxidation catalyst 10 and the exhaust gases 14 of the Volloxidationskatalysators 9 produce a total of a lean exhaust gas mixture, which can burn low emissions in the combustion chamber 8.

Um die Selbstzündung im Teiloxidationskatalysator 10 zu vereinfachen und um das Hochfahren des Teiloxidationskatalysators 10 zu beschleunigen, kann es zweckmäßig sein, den dem Teiloxidationskataylsator 10 zugeführten Brennstoff vorzuwärmen. Zu diesem Zweck kann die erste Brennstoffzuführung 4 so ausgestaltet werden, dass sich für den Teiloxidationskatalysator 10 eine Zuführung von vorgewärmtem Brennstoff ergibt. In den Fig. 2 und 3 sind Beispiele für eine Ausgestaltung der ersten Brennstoffzuführung 4 gezeigt, die eine hinreichende Vorwärmung des Brennstoffs ermöglichen.To facilitate autoignition in the partial oxidation catalyst 10 and to accelerate startup of the partial oxidation catalyst 10, it may be desirable to preheat the fuel supplied to the partial oxidation catalyst 10. For this purpose, the first fuel supply 4 can be configured such that for the partial oxidation catalyst 10 there is a supply of preheated fuel. In the Fig. 2 and 3 Examples of an embodiment of the first fuel supply 4 are shown, which allow a sufficient preheating of the fuel.

Gemäß Fig. 2 kann die erste Brennstoffzuführung 4 einen Wärmeübertrager 22 aufweisen. Dieser Wärmeübertrager 22 weist zum einen einen Brennstoffpfad und zum anderen einen Oxidatorpfad auf, wobei Brennstoffpfad und Oxidatorpfad wärmeübertragend miteinander gekoppelt sind. Auf diese Weise kann der Oxidator Wärme an den Brennstoff abgeben. Im vorliegenden Beispiel ist der Wärmeübertrager 22 durch einen schraubenförmigen Leitungsabschnitt der ersten Brennstoffzuführung 4 realisiert, der an seiner Außenseite mit dem Oxidatorstrom 20 beaufschlagt ist. Der Brennstoffpfad befindet sich somit im Inneren des Schraubenabschnitts, während der Oxidatorpfad durch die Außenseite des Schraubenabschnitts gebildet ist. Ebenso ist es möglich, den Brennstoff für den Teiloxidationskatalysator 10 auf andere Weise, insbesondere elektrisch vorzuheizen.According to Fig. 2 For example, the first fuel supply 4 may have a heat exchanger 22. This heat exchanger 22 has, on the one hand, a fuel path and, on the other hand, an oxidizer path, wherein the fuel path and the oxidizer path are coupled to one another in a heat-transmitting manner. In this way, the oxidizer can deliver heat to the fuel. In the present example, the heat exchanger 22 is realized by a helical line section of the first fuel supply 4, which is acted upon on its outer side with the oxidizer stream 20. The fuel path is thus inside the screw portion, while the oxidizer path is formed by the outside of the screw portion. It is also possible to preheat the fuel for the partial oxidation catalyst 10 in another way, in particular electrically.

Bei der Ausführungsform gemäß Fig. 3 wird eine hinreichende Vorwärmung des Brennstoffs dadurch erreicht, dass die Einleitung des Brennstoffs in den Oxidatorstrom 20 relativ weit stromauf des Teiloxidationskatalysators 10 erfolgt, so dass sich der eingeleitete Brennstoff bis zum Einlaß des Teiloxidationskatalysators 10 so weit mit dem Oxidator vermischt, dass sich ein Temperaturausgleich zwischen den Strömen ergibt. Bei einer entsprechenden Positionierung der Brennstoffeinleitstelle kann dadurch die erwünschte Brennstofferwärmung erreicht werden. Im vorliegenden Ausführungsbeispiel ist der Teiloxidationskatalysator 10 an seiner Eintrittsseite mit einem Zuführungskanal 23 entgegen der Anströmrichtung verlängert, um eine hinreichend große Mischstrecke für den über die erste Brennstoffzuführung 4 zugeführten Brennstoff und den Oxidatorstrom 20 zu erhalten. Es ist klar, dass die in den Fig. 2 und 3 exemplarisch gezeigten Maßnahmen zur Vorwärmung des dem Teiloxidationskatalysator 10 zugeführten Brennstoffs auch miteinander kombiniert werden können.In the embodiment according to Fig. 3 a sufficient preheating of the fuel is achieved in that the introduction of the fuel into the oxidizer 20 relatively far upstream of the partial oxidation catalyst 10, so that the introduced fuel until the inlet of the partial oxidation catalyst 10 so far mixed with the oxidizer that a temperature compensation between results in the currents. With a corresponding positioning of the fuel introduction point This can achieve the desired fuel heating. In the present embodiment, the partial oxidation catalyst 10 is extended at its inlet side with a supply channel 23 against the direction of flow in order to obtain a sufficiently large mixing path for the fuel supplied via the first fuel supply 4 and the oxidizer stream 20. It is clear that in the Fig. 2 and 3 shown exemplary measures for preheating the fuel supplied to the partial oxidation catalyst 10 can also be combined with each other.

Ebenso kommt es zu einer Wärmeübertragung zwischen dem inneren Eintrittsrohr und dem äußeren Eintrittsrohr.Likewise there is a heat transfer between the inner inlet tube and the outer inlet tube.

Wie bereits weiter oben erläutert, ist der Hybridbrenner 1 bei den Ausführungsformen der Fig. 1 bis 3 so ausgestaltet, dass die reaktiven Abgase 12 des Teiloxidationskatalysators 10 in die zentrale Rezirkulationszone 17 der Brennkammer 7 eingeleitet werden können.As already explained above, the hybrid burner 1 in the embodiments of the Fig. 1 to 3 configured such that the reactive exhaust gases 12 of the partial oxidation catalyst 10 can be introduced into the central recirculation zone 17 of the combustion chamber 7.

Fig. 4 zeigt nun eine Ausführungsform, bei welcher der Hybridbrenner 1 so ausgestaltet ist, dass die Abgase 12 des Teiloxidationskatalysators 10 auch in eine Totwasserzone 21 eingeleitet werden können, die sich im Brennraum 8 im Bereich der Querschnittserweiterung 6 ausbilden kann. Die Totwasserzone 21 ist hierbei durch Pfeile symbolisiert, die eine ringförmige Wirbelwalze darstellen sollen. Durch die Einleitung der reaktiven Abgase 12 des Teiloxidationskatalysators 10 in die Totwasserzone 21 kann auch dort eine Stabilisierung der Verbrennungsreaktion erreicht werden. Fig. 4 shows an embodiment in which the hybrid burner 1 is designed so that the exhaust gases 12 of the partial oxidation catalyst 10 can also be introduced into a dead water zone 21, which can form in the combustion chamber 8 in the region of the cross-sectional widening 6. The dead water zone 21 is symbolized here by arrows which are to represent an annular vortex roll. By introducing the reactive exhaust gases 12 of the partial oxidation catalyst 10 into the dead-water zone 21, a stabilization of the combustion reaction can also be achieved there.

Im Unterschied zu den Ausführungsformen der Fig. 1 bis 3 ist bei der Variante gemäß Fig. 4 der Teiloxidationskatalysator 10 so ausgestaltet, dass er den zentral angeordneten Volloxidationskatalysator 9 radial außen, insbesondere ringförmig, umgibt. Das Gehäuse 12 enthält stromab des Teiloxidationskatalysators 10 einen Abgaspfad 24, der am Austrittsende 15 des Teiloxidationskatalysators 10 beginnt und am Eintritt des Brennraums 8 endet. Der Abgaspfad 24 enthält einen Hauptkanal 24b, der sich im wesentlichen axial, also in der Hauptströmungsrichtung erstreckt. Vom Hauptkanal 24b zweigen mehreren Nebenkanäle 24a ab, die zur Querschnittserweiterung 6 führen und im Bereich der Totwasserzone 21 in den Brennraum 8 einmünden. Auf diese Weise kann sich das Abgas 12 des Teiloxidationskatalysators 10 in einen Hauptstrom 12b, der dem Hauptkanal 24b folgt, und einen Nebenstrom 12a aufteilen, der durch die Nebenkanäle 24a strömt. Folglich kann ein Teil der Abgase 12 des Teiloxidationskatalysators 10 in die Totwasserzone 21 eingeleitet werden. Durch eine entsprechende Formgebung des Hauptkanals 24b, insbesondere in Verbindung mit geeigneten Strömungsleitmitteln, kann der Hauptstrom 12b zumindest teilweise in die Rezirkulationszone 17 eingeleitet werden.In contrast to the embodiments of the Fig. 1 to 3 is in the variant according to Fig. 4 the partial oxidation catalyst 10 designed so that it surrounds the centrally disposed Volloxidationskatalysator 9 radially outside, in particular annular. The housing 12 contains, downstream of the partial oxidation catalyst 10, an exhaust gas path 24 which starts at the outlet end 15 of the partial oxidation catalytic converter 10 and ends at the inlet of the combustion chamber 8. The exhaust path 24 includes a main channel 24b, which extends substantially axially, ie in the main flow direction. From the main channel 24b branch off a plurality of secondary channels 24a, which lead to the cross-sectional widening 6 and open in the region of the dead water zone 21 into the combustion chamber 8. In this way, the exhaust gas 12 of the partial oxidation catalyst 10 may divide into a main flow 12b following the main passage 24b and a sub flow 12a flowing through the sub passages 24a. Consequently, a portion of the exhaust gases 12 of the partial oxidation catalyst 10 may be introduced into the dead water zone 21. By a corresponding shaping of the main channel 24b, in particular in conjunction with suitable flow-guiding means, the main flow 12b can be at least partially introduced into the recirculation zone 17.

Das Abgas 12b des Teiloxidationskatalysators 10 kann jedoch grundsätzlich zu jeder beliebigen Stelle geleitet werden, die für eine derartige Abgaszuführung sinnvoll erscheint, insbesondere die zentrale und die seitlichen Rezirkulationszonen 17 und 21.However, the exhaust gas 12b of the partial oxidation catalytic converter 10 can in principle be directed to any desired point which makes sense for such exhaust gas supply, in particular the central and the lateral recirculation zones 17 and 21.

Um eine Überhitzung der Katalysatoren 9, 10, vor allem im Nennbetrieb des Hybridbrenners 1 zu vermeiden, kann es zweckmäßig sein, den jeweiligen Katalysator 9, 10 sowohl mit katalytisch aktiven Kanälen als auch mit katalytisch inaktiven Kanälen auszustatten. Die katalytisch aktiven Kanäle und die katalytisch inaktiven Kanäle sind dann wärmeübertragend miteinander gekoppelt. Zweckmäßig erfolgt eine alternierende Anordnung der Kanäle innerhalb der jeweiligen Katalysatorstruktur. Im Betrieb des Hybridbrenners 1 sind dann sowohl die katalytisch aktiven Kanälen als auch die katalytisch inaktiven Kanäle vom jeweiligen Brennstoff-Oxidator-Gemisch 11 bzw. 13 durchströmt, wobei die Gemischströmung in den katalytisch inaktiven Kanälen die katalytisch aktiven Kanäle und somit dem jeweiligen Katalysator 9, 10 kühlt. Von besonderem Interesse ist die Anordnung katalytisch aktiver Kanäle und katalytisch inaktiver Kanäle beim Volloxidationskatalysator 9, da dieser im Nennbetriebspunkt des Hybridbrenners 1 die Hauptumsetzung des Brennstoffs bewirkt.In order to avoid overheating of the catalysts 9, 10, especially in the nominal operation of the hybrid burner 1, it may be expedient to equip the respective catalyst 9, 10 both with catalytically active channels and with catalytically inactive channels. The catalytically active channels and the catalytically inactive channels are then coupled to one another in a heat-transferring manner. Suitably, an alternating arrangement of the channels takes place within the respective catalyst structure. During operation of the hybrid burner 1, both the catalytically active channels and the catalytically inactive channels are then flowed through by the respective fuel-oxidizer mixture 11 and 13, the mixture flow in the catalytically inactive channels being the catalytically active channels and thus the respective catalytic converter 9, 10 cools. Of particular interest is the arrangement of catalytically active channels and catalytically inactive channels in Volloxidationskatalysator 9, since this causes the nominal conversion point of the hybrid burner 1, the main reaction of the fuel.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Hybridbrennerhybrid burner
22
Gehäusecasing
33
Oxidatorzuführungoxidizer
44
erste Brennstoffzuführungfirst fuel supply
55
zweite Brennstoffzuführungsecond fuel supply
66
QuerschnittserweiterungCross-sectional widening
77
Brennkammercombustion chamber
88th
Brennraumcombustion chamber
99
VolloxidationskatalysatorFull oxidation catalyst
1010
TeiloxidationskatalysatorPartial oxidation catalyst
1111
erstes Brennstoff-Oxidator-Gemischfirst fuel-oxidizer mixture
1212
Abgas von 10Exhaust of 10
1313
zweites Brennstoff-Oxidator-Gemischsecond fuel-oxidizer mixture
1414
Abgas von 9Exhaust from 9
1515
Austrittsende von 10Exit end of 10
1616
Austrittsende von 9Exit end of 9
1717
Rezirkulationszonerecirculation zone
1818
Flammenfrontflame front
1919
Drallerzeugerswirl generator
2020
Oxidatorstromoxidant
2121
Totwasserzonedead water zone
2222
WärmeübertragerHeat exchanger
2323
Zuführungskanalfeed channel
2424
Abgaspfadexhaust path

Claims (21)

  1. Hybrid burner for a combustion chamber (7), in particular of a power plant, with a housing (2) in which a full oxidation catalyst (9) and a partial oxidation catalyst (10) with parallel through-flows are arranged, and which in installation state on the inlet side is connected to at least one oxidator supply (3), to a first fuel supply (4) for producing a first fuel-oxidator mixture (11) having a first fuel-oxidator ratio (λ1) and supplied to the partial oxidation catalyst (10) in operation of the hybrid burner (1), and to a second fuel supply (5) for generating a second fuel-oxidator mixture (13) having a second fuel-oxidator ratio (λ2) different from the first fuel-oxidator ratio (λ1) and supplied to the full oxidation catalyst (9) in operation of the hybrid burner (1), and on the output side to a combustion chamber (7).
  2. Hybrid burner according to claim 1, characterised in that an outlet gas path (24) is formed downstream of the partial oxidation catalyst (10) such that in operation of the hybrid burner (1), it introduces an exhaust gas (12) from the partial oxidation catalyst (10) into a central recirculation zone (17) which forms in a combustion space (8) of the combustion chamber (7) downstream of the hybrid burner (1) and/or in an outer dead-water zone (21) which forms in the combustion space (8) in the region of a jump-like cross-section widening (6) between the hybrid burner (1) and the combustion space (8).
  3. Hybrid burner according to claim 1 or 2, characterised in that the partial oxidation catalyst (10) is configured such that in operation of the hybrid burner (1), it introduces an exhaust gas (12) which emerges at the outlet end (15) of the partial oxidation catalyst (10) into a central recirculation zone (17) which forms in a combustion space (8) of the combustion chamber (7) downstream of the hybrid burner (1).
  4. Hybrid burner according to any of claims 1 to 3, characterised in that the partial oxidation catalyst (10) is formed as a central lance or is integrated therein, wherein an outlet end (15) of the lance is positioned in the housing (2) downstream of an outlet end (16) of the full oxidation catalyst (9).
  5. Hybrid burner according to any of claims 1 to 4, characterised in that the full oxidation catalyst (9) surrounds the partial oxidation catalyst (10) in concentric and/or annular fashion.
  6. Hybrid burner according to claim 1 or 2, characterised in that the partial oxidation catalyst (10) surrounds the full oxidation catalyst (10) in concentric and/or annular fashion.
  7. Hybrid burner according to any of claims 1 to 6, characterised in that the partial oxidation catalyst (10) is configured such that in operation of the hybrid burner (1), it produces an exhaust gas (12) containing hydrogen if supplied with a rich fuel-oxidator mixture (11).
  8. Hybrid burner according to any of claims 1 to 7, characterised in that the partial oxidation catalyst (10) is configured such that at least during a start-up procedure of the hybrid burner (1), it emits heat to the full oxidation catalyst (9).
  9. Hybrid burner according to any of claims 1 to 8, characterised in that in installation state, the hybrid burner (1) forms an exhaust gas path which can lead via a jump-like cross-section widening (6) from the outlet ends (15, 16) of the catalysts (9, 10) to a combustion space (8) of the combustion chamber (7).
  10. Hybrid burner according to any of claims 1 to 9, characterised in that at least one swirl generator (19) is arranged in the housing (2) and is arranged downstream of the partial oxidation catalyst (10) and/or full oxidation catalyst (9) or is integrated in the partial oxidation catalyst (10) and/or in the full oxidation catalyst (9).
  11. Hybrid burner according to any of claims 1 to 10, characterised in that the first fuel supply (4) is configured such that preheated fuel is supplied to the partial oxidation catalyst (10).
  12. Hybrid burner according to claim 11, characterised in that the first fuel supply (4) introduces the fuel into the oxidator flow (20) so far upstream of the partial oxidation catalyst (10) that the fuel is heated by heat exchange with the oxidator before it reaches the partial oxidation catalyst (10).
  13. Hybrid burner according to claim 11 or 12, characterised in that the first fuel supply (4) has a heat transmitter (22) which is arranged in the oxidator flow (20) and has a fuel path and an oxidator path which are coupled together heat-transmissively.
  14. Hybrid burner according to any of claims 1 to 13, characterised in that at least one of the catalysts (9, 10) comprises catalytically active channels and catalytically inactive channels which are coupled together heat-transmissively and through which, in operation of the hybrid burner (1), a fuel-oxidator mixture (11, 13) flows which is supplied to the respective catalyst (9, 10).
  15. Method for operation of a hybrid burner (1) for a combustion chamber (7), in particular of a power plant,
    - wherein the hybrid burner (1) in a housing (2) contains a full oxidation catalyst (9) and a partial oxidation catalyst (10) which have parallel through-flows,
    - wherein the partial oxidation catalyst (10) is supplied with a first fuel-oxidator mixture (11) which has a first fuel-oxidator ratio (λ1),
    - wherein the full oxidation catalyst (9) is supplied with a second fuel-oxidator mixture (13) which has a second fuel-oxidator ratio (λ2) which is different from the first fuel-oxidator ratio (λ1).
  16. Method according to claim 15, characterised in that
    - the first fuel-oxidator ratio (λ1) is less than 1, in particular less than 1/2, so that a rich first fuel-oxidator mixture (11) is present,
    - the second fuel-oxidator ratio (λ2) is greater than 1, in particular greater than 2, so that a lean second fuel-oxidator mixture (13) is present.
  17. Method according to claim 15 or 16, characterised in that the partial oxidation catalyst (10) is configured such that it produces a first exhaust gas (12) containing hydrogen.
  18. Method according to any of claims 15 to 17, characterised in that
    - a first exhaust gas (12) produced by the partial oxidation catalyst (10) is introduced at least partially into a central recirculation zone (17) which forms in a combustion space (8) of the combustion chamber (7) downstream of the hybrid burner (1), and/or
    - a first exhaust gas (12) produced by the partial oxidation catalyst (10) is introduced at least partially into an outer dead-water zone (21) which forms in the combustion space (8) in the region of a jump-like cross-section widening (6) between the hybrid burner (1) and the combustion chamber (8).
  19. Method according to any of claims 15 to 18, characterised in that a first exhaust gas (12) produced by the partial oxidation catalyst (10) is at least partially mixed with a second exhaust gas (14) produced by the full oxidation catalyst (9) before the resulting exhaust gas mixture (12, 14) is introduced into a combustion space (8) of the combustion chamber (7).
  20. Method according to any of claims 15 to 19, characterised in that during a start-up procedure for starting the hybrid burner (1), the fuel proportions in the volume flows of the fuel-oxidator mixtures (11, 13) are varied such that, during the start-up procedure, the fuel proportion in the volume flow of the first fuel-oxidator mixture (11) is reduced while the fuel proportion in the volume flow of the second fuel-oxidator mixture (13) is increased.
  21. Method according to claim 20, characterised in that during the start-up procedure, the fuel proportions in the volume flows of the fuel-oxidator mixtures (11, 13) are varied as a function of an inlet temperature of the hybrid burner (1).
EP03729789.2A 2002-08-30 2003-07-02 Hybrid burner and corresponding operating method Expired - Fee Related EP1532394B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40697802P 2002-08-30 2002-08-30
US406978P 2002-08-30
PCT/CH2003/000436 WO2004020901A1 (en) 2002-08-30 2003-07-02 Hybrid burner and corresponding operating method

Publications (2)

Publication Number Publication Date
EP1532394A1 EP1532394A1 (en) 2005-05-25
EP1532394B1 true EP1532394B1 (en) 2016-11-23

Family

ID=31978396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03729789.2A Expired - Fee Related EP1532394B1 (en) 2002-08-30 2003-07-02 Hybrid burner and corresponding operating method

Country Status (4)

Country Link
US (1) US7717700B2 (en)
EP (1) EP1532394B1 (en)
AU (1) AU2003240374A1 (en)
WO (1) WO2004020901A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381488B2 (en) * 2004-08-11 2008-06-03 Fuelcell Energy, Inc. Regenerative oxidizer assembly for use in PEM fuel cell applications
US7469543B2 (en) 2004-09-30 2008-12-30 United Technologies Corporation Rich catalytic injection
EP1834133A4 (en) * 2004-12-22 2012-01-04 Commw Scient Ind Res Org Improved gas turbines
DE102005061486B4 (en) * 2005-12-22 2018-07-12 Ansaldo Energia Switzerland AG Method for operating a combustion chamber of a gas turbine
US8671658B2 (en) 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US8701413B2 (en) 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
EP2547888A4 (en) 2010-03-15 2016-03-16 Ener Core Power Inc Processing fuel and water
US8931283B2 (en) * 2011-01-21 2015-01-13 General Electric Company Reformed multi-fuel premixed low emission combustor and related method
WO2012106048A1 (en) * 2011-02-01 2012-08-09 Precision Combustion, Inc. Apparatus and method for vaporizing a liquid fuel
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
JP6029857B2 (en) * 2012-05-23 2016-11-24 株式会社パロマ Tint burner
CN112856407B (en) * 2021-01-15 2022-03-18 浙江大学 Lean-burn and rich-burn alternating catalytic combustor and operation method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928961A (en) * 1971-05-13 1975-12-30 Engelhard Min & Chem Catalytically-supported thermal combustion
JPS5237611B2 (en) * 1973-03-01 1977-09-24
AR207091A1 (en) * 1975-09-29 1976-09-09 Westinghouse Electric Corp COMBUSTION CHAMBER ARRANGEMENT FOR GAS TURBINE
JPS5531257A (en) * 1978-08-26 1980-03-05 Paloma Ind Ltd Oxygen starvation safety pilot burner
US4534165A (en) * 1980-08-28 1985-08-13 General Electric Co. Catalytic combustion system
JPS61276627A (en) * 1985-05-30 1986-12-06 Toshiba Corp Gas turbine combustion apparatus
US4870824A (en) * 1987-08-24 1989-10-03 Westinghouse Electric Corp. Passively cooled catalytic combustor for a stationary combustion turbine
GB9027331D0 (en) * 1990-12-18 1991-02-06 Ici Plc Catalytic combustion
US5235804A (en) * 1991-05-15 1993-08-17 United Technologies Corporation Method and system for combusting hydrocarbon fuels with low pollutant emissions by controllably extracting heat from the catalytic oxidation stage
JPH06235519A (en) * 1993-02-08 1994-08-23 Toshiba Corp Combustion apparatus for gas turbine
US5361586A (en) * 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
US6355093B1 (en) * 1993-12-08 2002-03-12 Eltron Research, Inc Two component-three dimensional catalysis
DE4404389A1 (en) * 1994-02-11 1995-08-17 Abb Research Ltd Combustion chamber with auto-ignition
DE4439619A1 (en) 1994-11-05 1996-05-09 Abb Research Ltd Method and device for operating a premix burner
WO1996041991A1 (en) * 1995-06-12 1996-12-27 Siemens Aktiengesellschaft Catalytic ignition burner for a gas turbine
US5950434A (en) * 1995-06-12 1999-09-14 Siemens Aktiengesellschaft Burner, particularly for a gas turbine, with catalytically induced combustion
DE19536836C2 (en) * 1995-10-02 2003-11-13 Alstom Process for operating a power plant
DE19614001A1 (en) * 1996-04-09 1997-10-16 Abb Research Ltd Combustion chamber
DE19640198A1 (en) * 1996-09-30 1998-04-02 Abb Research Ltd Premix burner
DE19654022A1 (en) 1996-12-21 1998-06-25 Abb Research Ltd Process for operating a gas turbine group
US6334769B1 (en) * 1999-07-27 2002-01-01 United Technologies Corporation Catalytic combustor and method of operating same
JP3543717B2 (en) * 2000-02-18 2004-07-21 日産自動車株式会社 Catalytic combustor
US6358040B1 (en) 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
DE50212720D1 (en) 2001-04-30 2008-10-16 Alstom Technology Ltd Catalytic burner
DE50212351D1 (en) 2001-04-30 2008-07-24 Alstom Technology Ltd Apparatus for burning a gaseous fuel-oxidizer mixture

Also Published As

Publication number Publication date
US7717700B2 (en) 2010-05-18
WO2004020901A1 (en) 2004-03-11
US20050196714A1 (en) 2005-09-08
AU2003240374A1 (en) 2004-03-19
EP1532394A1 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
EP1532394B1 (en) Hybrid burner and corresponding operating method
EP2116766B1 (en) Burner with fuel lance
EP1205653B1 (en) Burner with staged fuel injection and method of operation
EP1812756B1 (en) Burner starting method
EP1255080B1 (en) Catalytic burner
DE69724502T2 (en) Gas turbine combustor
EP1436546B1 (en) Burner for synthesis gas
DE69926681T2 (en) Combustion chamber and its operation
WO2004020905A1 (en) Method and device for combusting a fuel-oxidising agent mixture
DE2555085A1 (en) COMBUSTION CHAMBER AND METHOD FOR GENERATING LOW EMISSIONS COMBUSTION
DE102009025934A1 (en) Diffusion tip for lean direct injection and associated method
WO2005121649A2 (en) Injector for liquid fuels and sequential premix burner comprising said injector
EP1344002B1 (en) Burner with progressive fuel injection
EP1963748B1 (en) Combustion chamber with burner and associated operating method
EP1673576B1 (en) Method and device for the combustion of fuel
EP1754937B1 (en) Burner head and method of combusting fuel
EP1359377B1 (en) Catalytic burner
EP1446610A1 (en) Method of combustion, in particular methods for the production of electrical current and/or heat
EP1510755B1 (en) Burner with lance and staged fuel supply.
EP1491824B1 (en) Catalytic reactor and associated operating method
EP3663669B1 (en) Combustion chamber module
DE102014103021A1 (en) Diffusion combustor fuel nozzle for limiting NOX emissions
EP1555484B1 (en) Process to operate a gas turbine combustor
EP1559955B1 (en) Burner
EP2422136B1 (en) Pre-mix burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20070906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50315584

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23C0009000000

Ipc: F23C0013020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23C 13/02 20060101AFI20160513BHEP

Ipc: F23R 3/40 20060101ALI20160513BHEP

Ipc: F23C 9/00 20060101ALI20160513BHEP

INTG Intention to grant announced

Effective date: 20160614

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315584

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315584

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170724

Year of fee payment: 15

Ref country code: GB

Payment date: 20170719

Year of fee payment: 15

26N No opposition filed

Effective date: 20170824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315584

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180702

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201