EP1528097B1 - Method for reducing combustion chamber deposit flaking - Google Patents

Method for reducing combustion chamber deposit flaking Download PDF

Info

Publication number
EP1528097B1
EP1528097B1 EP04024823A EP04024823A EP1528097B1 EP 1528097 B1 EP1528097 B1 EP 1528097B1 EP 04024823 A EP04024823 A EP 04024823A EP 04024823 A EP04024823 A EP 04024823A EP 1528097 B1 EP1528097 B1 EP 1528097B1
Authority
EP
European Patent Office
Prior art keywords
manganese
manganese tricarbonyl
fuel
tricarbonyl
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04024823A
Other languages
German (de)
French (fr)
Other versions
EP1528097A3 (en
EP1528097A2 (en
Inventor
Allen A. Aradi
James B. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Corp
Original Assignee
Afton Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afton Chemical Corp filed Critical Afton Chemical Corp
Publication of EP1528097A2 publication Critical patent/EP1528097A2/en
Publication of EP1528097A3 publication Critical patent/EP1528097A3/en
Application granted granted Critical
Publication of EP1528097B1 publication Critical patent/EP1528097B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1828Salts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1216Inorganic compounds metal compounds, e.g. hydrides, carbides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1225Inorganic compounds halogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1266Inorganic compounds nitrogen containing compounds, (e.g. NH3)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1275Inorganic compounds sulfur, tellurium, selenium containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1283Inorganic compounds phosphorus, arsenicum, antimonium containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1814Chelates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2608Organic compounds containing phosphorus containing a phosphorus-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture

Definitions

  • the present invention is directed to the use of a specific additive for reducing combustion chamber deposit flaking, and consequently, reducing cold start emissions.
  • Spark ignited internal combustion engines (carbureted, port fuel injection “PFI”, multiple point injection “MPI”, direct-injection gasoline “DIG”, etc.) accumulate combustion chamber deposits (CCD) during operation.
  • This deposit is a result of both inefficient combustion of the fuel during the power stroke, and thermal polymerization reactions of certain fuel components to give high molecular weight material that does not burn very well.
  • the deposit layers both on cylinder head surfaces inside the combustion chamber and on piston tops.
  • the piston top deposit in particular is fuel and moisture sensitive, and tends to curl and slough off when the deposit is fuel wetted and/or exposed to moisture. The symptoms of this flaking manifest themselves during cold start cranking when the combustion charge blows the sloughed off deposit from the combustion chamber and into the exhaust valve seats.
  • the emission control changes being made have resulted in cold start difficulties ascribed to the higher fueling rates during cold start causing combustion chamber deposits to flake off and become lodged in the exhaust valve sealing band area, thereby preventing a good seal during compression and hence leading to misfires.
  • the OBD system detects this immediately because of the subsequent elevated hydrocarbon emissions due to unburned fuel, and illuminates the malfunction indicator light (MIL) on the dashboard, necessitating a visit to the dealership for corrective repairs.
  • Cold start difficulties due to CCD flaking tend to occur mainly in higher displacement engines with more cylinders (6, 8, and 10 cylinder engines) because in these bigger engines the cranking rate is lower, and it takes longer to blow the flaked deposits away from the exhaust valves.
  • Combustion chamber deposit (CCD) flaking has been discovered to be reduced and even eliminated with the use of a fuel additive containing a metallic compound.
  • a manganese-containing compound e.g. MMT, completely suppresses CCD flaking.
  • the present invention refers to the use of a specific additive for reducing combustion chamber deposit flaking in spark ignited internal combustion engines that experience combustion chamber deposits as described in the claims.
  • a method of reducing combustion chamber deposit flaking in or of reducing cold start emissions from spark ignited internal combustion engines that experience combustion chamber deposits comprises the steps of supplying a fuel comprising an additive that includes a metal-containing compound to a spark ignited internal combustion engine, wherein the metal-containing compound is supplied in an amount effective to reduce combustion chamber deposit flaking.
  • the metal-containing compound may be a compound containing one or more of the following metals: manganese, platinum, palladium, rhodium, iron, cerium, copper, nickel, silver, cobalt and molybdenum, and mixtures thereof.
  • metal-containing compounds comprising manganese are used.
  • the metal compound in the fuel is combusted in a spark ignited internal combustion engine.
  • Use of the metal - containing additive reduces or eliminates CCD flaking.
  • the fuels and additives herein are adapted to be combusted in any spark ignited internal combustion engine.
  • Specific engines that will benefit include those having carbureted systems, port fuel injection systems, multi point injection systems, and direct injection gasoline systems. Also, turbocharged and supercharged versions of the foregoing will benefit. Other engines having advanced emissions controls, including for example exhaust gas recirculation, will benefit. Additionally, Otto cycle and two-stroke internal combustion engines will benefit.
  • the nonleaded or unleaded gasoline bases in the present fuel composition are conventional motor fuel distillates boiling in the general range of about 21°C (70°F) to 227°C (440°F). They include substantially all grades of unleaded gasoline presently being employed in spark ignition internal combustion engines. Generally they contain both straight runs and cracked stock, with or without alkylated hydrocarbons, reformed hydrocarbons and the like.
  • Such gasolines can be prepared from saturated hydrocarbons, e.g., straight stocks, alkylation products and the like, with detergents, antioxidants, dispersants, metal deactivators, rust inhibitors, multi-functional additives, demulsifiers, fluidizer oils, antiicing, combustion catalysts, corrosion inhibitors, emulsifiers, surfactants, solvents or other similar and known additives. It is contemplated that in certain circumstances these additives may be included in concentrations above normal levels.
  • the base gasoline will be a blend of stocks obtained from several refinery processes.
  • the final blend may also contain hydrocarbons made by other procedures such as alkylates made by the reaction of C 4 olefins and butanes using an acid catalyst such as sulfuric acid or hydrofluoric acid, and aromatics made from a reformer.
  • the motor gasoline bases used in formulating the fuel blends of this invention generally have initial boiling points ranging from about 21°C (70°F) to about 38°C (100°F) and final boiling points ranging from about 216°C (420°F) to about 227°C (440°F) as measured by the standard ASTM distillation procedure (ASTM D-86). Intermediate gasoline fractions boil away at temperatures within these extremes.
  • base gasolines having a low sulfur content as the oxides of sulfur tend to contribute to the irritating and choking characteristics of smog and other forms of atmospheric pollution.
  • Fuel sulfur also contributes significantly to the poisoning of exhaust aftertreatment catalysts.
  • the base gasolines should contain not more than about 100 ppm of sulfur in the form of conventional sulfur-containing impurities.
  • Another alternative includes fuels in which the sulfur content is no more than about 30 ppm.
  • the gasoline bases which this invention employs should be lead-free or substantially lead-free.
  • the gasoline may contain antiknock quantities of other agents such as cyclopentadienyl nickel nitrosyl, N-methyl aniline, oxygenates, and the like.
  • Antiknock promoters such as 2.4 pentanedione may also be included.
  • the gasoline may contain supplemental valve and valve seat recession protectants.
  • Nonlimiting examples include; boron oxides, bismuth oxides, ceramic bonded CaF.sub.2, iron phosphate, tricresylphosphate, phosphorus and sodium based additives and the like.
  • the fuel may further contain antioxidants such as 2,6 di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, phenylenediamines such as N-N.sup.1 -di-sec-butyl-p-pheylenediamine, N-isopropylphenylenediamine, and the like.
  • the gasoline may contain dyes, metal deactivators, or other additives recognized to serve some useful purpose.
  • the descriptive characteristics of one common base gasoline is given as follows. Obviously many other standard and specialized gasolines can be used in Applicants' fuel blend.
  • One metal that may be used includes elemental and ionic manganese, precursors thereof, and mixtures of metal compounds including manganese. These manganese compounds may be either inorganic or organic. Also effective is the generation, liberation or production in situ of manganese or manganese ions.
  • Inorganic metallic compounds in an example can include by example and without limitation fluorides, chlorides, bromides, iodides, oxides, nitrates, sulfates, phosphates, nitrides, hydrides, hydroxides, carbonates and mixtures thereof.
  • Metal sulfates and phosphates will be operative and may, in certain fuels and combustion applications, not present unacceptable additional sulfur and phosphorus combustion byproducts.
  • Organometallic compounds in an example include alcohols, aldehydes, ketones, esters, anhydrides, sulfonates, phosphonates, chelates, phenates, crown ethers, carboxylic acids, amides, acetyl acetonates, and mixtures thereof.
  • Exemplary manganese containing organometallic compounds are manganese tricarbonyl compounds. Such compounds are taught, for example, in US Patent Nos. 4,568,357 ; 4,674,447 ; 5,113,803 ; 5,599,357 ; 5,944,858 and European Patent No. 466 512 B1 .
  • Suitable manganese tricarbonyl compounds which can be used include cyclopentadienyl manganese tricarbonyl, methylcyclopentadienyl manganese tricarbonyl, dimethylcyclopentadienyl manganese tricarbonyl, trimethylcyclopentadienyl manganese tricarbonyl, tetramethylcyclopentadienyl manganese tricarbonyl, pentamethylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, diethylcyclopentadienyl manganese tricarbonyl, propylcyclopentadienyl manganese tricarbonyl, isopropylcyclopentadienyl manganese tricarbonyl, tert-butylcyclopentadienyl manganese tricarbonyl, octylcyclopentadienyl manganese tricarbonyl, do
  • cyclopentadienyl manganese tricarbonyls which are liquid at room temperature such as methylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, liquid mixtures of cyclopentadienyl manganese tricarbonyl and methylcyclopentadienyl manganese tricarbonyl, mixtures of methylcyclopentadienyl manganese tricarbonyl and ethylcyclopentadienyl manganese tricarbonyl, etc.
  • the metal-containing compound When formulating additives to be used herein, the metal-containing compound must be employed in amounts sufficient to reduce or eliminate CCD flaking in the spark ignited internal combustion engine.
  • the amounts will vary according to the particular metal or mixture of metals and metal-containing compoundsWhen using a manganese-containing compound, the amount of manganese added can be about 1 to about 50 mg manganese per liter.
  • the metal-containing compounds are believed to act as both a free radical sink and a combustion catalyst.
  • a radical sink the compounds may be inhibiting radical initiated fuel polymerization reactions hence limiting contribution to hydrocarbonaceous CCD by this route.
  • the manganese for instance, catalytically participates in the CCD removal mechanism by promoting carbon oxidation at lower temperatures.
  • cold start emissions refers to and is defined herein in accordance with the industry definition.
  • the industry recognized definition of cold-start emissions can be found in the FTP-75 (Federal Test Procedure). Details of the test procedure are described in the Code of Federal Regulations (CFR 40, Part 86). Briefly, the test procedure consists of the following three phases: 1) Cold-start, 2) Transient, and 3) Hot-start.
  • the FTP-75 emissions cycle simulates 11.04 miles (17.77 km) distance of travel in a time of 1874 seconds at an average speed of 21.2 mph (34.1 km/h). Before the test, the vehicle is conditioned overnight at 25 +/- 5 C to assure cold start conditions. The cold start is initiated followed by the transient phase.
  • each emission component HC, CO, CO 2 , NO x , etc
  • Quantities of each emission component are expressed in (g/mile) g/km for each phase.
  • hydrocarbon emissions (HC) the cold-start phase is the most important because it contributes 80 - 90% of the total from the three phases.
  • Fuels that included and did not include a metal-containing compound were compared in an engine test.
  • Manganese in MMT® was the additive used at a treat rate 8.25 mg. of manganese per liter of fuel.
  • the vehicle used in this study was a Dodge Intrepid with a six cylinder engine. It was operated for 4828 Km (3000 miles) on the test cycle described below while fueled with non additized CITGO RUL gasoline. At the end of the test the engine was dismantled and rated for CCD flaking according to a procedure adapted from that published by Gautam T. Kalghatgi in the SAE Paper Series 2002-01-2833. Then the test was repeated with the additive treated fuel.
  • the use of the specific metal-containing additive according to the invention noted completely eliminated flaking of combustion chamber deposits. In other words, no CCD flaked off when the additive was used.
  • Other metal-containing additives known to be radical sinks (anti-knocks) and/or combustion improvers such as those that enhance carbon burnout at lower temperatures may be used, and the treat rate of any additive may be varied. By changing the selection of additive and/or the treat rate of the additive, the amount of reduction in flaking may be controlled. It is believed that, in the case of a manganese-containing additive according to the invention, a treat rate of about two mg. of manganese per liter of fuel will achieve up to about a 50% reduction in CCD flaking.
  • the reactants and components are identified as ingredients to be brought together either in performing a desired chemical reaction (such as formation of the organometallic compound) or in forming a desired composition (such as an additive concentrate or additized fuel blend).
  • a desired chemical reaction such as formation of the organometallic compound
  • a desired composition such as an additive concentrate or additized fuel blend
  • the additive components can be added or blended into or with the base fuels individually per se and/or as components used in forming preformed additive combinations and/or sub-combinations.
  • the claims hereinafter may refer to substances, components and/or ingredients in the present tense ("comprises”, "is”, etc.), the reference is to the substance, components or ingredient as it existed at the time just before it was first blended or mixed with one or more other substances, components and/or ingredients in accordance with the present disclosure.
  • the fact that the substance, components or ingredient may have lost its original identity through a chemical reaction or transformation during the course of such blending or mixing operations or immediately thereafter is thus wholly immaterial for an accurate

Description

  • The present invention is directed to the use of a specific additive for reducing combustion chamber deposit flaking, and consequently, reducing cold start emissions.
  • Background
  • Spark ignited internal combustion engines (carbureted, port fuel injection "PFI", multiple point injection "MPI", direct-injection gasoline "DIG", etc.) accumulate combustion chamber deposits (CCD) during operation. This deposit is a result of both inefficient combustion of the fuel during the power stroke, and thermal polymerization reactions of certain fuel components to give high molecular weight material that does not burn very well. The deposit layers both on cylinder head surfaces inside the combustion chamber and on piston tops. The piston top deposit in particular is fuel and moisture sensitive, and tends to curl and slough off when the deposit is fuel wetted and/or exposed to moisture. The symptoms of this flaking manifest themselves during cold start cranking when the combustion charge blows the sloughed off deposit from the combustion chamber and into the exhaust valve seats. The deposit flakes thus lodged in this new location wedge in the sealing band of the exhaust valves and prevent the tight sealing necessary to contain the fuel / air combustion charge during the compression stroke, thus inhibiting ignition and necessitating extended engine cranking periods to dislodge the deposit so that the engine can fire up normally. During this cranking, instead of the combustion charge being contained in the cylinder for the subsequent spark ignition, the combustion charge is prematurely expelled into the exhaust system and loads the catalytic converter with raw fuel. Some of this raw fuel escapes out of the exhaust aftertreatment system and may contribute to cold start hydrocarbon "HC" emissions. Also, when the engine does finally fire up, the subsequent hot combustion gases ignite this raw fuel. The ensuing vigorous combustion of raw fuel in the exhaust system may melt the catalytic converter due to the excessively high temperatures generated by this bum, and seriously damage the exhaust aftertreatment system.
  • The symptoms of CCD flaking have only recently been observed with the advent of advanced emissions control strategies aimed at lowering hydrocarbon emissions at cold start. The reasons for all these changes resulted from the discovery that a significant portion of total vehicular hydrocarbon emissions were generated during the initial 90 seconds it takes conventional, under the floor three-way catalytic converters to light off during cold start. Therefore, shortening this time interval became of paramount importance. Government environmental regulators also recognized this fact and mandated that vehicle manufacturers develop an on board diagnostic system (OBD) to monitor the emissions control system in a manner that would minimize hydrocarbon emissions to the environment, and this system be under warranty to ensure that it performed its intended task for the duration of the specified warranty period.
  • The emission control changes being made have resulted in cold start difficulties ascribed to the higher fueling rates during cold start causing combustion chamber deposits to flake off and become lodged in the exhaust valve sealing band area, thereby preventing a good seal during compression and hence leading to misfires. The OBD system detects this immediately because of the subsequent elevated hydrocarbon emissions due to unburned fuel, and illuminates the malfunction indicator light (MIL) on the dashboard, necessitating a visit to the dealership for corrective repairs. Cold start difficulties due to CCD flaking tend to occur mainly in higher displacement engines with more cylinders (6, 8, and 10 cylinder engines) because in these bigger engines the cranking rate is lower, and it takes longer to blow the flaked deposits away from the exhaust valves.
  • One way to deal with the cold start problem caused by CCD flaking is to not drive the vehicle a short distance under light load, thereby leaving the chamber to soak for extended periods of time. Another way to get around this problem is to simply continue cranking to blow away the offending deposit flakes, and on start up, rev up the engine for an additional thirty seconds to clean out the rest of the flaking deposit. However, this method inadvertantly leads to very high levels of hydrocarbon emissions and may cause the OBD MIL to illuminate.
  • Description
  • Combustion chamber deposit (CCD) flaking has been discovered to be reduced and even eliminated with the use of a fuel additive containing a metallic compound. According to the invention, a manganese-containing compound, e.g. MMT, completely suppresses CCD flaking.
  • The present invention refers to the use of a specific additive for reducing combustion chamber deposit flaking in spark ignited internal combustion engines that experience combustion chamber deposits as described in the claims.
  • A method of reducing combustion chamber deposit flaking in or of reducing cold start emissions from spark ignited internal combustion engines that experience combustion chamber deposits comprises the steps of supplying a fuel comprising an additive that includes a metal-containing compound to a spark ignited internal combustion engine, wherein the metal-containing compound is supplied in an amount effective to reduce combustion chamber deposit flaking.
  • The metal-containing compound may be a compound containing one or more of the following metals: manganese, platinum, palladium, rhodium, iron, cerium, copper, nickel, silver, cobalt and molybdenum, and mixtures thereof. According to the invention, metal-containing compounds comprising manganese are used. In each alternative, the metal compound in the fuel is combusted in a spark ignited internal combustion engine. Use of the metal - containing additive reduces or eliminates CCD flaking.
  • The fuels and additives herein are adapted to be combusted in any spark ignited internal combustion engine. Specific engines that will benefit include those having carbureted systems, port fuel injection systems, multi point injection systems, and direct injection gasoline systems. Also, turbocharged and supercharged versions of the foregoing will benefit. Other engines having advanced emissions controls, including for example exhaust gas recirculation, will benefit. Additionally, Otto cycle and two-stroke internal combustion engines will benefit.
  • The nonleaded or unleaded gasoline bases in the present fuel composition are conventional motor fuel distillates boiling in the general range of about 21°C (70°F) to 227°C (440°F). They include substantially all grades of unleaded gasoline presently being employed in spark ignition internal combustion engines. Generally they contain both straight runs and cracked stock, with or without alkylated hydrocarbons, reformed hydrocarbons and the like. Such gasolines can be prepared from saturated hydrocarbons, e.g., straight stocks, alkylation products and the like, with detergents, antioxidants, dispersants, metal deactivators, rust inhibitors, multi-functional additives, demulsifiers, fluidizer oils, antiicing, combustion catalysts, corrosion inhibitors, emulsifiers, surfactants, solvents or other similar and known additives. It is contemplated that in certain circumstances these additives may be included in concentrations above normal levels.
  • Generally, the base gasoline will be a blend of stocks obtained from several refinery processes. The final blend may also contain hydrocarbons made by other procedures such as alkylates made by the reaction of C4 olefins and butanes using an acid catalyst such as sulfuric acid or hydrofluoric acid, and aromatics made from a reformer.
  • The motor gasoline bases used in formulating the fuel blends of this invention generally have initial boiling points ranging from about 21°C (70°F) to about 38°C (100°F) and final boiling points ranging from about 216°C (420°F) to about 227°C (440°F) as measured by the standard ASTM distillation procedure (ASTM D-86). Intermediate gasoline fractions boil away at temperatures within these extremes.
  • It is also desirable to utilize base gasolines having a low sulfur content as the oxides of sulfur tend to contribute to the irritating and choking characteristics of smog and other forms of atmospheric pollution. Fuel sulfur also contributes significantly to the poisoning of exhaust aftertreatment catalysts. To the extent it is economically feasible, the base gasolines should contain not more than about 100 ppm of sulfur in the form of conventional sulfur-containing impurities. Another alternative includes fuels in which the sulfur content is no more than about 30 ppm.
  • The gasoline bases which this invention employs should be lead-free or substantially lead-free. However, the gasoline may contain antiknock quantities of other agents such as cyclopentadienyl nickel nitrosyl, N-methyl aniline, oxygenates, and the like. Antiknock promoters such as 2.4 pentanedione may also be included. On certain occasions it will be desirable for the gasoline to contain supplemental valve and valve seat recession protectants. Nonlimiting examples include; boron oxides, bismuth oxides, ceramic bonded CaF.sub.2, iron phosphate, tricresylphosphate, phosphorus and sodium based additives and the like. The fuel may further contain antioxidants such as 2,6 di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, phenylenediamines such as N-N.sup.1 -di-sec-butyl-p-pheylenediamine, N-isopropylphenylenediamine, and the like. Likewise, the gasoline may contain dyes, metal deactivators, or other additives recognized to serve some useful purpose. The descriptive characteristics of one common base gasoline is given as follows. Obviously many other standard and specialized gasolines can be used in Applicants' fuel blend.
    CHARACTERISTICS OF GASOLINES
    API Gravity (@ 16°C (60 F)) 50 - 70
    Reid Vapor Pressure, EPA, (psi) (6 - 8) 41 kPa - 55 kPa
    Sulfur (ppm) 0 - 500
    Research Octane 85 - 120
    Motor Octane 75 - 90
    R+M/2 87 - 110
    Oxygenates (%) 0 - 30
    Aromatics (%) 0 - 50
    Olefins (%) 0 - 30
    Paraffins (%) 30 - 100
    ASTM Distillation Vol % Evaporate Temp., °C Temp., F.
    IBP 21 - 38 70 - 100
    5 38 - 54 100 - 130
    10 49 - 60 120-140
    15 60 - 71 140 - 160
    20 66 - 77 150 - 170
    30 77 - 88 170 - 190
    40 88 - 99 190 - 210
    50 93 - 104 200 - 220
    60 104 - 116 220 - 240
    70 116 - 127 240 - 260
    80 138 - 149 280 - 300
    90 171 - 188 340 - 370
    95 193 - 204 380 - 400
    EP 216 - 227 420 - 440
  • One metal that may be used includes elemental and ionic manganese, precursors thereof, and mixtures of metal compounds including manganese. These manganese compounds may be either inorganic or organic. Also effective is the generation, liberation or production in situ of manganese or manganese ions.
  • Inorganic metallic compounds in an example can include by example and without limitation fluorides, chlorides, bromides, iodides, oxides, nitrates, sulfates, phosphates, nitrides, hydrides, hydroxides, carbonates and mixtures thereof. Metal sulfates and phosphates will be operative and may, in certain fuels and combustion applications, not present unacceptable additional sulfur and phosphorus combustion byproducts. Organometallic compounds in an example include alcohols, aldehydes, ketones, esters, anhydrides, sulfonates, phosphonates, chelates, phenates, crown ethers, carboxylic acids, amides, acetyl acetonates, and mixtures thereof.
  • Exemplary manganese containing organometallic compounds are manganese tricarbonyl compounds. Such compounds are taught, for example, in US Patent Nos. 4,568,357 ; 4,674,447 ; 5,113,803 ; 5,599,357 ; 5,944,858 and European Patent No. 466 512 B1 .
  • Suitable manganese tricarbonyl compounds which can be used include cyclopentadienyl manganese tricarbonyl, methylcyclopentadienyl manganese tricarbonyl, dimethylcyclopentadienyl manganese tricarbonyl, trimethylcyclopentadienyl manganese tricarbonyl, tetramethylcyclopentadienyl manganese tricarbonyl, pentamethylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, diethylcyclopentadienyl manganese tricarbonyl, propylcyclopentadienyl manganese tricarbonyl, isopropylcyclopentadienyl manganese tricarbonyl, tert-butylcyclopentadienyl manganese tricarbonyl, octylcyclopentadienyl manganese tricarbonyl, dodecylcyclopentadienyl manganese tricarbonyl, ethylmethylcyclopentadienyl manganese tricarbonyl, indenyl manganese tricarbonyl, and the like, including mixtures of two or more such compounds. In one alternative are the cyclopentadienyl manganese tricarbonyls which are liquid at room temperature such as methylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, liquid mixtures of cyclopentadienyl manganese tricarbonyl and methylcyclopentadienyl manganese tricarbonyl, mixtures of methylcyclopentadienyl manganese tricarbonyl and ethylcyclopentadienyl manganese tricarbonyl, etc.
  • Preparation of such compounds is described in the literature, for example, U.S. Pat. No. 2,818,417 .
  • When formulating additives to be used herein, the metal-containing compound must be employed in amounts sufficient to reduce or eliminate CCD flaking in the spark ignited internal combustion engine. The amounts will vary according to the particular metal or mixture of metals and metal-containing compoundsWhen using a manganese-containing compound, the amount of manganese added can be about 1 to about 50 mg manganese per liter.
  • The metal-containing compounds are believed to act as both a free radical sink and a combustion catalyst. As a radical sink, the compounds may be inhibiting radical initiated fuel polymerization reactions hence limiting contribution to hydrocarbonaceous CCD by this route. As a combustion catalyst, the manganese, for instance, catalytically participates in the CCD removal mechanism by promoting carbon oxidation at lower temperatures.
  • The term "cold start emissions" refers to and is defined herein in accordance with the industry definition. The industry recognized definition of cold-start emissions can be found in the FTP-75 (Federal Test Procedure). Details of the test procedure are described in the Code of Federal Regulations (CFR 40, Part 86). Briefly, the test procedure consists of the following three phases: 1) Cold-start, 2) Transient, and 3) Hot-start. The FTP-75 emissions cycle simulates 11.04 miles (17.77 km) distance of travel in a time of 1874 seconds at an average speed of 21.2 mph (34.1 km/h). Before the test, the vehicle is conditioned overnight at 25 +/- 5 C to assure cold start conditions. The cold start is initiated followed by the transient phase. Then the vehicle is shut down for a hot soak of 10 minutes before being restarted to perform the hot phase. The emissions from each phase are collected in a separate Teflon bag for each test phase, and analyzed. Quantities of each emission component (HC, CO, CO2, NOx, etc) are expressed in (g/mile) g/km for each phase. For hydrocarbon emissions (HC) the cold-start phase is the most important because it contributes 80 - 90% of the total from the three phases.
  • Examples
  • Fuels that included and did not include a metal-containing compound were compared in an engine test. Manganese in MMT® was the additive used at a treat rate 8.25 mg. of manganese per liter of fuel.
  • The vehicle used in this study was a Dodge Intrepid with a six cylinder engine. It was operated for 4828 Km (3000 miles) on the test cycle described below while fueled with non additized CITGO RUL gasoline. At the end of the test the engine was dismantled and rated for CCD flaking according to a procedure adapted from that published by Gautam T. Kalghatgi in the SAE Paper Series 2002-01-2833. Then the test was repeated with the additive treated fuel.
  • Test Procedure: CCD Flaking Test on the Dodge Intrepid Ethyl Test Outline:
  • Vehicle: Chrysler Dodge Intrepid
    Fuel: CITGO Regular Unleaded
    Test # 1: Without MMT Additive
    Test # 2: With MMT Additive
    Cycle: IVD Chassis Dyno Cycle (Average 72 km/h; 45 mph)
    Two shifts per day (about 600 miles) ca. 966 km
    Soak overnight
    End test at a cumulative 4828 km (3000 miles):
  • At End of Test:
    1. 1. Dismantle engine as per regular IVD/CCD test
    2. 2. Measure deposit thickness on both the head and pistons using the template
    3. 3. Spray piston tops with soap water (1 drop of liquid household detergent per 100 mL water) using a house plant water sprayer
    4. 4. After 3 hours photograph piston tops and note extent of flaking
    5. 5. Spray piston tops again and leave overnight.
    6. 6. Photograph piston tops and note extend of flaking
    7. 7. Remove flaked deposit by vacuum and weigh
    8. 8. Photograph piston tops
    9. 9. Measure thickness of remaining deposit using the template
    10. 10. Scrape and total piston top deposit
    11. 11. Complete IVD and CCD determination on head.
    By the term "average" it is meant the average of deposit amounts on the six valves or the six piston tops, or the six cylinder head locations corresponding to the six pistons. Table 1: The Manganese Containing Additive Inhibited CCD Flaking
    Additive Flaked Amount of CCD (milligrams) Total Engine CCD (milligrams) Engine IVD (milligrams)
    No 89.4 783.4 312.2
    Yes 0 688.9 305.9
  • As is evident from this test example, the use of the specific metal-containing additive according to the invention noted completely eliminated flaking of combustion chamber deposits. In other words, no CCD flaked off when the additive was used. Other metal-containing additives known to be radical sinks (anti-knocks) and/or combustion improvers such as those that enhance carbon burnout at lower temperatures may be used, and the treat rate of any additive may be varied. By changing the selection of additive and/or the treat rate of the additive, the amount of reduction in flaking may be controlled. It is believed that, in the case of a manganese-containing additive according to the invention, a treat rate of about two mg. of manganese per liter of fuel will achieve up to about a 50% reduction in CCD flaking.
  • Given the discovered absence of CCD flaking, it should be evident that a more complete combustion occurs, especially during the cold start period of engine operation. There were no flakes to block the sealing of the exhaust valves. Therefore, less raw fuel is allowed to pass through the cylinder and into the exhaust system. Accordingly, cold start emissions of hydrocarbons should be reduced by use of the additive in spark ignited internal combustion engines that experience combustion chamber deposits.
  • It is to be understood that the reactants and components referred to by chemical name anywhere in the specification or claims hereof, whether referred to in the singular or plural, are identified as they exist prior to coming into contact with another substance referred to by chemical name or chemical type (e.g., base fuel, solvent, etc.). It matters not what chemical changes, transformations and/or reactions, if any, take place in the resulting mixture or solution or reaction medium as such changes, transformations and/or reactions are the natural result of bringing the specified reactants and/or components together under the conditions called for pursuant to this disclosure. Thus the reactants and components are identified as ingredients to be brought together either in performing a desired chemical reaction (such as formation of the organometallic compound) or in forming a desired composition (such as an additive concentrate or additized fuel blend). It will also be recognized that the additive components can be added or blended into or with the base fuels individually per se and/or as components used in forming preformed additive combinations and/or sub-combinations. Accordingly, even though the claims hereinafter may refer to substances, components and/or ingredients in the present tense ("comprises", "is", etc.), the reference is to the substance, components or ingredient as it existed at the time just before it was first blended or mixed with one or more other substances, components and/or ingredients in accordance with the present disclosure. The fact that the substance, components or ingredient may have lost its original identity through a chemical reaction or transformation during the course of such blending or mixing operations or immediately thereafter is thus wholly immaterial for an accurate understanding and appreciation of this disclosure and the claims thereof.

Claims (14)

  1. Use of an additive that includes a metal-containing compound wherein the metal-containing compound comprises manganese for reducing combustion chamber deposit flaking in spark ignited internal combustion engines that experience combustion chamber deposits
    by combining a fuel with the additive
    wherein the metal-containing compound comprising manganese is supplied in an amount effective to reduce combustion chamber deposit flaking.
  2. Use according to claim 1 for reducing cold start emissions from spark-ignited internal combustion engines that experience combustion chamber deposits.
  3. Use as described in claim 1, wherein the metal-containing compound comprises a manganese compound.
  4. Use as described in claim 3, wherein the manganese-containing compound is an inorganic manganese compound.
  5. Use as described in claim 4, wherein the inorganic manganese compound is selected from the group consisting of fluorides, chlorides, bromides, iodides, oxides, nitrates, sulfates, phosphates, nitrides, hydrides, hydroxides carbonates and mixtures thereof.
  6. Use as described in claim 3, wherein the manganese-containing compound is an organometallic compound.
  7. Use as described in claim 6, wherein the organometallic compound is selected from groups where the ligands on the metal consist of alcohols, aldehydes, ketones, esters, anhydrides, sulfonates, phosphonates, chelates, phenates, crown ethers, carboxylic acids, amides, acetyl acetonates and mixtures thereof.
  8. Use as described in claim 3, wherein the manganese-containing compound comprises about 1 to about 50 mgMn/liter of the fuel.
  9. Use as described in claim 6, wherein the organometallic compound comprises methylcyclopentadienyl manganese tricarbonyl.
  10. Use as described in claim 3, wherein the manganese-containing compound is selected from the following group:
    cyclopentadienyl manganese tricarbonyl, methylcyclopentadienyl manganese tricarbonyl, dimethylcyclopentadienyl manganese tricarbonyl, trimethylcyclopentadienyl manganese tricarbonyl, tetramethylcyclopentadienyl manganese tricarbonyl, pentamethylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, diethylcyclopentadienyl manganese tricarbonyl, propylcyclopentadienyl manganese tricarbonyl, isopropylcyclopentadienyl manganese tricarbonyl, tert-butylcyclopentadienyl manganese tricarbonyl, octylcyclopentadienyl manganese tricarbonyl, dodecylcyclopentadienyl manganese tricarbonyl, ethylmethylcyclopentadienyl manganese tricarbonyl, indenyl manganese tricarbonyl, and the like, including mixtures of two or more such compounds.
  11. Use as described in claim 1, where the fuel contains less than about 30 ppm of sulfur.
  12. Use as described in claim 1, wherein the spark ignited internal combustion engine comprises a fuel injection or fuel delivery system selected from the group consisting of the following:
    carbureted systems, port fuel injection system, multi point injection system, and direct injection gasoline system.
  13. Use as described in claim 1, wherein the fuel comprises regular, unleaded gasoline.
  14. Use as described in claim 1, wherein the engine comprises six or more cylinders.
EP04024823A 2003-10-29 2004-10-19 Method for reducing combustion chamber deposit flaking Not-in-force EP1528097B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US696618 1985-01-30
US10/696,618 US20050091913A1 (en) 2003-10-29 2003-10-29 Method for reducing combustion chamber deposit flaking

Publications (3)

Publication Number Publication Date
EP1528097A2 EP1528097A2 (en) 2005-05-04
EP1528097A3 EP1528097A3 (en) 2005-07-13
EP1528097B1 true EP1528097B1 (en) 2010-12-08

Family

ID=34423374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04024823A Not-in-force EP1528097B1 (en) 2003-10-29 2004-10-19 Method for reducing combustion chamber deposit flaking

Country Status (15)

Country Link
US (1) US20050091913A1 (en)
EP (1) EP1528097B1 (en)
JP (1) JP2005133720A (en)
KR (1) KR20050040783A (en)
CN (2) CN1637120A (en)
AR (1) AR046559A1 (en)
AT (1) ATE491012T1 (en)
AU (1) AU2004218620A1 (en)
BR (1) BRPI0404762A (en)
CA (2) CA2677761C (en)
DE (1) DE602004030408D1 (en)
MX (1) MXPA04010020A (en)
RU (1) RU2283437C2 (en)
SG (1) SG111280A1 (en)
ZA (1) ZA200408543B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005543B4 (en) * 2006-02-07 2010-06-24 Airbus Deutschland Gmbh Aircraft air conditioning system with cyclone vents
US20070245621A1 (en) * 2006-04-20 2007-10-25 Malfer Dennis J Additives for minimizing injector fouling and valve deposits and their uses
US7780746B2 (en) * 2006-09-22 2010-08-24 Afton Chemical Corporation Additives and lubricant formulations for improved used oil combustion properties
US8715373B2 (en) * 2007-07-10 2014-05-06 Afton Chemical Corporation Fuel composition comprising a nitrogen-containing compound
CN103965978A (en) * 2014-05-09 2014-08-06 陕西禾合化工科技有限公司 Transition metal gasoline antiknock agent

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127351A (en) * 1964-03-31 Xxvii
US2086775A (en) * 1936-07-13 1937-07-13 Leo Corp Method of operating an internal combustion engine
US2151432A (en) * 1937-07-03 1939-03-21 Leo Corp Method of operating internal combustion engines
US2844447A (en) * 1953-12-29 1958-07-22 Standard Oil Co Gasoline fuel compositions
US2818417A (en) * 1955-07-11 1957-12-31 Ethyl Corp Cyclomatic compounds
GB787374A (en) * 1956-01-12 1957-12-04 Ethyl Corp Antiknock compounds
NL248043A (en) * 1959-03-16 1900-01-01
US3179506A (en) * 1962-05-02 1965-04-20 Shell Oil Co Gasoline composition
US3442631A (en) * 1967-09-28 1969-05-06 Ethyl Corp Jet engine deposit modification
US4036605A (en) * 1971-09-01 1977-07-19 Gulf Research & Development Company Chelates of cerium (IV), their preparation and gasoline containing said chelates
US4104036A (en) * 1976-03-08 1978-08-01 Atlantic Richfield Company Iron-containing motor fuel compositions and method for using same
US4139349A (en) * 1977-09-21 1979-02-13 E. I. Du Pont De Nemours & Co. Fuel compositions containing synergistic mixtures of iron and manganese antiknock compounds
US4175927A (en) * 1978-03-27 1979-11-27 Ethyl Corporation Fuel compositions for reducing hydrocarbon emissions
US4317657A (en) * 1978-03-27 1982-03-02 Ethyl Corporation Gasoline additive fluids to reduce hydrocarbon emissions
US4191536A (en) * 1978-07-24 1980-03-04 Ethyl Corporation Fuel compositions for reducing combustion chamber deposits and hydrocarbon emissions of internal combustion engines
US4266946A (en) * 1980-04-28 1981-05-12 Ethyl Corporation Gasoline containing exhaust emission reducing additives
US4674447A (en) * 1980-05-27 1987-06-23 Davis Robert E Prevention of fouling in internal combustion engines and their exhaust systems and improved gasoline compositions
US4390345A (en) * 1980-11-17 1983-06-28 Somorjai Gabor A Fuel compositions and additive mixtures for reducing hydrocarbon emissions
US4474580A (en) * 1982-03-16 1984-10-02 Mackenzie Chemical Works, Inc. Combustion fuel additives comprising metal enolates
EP0159333B1 (en) * 1983-10-05 1988-03-02 The Lubrizol Corporation Manganese and copper containing compositions
US6039772A (en) * 1984-10-09 2000-03-21 Orr; William C. Non leaded fuel composition
US4891050A (en) * 1985-11-08 1990-01-02 Fuel Tech, Inc. Gasoline additives and gasoline containing soluble platinum group metal compounds and use in internal combustion engines
US4670020A (en) * 1984-12-24 1987-06-02 Ford Motor Company Carbon ignition temperature depressing agent and method of regenerating an automotive particulate trap utilizing said agent
US4568357A (en) * 1984-12-24 1986-02-04 General Motors Corporation Diesel fuel comprising cerium and manganese additives for improved trap regenerability
US4690687A (en) * 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
US4588416A (en) * 1985-09-20 1986-05-13 Ethyl Corporation Fuel compositions
US4804388A (en) * 1987-10-02 1989-02-14 Ira Kukin Combustion control by addition of manganese and magnesium in specific amounts
DE3801947A1 (en) * 1988-01-23 1989-08-03 Veba Oel Ag METHOD FOR OPERATING AN OTTO ENGINE
DE3809307A1 (en) * 1988-03-19 1989-09-28 Veba Oel Ag ENGINE LUBRICANE FOR DIESEL ENGINES AND METHOD FOR OPERATING A DIESEL ENGINE
US4908045A (en) * 1988-12-23 1990-03-13 Velino Ventures, Inc. Engine cleaning additives for diesel fuel
US5584894A (en) * 1992-07-22 1996-12-17 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from vehicular diesel engines
US5034020A (en) * 1988-12-28 1991-07-23 Platinum Plus, Inc. Method for catalyzing fuel for powering internal combustion engines
US6051040A (en) * 1988-12-28 2000-04-18 Clean Diesel Technologies, Inc. Method for reducing emissions of NOx and particulates from a diesel engine
US5501714A (en) * 1988-12-28 1996-03-26 Platinum Plus, Inc. Operation of diesel engines with reduced particulate emission by utilization of platinum group metal fuel additive and pass-through catalytic oxidizer
US5599357A (en) * 1990-07-13 1997-02-04 Ehtyl Corporation Method of operating a refinery to reduce atmospheric pollution
CA2045706C (en) * 1990-07-13 2002-09-17 Thomas Albert Leeper Gasoline engine fuels of enhanced properties
US5944858A (en) * 1990-09-20 1999-08-31 Ethyl Petroleum Additives, Ltd. Hydrocarbonaceous fuel compositions and additives therefor
US5113803A (en) * 1991-04-01 1992-05-19 Ethyl Petroleum Additives, Inc. Reduction of Nox emissions from gasoline engines
US5376154A (en) * 1991-05-13 1994-12-27 The Lubrizol Corporation Low-sulfur diesel fuels containing organometallic complexes
TW230781B (en) * 1991-05-13 1994-09-21 Lubysu Co
US5551957A (en) * 1992-05-06 1996-09-03 Ethyl Corporation Compostions for control of induction system deposits
AU668151B2 (en) * 1992-05-06 1996-04-26 Afton Chemical Corporation Composition for control of induction system deposits
DE69328202T2 (en) * 1992-09-28 2000-07-20 Ford Motor Co Filter element for controlling exhaust gas emissions from internal combustion engines
JPH06128570A (en) * 1992-10-14 1994-05-10 Nippon Oil Co Ltd Unleaded high-octane gasoline
US6003303A (en) * 1993-01-11 1999-12-21 Clean Diesel Technologies, Inc. Methods for reducing harmful emissions from a diesel engine
US6152972A (en) * 1993-03-29 2000-11-28 Blue Planet Technologies Co., L.P. Gasoline additives for catalytic control of emissions from combustion engines
DE4423003C2 (en) * 1993-07-06 1999-01-21 Ford Werke Ag Method and device for reducing NO¶x¶ in exhaust gases from automotive internal combustion engines
US5732548A (en) * 1994-10-07 1998-03-31 Platinum Plus, Inc. Method for reducing harmful emissions from two-stroke engines
DE19504450A1 (en) * 1995-02-10 1996-08-22 Florian Gamel Exhaust gas purification device for internal combustion engines
GB9508248D0 (en) * 1995-04-24 1995-06-14 Ass Octel Process
BR9608087A (en) * 1995-04-24 1999-02-23 Asociated Octel Company Limite Process for improving fuel combustion and / or improving the oxidation of carbonaceous products derived from combustion or fuel pyrolysis and use of an organo-metallic complex
CA2205143C (en) * 1996-05-14 2003-07-15 Ethyl Corporation Enhanced combustion of hydrocarbonaceous burner fuels
US5809774A (en) * 1996-11-19 1998-09-22 Clean Diesel Technologies, Inc. System for fueling and feeding chemicals to internal combustion engines for NOx reduction
GB2321906A (en) * 1997-02-07 1998-08-12 Ethyl Petroleum Additives Ltd Fuel additive for reducing engine emissions
US6361754B1 (en) * 1997-03-27 2002-03-26 Clean Diesel Technologies, Inc. Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
US5976475A (en) * 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US5809775A (en) * 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US5924280A (en) * 1997-04-04 1999-07-20 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine while maximizing fuel economy
TW509719B (en) * 1997-04-17 2002-11-11 Clean Diesel Tech Inc Method for reducing emissions from a diesel engine
DE19818536C2 (en) * 1998-04-24 2002-04-11 Daimler Chrysler Ag Process for the neutralization of sulfur dioxide and / or sulfur trioxide in exhaust gases
US6206685B1 (en) * 1999-08-31 2001-03-27 Ge Energy And Environmental Research Corporation Method for reducing NOx in combustion flue gas using metal-containing additives
US6193767B1 (en) * 1999-09-28 2001-02-27 The Lubrizol Corporation Fuel additives and fuel compositions comprising said fuel additives
US6629407B2 (en) * 2000-12-12 2003-10-07 Ethyl Corporation Lean burn emissions system protectant composition and method
CA2373327A1 (en) * 2001-03-22 2002-09-22 Oryxe Energy International, Inc. Method and composition for using organic, plant-derived, oil-extracted materials in fossil fuels for reduced emissions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAUTAM T. KALGHATGI: "SAE TECHNICAL PAPER SERIES: Combustion Chamber Deposit Flaking-Studies Using a Road Test Procedure", 21 October 2002 (2002-10-21) - 24 October 2002 (2002-10-24), SOCIETY OF AUTOMOTIVE ENGINEERS, WARRENDALE, PA., XP007911784, ISSN: 0148-7191 *

Also Published As

Publication number Publication date
ZA200408543B (en) 2005-09-28
SG111280A1 (en) 2005-05-30
US20050091913A1 (en) 2005-05-05
DE602004030408D1 (en) 2011-01-20
EP1528097A3 (en) 2005-07-13
CA2677761A1 (en) 2005-04-29
AU2004218620A1 (en) 2005-05-19
CA2677761C (en) 2011-09-13
CA2482735C (en) 2009-11-24
CN101914397A (en) 2010-12-15
CA2482735A1 (en) 2005-04-29
EP1528097A2 (en) 2005-05-04
MXPA04010020A (en) 2005-05-03
ATE491012T1 (en) 2010-12-15
JP2005133720A (en) 2005-05-26
AR046559A1 (en) 2005-12-14
CN1637120A (en) 2005-07-13
RU2004131494A (en) 2006-05-10
BRPI0404762A (en) 2005-06-28
RU2283437C2 (en) 2006-09-10
KR20050040783A (en) 2005-05-03

Similar Documents

Publication Publication Date Title
US5819529A (en) Method for reducing emissions from two-stroke engines
EP1215272B1 (en) Method for enhancing the durability of a catalytic exhaust gas system
US8852299B2 (en) Fuel composition
JP3796355B2 (en) Gasoline composition containing an ignition modifier
EP0507510A1 (en) Reduction of NOx emissions from gasoline engines
KR100787018B1 (en) Method of enhancing the operation of diesel fuel combustion systems
EP1528097B1 (en) Method for reducing combustion chamber deposit flaking
RU2355737C2 (en) Fuel composition including iron and manganese for reduction of spark plug pollution
Danilov Fuel additives: evolution and use in 1996-2000
Tupa et al. Gasoline and Diesel Fuel Additives for Performance/Distribution Quality—II
JP2004091657A (en) Fuel for premixed compressed self-ignition type engine
Tupa et al. Gasoline and diesel fuel additives for performance/distribution/quality
JP4458405B2 (en) Fuel for premixed compression self-ignition engines
JP2004091659A (en) Fuel for premixed compressed self-ignition type engine
US7699900B2 (en) Fuel additive
US7846223B2 (en) Fuel additive
JP2004091667A (en) Fuel for premixed compressed self-ignition type engine
JP2004091660A (en) Fuel for premixed compressed self-ignition type engine
JP2004091662A (en) Fuel for premixed compressed self-ignition type engine
JPH06192208A (en) Allophanic acid ester, its preparation and fuel composition for car containing it
Hollrah et al. Reduction of No x emissions from gasoline engines
JP2004091668A (en) Fuel for premixed compressed self-ignition type engine
JP2004091665A (en) Fuel for premixed compressed self-ignition type engine
JP2004091664A (en) Fuel for premixed compressed self-ignition type engine
JP2004091663A (en) Fuel for premixed compressed self-ignition type engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041019

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004030408

Country of ref document: DE

Date of ref document: 20110120

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

26N No opposition filed

Effective date: 20110909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004030408

Country of ref document: DE

Effective date: 20110909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161027

Year of fee payment: 13

Ref country code: FR

Payment date: 20161025

Year of fee payment: 13

Ref country code: GB

Payment date: 20161027

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20161027

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004030408

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171019

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004030408

Country of ref document: DE

Representative=s name: SOMMER, ANDREA, DIPL.-CHEM. DR.PHIL.NAT., DE