EP1525342B1 - Procede et installation de traitement thermique de produits en carbone contenant du sodium - Google Patents

Procede et installation de traitement thermique de produits en carbone contenant du sodium Download PDF

Info

Publication number
EP1525342B1
EP1525342B1 EP03748208A EP03748208A EP1525342B1 EP 1525342 B1 EP1525342 B1 EP 1525342B1 EP 03748208 A EP03748208 A EP 03748208A EP 03748208 A EP03748208 A EP 03748208A EP 1525342 B1 EP1525342 B1 EP 1525342B1
Authority
EP
European Patent Office
Prior art keywords
sodium
oven
exhaust pipe
neutralizing agent
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03748208A
Other languages
German (de)
English (en)
Other versions
EP1525342A2 (fr
Inventor
Etienne 12 Rue Du Bussac LONCLE
Jacky Domaine de la Forêt MINET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
SNECMA Propulsion Solide SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Propulsion Solide SA filed Critical SNECMA Propulsion Solide SA
Publication of EP1525342A2 publication Critical patent/EP1525342A2/fr
Application granted granted Critical
Publication of EP1525342B1 publication Critical patent/EP1525342B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof

Definitions

  • the invention relates to the high temperature heat treatment of carbon products containing sodium, and more particularly to the treatment of gaseous effluents produced during the heat treatment.
  • a particular field of application of the invention is the production of textures or preforms made of carbon fibers intended to constitute fibrous reinforcements for parts made of composite material such as carbon / resin composite, for example C / epoxy or C / phenolic composite, or thermostructural composite, for example carbon / carbon composite (C / C) or ceramic matrix composite and carbon reinforcement.
  • composite material such as carbon / resin composite, for example C / epoxy or C / phenolic composite, or thermostructural composite, for example carbon / carbon composite (C / C) or ceramic matrix composite and carbon reinforcement.
  • Such fibrous textures are usually obtained from carbon precursor fibers that are better able to undergo the textile operations required for shaping these textures.
  • carbon precursor fibers are preoxidized polyacrylonitrile (PAN) fibers, pitch fibers, phenolic fibers, and rayon fibers.
  • PAN polyacrylonitrile
  • the second step is generally carried out under reduced pressure and under a purge of neutral gas such as nitrogen.
  • the second step is usually carried out before densification of the fibrous texture by the resin, carbon or ceramic matrix of the composite material.
  • the densification can be carried out by a liquid route, that is to say impregnation with a liquid compound, such as a resin, precursor of the material of the matrix, and transforming this precursor by heat treatment.
  • the densification can also be carried out by gaseous means, that is to say by chemical vapor infiltration, the two processes, the liquid route and the gaseous route being well known and possibly associable.
  • the object of the invention is to provide a method which avoids the aforementioned drawback by preventing the formation on the walls of gaseous effluent extraction pipes of potentially dangerous deposits at the stage of cleaning these pipes.
  • This object is achieved by a process of the type in which the carbon products are heated in an oven, under a purge of neutral gas and under reduced pressure, with continuous extraction out of the effluent furnace.
  • gas containing in particular sublimed sodium by an effluent discharge pipe, in which process, in accordance with the invention, at least one sodium neutralization product is injected into the effluent discharge pipe, immediately downstream of the effluent gas outlet out of the oven.
  • sodium neutralization product is meant a product to obtain a stable sodium compound and fairly easily removed.
  • a relatively easy handling product for example water vapor or preferably carbon dioxide, optionally mixed with water vapor, is preferably chosen.
  • the neutralization product may be injected at or downstream of a bend formed by the effluent gas discharge pipe out of the oven.
  • the injected neutralization product may further be diluted in a neutral gas such as nitrogen.
  • the neutralization product can be continuously injected into the gaseous effluent stream extracted from the furnace during the heat treatment, so as to form a stable and easily removable sodium compound and avoid the deposition of sodium on the pipe wall of the furnace. evacuation.
  • the neutralization product is injected into the evacuation pipe after the end of the heat treatment in order to neutralize the sodium deposited on the wall of the evacuation pipe, before cleaning it.
  • the invention also aims to provide an installation for implementing the method.
  • a heat treatment plant for carbon products containing sodium of the type comprising an oven, means for supplying the oven with neutral gas for scavenging, and a line for extracting gaseous effluent out of the oven, installation which further comprises, according to the invention means for injecting a sodium neutralization product in the extraction pipe immediately after the exit of the furnace.
  • High temperature heat treatment means a treatment at a temperature usually greater than that encountered by the textures during carbonization, that is to say a temperature greater than 1000 ° C., typically between 1400 ° C. and 2000 ° C. ° C at 2200 ° C or 2500 ° C.
  • the heat treatment is carried out under reduced pressure, below atmospheric pressure, preferably below 50 kPa, typically between 0.1 kPa and 50 kPa, preferably below 5 kPa, and under a purge of neutral gas such as nitrogen or argon.
  • the process according to the invention is applicable to the removal of sodium present at low levels in fibers, for example less than 80 ppm, or at a much higher content, greater than 3500 ppm.
  • the figure 1 shows very schematically an oven 10 comprising a susceptor 12 of cylindrical shape and vertical axis which laterally delimits a volume or enclosure 11 for loading products (not shown) of carbon.
  • the susceptor 12 for example graphite, is surmounted by a cover 14, is heated by inductive coupling with an inductor 16 which surrounds the susceptor with the interposition of a thermal insulator 18.
  • the inductor is powered by a circuit 20 which delivers a current depending on the need for heating the oven.
  • the inductor can be divided into several sections on the height of the oven. Each section is powered separately with electric power to define different heating zones in the oven in which the temperature can be regulated independently.
  • the bottom of the furnace is formed of a thermal insulator 22 covered with a furnace hearth 24, for example made of graphite, on which the susceptor 12 rests.
  • the assembly is housed in an envelope 26, for example metal, sealed by a removable cover 28.
  • a pipe 30 provided with a valve 31 is connected to a source (not shown) of inert gas, for example nitrogen N 2 .
  • the pipe 30 supplies the oven 10 with inert scanning gas to the upper part thereof, possibly through several inlets 32 opening at different locations around the casing 26 of the oven.
  • An extraction device 40 is connected to an outlet duct 42 of the furnace passing through the bottom thereof, to extract the gaseous effluent produced during the heat treatment of the carbon products, in order to remove residual sodium in particular.
  • the device 40 is connected to the outlet duct 42 by an evacuation pipe 44 provided with a carbon dioxide injection inlet 46 CO 2 .
  • the pipe 44 forms a bend 44 has at its extremity connected by a flange 45 to the outlet duct 42 of the furnace.
  • the injection inlet 46 is connected to a pipe 48 connected to a source (not shown) of CO 2 gas and provided with a valve 49.
  • the pipe 48 is extended by a nozzle 50 which penetrates into the pipe 44 in order to inject the CO 2 gas in this pipe towards the downstream end of the elbow 44a and to avoid an accidental injection of the CO 2 gas inside the furnace by the exit pipe 42.
  • Several points of injection of CO 2 gas spaced apart from each other along the pipe 44 may be provided.
  • the CO 2 injection is carried out as close as possible to the outlet of the furnace, at a level where the sodium contained in the effluent is always in sublimated form.
  • the injection at a bend of the pipe 44 promotes a mixture by turbulence between the gaseous effluent and CO 2 .
  • Two columns 52, 54 provided with trays 53, 55 imposing a tortuous path to the gases are connected in series between the pipe 44 and a pipe 56 provided with a valve 57.
  • a pump 58 is mounted on the pipe 56, between the valve 57 and a valve 59 in order to be able to switch on or isolate the pump 58.
  • the pump 58 makes it possible to establish the desired reduced pressure level in the furnace. Although only one pump is shown, the presence of two pumps can be considered for the sake of redundancy.
  • the gaseous effluent extracted by the pump 58 is fed to a burner 60 which supplies a stack 62.
  • the oven 10 is equipped with temperature sensors connected to the control circuit 20 in order to set the heating temperature to the desired value.
  • Two sensors 64 for example, is used, 64 b consist of pyrometers optical sighting, which are fitted in the lid 28 under 28a 28b windows made therein openings 14a and 14b formed in the cover 14 of the susceptor .
  • the use of several pyrometric sensors is not a necessity, but makes it possible to measure at different levels and to eliminate any aberrant measurements by comparison. Preference is given to using bichromatic type pyrometers producing a continuously exploitable continuous signal.
  • the temperature measured by the sensors 64a 64b is transmitted to the control circuit 20 to supply the inductor to change this temperature according to a preset temperature rise profile.
  • the sodium contained in the fibrous textures is released and is discharged with the gaseous effluent in a sublimated form, in the elemental state and optionally in the combined state, for example in the state of sodium oxide NaO 2 .
  • CO 2 is injected into the pipe 44 with a controlled flow rate by opening the valve 49 in order to carry out a neutralization of Na (or NaO 2 ) as soon as it leaves the furnace and to avoid its deposition on the walls of the pipe 44.
  • CO 2 injection can be started at a temperature below 900 ° C. This injection is also preferably continued at least until the end of the process.
  • the sodium carbonate product is collected in particular in the tray columns 52, 54.
  • the purified gaseous effluent of sodium is fed to the burner 60.
  • the extraction device 40 or at least a part thereof comprising the tray columns 52, 54 and optionally the pipe 44 is cleaned periodically to eliminate in particular the deposited sodium carbonate.
  • the cleaning can be carried out by rinsing with water in situ or by washing with water in a washing container after at least partial disassembly of the extraction device.
  • the neutralization of sodium is carried out by hydration.
  • the pipe 44 is provided with one or more injection devices 70 for example in the form of hollow rings 72 surrounding the pipe 44.
  • the injection device 70 is placed immediately downstream of the bend 44a, with interposition an isolation valve 71 between the outlet 42 of the oven and the injection device 70.
  • two rings are provided spaced apart from each other along the pipe 44.
  • the rings injection 72 are fed in parallel through a pipe 74 connected on the one hand to a source of neutralizing agent, for example a source of water vapor via a pipe 76 provided with a valve 75 and, secondly, a source of neutral gas such as nitrogen or argon, via a pipe 78 provided with a valve 57.
  • the pipe 44 Downstream of the injection device 70, in the flow direction of gaseous effluent, the pipe 44 has a purge port connected to a purge pipe 80 provided with a valve 81. Downstream of the connection with the pipe of purge, the pipe 44 can be connected directly to the pump 58 through the valve 57, the use of tray columns is not necessary here. The rest of the installation is identical to what was described above.
  • Each injection ring 72 forms an O-ring surrounding the pipe 44 and communicating with it through holes 74 formed in the wall of the pipe.
  • the holes 74 may be inclined relative to the normal to the wall of the pipe 44 to direct the flow of neutralization agent downstream.
  • the injection of the mixture H 2 O + N 2 can be carried out during the heat treatment process, as described above with regard to the CO 2 injection, or after the end of the heat treatment process to hydrate the sodium deposited on the wall of the pipe 44.
  • the pipe 44 may be insulated along its portion connecting the pipe. output 42 to this injection device. Insulation 43 prevents premature sodium condensation on the wall of pipe 44 by too rapid cooling of the gaseous effluent.
  • the insulation 43 may be replaced or supplemented by heating means for example by electrical resistors.
  • valves 75 and 81 are open, the valves 71, 57 and 77 are closed and water in liquid form is admitted into the pipe 76 and thence into the injection device 70.
  • Several rinses consecutive lines of the line 44 can be carried out to remove the soda produced by neutralization of sodium.
  • drying of the pipe 44 can be achieved by simply opening the valve 57 and turning on the pump 58, the valves 75 and 81 being closed.
  • the dilution with nitrogen is preferred to avoid a too violent reaction with sodium, the amount of sodium to be neutralized being low.
  • the injected CO 2 can also be diluted by mixing with nitrogen.
  • the method and the installation which have just been described are particularly suitable for carbon products obtained from pre-oxidized PAN precursor, in particular for fibrous carbon textures intended for the manufacture of parts made of carbon / resin composite material C / C or C / ceramic, for example silicon carbide matrix (C / SiC) or ternary matrix silicon-boron-carbon (C / Si-BC).
  • C / SiC silicon carbide matrix
  • C / Si-BC ternary matrix silicon-boron-carbon
  • the textures are made of fibers in the precursor state of carbon more capable of undergoing textile operations than carbon fibers.
  • These textures may be one-dimensional such as wires or cables, or two-dimensional, such as fabrics or webs formed of parallel son or cables, or three-dimensional, such as preforms obtained by filament winding, or by stacking, winding or draping fabrics or plies in superimposed layers and possibly linked together by needling or stitching, for example.
  • fibrous preforms are nozzle preforms or divergent nozzles or brake disc preforms.
  • the invention also applies to carbon products, obtained from carbon precursor materials other than preoxidized PAN, also containing sodium and optionally one or more other metals or metal impurities to be removed.
  • carbon precursor materials other than preoxidized PAN, also containing sodium and optionally one or more other metals or metal impurities to be removed.
  • Examples of such precursors are pitches, phenolic materials, or rayon.
  • the process according to the invention is advantageous in that it makes it possible to eliminate sodium which is present at a very low content in the fibers, for example less than 80 ppm, which sodium would be impossible to remove by another method such as rinsing with water. 'water. It also makes it possible to eliminate sodium present in larger amounts in the fibers, for example at more than 3500 ppm.
  • calcium and / or magnesium can be removed by sublimation.
  • metals such as Fe, Ni and Cr may also have to be eliminated in addition to sodium. It is then necessary to perform the heat treatment to a temperature sufficient to ensure the sublimation of these metals, for example a temperature up to 2000 ° C or 2200 ° C, or 2500 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)
  • Inorganic Fibers (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

    Arrière-plan de l'invention
  • L'invention concerne le traitement thermique à haute température de produits en carbone contenant du sodium, et plus particulièrement le traitement d'effluents gazeux produits lors du traitement thermique.
  • Un domaine particulier d'application de l'invention est la réalisation de textures ou préformes en fibres de carbone destinées à constituer des renforts fibreux pour des pièces en matériau composite tel que composite carbone/résine, par exemple C/époxy ou C/phénolique, ou composite thermostructural, par exemple composite carbone/carbone (C/C) ou composite à matrice céramique et renfort carbone.
  • De telles textures fibreuses (cf. US-A-3 413 094 et US-A-4 388 289 ) sont habituellement obtenues à partir de fibres de précurseur de carbone qui sont plus aptes à subir les opérations textiles requises pour la mise en forme de ces textures. Des fibres de précurseur de carbone couramment utilisées sont des fibres de polyacrylonitrile (PAN) préoxydé, des fibres de brai, des fibres phénoliques et des fibres de rayonne.
  • Au moins pour certaines applications, il est nécessaire non seulement de transformer le précurseur en carbone, mais aussi de réaliser un traitement thermique subséquent à haute température, typiquement au-delà de 1000°C et sous pression réduite, pour éliminer des métaux ou impuretés métalliques notamment du sodium provenant du précurseur, et/ou pour conférer des propriétés physico-chimiques particulières aux fibres.
  • Ainsi, dans le cas par exemple de produits en carbone provenant du précurseur PAN préoxydé, il est courant de réaliser deux étapes successives :
    • une première étape de carbonisation proprement dite par transformation chimique du précurseur en carbone, cette première étape étant réalisée à l'échelle industrielle dans un four en élevant progressivement la température de chauffage du four jusqu'à environ 900°C, et
    • une deuxième étape de traitement thermique à haute température visant notamment à éliminer par sublimation le sodium provenant du précurseur, cette deuxième étape étant également réalisée dans un four en élevant progressivement la température jusqu'à environ 1600°C, voire jusqu'à environ 2000°C à 2200°C, ou même 2500°C pour éliminer d'autres impuretés métalliques ou réaliser un traitement thermique à très haute température des fibres de carbone.
  • La deuxième étape est généralement réalisée sous pression réduite et sous balayage de gaz neutre tel que l'azote.
  • Dans le cas de produits en carbone constitués par des textures fibreuses de renfort pour des pièces en matériau composite, la deuxième étape est réalisée habituellement avant densification de la texture fibreuse par la matrice résine, carbone ou céramique du matériau composite. Dans le cas de matériau composite thermostrutural à matrice carbone et/ou céramique, la densification peut être effectuée par voie liquide, c'est-à-dire imprégnation par un composé liquide, tel qu'une résine, précurseur du matériau de la matrice, et transformation de ce précurseur par traitement thermique. La densification peut aussi être effectuée par voie gazeuse, c'est-à-dire par infiltration chimique en phase vapeur, les deux processus, voie liquide et voie gazeuse étant bien connus et pouvant éventuellement être associés.
  • Dans les installations existantes, le refroidissement des effluents gazeux provoque un dépôt contenant du sodium sur les parois de canalisations en aval de la sortie des effluents hors du four de traitement thermique. Il est nécessaire de procéder à un nettoyage régulier de ces canalisations, ce qui n'est pas aisé en raison du risque de réaction violente du dépôt contenant du sodium.
  • Objet et résumé de l'invention
  • L'invention a pour but de proposer un procédé qui évite l'inconvénient précité en empêchant la formation sur des parois de canalisations d'extraction d'effluents gazeux, de dépôts potentiellement dangereux au stade du nettoyage de ces canalisations.
  • Ce but est atteint grâce à un procédé du type selon lequel on chauffe les produits en carbone dans un four, sous balayage de gaz neutre et sous pression réduite, avec extraction continue hors du four d'effluent gazeux contenant notamment du sodium sous forme sublimée, par une canalisation d'évacuation d'effluent, procédé dans lequel, conformément à l'invention, on injecte au moins un produit de neutralisation du sodium dans la canalisation d'évacuation d'effluent, immédiatement en aval de la sortie d'effluent gazeux hors du four.
  • De la sorte, le dépôt qui se forme sur les parois de la canalisation d'évacuation d'effluent ou d'autres dispositifs en aval de la sortie d'effluent hors du four peut être éliminé aisément et sans danger à un stade ultérieur. La déposante a observé que non seulement du sodium élémentaire est évacué sous forme sublimée avec l'effluent gazeux, mais aussi des composés du sodium susceptibles de former un dépôt potentiellement gênant voire dangereux, tel que l'oxyde de sodium NaO2. Par neutralisation du sodium, on entend ici non seulement la neutralisation de sodium élémentaire, mais aussi la neutralisation de composés tels que NaO2.
  • Par produit de neutralisation du sodium, on entend un produit permettant d'obtenir un composé du sodium stable et assez facilement éliminable. On choisit de préférence un produit de manipulation assez aisée, par exemple de la vapeur d'eau ou de préférence du dioxyde de carbone éventuellement mélangé avec de la vapeur d'eau.
  • Le produit de neutralisation peut être injecté au niveau ou en aval d'un coude formé par la canalisation d'évacuation d'effluent gazeux hors du four.
  • Le produit de neutralisation injecté peut en outre être dilué dans un gaz neutre tel que de l'azote.
  • Le produit de neutralisation peut être injecté en continu dans le courant d'effluent gazeux extrait du four pendant le traitement thermique, de manière à former un composé du sodium stable et facilement éliminable et éviter le dépôt de sodium sur la paroi de la canalisation d'évacuation.
  • Dans un autre mode de réalisation du procédé, le produit de neutralisation est injecté dans la canalisation d'évacuation après la fin du traitement thermique afin de neutraliser le sodium déposé sur la paroi de la canalisation d'évacuation, avant nettoyage de celle-ci.
  • L'invention a aussi pour but de fournir une installation permettant de mettre en oeuvre le procédé.
  • Ce but est atteint grâce à une installation de traitement thermique de produits en carbone contenant du sodium, du type comportant un four, des moyens d'alimentation du four en gaz neutre de balayage, et une canalisation d'extraction d'effluent gazeux hors du four, installation qui comporte en outre, conformément à l'invention des moyens d'injection d'un produit de neutralisation du sodium dans la canalisation d'extraction immédiatement après la sortie du four.
  • Brève description des dessins
  • D'autres particularités et avantages du procédé et de l'installation de traitement thermique conformes à l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
    • la figure 1 est une vue générale très schématique d'une installation selon un mode de réalisation de l'invention ;
    • la figure 2 est une vue de détail montrant une partie d'un dispositif d'extraction d'effluent gazeux hors du four de l'installation de la figure 1 ; et
    • la figure 3 est une vue de détail montrant une partie d'un dispositif d'extraction d'effluent gazeux hors du four de l'installation de la figure 1, selon un autre mode de réalisation de l'invention.
    Description détaillée de modes de réalisation
  • Des modes de réalisation de l'invention seront décrits ci-après dans le cadre de l'application au traitement thermique à haute température de textures fibreuses en carbone obtenues par carbonisation de textures en fibres de précurseur de carbone. Par traitement thermique à haute température, on entend un traitement à une température habituellement supérieure à celle rencontrée par les textures lors de la carbonisation, c'est-à-dire une température supérieure à 1000°C, typiquement comprise entre 1400°C et 2000°C à 2200°C, voire 2500°C. Le traitement thermique est réalisé sous pression réduite, inférieure à la pression atmosphérique, de préférence inférieure à 50 kPa typiquement entre 0,1 kPa et 50 kPa, de préférence inférieure à 5 kPa, et sous balayage de gaz neutre tel que l'azote ou l'argon. Le procédé selon l'invention est applicable à l'élimination de sodium présent à faible teneur dans les fibres, par exemple moins de 80 ppm, ou à beaucoup plus forte teneur, supérieure à 3500 ppm.
  • La figure 1 montre très schématiquement un four 10 comprenant un suscepteur 12 de forme cylindrique et d'axe vertical qui délimite latéralement un volume ou enceinte 11 pour le chargement de produits (non représentés) en carbone.
  • Le suscepteur 12, par exemple en graphite, est surmonté d'un couvercle 14, est chauffé par couplage inductif avec un inducteur 16 qui entoure le suscepteur avec interposition d'un isolant thermique 18. L'inducteur est alimenté par un circuit 20 qui délivre un courant en fonction du besoin de chauffage du four.
  • L'inducteur peut être divisé en plusieurs sections sur la hauteur du four. Chaque section est alimentée séparément en courant électrique afin de définir dans le four différentes zones de chauffage dans lesquelles la température peut être régulée indépendamment.
  • Le fond du four est formé d'un isolant thermique 22 recouvert d'une sole de four 24, par exemple en graphite, sur laquelle repose le suscepteur 12.
  • L'ensemble est logé dans une enveloppe 26 par exemple métallique fermée de façon étanche par un couvercle amovible 28.
  • Une canalisation 30 munie d'une vanne 31 est reliée à une source (non représentée) de gaz inerte, par exemple de l'azote N2. La canalisation 30 alimente le four 10 en gaz inerte de balayage à la partie supérieure de celui-ci, éventuellement par plusieurs entrées 32 s'ouvrant en des endroits différents autour de l'enveloppe 26 du four.
  • Un dispositif d'extraction 40 est relié à un conduit de sortie 42 du four traversant le fond de celui-ci, pour extraire l'effluent gazeux produit lors du traitement thermique des produits en carbone, afin d'en éliminer notamment du sodium résiduel.
  • Le dispositif 40 est relié au conduit de sortie 42 par une canalisation d'évacuation 44 munie d'une entrée 46 d'injection de dioxyde de carbone CO2. Comme le montre en détail la figure 2, la canalisation 44 forme un coude 44a à son extrémité raccordée par une bride 45 au conduit de sortie 42 du four. L'entrée d'injection 46 est raccordée à une canalisation 48 reliée à une source (non représentée) de gaz CO2 et munie d'une vanne 49. La canalisation 48 se prolonge par une buse 50 qui pénètre dans la canalisation 44 afin d'injecter le gaz CO2 dans cette canalisation vers l'extrémité aval du coude 44a et éviter une injection accidentelle du gaz CO2 à l'intérieur du four par le conduit de sortie 42. Plusieurs points d'injection de gaz CO2 espacés l'un de l'autre le long de la canalisation 44 peuvent être prévus.
  • L'injection de CO2 est réalisée au plus près de la sortie du four, à un niveau où le sodium contenu dans l'effluent est toujours sous forme sublimée. L'injection au niveau d'un coude de la canalisation 44 favorise un mélange par turbulence entre l'effluent gazeux et CO2.
  • Deux colonnes 52, 54 munies de plateaux 53, 55 imposant un trajet tortueux aux gaz sont reliées en série entre la canalisation 44 et une canalisation 56 munie d'une vanne 57.
  • Une pompe 58 est montée sur la canalisation 56, entre la vanne 57 et une vanne 59 afin de pouvoir mettre en circuit ou isoler la pompe 58. La pompe 58 permet d'établir le niveau de pression réduite souhaitée dans le four. Bien qu'une seule pompe soit représentée, la présence de deux pompes peut être envisagée par souci de redondance. L'effluent gazeux extrait par la pompe 58 est amené à un brûleur 60 qui alimente une cheminée 62.
  • Le four 10 est équipé de capteurs de température reliés au circuit de commande 20 afin de régler la température de chauffage à la valeur voulue.
  • On utilise par exemple deux capteurs 64a, 64b constitués par des pyromètres à visée optique, qui sont logés sur le couvercle 28 au regard de fenêtres 28a 28b pratiquées dans celui-ci et d'ouvertures 14a 14b pratiquées dans le couvercle 14 du suscepteur. L'utilisation de plusieurs capteurs pyrométriques n'est pas une nécessité, mais permet d'effectuer des mesures à différents niveaux et d'éliminer par comparaison d'éventuelles mesures aberrantes. On utilise de préférence des pyromètres de type bichromatique produisant un signal continu constamment exploitable.
  • La température mesurée par les capteurs 64a 64b est transmise au circuit de commande 20 afin d'alimenter l'inducteur pour faire évoluer cette température suivant un profil de montée en température pré-établi.
  • A partir d'une température d'environ 1000°C, selon la pression régnant dans l'enceinte, le sodium contenu dans les textures fibreuses est libéré et est évacué avec l'effluent gazeux sous une forme sublimée, à l'état élémentaire et éventuellement à l'état combiné, par exemple à l'état d'oxyde de sodium NaO2. Du CO2 est injecté dans la canalisation 44 avec un débit contrôlé par ouverture de la vanne 49 afin de réaliser une neutralisation de Na (ou NaO2) dès sa sortie du four et d'éviter son dépôt sur les parois de la canalisation 44.
  • A titre de sécurité, l'injection de CO2 peut être démarrée à une température inférieure à 900°C. Cette injection est également de préférence poursuivie au moins jusqu'à la fin du processus. Le carbonate de sodium produit est recueilli notamment dans les colonnes à plateaux 52, 54. L'effluent gazeux épuré de sodium est amené au brûleur 60.
  • On notera que la neutralisation du sodium par CO2 se traduit par une diminution de la teneur en ions cyanure (CN-) dans le dépôt recueilli par les colonnes 52, 54 par rapport à ce qui est observé en l'absence de passivation, ce qui ajoute à la sécurité apportée par l'absence de dépôt de Na.
  • Le dispositif d'extraction 40, ou au moins une partie de celui-ci comprenant les colonnes à plateaux 52, 54 et éventuellement la canalisation 44 est nettoyé périodiquement afin d'éliminer notamment le carbonate de sodium déposé. Le nettoyage peut être effectué par rinçage à l'eau in situ ou par lavage à l'eau dans un conteneur de lavage après démontage au moins partiel du dispositif d'extraction.
  • Selon un autre mode de réalisation de l'invention (figure 3), la neutralisation du sodium est effectuée par hydratation. A cet effet, la canalisation 44 est munie d'un ou plusieurs dispositifs d'injection 70 par exemple sous forme d'anneaux creux 72 entourant la canalisation 44. Le dispositif d'injection 70 est placé immédiatement en aval du coude 44a, avec interposition d'une vanne d'isolement 71 entre la sortie 42 du four et le dispositif d'injection 70. Dans l'exemple illustré, deux anneaux sont prévus espacés l'un de l'autre le long de la canalisation 44. Les anneaux d'injection 72 sont alimentés en parallèle par une canalisation 74 reliée d'une part à une source d'agent de neutralisation, par exemple une source de vapeur d'eau par l'intermédiaire d'une canalisation 76 munie d'une vanne 75 et, d'autre part, à une source de gaz neutre tel qu'azote ou argon, par l'intermédiaire d'une canalisation 78 munie d'une vanne 57.
  • En aval du dispositif d'injection 70, dans le sens d'écoulement d'effluent gazeux, la canalisation 44 présente un orifice de purge raccordé à une canalisation de purge 80 munie d'une vanne 81. En aval du raccordement avec la canalisation de purge, la canalisation 44 peut être reliée directement à la pompe 58 par l'intermédiaire de la vanne 57, l'utilisation de colonnes à plateaux n'étant pas ici indispensable. Le reste de l'installation est identique à ce qui a été décrit plus haut.
  • Chaque anneau d'injection 72 forme un conduit torique entourant la canalisation 44 et communiquant avec celle-ci à travers des perçages 74 formés dans la paroi de la canalisation. Les perçages 74 peuvent être inclinés par rapport à la normale à la paroi de la canalisation 44 pour diriger le flux d'agent de neutralisation vers l'aval.
  • L'injection du mélange H2O+N2 peut être réalisée pendant le processus de traitement thermique, comme décrit plus haut à propos de l'injection de CO2, ou après la fin du processus de traitement thermique pour hydrater le sodium déposé sur la paroi de la canalisation 44.
  • Dans les deux cas, afin d'éviter un dépôt de sodium sur la paroi de la canalisation 44 en amont du dispositif d'injection le plus proche de la sortie du four, la canalisation 44 peut être calorifugée le long de sa partie reliant la canalisation de sortie 42 à ce dispositif d'injection. Le calorifugeage 43 permet d'éviter une condensation prématurée de sodium sur la paroi de la canalisation 44 par refroidissement trop rapide de l'effluent gazeux. Le calorifugeage 43 peut être remplacé ou complété par des moyens de chauffage par exemple par résistances électriques.
  • Après la fin du traitement thermique, lorsque l'hydratation du sodium contenu dans l'effluent gazeux est réalisée par injection en continu dans le courant d'effluent gazeux, ou après l'hydratation du dépôt de sodium réalisée à la suite du traitement thermique, on procède à une purge ou nettoyage de la canalisation 44.
  • A cet effet, le vannes 75 et 81 sont ouvertes, les vannes 71, 57 et 77 étant fermées et de l'eau sous forme liquide est admise dans la canalisation 76 et, de là, dans le dispositif d'injection 70. Plusieurs rinçages consécutifs de la canalisation 44 peuvent être effectués pour éliminer la soude produite par neutralisation du sodium.
  • Après rinçage, un séchage de la canalisation 44 peut être réalisé par simple ouverture de la vanne 57 et mise en marche de la pompe 58, les vannes 75 et 81 étant fermées.
  • Bien que seule de la vapeur d'eau puisse être injectée, dans le mode de réalisation de la figure 3, la dilution par de l'azote est préférée pour éviter une réaction trop violente avec le sodium, la quantité de sodium à neutraliser étant faible.
  • Dans le mode de réalisation des figures 1 et 2, le CO2 injecté peut aussi être dilué par mélange avec de l'azote.
  • D'autres variantes de réalisation sont possibles, notamment en modifiant le mode de réalisation des figures 1 et 2 de manière à injecter en continu non pas du CO2, mais de la vapeur d'eau ou un mélange de CO2 et de vapeur, avec éventuellement dilution par gaz neutre.
  • On notera toutefois qu'en comparaison avec H2O, la neutralisation du sodium par CO2 est avantageuse en ce qu'elle produit du carbonate de sodium qui est plus facile à traiter, moins corrosif et moins réactif que la soude.
  • Le procédé et l'installation qui viennent d'être décrits conviennent particulièrement pour des produits en carbone obtenus à partir de précurseur PAN préoxydé, notamment pour des textures fibreuses en carbone destinées à la fabrication de pièces en matériau composite de type carbone/résine C/C ou C/céramique, par exemple à matrice carbure de silicium (C/SiC) ou à matrice ternaire silicium-bore-carbone (C/Si-B-C).
  • Les textures sont réalisées en fibres à l'état précurseur de carbone plus aptes à subir des opérations textiles que les fibres de carbone. Ces textures peuvent être unidimensionnelles tels que des fils ou câbles, ou bidimensionnelles, tels que tissus ou nappes formées de fils ou câbles parallèles, ou encore tridimensionnelles, telles que des préformes obtenues par bobinage filamentaire, ou par empilement, enroulement ou drapage de tissus ou nappes en strates superposées et éventuellement liées entre elles par aiguilletage ou couture, par exemple. Des exemples de préformes fibreuses sont des préformes de cols ou divergents de tuyère ou des préformes de disques de frein.
  • L'invention s'applique aussi à des produits en carbone, obtenus à partir de matériaux précurseurs de carbone autres que le PAN préoxydé, contenant également du sodium et éventuellement un ou plusieurs autres métaux ou impuretés métalliques à éliminer. Des exemples de tels précurseurs sont des brais, des matériaux phénoliques, ou une rayonne.
  • Le procédé selon l'invention est avantageux en ce qu'il permet d'éliminer du sodium présent à très faible teneur dans les fibres, par exemple moins de 80 ppm, sodium qui serait impossible à éliminer par un autre procédé tel que rinçage à l'eau. Il permet aussi d'éliminer du sodium présent dans de plus fortes quantités dans les fibres, par exemple à plus de 3500 ppm.
  • Outre le sodium, le calcium et/ou le magnésium peuvent être éliminés par sublimation.
  • Dans le cas, notamment de produits en carbone devant présenter un degré de pureté élevé, des métaux tels que Fe, Ni et Cr peuvent aussi devoir être éliminés en plus du sodium. Il est alors nécessaire de réaliser le traitement thermique jusqu'à une température suffisante pour assurer la sublimation de ces métaux, par exemple une température atteignant 2000°C ou 2200°C, voire 2500°C.

Claims (12)

  1. Procédé de traitement thermique de produits en carbone contenant du sodium, selon lequel on chauffe les produits dans un four sous pression réduite et sous balayage de gaz neutre, avec extraction continue hors du four d'effluent gazeux contenant du sodium sous forme sublimée, par une canalisation d'évacuation d'effluent,
    caractérisé en ce que
    on injecte au moins un produit de neutralisation du sodium dans la canalisation d'évacuation d'effluent, immédiatement en aval de la sortie de l'effluent gazeux hors du four.
  2. Procédé selon la revendication 1, caractérisé en ce que le produit de neutralisation du sodium est choisi parmi le dioxyde de carbone et la vapeur d'eau.
  3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le produit de neutralisation est injecté au niveau ou en aval d'un coude formé par la canalisation d'évacuation d'effluent hors du four.
  4. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que le produit de neutralisation injecté est dilué dans un gaz neutre.
  5. Procédé selon la revendication 4, caractérisé en ce que le gaz neutre est l'azote ou argon.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le produit de neutralisation est injecté en continu dans le courant d'effluent gazeux extrait du four pendant le traitement thermique.
  7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le produit de neutralisation est injecté dans la canalisation d'évacuation après la fin du traitement thermique afin de neutraliser du sodium déposé sur la paroi de la canalisation d'évacuation, avant nettoyage de celle-ci.
  8. Installation de traitement thermique de produits en carbone contenant du sodium, comportant un four (10), des moyens (30) d'alimentation du four en gaz neutre de balayage, et une canalisation (44) d'évacuation d'effluent gazeux hors du four, caractérisée en ce qu'elle comporte en outre des moyens (50 ; 72) d'injection d'un produit de neutralisation du sodium dans la canalisation d'évacuation (44) immédiatement après la sortie du four.
  9. Installation selon la revendication 8, caractérisée en ce qu'elle comporte au moins une buse (50) d'injection de produit de neutralisation pénétrant dans la canalisation d'évacuation (44).
  10. Installation selon la revendication 9, caractérisée en ce que la buse (50) pénètre dans un coude (44a) de la canalisation d'évacuation (44).
  11. Installation selon l'une quelconque des revendications 8 à 10, caractérisée en ce qu'elle comporte plusieurs points d'injection d'agent de neutralisation espacés l'un de l'autre le long de la canalisation d'évacuation.
  12. Installation selon l'une quelconque des revendications 8 à 10, caractérisée en ce que la canalisation d'évacuation (44) est munie d'un dispositif de purge (80, 81).
EP03748208A 2002-07-12 2003-07-11 Procede et installation de traitement thermique de produits en carbone contenant du sodium Expired - Lifetime EP1525342B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0208818 2002-07-12
FR0208818A FR2842191B1 (fr) 2002-07-12 2002-07-12 Procede et installation de traitement thermique de produits en carbonne contenant du sodium
PCT/FR2003/002204 WO2004007819A2 (fr) 2002-07-12 2003-07-11 Procede et installation de traitement thermique de produits en carbone contenant du sodium

Publications (2)

Publication Number Publication Date
EP1525342A2 EP1525342A2 (fr) 2005-04-27
EP1525342B1 true EP1525342B1 (fr) 2009-04-22

Family

ID=29763803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03748208A Expired - Lifetime EP1525342B1 (fr) 2002-07-12 2003-07-11 Procede et installation de traitement thermique de produits en carbone contenant du sodium

Country Status (11)

Country Link
US (1) US7351390B2 (fr)
EP (1) EP1525342B1 (fr)
JP (1) JP4327086B2 (fr)
CN (1) CN1329566C (fr)
AT (1) ATE429533T1 (fr)
AU (1) AU2003267517A1 (fr)
CA (1) CA2492218C (fr)
DE (1) DE60327321D1 (fr)
FR (1) FR2842191B1 (fr)
MX (1) MXPA05000569A (fr)
WO (1) WO2004007819A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771623B2 (en) 2009-10-30 2014-07-08 Goodrich Corporation Methods and apparatus for residual material management
FR2953826B1 (fr) 2009-12-16 2019-10-11 Safran Landing Systems Procede de fabrication d'une piece de friction a base de materiau composite c/c
US11236021B2 (en) 2017-12-22 2022-02-01 Goodrich Corporation Mitigating pyrophoric deposits in exhaust piping during SIC CVI/CVD processes by introducing water vapor into an outlet portion of a reaction chamber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179605A (en) * 1962-10-12 1965-04-20 Haveg Industries Inc Manufacture of carbon cloth
US3413094A (en) * 1966-01-24 1968-11-26 Hitco Method of decreasing the metallic impurities of fibrous carbon products
GB1284399A (en) * 1968-11-27 1972-08-09 Courtalds Ltd Filamentary carbon
GB1600640A (en) * 1977-05-26 1981-10-21 Hitco Method of removing alkali and alkaline earth impurities from carbonizable polyacrylonitrile material
US4507272A (en) * 1983-05-09 1985-03-26 Hitco Method of purifying partially carbonized pan material prior to carbonization
GB8703323D0 (en) * 1987-02-13 1987-03-18 British Petroleum Co Plc Separation process
US5154776A (en) * 1989-05-18 1992-10-13 Bloch Christopher J Method for decontamination of vessels and other equipment polluted with metallic sodium and other reactive metals
FR2842193B1 (fr) * 2002-07-12 2004-10-01 Messier Bugatti Procede et installation pour le traitement thermique a haute temperature et la densification par infiltration chimique en phase vapeur de textures en carbone

Also Published As

Publication number Publication date
FR2842191A1 (fr) 2004-01-16
CN1668789A (zh) 2005-09-14
CA2492218C (fr) 2010-10-26
DE60327321D1 (de) 2009-06-04
US20040009116A1 (en) 2004-01-15
WO2004007819A3 (fr) 2004-04-08
JP2005533193A (ja) 2005-11-04
WO2004007819A2 (fr) 2004-01-22
MXPA05000569A (es) 2005-04-28
EP1525342A2 (fr) 2005-04-27
CA2492218A1 (fr) 2004-01-22
CN1329566C (zh) 2007-08-01
FR2842191B1 (fr) 2004-10-01
ATE429533T1 (de) 2009-05-15
US7351390B2 (en) 2008-04-01
JP4327086B2 (ja) 2009-09-09
AU2003267517A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
EP1527031B1 (fr) Procede et installation pour le traitement thermique a haute temperature et la densification par infiltration chimique en phase vapeur de textures en carbone
EP0256073B1 (fr) Installation pour l'infiltration chimique en phase vapeur d'un materiau refractaire autre que le carbone
EP0797689B1 (fr) Dispositif d'extraction de gaz
EP1844179B1 (fr) Procede d'infiltration chimique en phase gazeuse pour la densification de substrats poreux par du carbone pyrolytique
FR2520352A1 (fr) Structure composite de type refractaire-refractaire et son procede de fabrication
EP1521731B1 (fr) Procede et installation pour l'obtention de produits en carbone a partir de produits en precurseur de carbone
WO2021156549A1 (fr) Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
EP1525342B1 (fr) Procede et installation de traitement thermique de produits en carbone contenant du sodium
EP0820424B1 (fr) Procede pour l'infiltration chimique en phase vapeur d'un materiau compose de carbone et de silicium et/ou bore
EP0730564B1 (fr) Procede de densification d'une structure poreuse par du nitrure de bore
FR3112797A1 (fr) Procédé de traitement d’une phase gazeuse résiduelle issue d’une technique CVI
EP0966413B1 (fr) Procede de densification d'une structure poreuse avec circulation du precurseur et dispositif associe
FR3114329A1 (fr) Procédé de traitement d’une phase gazeuse résiduelle issue d’une technique CVI
FR2463819A1 (fr) Reacteur de depot chimique en phase vapeur fonctionnant sous basse pression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE FR GB

111L Licence recorded

Free format text: 0100 MESSIER-BUGATTI S.A.

Effective date: 20060720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60327321

Country of ref document: DE

Date of ref document: 20090604

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60327321

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60327321

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

Effective date: 20130114

Ref country code: DE

Ref legal event code: R081

Ref document number: 60327321

Country of ref document: DE

Owner name: HERAKLES, FR

Free format text: FORMER OWNER: SNECMA PROPULSION SOLIDE, LE HAILLAN, FR

Effective date: 20130114

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130221 AND 20130227

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HERAKLES, FR

Effective date: 20130513

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 429533

Country of ref document: AT

Kind code of ref document: T

Owner name: HERAKLES, FR

Effective date: 20140311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170721

Year of fee payment: 15

Ref country code: DE

Payment date: 20170713

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170623

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60327321

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 429533

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180711

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210727

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731