EP1511932A1 - Injection valve - Google Patents

Injection valve

Info

Publication number
EP1511932A1
EP1511932A1 EP03745746A EP03745746A EP1511932A1 EP 1511932 A1 EP1511932 A1 EP 1511932A1 EP 03745746 A EP03745746 A EP 03745746A EP 03745746 A EP03745746 A EP 03745746A EP 1511932 A1 EP1511932 A1 EP 1511932A1
Authority
EP
European Patent Office
Prior art keywords
injection valve
drive unit
valve
hydraulic
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03745746A
Other languages
German (de)
French (fr)
Other versions
EP1511932B1 (en
Inventor
Georg Bachmaier
Bernhard Fischer
Bernhard Gottlieb
Andreas Kappel
Hans Meixner
Enrico Ulivieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1511932A1 publication Critical patent/EP1511932A1/en
Application granted granted Critical
Publication of EP1511932B1 publication Critical patent/EP1511932B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow

Definitions

  • the present invention relates to an injection valve according to the preamble of patent claim 1.
  • Such an injection valve is known from DE 198 54 508, the valve needle being designed to open outwards and axially pressure-effective surfaces of the valve needle and the housing being designed such that when the pressure of the fluid changes, the same axial length change on the valve needle and on occur in the valve housing. It is also possible to adjust the areas on the valve needle so that the pressure of the fluid does not cause any force on the return spring or the valve seat.
  • the drive chamber in which the drive unit is arranged and the fluid chamber in which the valve needle and the return spring are arranged are reliably sealed off from one another by means of a sealing ring and a drain.
  • All pressure forces are compensated in order to keep the valve needle free of pressure forces overall.
  • a high pressure force acting in the opening direction acts, which is advantageously compensated for by a second pressure-loaded surface which generates a pressure force of the same amount acting in the opposite direction.
  • the hydraulic length compensation is implemented by a hydraulic chamber filled with oil.
  • this requires a complex hermetic seal of the operating medium, for example silicone oil, against the pressurized fuel, which is often realized by a metal bellows.
  • the object of the present invention is to provide a powerful injection valve with a simple hydraulic bearing.
  • the hydraulic chamber to which the fuel pressure is applied is advantageously very stiff in order to be able to absorb very high compressive and tensile forces in the short term, as is required when the valve is opened and closed quickly. This allows the injector to close about 5 - 10 times as quickly as if it was reset by a
  • the fuel pressure-related forces on the valve needle can be set in a targeted manner. For example, a closing force caused by the fuel pressure could be set. This would ensure that the valve needle closes the valve securely even if the return spring is broken.
  • the fuel flows past the drive unit and, for example, the multilayer actuator and cools the piezoceramics.
  • Another advantage is therefore the improved temperature behavior of the injector. Direct injection into the combustion chamber exposes the injector to high temperatures. Modern injection concepts also provide for multiple injections. The development is moving towards continuous injection rate shaping. Concepts with 5 injections per cycle are already being discussed. This creates additional waste heat. Cooling of the injector is therefore advantageous, even if no temperature problem has yet occurred in the case of injectors according to the prior art with silicone oil as the operating medium of the hydraulic bearing.
  • Temperature expansions, aging and setting effects mean that the absolute position of the piezo unit, but also the relative position to the valve housing, changes. Typical values are up to a few 10 ⁇ m, but are always significantly smaller than 100 ⁇ m.
  • the hydraulic chamber must be at least high enough to compensate for all changes in length to be expected during its service life. In order to be able to form an abutment that is as rigid as possible, on the other hand, the hydraulic chamber must be designed as little as possible. A typical height of the hydraulic chamber of 200 to 500 ⁇ m is therefore preferred. In order to facilitate the filling of the hydraulic chamber with fuel, it is provided that the hydraulic chamber is connected via a cross line to a fuel supply line opening into the main chamber.
  • FIG. shows the injector in simplified form in a schematic longitudinal section.
  • a high-pressure injector or the injection valve has a valve seat 3 in an injector housing 1.
  • a diameter of the sealing line di is typically 3-5 mm in a fuel injection valve.
  • the valve seat 3 is kept closed in the basic state by a valve disk 7 connected to the lower end section of a valve needle 5 (diameter d 2 ).
  • the valve needle 5 is arranged in the valve housing 1.
  • the closed basic state, an injection nozzle 9 formed by the valve seat 3 and the valve plate 7 on the end face on the housing 1, is ensured by a tensioned compression spring 11 with a typical spring force (F s ) of approximately 150 N.
  • the compression spring is clamped between a base plate 13 of a drive unit 15 and a section of the inner wall of the valve housing 1.
  • the valve needle 5 is rigidly connected to the base plate 13, for example via a weld seam.
  • the fuel is fed into an interior of the valve housing 1 through a line bore 17 provided in the injector housing 1.
  • the drive unit 15 is arranged in the upper part of the injector housing 1. This is formed from a piezoelectric multilayer actuator using low-voltage technology (PMA) 19, a Bourdon tube 21, a hydraulic piston 23 and the base plate 13.
  • PMA piezoelectric multilayer actuator using low-voltage technology
  • the tubular spring 19 is welded to the hydraulic piston 23 and the base plate 13, so that the multilayer actuator 19 is under a mechanical pressure prestress stands. Electrical connections 25 of the drive unit 15 are led out of the housing 1, as described below.
  • the drive unit 15 is connected to the injector housing 1 by means of a metal bellows 31 with a hydraulic or effectively pressure-effective diameter d 5 .
  • the interior of the valve housing 1 is thus closed with respect to the surroundings.
  • the interior is additionally connected to the line bore 17 in the area of the metal bellows 31 via a cross line 33.
  • this force can act against the spring force (F s ) of the compression spring 11 and in the worst case open the valve unintentionally.
  • this additional force (F D ) can also Increase spring force (F s ), making opening the valve more difficult.
  • F s > 5 * F D in particular F s > 10 * F D.
  • the hydraulic piston 21 is sealed by a first and a second narrow clearance fit 35, 37 with a larger diameter d 3 and a smaller diameter d into the correspondingly designed injector housing 1 and forms the annular hydraulic chamber 29 with the corresponding inner wall sections of the injector housing 1.
  • the height of the hydraulic chamber h ⁇ is set to at least 100 - 500 ⁇ m.
  • the hydraulic chamber 29 is used, for example, to compensate for thermal changes in the length of the drive unit 15 and / or the valve needle 5 relative to the injector housing 1, caused by the aging effects of the PMA 19 in the injector (for example, typical time periods t> 1 s), if these slow changes in length occur , an unimpeded fluid exchange between the hydraulic chamber 29 and the surrounding fuel-filled interior of the injector or the main chamber 27 and the transverse line 33 can take place over the narrow sealing gaps of the clearance fits 35, 37 of the hydraulic piston 23. These slow changes are thus compensated for by a change in the height of the hydraulic chamber 29.
  • the sealing gaps between the hydraulic piston 23 and the valve housing 1 must at the same time be dimensioned so tightly that no significant fluid exchange between the hydraulic chamber 29 and the surrounding fuel-filled interior of the injector, in particular the main chamber, occurs within typical injection times (0 ms ⁇ t ⁇ 5 ms) 27 can occur.
  • the height of the hydraulic chamber h should not change by more than 1 - 2 ⁇ m due to leakage. In order to be able to open the valve and keep it open during operation for a period of 0 ms ⁇ t ⁇ 5 ms and then close it again, an average force of approximately 100-200 N is required, depending on the size of the spring force F s .
  • the hydraulic chamber 29 has a spring action due to the compressibility of gasoline, which leads to an additional loss in the valve lift.
  • the drive unit 15 together with the hydraulic piston 23 and the valve needle 5 form a unit which, as a whole, is compared slow movements occurring during the injection process can be shifted almost unhindered relative to the injector housing until the seating force (F D + F s ) is established between the valve seat 3 and the valve plate 7.
  • the length of the annular gaps is relatively uncritical, the leakage flow decreasing with increasing length Since the leakage increases with the 3rd power of the gap height h, the gap height should be chosen to be sufficiently small.
  • the function of the injection valve is now as follows: To start the injection process, the PMA 19 is charged via the electrical connections 25. Due to the inverse piezoelectric effect, the PMA 19 expands (typical deflection: 30 - 60 ⁇ m). The PMA is supported on the rigid hydraulic chamber 29 in order to lift the valve plate 7 against the spring force F s of the compression spring 11 from the valve seat 3. The fuel can now emerge from the injection nozzle 9. The valve plate 7 is acted upon by the pressure of the injection chamber (not shown) on its lower surface facing away from the fuel. As described above, the hydraulic chamber 29 is designed to be sufficiently rigid over a typical injection period. In order to end the injection process, the PMA 19 is discharged again via the electrical connections 25 and the " PMA is shortened.
  • the hydraulic pressure tension ( hydraulic tensile force) and the spring restoring force of the compression spring 11 pull the valve plate 7 into the valve seat 3 and close In the end position with the valve closed, the hydraulic chamber 29 is maintained with a minimum height.
  • the greatest contribution to the restoring force comes from the hydraulic pressure preload.
  • the injector volume itself serves as a fuel pressure reservoir for the first injection processes until the injection pump feeds the necessary fuel pressure into the injector.
  • a magnetostrictive drive can also be used as the drive to actuate the valve.
  • the device described can in principle also be used for inward-opening valves.

Abstract

The invention relates to an injection valve for injecting fuel, comprising a valve housing (1) inside of which a drive unit (15) controls the movement of a valve needle (5) that is pretensioned by a spring (11). The injection valve also comprises a main chamber (27), which is provided inside the valve housing, is filled with fuel and accommodates the valve needle (5), and comprises a hydraulic bearing for the drive unit (15). The aim of the invention is to provide a simple hydraulic bearing. To this end, the hydraulic bearing has a hydraulic chamber (29) that is connected to the main chamber (27), whereby fuel serves as the operating substance of the hydraulic bearing.

Description

Beschreibungdescription
EinspritzventilInjector
Die vorliegende Erfindung betrifft ein Einspritzventil gemäß dem Oberbegriff des Patentanspruches 1.The present invention relates to an injection valve according to the preamble of patent claim 1.
Ein derartiges Einspritzventil ist bekannt aus der DE 198 54 508, wobei die Ventilnadel nach außen öffnend ausgeführt ist und axial druckwirksame Flächen der Ventilnadel und des Gehäuses so ausgeführt sind, dass bei einer Änderung des Drucks des Fluids die gleichen axialen Längenänderung an der Ventilnadel und an dem Ventilgehäuse auftreten. Zudem ist es möglich die Flächen an der Ventilnadel so einzustellen, dass durch den Druck des Fluids keine Kraft auf die Rückstellfeder oder den Ventilsitz verursacht wird. Die Antriebs- kammer, in der die Antriebseinheit angeordnet ist, und die Fluidkammer, in der die Ventilnadel und die Rückstellfeder angeordnet sind, sind dabei mittels eines Dichtringes und eines Ablaufes gegeneinander zuverlässig abgedichtet.Such an injection valve is known from DE 198 54 508, the valve needle being designed to open outwards and axially pressure-effective surfaces of the valve needle and the housing being designed such that when the pressure of the fluid changes, the same axial length change on the valve needle and on occur in the valve housing. It is also possible to adjust the areas on the valve needle so that the pressure of the fluid does not cause any force on the return spring or the valve seat. The drive chamber in which the drive unit is arranged and the fluid chamber in which the valve needle and the return spring are arranged are reliably sealed off from one another by means of a sealing ring and a drain.
Die Kompensation aller Druckkräfte erfolgt, um die Ventilnadel insgesamt frei von Druckkräften zu halten. Beispielsweise wirkt aufgrund der druckbelasteten Fläche des Ventiltellers eines nach außen öffnenden Injektors bei hohem Kraftstoff- druck eine hohe in Öffnungsrichtung wirkende Druckkraft, die vorteilhafter Weise durch eine zweite druckbelastete Fläche kompensiert wird, die eine in Gegenrichtung wirkende Druck- kraft gleichen Betrages erzeugt. Bei einer derartigen Kompensation bestehen bezüglich des Ventiltellerdurchmessers und des Nadeldurchmessers dann keinerlei Einschränkungen mehr.All pressure forces are compensated in order to keep the valve needle free of pressure forces overall. For example, due to the pressure-loaded surface of the valve plate of an outward-opening injector, when the fuel pressure is high, a high pressure force acting in the opening direction acts, which is advantageously compensated for by a second pressure-loaded surface which generates a pressure force of the same amount acting in the opposite direction. With such a compensation, there are no longer any restrictions with regard to the valve plate diameter and the needle diameter.
Weiterhin ist allgemein bekannt, dass bei einem Hochdruck- Einspritzventil (High Pressure Direct Injection, HPDI) für direkteinspritzende Magermotoren mit einem piezoelektrischen Multilayeraktor als Antriebselement zusätzlich zum Kraftstoff noch ein weiteres Betriebsmittel für das hydraulische Lager im Injektor benötigt wird. Dabei ist bekannt, dass eine selbsttätige Kompensation aller thermischen sowie aller durch Setzeffekte des Piezoelementes hervorgerufenen oder druckbe- dingten Längenänderungen möglich ist. Dadurch kann bei der Materialwahl auf teuere Legierungen mit geringer thermischer Dehnung (z.B. Invar) verzichtet werden und wesentlich billigerer Stahl mit höherer Festigkeit und einfacherer Bearbeit- barkeit verwendet werden. Antriebsseitig werden alle bewegten Teile unter geringer Kraft auf Anlage gehalten, so dass keine Hubverluste durch Spalte entstehen. Für einen nach außen öffnenden piezoelektrisch angetriebenen Injektor wird der hydraulische Längenausgleich durch eine mit Öl gefüllte Hydraulikkammer realisiert. Dies bedingt jedoch eine aufwendige hermetische Abdichtung des Betriebsmittels, z.B. Silikonöl, gegenüber dem druckbeaufschlagten Kraftstoff, die häufig durch einen Metallbalg realisiert ist.Furthermore, it is generally known that in a high-pressure injection valve (High Pressure Direct Injection, HPDI) for direct-injection lean engines with a piezoelectric multilayer actuator as the drive element in addition to the fuel yet another resource is required for the hydraulic bearing in the injector. It is known that automatic compensation of all thermal as well as all length changes caused or caused by pressure effects of the piezo element is possible. This means that expensive alloys with low thermal expansion (eg Invar) can be dispensed with when choosing the material, and much cheaper steel with higher strength and easier machinability can be used. On the drive side, all moving parts are held against the system with little force, so that there is no stroke loss due to gaps. For an outward opening piezoelectrically driven injector, the hydraulic length compensation is implemented by a hydraulic chamber filled with oil. However, this requires a complex hermetic seal of the operating medium, for example silicone oil, against the pressurized fuel, which is often realized by a metal bellows.
Aufgabe der vorliegenden Erfindung ist es, ein leistungsfähi- ges Einspritzventil mit einem einfachen hydraulischen Lager bereitzustellen.The object of the present invention is to provide a powerful injection valve with a simple hydraulic bearing.
Erfindungsgemäß ist dies bei einem Einspritzventil mit den Merkmalen des Patentanspruches 1 erreicht. Es ist ein Injek- torprinzip realisiert, das ohne zusätzliches Betriebsmittel für das hydraulische Lager auskommt. Der Kraftstoff füllt über zumindest einen Ringspalt die Hydraulikkammer des Ventils, welche den Längenausgleich sicherstellt.According to the invention, this is achieved in an injection valve with the features of claim 1. An injector principle has been implemented that does not require any additional equipment for the hydraulic bearing. The fuel fills the hydraulic chamber of the valve via at least one annular gap, which ensures the length compensation.
Vorteilhafter Weise ist die mit dem Kraftstoffdruck beaufschlagte Hydraulikkammer sehr steif ausgebildet, um kurzfristig sehr hohe Druck- und Zugkräfte aufnehmen zu können, wie dies beim schnellen Öffnen und Schließen des Ventils erforderlich ist. Damit kann das Einspritzventil circa 5 - 10 mal so schnell schließen wie bei einer Rückstellung durch eineThe hydraulic chamber to which the fuel pressure is applied is advantageously very stiff in order to be able to absorb very high compressive and tensile forces in the short term, as is required when the valve is opened and closed quickly. This allows the injector to close about 5 - 10 times as quickly as if it was reset by a
Rückstellfeder allein gemäß dem Stand der Technik. Gleichzeitig werden die Verluste im Ventilnadelhub durch die nachtei- lige Dehnung der Ventilnadel aufgrund einer hohen durch die Rückstellfeder wirkenden Rückstellkraft vermieden.Return spring alone according to the state of the art. At the same time, the losses in the valve needle stroke are lige expansion of the valve needle due to a high restoring force acting through the return spring avoided.
Erfindungsgemäß können die kraftstoffdruckbedingten Kräfte auf die Ventilnadel gezielt eingestellt werden. Beispielsweise könnte eine kraftstoffdruckbedingte Schließkraft eingestellt werden. Dadurch wäre sichergestellt, dass die Ventilnadel selbst bei gebrochener Rückstellfeder das Ventil sicher schließt.According to the invention, the fuel pressure-related forces on the valve needle can be set in a targeted manner. For example, a closing force caused by the fuel pressure could be set. This would ensure that the valve needle closes the valve securely even if the return spring is broken.
Durch eine geeignete Führung der Kraftstoffleitungen strömt der Kraftstoff an der Antriebseinheit und beispielsweise an dem Multilayeraktor vorbei und kühlt die Piezokeramiken. Ein weiterer Vorteil besteht deshalb in dem verbesserten Tempera- turverhalten des Injektors. Die Direkteinspritzung in den Brennraum setzt den Injektor hohen Temperaturen aus. Zudem sehen moderne Einspritzkonzepte Mehrfacheinspritzungen vor. Die Entwicklung geht in Richtung kontinuierlicher Einspritzratenformung. Konzepte mit 5 Injektionen pro Zyklus werden bereits diskutiert. Dabei entsteht zusätzliche Abwärme. Deshalb ist eine Kühlung des Injektors von Vorteil, auch wenn bei Injektoren nach dem Stand der Technik mit Silikonöl als Betriebsmittel des hydraulischen Lagers noch kein Temperaturproblem aufgetreten ist.By suitable routing of the fuel lines, the fuel flows past the drive unit and, for example, the multilayer actuator and cools the piezoceramics. Another advantage is therefore the improved temperature behavior of the injector. Direct injection into the combustion chamber exposes the injector to high temperatures. Modern injection concepts also provide for multiple injections. The development is moving towards continuous injection rate shaping. Concepts with 5 injections per cycle are already being discussed. This creates additional waste heat. Cooling of the injector is therefore advantageous, even if no temperature problem has yet occurred in the case of injectors according to the prior art with silicone oil as the operating medium of the hydraulic bearing.
Temperaturausdehnungen, Alterungs- und Setzeffekte bewirken, dass sich die absolute Lage der Piezoeinheit, aber auch die relative Lage zum Ventilgehäuse ändert. Typische Werte betragen bis zu wenigen 10 μm, sind jedoch stets deutlich kleiner als 100 μm. Die Hydraulikkammer ist mindestens so hoch zu realisieren, dass sie sämtliche während der Lebensdauer zu erwartenden Längenänderungen ausgleichen kann. Um ein möglichst steifes Widerlager bilden zu können, ist die Hydrauli kammer andererseits möglichst wenig hoch auszubilden. Bevorzugt wird deshalb eine typischen Höhe der Hydraulikkammer von 200 bis 500 μm gewählt. Um die Befüllung der Hydraulikkammer mit Kraftstoff zu erleichtern, ist vorgesehen, dass die Hydraulikkammer über eine Querleitung mit einer in die Hauptkammer mündenden Kraftstoffzufuhrleitung verbunden ist.Temperature expansions, aging and setting effects mean that the absolute position of the piezo unit, but also the relative position to the valve housing, changes. Typical values are up to a few 10 μm, but are always significantly smaller than 100 μm. The hydraulic chamber must be at least high enough to compensate for all changes in length to be expected during its service life. In order to be able to form an abutment that is as rigid as possible, on the other hand, the hydraulic chamber must be designed as little as possible. A typical height of the hydraulic chamber of 200 to 500 μm is therefore preferred. In order to facilitate the filling of the hydraulic chamber with fuel, it is provided that the hydraulic chamber is connected via a cross line to a fuel supply line opening into the main chamber.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind den weiteren abhängigen Patentansprüchen zu entnehmen.Further advantageous refinements of the invention can be found in the further dependent claims.
Nachfolgend ist ein Ausführungsbeispiel des erfindungsgemäßen Einspritzventils beschrieben; die einzige Fig. zeigt das Einspritzventil vereinfacht in einer schematisierten Längs- schnittdarsteilung.An exemplary embodiment of the injection valve according to the invention is described below; the only FIG. shows the injector in simplified form in a schematic longitudinal section.
Ein Hochdruckinjektor bzw. das Einspitzventil weist in einem Injektorgehäuse 1 einen Ventilsitz 3 auf. Ein Durchmesser der Dichtlinie di beträgt bei einem Kraftstoff-Einspritzventil typischerweise 3 - 5 mm. Der Ventilsitz 3 wird im Grundzustand durch einen am unteren Endabschnitt einer Ventilnadel 5 (Durchmesser d2) verbundenen Ventilteller 7 geschlossen ge- halten. Die Ventilnadel 5 ist dabei in dem Ventilgehäuse 1 angeordnet. Der geschlossene Grundzustand, einer durch den Ventilsitz 3 und den Ventilteller 7 stirnseitig am Gehäuse 1 gebildeten Einspritzdüse 9 wird durch eine gespannte Druckfeder 11 mit einer typischen Federkraft (Fs) von etwa 150 N ge- währleistet. Die Druckfeder ist zwischen einer Bodenplatte 13 einer Antriebseinheit 15 und einem Abschnitt der Innenwand des Ventilgehäuses 1 eingespannt. Die Ventilnadel 5 ist mit der Bodenplatte 13 z.B. über eine Schweißnaht starr verbunden. Die KraftstoffZuführung in einen Innenraum des Ventilge- häuses 1 erfolgt durch eine im Injektorgehäuse 1 vorgesehene Leitungsbohrung 17. Im oberen Teil des Injektorgehäuses 1 ist die Antriebseinheit 15 angeordnet. Diese ist aus einem piezoelektrischen Multilayeraktor in Niedervolttechnik (PMA) 19, einer Rohrfeder 21, einem Hydraulikkolben 23 und der Boden- platte 13 gebildet. Die Rohrfeder 19 ist mit dem Hydraulikkolben 23 und der Bodenplatte 13 verschweißt, so dass der Multilayeraktor 19 unter einer mechanischen Druckvorspannung steht. Elektrische Anschlüsse 25 der Antriebseinheit 15 sind nach oben, wie nachfolgend beschrieben, aus dem Gehäuse 1 geführt. Durch den Hydraulikkolben 23 ist der Innenraum des Ventilgehäuses in eine Hauptka mer 27, die insbesondere den PMA 19 aufnimmt, und eine Hydraulikkammer 29 getrennt. Oberhalb der Hydraulikkammer 29 ist die Antriebseinheit 15 mittels eines Metallbalges 31 mit einem hydraulischen bzw. effektiv druckwirksamen Durchmesser d5 mit dem Injektorgehäuse 1 verbunden. Damit ist der Innenraum des Ventilgehäuses 1 ge- genüber der Umgebung geschlossen. Der Innenraum ist im Bereich des Metallbalges 31 zusätzlich über eine Querleitung 33 mit der Leitungsbohrung 17 verbunden.A high-pressure injector or the injection valve has a valve seat 3 in an injector housing 1. A diameter of the sealing line di is typically 3-5 mm in a fuel injection valve. The valve seat 3 is kept closed in the basic state by a valve disk 7 connected to the lower end section of a valve needle 5 (diameter d 2 ). The valve needle 5 is arranged in the valve housing 1. The closed basic state, an injection nozzle 9 formed by the valve seat 3 and the valve plate 7 on the end face on the housing 1, is ensured by a tensioned compression spring 11 with a typical spring force (F s ) of approximately 150 N. The compression spring is clamped between a base plate 13 of a drive unit 15 and a section of the inner wall of the valve housing 1. The valve needle 5 is rigidly connected to the base plate 13, for example via a weld seam. The fuel is fed into an interior of the valve housing 1 through a line bore 17 provided in the injector housing 1. The drive unit 15 is arranged in the upper part of the injector housing 1. This is formed from a piezoelectric multilayer actuator using low-voltage technology (PMA) 19, a Bourdon tube 21, a hydraulic piston 23 and the base plate 13. The tubular spring 19 is welded to the hydraulic piston 23 and the base plate 13, so that the multilayer actuator 19 is under a mechanical pressure prestress stands. Electrical connections 25 of the drive unit 15 are led out of the housing 1, as described below. By the hydraulic piston 23, the interior of the valve housing in a Hauptka mer 27, which in particular receives the PMA 19, and a hydraulic chamber 29 is separated. Above the hydraulic chamber 29, the drive unit 15 is connected to the injector housing 1 by means of a metal bellows 31 with a hydraulic or effectively pressure-effective diameter d 5 . The interior of the valve housing 1 is thus closed with respect to the surroundings. The interior is additionally connected to the line bore 17 in the area of the metal bellows 31 via a cross line 33.
Im Grundzustand bei angelegtem Kraftstoffdruck pκ von typi- scherweise 100-300 bar wirken auf die Bodenplatte 13 und den Hydraulikkolben 23 zwar sehr große resultierende Druckkräfte (ED = pκ #π* (dι-d52) /4, woraus sich etwa eine Druckkraft von FD = 1000-5000 N ergeben kann. Diese hebt sich in der Druckbilanz jedoch weg, wenn di = ds gewählt wird. Der Druckaus- gleich muss dabei nicht mathematisch exakt erfolgen, sondern lediglich ausreichend genau, wie nachfolgend beschrieben ist. Bei typischen Abmessungen des Einspritzventils hat eine Änderung des Kraftstoffdruckes von" 100 auf 300 bar bei einer Abweichung der druckbeaufschlagten Flächen um 1 mm2 vom idealen Kompensationszustand bereits eine Zusatzkraft (FD) von etwa 20 N zur Folge, um die sich die Schließkraft im Ventilsitz 3 ändert. Diese Kraft kann gegen die Federkraft (Fs) der Druckfeder 11 wirken und im schlimmsten Fall das Ventil unbeabsichtigt öffnen. Andererseits kann diese Zusatzkraft (FD) auch die Federkraft (Fs) verstärken und dadurch das Öffnen des Ventils erschweren. Mit zunehmender Größe dieser unerwünschten Zusatzkraft (FD) wird die genaue Steuerung des Einspritzvorganges erschwert. Besonders moderne Konzepte mit Mehrfacheinspritzung sind dann kaum mehr realisierbar. Bevor- zugt gilt zumindest: Fs > 5*FD, insbesondere Fs > 10*FD. Der Hydraulikkolben 21 ist dichtend durch eine erste und eine zweite enge Spielpassung 35, 37 mit einem größeren Durchmesser d3 und einem kleineren Durchmesser d in das entsprechend ausgebildete Injektorgehäuse 1 eingepasst und bildet mit den entsprechenden Innenwandabschnitten des Injektorgehäuses 1 die ringförmige Hydraulikkammer 29. Typischer Weise wird bei der Montage des Injektors die Höhe der Hydraulikkammer hκ auf zumindest 100 - 500 μm eingestellt. Die Hydraulikkammer 29 dient z.B. zur Kompensation z.B. thermisch bedingter oder der durch Alterungseffekte des PMAs 19 im Injektor hervorgerufenen langsamen Längenänderungen (z.B. typische Zeitdauern t > 1 s) der Antriebseinheit 15 und/oder der Ventilnadel 5 gegenüber dem Injektorgehäuse 1. Wenn diese langsamen Längenänderungen auftreten, kann zum Längenausgleich über die engen Dichtspalte der Spielpassungen 35, 37 des Hydraulikkolbens 23 ein ungehinderter Fluidaustausch zwischen der Hydraulikkammer 29 und dem umgebenden kraftstoffgefüllten Innenraum des Injektors bzw. der Hauptkammer 27 und der Querleitung 33 stattfinden. Diese langsamen Änderungen werden somit durch eine Änderung der Höhe der Hydraulikkammer 29 kompensiert.In the basic state when the fuel pressure p κ of typically 100-300 bar is applied, very large resulting pressure forces act on the base plate 13 and the hydraulic piston 23 (E D = p κ # π * (dι-d5 2 ) / 4, from which approximately can result in a compressive force of F D = 1000-5000 N. However, this increases in the pressure balance if di = ds is selected. The pressure compensation does not have to be mathematically exact, but only sufficiently precise, as described below. With typical dimensions of the injection valve, a change in the fuel pressure from " 100 to 300 bar with a deviation of the pressurized areas by 1 mm 2 from the ideal state of compensation already results in an additional force (F D ) of about 20 N, around which the closing force in the valve seat 3. This force can act against the spring force (F s ) of the compression spring 11 and in the worst case open the valve unintentionally. On the other hand, this additional force (F D ) can also Increase spring force (F s ), making opening the valve more difficult. With increasing size of this undesired additional force (F D ) the precise control of the injection process becomes more difficult. Particularly modern concepts with multiple injection can then hardly be realized. Preferably at least: F s > 5 * F D , in particular F s > 10 * F D. The hydraulic piston 21 is sealed by a first and a second narrow clearance fit 35, 37 with a larger diameter d 3 and a smaller diameter d into the correspondingly designed injector housing 1 and forms the annular hydraulic chamber 29 with the corresponding inner wall sections of the injector housing 1. Typically when installing the injector, the height of the hydraulic chamber h κ is set to at least 100 - 500 μm. The hydraulic chamber 29 is used, for example, to compensate for thermal changes in the length of the drive unit 15 and / or the valve needle 5 relative to the injector housing 1, caused by the aging effects of the PMA 19 in the injector (for example, typical time periods t> 1 s), if these slow changes in length occur , an unimpeded fluid exchange between the hydraulic chamber 29 and the surrounding fuel-filled interior of the injector or the main chamber 27 and the transverse line 33 can take place over the narrow sealing gaps of the clearance fits 35, 37 of the hydraulic piston 23. These slow changes are thus compensated for by a change in the height of the hydraulic chamber 29.
Die Dichtspalte zwischen dem Hydraulikkolben 23 und dem Ventilgehäuse 1 müssen jedoch zugleich so eng bemessen sein, dass innerhalb von typischen Einspritzzeiten (0 ms < t < 5 ms) kein nennenswerter Fluidaustausch zwischen der Hydraulikkammer 29 und dem umgebenden kraftsto fgefüllten Innenraum des Injektors insbesondere der Hauptkammer 27 auftreten kann. Die Höhe der Hydraulikkammer h sollte sich leckagebedingt maximal um circa 1 - 2 μm ändern können. Um das Ventil öffnen und über einen Zeitraum 0 ms < t < 5 ms im Betrieb offen halten und anschließend wieder schließen zu können, ist in Abhängigkeit von der Größe der Federkraft Fs typischer Weise eine mittlere Kraft von etwa 100 - 200 N erforderlich. Bei einer typischen druckwirksamen Fläche Aκ = π« (d3 2-d4 2) / . von circa 240 mm2 (Annahme: d3 = 18 mm, d4 = 4 mm) ändert sich der mittlere Druck in der Hydraulikkammer gegenüber dem Kraftstoffdruck um Δp = 200 N/Äκ < 10 bar. Der Fluidstrom durch die maximal exzentrisch liegenden Dichtspalte berechnet sich gemäßHowever, the sealing gaps between the hydraulic piston 23 and the valve housing 1 must at the same time be dimensioned so tightly that no significant fluid exchange between the hydraulic chamber 29 and the surrounding fuel-filled interior of the injector, in particular the main chamber, occurs within typical injection times (0 ms <t <5 ms) 27 can occur. The height of the hydraulic chamber h should not change by more than 1 - 2 μm due to leakage. In order to be able to open the valve and keep it open during operation for a period of 0 ms <t <5 ms and then close it again, an average force of approximately 100-200 N is required, depending on the size of the spring force F s . With a typical pressure-effective area A κ = π «(d 3 2 -d 4 2 ) /. of approximately 240 mm 2 (assumption: d 3 = 18 mm, d 4 = 4 mm) the mean pressure in the hydraulic chamber changes compared to the fuel pressure by Δp = 200 N / Ä κ <10 bar. The fluid flow through the maximum eccentric sealing gap is calculated according to
QL= 2,5»π«(d3+d4)h3»Δp/(12*η«l) mit: Viskosität von Benzin: η = 0,4 mPa*s; Spalthöhe: h = 2 μm;Q L = 2.5 »π« (d 3 + d 4 ) h 3 »Δp / (12 * η« l) with: viscosity of petrol: η = 0.4 mPa * s; Gap height: h = 2 μm;
Länge der Dichtflächen: 1 = 10 mmLength of the sealing surfaces: 1 = 10 mm
Einspritzzeit: t_ = 5 ms ergibt sichInjection time: t_ = 5 ms
QL = 28,8 mm3/s; ΔV = QL*5*10~3 s = 0,144 mm3; Mit Δx = ΔV/AR ergibt sich Δx = 0,6 μm als Hubverlust aufgrund der Leckageströmung während der Einspritzzeit unter den oben getroffenen Annahmen.Q L = 28.8 mm 3 / s; ΔV = Q L * 5 * 10 ~ 3 s = 0.144 mm 3 ; With Δx = ΔV / A R there is Δx = 0.6 μm as a stroke loss due to the leakage flow during the injection time under the assumptions made above.
Die Hydraulikkammer 29 besitzt aufgrund der Kompressibilität von Benzin eine Federwirkung, die zu einem zusätzlichen Ver- lust im Ventilhub führt. Die minimale Federrate der Hydraulikkammer 29 cκ berechnet sich gemäß cκ = Aκ/ (χ» κ) mit χ = 10~9 m2/N und hκ = 500 μm zu cκ = 500 N/μm und damit ergibt sich: Δx = ΔF/cκ = 200 N/ 500 N/μm = 0,4 μm als Hubverlust des Ventils aufgrund der Kompressibilität von Benzin.The hydraulic chamber 29 has a spring action due to the compressibility of gasoline, which leads to an additional loss in the valve lift. The minimum spring rate of the hydraulic chamber 29 c κ is calculated according to c κ = A κ / (χ » κ ) with χ = 10 ~ 9 m 2 / N and h κ = 500 μm to c κ = 500 N / μm and thus results : Δx = ΔF / c κ = 200 N / 500 N / μm = 0.4 μm as the stroke loss of the valve due to the compressibility of gasoline.
Dadurch ist gezeigt, dass der "maximal auftretende Hubverlust, der durch die Hydraulikkammer 29 verursacht ist, bei geeigne- ter Dimensionierung hinreichend klein bleibt. Insgesamt bilden die Antriebseinheit 15 mit dem Hydraulikkolben 23 und der Ventilnadel 5 eine Einheit, die als Ganzes bei im Vergleich zum Einspritzvorgang auftretenden langsamen Bewegungen nahezu ungehindert gegenüber dem Injektorgehäuse verschoben werden kann bis sich die Sitzkraft (FD + Fs) zwischen dem Ventilsitz 3 und dem Ventilteller 7 einstellt. Die Länge der Ringspalte ist dabei relativ unkritisch, wobei mit zunehmender Länge der Leckagestrom abnimmt. Da die Leckage mit der 3. Potenz der Spalthöhe h zunimmt, sollte die Spalthöhe ausreichend klein gewählt werden. Zusammenfassend gilt also, dass langsam verlaufende Längenänderungen insbesondere des Pl^As 19 durch die Hydraulikkammer 29 kompensiert werden, so dass über alle Be- triebszustände und thermischen Lasten hinweg reproduzierbare zeitliche Verläufe des Ventilnadelhubes und damit der Ein- spritzmengen gesteuert werden können. Bei dem Ventil gemäß der Fig. ist die Führung des Kraftstoffes im Injektorgehäuse so realisiert, dass die Funktionen der Kühlung des PMAs 19 und des Längenausgleiches mittels der Hydraulikkammer 29 mittels eines einzigen Fluids erfüllt werden kann.This shows that the " maximum stroke loss occurring, which is caused by the hydraulic chamber 29, remains adequately small when suitably dimensioned. Overall, the drive unit 15 together with the hydraulic piston 23 and the valve needle 5 form a unit which, as a whole, is compared slow movements occurring during the injection process can be shifted almost unhindered relative to the injector housing until the seating force (F D + F s ) is established between the valve seat 3 and the valve plate 7. The length of the annular gaps is relatively uncritical, the leakage flow decreasing with increasing length Since the leakage increases with the 3rd power of the gap height h, the gap height should be chosen to be sufficiently small. To summarize, slow changes in length, in particular of the Pl ^ As 19 are compensated by the hydraulic chamber 29, so that over all loading drive states and thermal loads, reproducible temporal profiles of the valve needle stroke and thus the injection quantities can be controlled. In the valve according to the FIG., The guidance of the fuel in the injector housing is implemented in such a way that the functions of cooling the PMA 19 and length compensation by means of the hydraulic chamber 29 can be performed using a single fluid.
Die Funktion des Einspritzventils ist nun wie folgt: Um den Einspritzvorgang zu beginnen, wird der PMA 19 über die elektrischen Anschlüsse 25 aufgeladen. Aufgrund des inversen piezoelektrischen Effektes dehnt sich der PMA 19 dabei aus (typische Auslenkung: 30 - 60 μm) . Dabei stützt sich der PMA an der steifen Hydraulikkammer 29 ab, um den Ventilteller 7 ent- gegen der Federkraft Fs der Druckfeder 11 vom Ventilsitz 3 abzuheben. Nun kann der Kraftstoff aus der Einspritzdüse 9 austreten. Der Ventilteller 7 ist an seiner unteren, dem Kraftstoff abgewandten Fläche mit dem Druck des Einspritzraumes (nicht gezeigt) beaufschlagt. Wie oben beschrieben, ist die Hydraulikkammer 29 dabei über eine typische Einspritzdauer hinweg ausreichend steif ausgebildet. Um den Einspritzvorgang zu beenden, wird der PMA 19 wieder über die elektrischen Anschlüsse 25 entladen und der" PMA verkürzt sich. Die hydraulische Druckspannung (= hydraulische Zugkraft) sowie die Fe- derrückstellkraft der Druckfeder 11 ziehen den Ventilteller 7 in den Ventilsitz 3 und schließen damit das Ventil. In der Endstellung bei geschlossenem Ventil bleibt die Hydraulikkammer 29 mit einer Mindesthöhe erhalten. Der größte Beitrag zur Rückstellkraft kommt dabei von der hydraulischen Druckvor- Spannung. Die Hydraulikkammer 29 ist aufgrund ihrer hohen Steifigkeit und des hohen Kraftstoffdruckes (pκ = 100 - 300 bar) in der Lage, kurzfristig auch hohe Zugkräfte (Fz = pκ *π • (d3 2-d4 2)/4 von Fz = 1000-5000 N) ohne nennenswerte Änderung der Hydraulikkammerhöhe hκ aufzunehmen.The function of the injection valve is now as follows: To start the injection process, the PMA 19 is charged via the electrical connections 25. Due to the inverse piezoelectric effect, the PMA 19 expands (typical deflection: 30 - 60 μm). The PMA is supported on the rigid hydraulic chamber 29 in order to lift the valve plate 7 against the spring force F s of the compression spring 11 from the valve seat 3. The fuel can now emerge from the injection nozzle 9. The valve plate 7 is acted upon by the pressure of the injection chamber (not shown) on its lower surface facing away from the fuel. As described above, the hydraulic chamber 29 is designed to be sufficiently rigid over a typical injection period. In order to end the injection process, the PMA 19 is discharged again via the electrical connections 25 and the " PMA is shortened. The hydraulic pressure tension (= hydraulic tensile force) and the spring restoring force of the compression spring 11 pull the valve plate 7 into the valve seat 3 and close In the end position with the valve closed, the hydraulic chamber 29 is maintained with a minimum height. The greatest contribution to the restoring force comes from the hydraulic pressure preload. The hydraulic chamber 29 is due to its high rigidity and the high fuel pressure (p κ = 100 - 300 bar) able to absorb high tensile forces (F z = p κ * π • (d 3 2 -d 4 2 ) / 4 from F z = 1000-5000 N) for a short time without any significant change in the hydraulic chamber height h κ
Durch den Einbau eines Rückschlagventils im Hochdruckan- schluss des Injektors kann der Hochdruck im Injektor über längere Zeit aufrechterhalten werden, während die Kraftstoffpumpe abgeschaltet ist (nicht gezeigt) . Beim erneuten Starten des Motors dient das Injektorvolumen selbst als Kraftstoff- Druckreservoir für die ersten Einspritzvorgänge, bis die Ein- spritzpumpe den nötigen Kraftstoffdruck in den Injektor einspeist .By installing a check valve in the high pressure connection of the injector, the high pressure in the injector can be exceeded maintained for a long time while the fuel pump is off (not shown). When the engine is restarted, the injector volume itself serves as a fuel pressure reservoir for the first injection processes until the injection pump feeds the necessary fuel pressure into the injector.
Alternativ kann als Antrieb auch beispielsweise ein magneto- striktiver Antrieb verwendet werden, um das Ventil zu betäti- gen. Mit einer geeignet aufgebauten Hubumkehr ist die beschriebene Vorrichtung grundsätzlich auch für nach innen öffnende Ventile einsetzbar. Alternatively, for example, a magnetostrictive drive can also be used as the drive to actuate the valve. With a suitably constructed reversal of stroke, the device described can in principle also be used for inward-opening valves.

Claims

Patentansprüche claims
1. Einspritzventil für Kraftstoff mit einem Ventilgehäuse (1), in dem eine Antriebseinheit (15) die Bewegung einer durch eine Feder (11) vorgespannte Ventilnadel (5) steuert, mit einer im Ventilgehäuse ausgebildeten Hauptkammer (27) , die mit Kraftstoff gefüllt ist und in der die Ventilnadel (5) angeordnet ist, und mit einem hydraulischen Lager für die Antriebseinheit (15), dadurch gekennzeichnet, dass das hydraulische Lager eine Hydraulikkammer (29) aufweist, die mit der Hauptkammer (27) in Verbindung steht, und dass die Hydraulikkammer mit dem Kraftstoff als Betriebsstoff des hydraulischen Lagers gefüllt ist.1. Injection valve for fuel with a valve housing (1), in which a drive unit (15) controls the movement of a valve needle (5) biased by a spring (11), with a main chamber (27) formed in the valve housing and filled with fuel and in which the valve needle (5) is arranged and with a hydraulic bearing for the drive unit (15), characterized in that the hydraulic bearing has a hydraulic chamber (29) which is in communication with the main chamber (27), and in that the hydraulic chamber is filled with the fuel as the operating material of the hydraulic bearing.
2. Einspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass zur Kühlung der Antriebseinheit (15) der Kraftstoff dient.2. Injection valve according to claim 1, characterized in that the fuel is used to cool the drive unit (15).
3. Einspritzventil nach Anspruch 1 oder 2, dadurch ge- kennzeichnet, dass die Antriebseinheit (15) in der3. Injection valve according to claim 1 or 2, characterized in that the drive unit (15) in the
Hauptkammer (27) angeordnet ist.Main chamber (27) is arranged.
4. Einspritzventil nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die axialwirksamen Druckflächen der Ventilnadel (5) derart dimensioniert sind, dass sich die resultierenden Druckkräfte (pD) im wesentlichen aufheben, wodurch die resultierende axial wirkende Kraft (FD) auf die Ventilnadel (5) im Vergleich zur Kraft (Fs) der Feder (11) gering gehalten ist.4. Injection valve according to claim 1, 2 or 3, characterized in that the axially effective pressure surfaces of the valve needle (5) are dimensioned such that the resulting pressure forces (p D ) essentially cancel each other out, whereby the resulting axially acting force (F D ) on the valve needle (5) compared to the force (F s ) of the spring (11) is kept low.
5. Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Hochdruckan- schluss des Einspritzventils ein Rückschlagventil eingebaut 5. Injection valve according to one of the preceding claims, characterized in that a check valve is installed in a high-pressure connection of the injection valve
6. Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ventilnadel (5) mit der Antriebseinheit (15) fest verbunden ist.6. Injection valve according to one of the preceding claims, characterized in that the valve needle (5) with the drive unit (15) is fixedly connected.
7. Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinheit (15) einen Hydraulikkolben (23) aufweist, der zusammen mit einem Innenwandabschnitt des Ventilgehäuses (1) die Hydraulikkammer (29) bildet.7. Injection valve according to one of the preceding claims, characterized in that the drive unit (15) has a hydraulic piston (23) which, together with an inner wall portion of the valve housing (1), forms the hydraulic chamber (29).
8. Einspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass eine Höhe (hκ) der Hydraulikkammer (29) etwa 200 bis 500 μm beträgt.8. Injection valve according to claim 7, characterized in that a height (h κ ) of the hydraulic chamber (29) is approximately 200 to 500 microns.
9. Einspritzventil nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Antriebseinheit (15) mit dem Hydraulikkolben (23) und der Ventilnadel (5) eine feste Einheit bildet, die bei im Vergleich zu beim Einspritzvorgang auftretenden langsameren Bewegungen nahezu ungehindert gegenüber dem Injektorgehäuse (1) unter Berücksichtigung der Federkräfte verschoben werden kann.9. Injection valve according to claim 7 or 8, characterized in that the drive unit (15) with the hydraulic piston (23) and the valve needle (5) forms a fixed unit, which is almost unhindered compared to the injector housing when compared to slower movements occurring during the injection process (1) taking into account the spring forces.
10. Einspritzventil nach einem" der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinheit (15) mit einem Hydraulikkolben (23) verbunden ist, der den Innenraum des Gehäuses (1) in die Hydraulikkammer (29) und die Hauptkammer (27) teilt.10. An injection valve according to one 'of the preceding claims, characterized in that the drive unit (15) connected to a hydraulic piston (23) which divides the interior of the housing (1) into the hydraulic chamber (29) and the main chamber (27).
11. Einspritzventil nach Anspruch 10, dadurch gekenn- zeichnet, dass die Hydraulikkammer (29) über eine Querleitung (33) mit einer in die Hauptkammer (27) mündende Kraftstoffzufuhrleitung (17) verbunden ist.11. Injection valve according to claim 10, characterized in that the hydraulic chamber (29) is connected via a cross line (33) to a fuel supply line (17) opening into the main chamber (27).
12. Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass elektrische Zuleitungen (25) der Antriebseinheit (15) aus einer Öffnung des Gehäuses (l) geführt sind, und dass zwischen der Antriebeinheit (15) und dem Gehäuse (1) ein flexibles Abdichtungsmittel (31) vorgesehen ist.12. Injection valve according to one of the preceding claims, characterized in that electrical leads (25) of the drive unit (15) are guided from an opening in the housing (l), and that between the drive unit (15) and the housing (1) a flexible sealing means (31) is provided.
13. Einspritzventil nach Anspruch 12, dadurch gekenn- zeichnet, dass der vollständige Innenraum des Ventilgehäuses (1) zwischen dem Abdichtungsmittel (31) und einem gegenüberliegend angeordneten Ventilsitz (3) mit dem Kraftstoff gefüllt ist.13. Injection valve according to claim 12, characterized in that the complete interior of the valve housing (1) between the sealing means (31) and an oppositely arranged valve seat (3) is filled with the fuel.
14. Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydraulikkammer (29) beidseitig durch enge Ringspalte gegenüber dem Innenraum des Ventilgehäuses (1) abgegrenzt ist. 14. Injection valve according to one of the preceding claims, characterized in that the hydraulic chamber (29) is delimited on both sides by narrow annular gaps with respect to the interior of the valve housing (1).
EP03745746A 2002-04-04 2003-04-01 Injection valve Expired - Lifetime EP1511932B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10214931 2002-04-04
DE10214931 2002-04-04
PCT/DE2003/001062 WO2003085253A1 (en) 2002-04-04 2003-04-01 Injection valve

Publications (2)

Publication Number Publication Date
EP1511932A1 true EP1511932A1 (en) 2005-03-09
EP1511932B1 EP1511932B1 (en) 2006-11-29

Family

ID=28684751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03745746A Expired - Lifetime EP1511932B1 (en) 2002-04-04 2003-04-01 Injection valve

Country Status (5)

Country Link
US (1) US7886993B2 (en)
EP (1) EP1511932B1 (en)
JP (1) JP4273003B2 (en)
DE (1) DE50305852D1 (en)
WO (1) WO2003085253A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112004000356D2 (en) 2003-03-27 2006-02-23 Siemens Ag Direct injection valve in a cylinder head
DE102004001679B4 (en) * 2004-01-12 2009-01-08 Continental Automotive Gmbh Piezo actuator with means for compensation of the thermal length change and fuel injection valve with piezoelectric actuator
DE102004021920A1 (en) * 2004-05-04 2005-12-01 Robert Bosch Gmbh Fuel injector
EP1854992B1 (en) * 2006-05-09 2010-08-11 Continental Automotive GmbH Fuel injection system and method of manufacture
US7952261B2 (en) 2007-06-29 2011-05-31 Bayer Materialscience Ag Electroactive polymer transducers for sensory feedback applications
US20090250021A1 (en) * 2007-10-02 2009-10-08 Artificial Muscle, Inc. Fluid control systems employing compliant electroactive materials
US8365700B2 (en) * 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8635985B2 (en) 2008-01-07 2014-01-28 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8387599B2 (en) * 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
DE102008020931A1 (en) * 2008-04-25 2009-11-19 Continental Automotive Gmbh Method for controlling a piezoelectric actuator in a fuel injector
US7950596B2 (en) * 2008-06-27 2011-05-31 Caterpillar Inc. Distributed stiffness biasing spring for actuator system and fuel injector using same
US8402951B2 (en) * 2009-03-10 2013-03-26 Transonic Combustion, Inc. Reverse operating nonlinear spring
EP2239793A1 (en) 2009-04-11 2010-10-13 Bayer MaterialScience AG Electrically switchable polymer film structure and use thereof
JP5718921B2 (en) 2009-08-27 2015-05-13 マクアリスター テクノロジーズ エルエルシー Configuration of fuel charge in a combustion chamber with multiple drivers and / or ionization control
CA2783185C (en) * 2009-12-07 2014-09-23 Mcalister Technologies, Llc Adaptive control system for fuel injectors and igniters
WO2011100717A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Methods and systems for adaptively cooling combustion chambers in engines
WO2011100701A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
EP2366888A1 (en) * 2010-03-17 2011-09-21 Continental Automotive GmbH Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve
US9261060B2 (en) * 2010-04-01 2016-02-16 GM Global Technology Operations LLC Fuel injector with variable area poppet nozzle
CN101920850B (en) * 2010-09-19 2012-02-29 无锡市华星电力环保修造有限公司 Gasification nozzle with non-return effect
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8608127B2 (en) * 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve
WO2012112615A1 (en) 2011-02-14 2012-08-23 Mcalister Technologies, Llc Torque multiplier engines
KR20140008416A (en) 2011-03-01 2014-01-21 바이엘 인텔렉쳐 프로퍼티 게엠베하 Automated manufacturing processes for producing deformable polymer devices and films
WO2012129357A2 (en) 2011-03-22 2012-09-27 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
WO2013025626A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
CN103890343B (en) 2011-08-12 2015-07-15 麦卡利斯特技术有限责任公司 Systems and methods for improved engine cooling and energy generation
EP2568155B1 (en) 2011-09-09 2018-11-14 Continental Automotive GmbH Valve assembly and injection valve
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
KR20150031285A (en) 2012-06-18 2015-03-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US10385807B2 (en) * 2013-03-15 2019-08-20 Clean Train Propulsion Efficiency and emissions improvements for natural gas conversions of EMD 2-cycle medium speed engines
DE102013219225A1 (en) * 2013-09-25 2015-03-26 Continental Automotive Gmbh Piezo injector for direct fuel injection
EP2863048B1 (en) * 2013-10-21 2017-12-06 C.R.F. Società Consortile Per Azioni Fuel electro-injector for a fuel injection system for an internal combustion engine
DE102014200756A1 (en) * 2014-01-17 2015-07-23 Robert Bosch Gmbh Gas injector for direct injection of gaseous fuel into a combustion chamber
DE102014116295A1 (en) * 2014-11-07 2016-05-12 Bürkert Werke GmbH poppet valve

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614888A (en) * 1948-10-15 1952-10-21 American Locomotive Co Fuel injector
JPS601369A (en) * 1983-06-16 1985-01-07 Nippon Soken Inc Fuel injection valve
US4784102A (en) * 1984-12-25 1988-11-15 Nippon Soken, Inc. Fuel injector and fuel injection system
DE3533085A1 (en) * 1985-09-17 1987-03-26 Bosch Gmbh Robert METERING VALVE FOR DOSING LIQUIDS OR GASES
JPS62157274A (en) * 1985-12-28 1987-07-13 Aisan Ind Co Ltd Fuel injection valve
US4803393A (en) * 1986-07-31 1989-02-07 Toyota Jidosha Kabushiki Kaisha Piezoelectric actuator
DE59010904D1 (en) 1990-09-25 2000-05-31 Siemens Ag Arrangement for an adaptive, mechanical tolerance compensation acting in the stroke direction for the displacement transformer of a piezoelectric actuator
JP3029958B2 (en) 1993-01-18 2000-04-10 シャープ株式会社 Semiconductor storage device
DE4306073C1 (en) 1993-02-26 1994-06-01 Siemens Ag Metering system for dosing of fluids with injection valve for IC engine - has piston acting on closing unit, and spring with actuator acting on large dia. piston moving in cylinder
DE4306072C2 (en) 1993-02-26 1994-12-08 Siemens Ag Device for opening and closing a passage opening in a housing
US6010592A (en) * 1994-06-23 2000-01-04 Kimberly-Clark Corporation Method and apparatus for increasing the flow rate of a liquid through an orifice
ZA969680B (en) * 1995-12-21 1997-06-12 Kimberly Clark Co Ultrasonic liquid fuel injection on apparatus and method
JP3680461B2 (en) 1996-12-03 2005-08-10 日産自動車株式会社 Injection valve
DE19716226C2 (en) * 1997-04-18 1999-04-22 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
JPH11141430A (en) 1997-11-05 1999-05-25 Yamaha Motor Co Ltd Fuel injection device and method to drive it
EP0937891B1 (en) 1998-02-19 2003-10-01 Delphi Technologies, Inc. Fuel Injector
US5875764A (en) 1998-05-13 1999-03-02 Siemens Aktiengesellschaft Apparatus and method for valve control
DE19839125C1 (en) * 1998-08-27 2000-04-20 Siemens Ag Device and method for dosing fluid
DE19843570A1 (en) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Fuel injector
DE19854508C1 (en) 1998-11-25 2000-05-11 Siemens Ag Dosing device
DE50010902D1 (en) * 1999-04-20 2005-09-15 Siemens Ag fluid metering
DE19925102B4 (en) 1999-06-01 2013-12-12 Robert Bosch Gmbh Fuel injector
DE19932760A1 (en) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Fuel injector
DE19939133A1 (en) * 1999-08-18 2001-02-22 Bosch Gmbh Robert Fuel injector
DE19946833C2 (en) * 1999-09-30 2002-02-21 Bosch Gmbh Robert Valve for controlling liquids
US6575138B2 (en) * 1999-10-15 2003-06-10 Westport Research Inc. Directly actuated injection valve
GB9925410D0 (en) 1999-10-28 1999-12-29 Lucus Ind Plc Actuator arrangement
US6360963B2 (en) * 2000-01-12 2002-03-26 Woodward Governor Company Gaseous fuel injector having high heat tolerance
US6260776B1 (en) * 2000-01-12 2001-07-17 Woodward Governor Company Universal gaseous fuel injector cartridge
US6279842B1 (en) * 2000-02-29 2001-08-28 Rodi Power Systems, Inc. Magnetostrictively actuated fuel injector
DE10024268B4 (en) * 2000-05-17 2012-11-29 Robert Bosch Gmbh Device for gasoline direct injection in a reciprocating internal combustion engine
US6568602B1 (en) * 2000-05-23 2003-05-27 Caterpillar Inc Variable check stop for micrometering in a fuel injector
US6400066B1 (en) * 2000-06-30 2002-06-04 Siemens Automotive Corporation Electronic compensator for a piezoelectric actuator
DE10039424A1 (en) * 2000-08-11 2002-02-28 Siemens Ag Dosing valve with a hydraulic transmission element
US6715695B2 (en) 2000-10-11 2004-04-06 Siemens Automotive Corporation Pressure responsive valve for a compensator in a solid state actuator
DE10140799A1 (en) * 2001-08-20 2003-03-06 Bosch Gmbh Robert Fuel injector
DE10146747A1 (en) * 2001-09-22 2003-04-10 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
DE10162250A1 (en) * 2001-12-18 2003-07-03 Bosch Gmbh Robert Fuel injector
DE10203659A1 (en) * 2002-01-30 2003-07-31 Bosch Gmbh Robert Fuel injector
US6739575B2 (en) * 2002-06-06 2004-05-25 Caterpillar Inc Piezoelectric valve system
DE102004021920A1 (en) * 2004-05-04 2005-12-01 Robert Bosch Gmbh Fuel injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03085253A1 *

Also Published As

Publication number Publication date
JP4273003B2 (en) 2009-06-03
EP1511932B1 (en) 2006-11-29
JP2005528546A (en) 2005-09-22
US20050017096A1 (en) 2005-01-27
WO2003085253A1 (en) 2003-10-16
DE50305852D1 (en) 2007-01-11
US7886993B2 (en) 2011-02-15

Similar Documents

Publication Publication Date Title
EP1511932B1 (en) Injection valve
EP1454053B1 (en) Fuel injection valve
EP1593841B1 (en) Fuel injection valve
DE19919313A1 (en) Fuel injection valve for an IC motor has a compensation chamber for changes during exchange of the hydraulic medium between the stroke converter and it during the rapid stroke movements of the actuator without damping
EP1079158A2 (en) Metering device and method of metering
EP1307651B1 (en) Metering valve with a hydraulic transmission element
EP1378657B1 (en) Fuel injector
EP1431568B1 (en) Fuel injection valve
WO2009059864A1 (en) Piezoelectric actuator module
DE102004001505B4 (en) Dosing valve with length compensation unit
DE19945785B4 (en) Fuel injection system for internal combustion engines and method for injecting fuel into the combustion chamber of an internal combustion engine
WO2004081372A1 (en) Fuel injection valve
DE10213858A1 (en) Fuel injector
EP1488096B1 (en) Fuel injection valve
EP1664525B1 (en) Metering device
DE102005025141B3 (en) Valve, e.g. for dosing liquid, has controllable transfer element of variable expansion in length in the transfer path between actuator and valve needle
EP1519036B1 (en) Fuel injection valve
DE10353641B4 (en) Fuel injector
EP1519034B1 (en) Fuel injection valve
EP1740822A1 (en) Common rail injector
EP1450034B1 (en) Fuel injector
EP1491760B1 (en) Fuel injector
DE10333693B3 (en) Fuel injection device for an internal combustion engine comprises a filling chamber arranged between two pistons and connected to a feed line
WO2007054828A2 (en) Injection valve featuring improved cooling
DE10232194B4 (en) Fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061129

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50305852

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130430

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305852

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305852

Country of ref document: DE

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430