EP1507079B1 - Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange - Google Patents

Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange Download PDF

Info

Publication number
EP1507079B1
EP1507079B1 EP04103442A EP04103442A EP1507079B1 EP 1507079 B1 EP1507079 B1 EP 1507079B1 EP 04103442 A EP04103442 A EP 04103442A EP 04103442 A EP04103442 A EP 04103442A EP 1507079 B1 EP1507079 B1 EP 1507079B1
Authority
EP
European Patent Office
Prior art keywords
lambda
catalytic converter
exhaust
value
primary catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04103442A
Other languages
German (de)
English (en)
Other versions
EP1507079A3 (fr
EP1507079A2 (fr
Inventor
Sven Bruhn
Matthias Schultalbers
Oliver Kirstein
Axel Lang
Heiko Rabba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1507079A2 publication Critical patent/EP1507079A2/fr
Publication of EP1507079A3 publication Critical patent/EP1507079A3/fr
Application granted granted Critical
Publication of EP1507079B1 publication Critical patent/EP1507079B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Definitions

  • the invention relates to a method for operating an internal combustion engine, in particular a diesel engine or gasoline engine, in particular a motor vehicle, with an exhaust aftertreatment system with at least one precatalyst and at least one main catalyst downstream of the primary catalyst, wherein by means of a lambda control of a difference between a desired lambda value and one after the Pre-catalyst measured lambda actual value a control intervention for the mixture control is calculated, according to the preamble of claim 1.
  • the prior art discloses internal combustion engines with exhaust gas systems which have at least one pre-catalyst close to the engine and at least one main catalytic converter arranged downstream of the pre-catalyst.
  • To control the exhaust gas composition is usually upstream of the primary catalytic converter and a lambda sensor downstream of the main catalyst, a further lambda probe or a NO x sensor arranged with oxygen measuring.
  • a broadband lambda probe is arranged in front of the precatalyst and a step response lambda probe behind the main catalytic converter.
  • a mixture control and regulation is possible such that via the front probe a deviation of the actual mixture composition from a desired mixture composition is detected and the detected deviation is converted into a control intervention of a mixture precontrol.
  • the front probe is arranged comparatively close to the internal combustion engine, so that deviations from the desired mixture composition can be quickly detected and corrected.
  • the signal of the further lambda probe or NOx sensor with oxygen measuring device arranged downstream of the main catalytic converter is used.
  • the control deviation for achieving a desired lambda value is included in the control of the mixture deviation via the front probe.
  • Adaptation routines usually consist of slow controllers (I controllers), which are superimposed on the normal internal lambda control based on LSU (fast circuit).
  • I controllers slow controllers
  • LSU fast circuit
  • the value of the I component of the superimposed adaptation controller corresponds to the learned systematic mixture pilot control error.
  • This is permanently stored as a function of the operating point and allows the engine control in future driving cycles to have a more accurate, point-dependent mixture feedforward control. The regulation is thereby relieved when passing through various operating points and emissions are reduced accordingly.
  • the systematic error of the mixture precontrol is detected via an integration of lambda deviations in selected operating states and the maps of the mixture precontrol for the fuel quantity are adapted by correction factors or changed map values.
  • this adaptation can only be made slowly, since otherwise at the moment of adaptation suddenly two mechanisms, namely the map correction of the mixture precontrol and the lambda control, want to compensate for the same error, which leads to overcorrection and unstable states.
  • the multi-flow exhaust system comprises at least two exhaust gas lines, in each of which one or more cylinders open.
  • Each exhaust gas line has a separate primary catalytic converter and one lambda probe each downstream of the primary catalytic converter. Only one exhaust gas line also has a lambda probe upstream of the primary catalytic converter.
  • the adaptation of the mixture precontrol is also used to diagnose the fuel supply system, for example to detect leakage air sources or faulty fuel injection valves. In principle, all errors in the fuel and air paths can be detected here.
  • the object of the invention is to improve a method of the above-mentioned type with regard to accuracy in the adaptation of systematic errors of the mixture precontrol and to accelerate an adaptation speed.
  • an I-part of the lambda control is stored as an adaptation value of a mixture precontrol for this operating state, used immediately for this operating state as an adaptation value for the mixture precontrol and the I-part of the lambda control set to zero.
  • the adaptation value is an additive and / or multiplicative adaptation value for the mixture precontrol.
  • a lambda value after the precatalyst is calculated by means of a catalyst model from an engine speed, a value for the relative air charge of a combustion chamber of the internal combustion engine and a value for the exhaust gas mass flow, and from this a lambda offset is determined.
  • a preferred embodiment of the invention for Mehrflutige exhaust aftertreatment systems is in an exhaust system with two or more exhaust banks with respective pre-catalyst and respective lambda probe after the pre-catalyst, only one exhaust bank having a lambda probe before the pre-catalyst, the adaptation value of the mixture pilot for each exhaust bank separately determined and stored.
  • an additive adaptation value for mixture pilot control for an exhaust gas bank is determined and stored transmit the other exhaust banks.
  • the additive adaptation value is determined on the exhaust bank with the lambda probe before the pre-catalyst.
  • a multiplicative adaptation value for the mixture pilot control is individually determined and stored for each exhaust gas bank.
  • Fig. 1 illustrates an internal structure of a preferred embodiment of an inventive adaptation of a mixture feedforward control for an internal combustion engine with a pre-catalyst and a main catalyst arranged downstream of the pre-catalyst.
  • a switch-on condition for the adaptation is checked.
  • the block 10 receives as input values a probe voltage behind the precatalyst u_Sondehk 12 and a value for the air mass m_Air 14.
  • the probe voltage behind the precatalyst u_Sondehk 12 is fed to a block 16 "filter”.
  • An output of block 16 "Filter” is fed to a block 18 "Gradient".
  • An output of the block 18 "Gradient” is fed to a block 20 "Settle-Check".
  • the value for the air mass m_Air 14 is fed to a block 22 "integrator” and an output of the block 22 "integrator” is also fed to the block 20 "Settle-Check”.
  • block 20 "Settle-Check” is checked from the input values from the block 18 "gradient” and the block 22 "integrator” whether a current operating condition of the internal combustion engine meets predetermined criteria, for example. With respect to a stationary / static operation, so that this operating state can be regarded as quasi-static and for a Adaptation is suitable.
  • the block 20 "Settle-Check" outputs a release bit B_adapstart 24 to a block "Flash adaptation".
  • the enable bit B_adapstart 24 starts the adaptation in block 26 "Flash adaptation", wherein an I component of a lambda controller is transmitted in a single calculation step into an operating-point-dependent adaptation matrix and then set to zero.
  • the instantaneous value of the I component of the lambda controller is stored as an adaptation value for a mixture precontrol assigned to the current operating state. This value is then used for this operating state as an adaptation value for the mixture precontrol.
  • the enable bit B_adapstart 24 also triggers the reset of the I component in the lambda controller, ie the I component is set to zero.
  • the block 26 "Flash Adaption” also receives as input values a relative air charge of the combustion chamber rel_Füllung 28, an engine speed n_Motor 30, an intervention of the lambda (factor) f_Regler 32 and a multiplicative intervention of the adaptation of the mixture precontrol f_Adapt 34.
  • the block 26 "Flash -Adaption "calculates an adaptation factor in a block 36 and stores it in block 38. As the output value, the block 26 "Flash Adaption” outputs a value for the multiplicative intervention of the adaptation of the mixture precontrol f_Adapt 34.
  • a block 40 "catalyst model” is additionally provided.
  • This block 40 "catalyst model” receives as input values the engine speed n_motor 30, the relative air charge of the combustion space rel_Füllung 28 and an exhaust gas mass flow ms exhaust 42. From this in block 40 "catalyst model” by means of an explicit catalyst model for observer-based lambda offset determination a lambda value calculated after the pre-catalyst , The output 44 of block 40 "catalyst model” is additionally supplied as input value to the block 20 “Settle-Check" and the block 26 "Flash Adaption".
  • a fast Lambda adaptation is achieved by a fuel quantity neutral Umkopiervorgang in quasi-stationary states, the I-portion of the lambda controller is transmitted in a suitable operating state in a single calculation step in an operating point-dependent adaptation matrix and then set to zero.
  • This is referred to herein as a "flash adaptation".
  • the adaptation speed is accelerated.
  • the catalyst model also allows the use of only briefly stationary operating states of the internal combustion engine for lambda adaptation.
  • the model-based adaptation strategy according to the invention is active more frequently, reacting faster to changing operating conditions and relieving the lambda control on the basis of more accurate pilot control values for the mixture precontrol.
  • the "flash adaptation" determines an error in the fuel metering, for example due to component tolerances or aging processes, in an extremely short time and recognizes this as a systematic error (snapshot of the lambda deviation).
  • the adaptation value is copied into the adaptation memory and by means of the reset of the I component of the lambda control (set to zero), the lambda control is informed that this error is already taken into account in the metering of the fuel via the adaptation in the mixture precontrol and the lambda control accordingly takes this error into account does not have to and must compensate itself.
  • FIG. 2 schematically illustrates a dual exhaust system for an engine 50 having a plurality of cylinders, with corresponding exhaust ports of some cylinders opening into a first exhaust bank 52 and corresponding exhaust ports of the remaining cylinders opening into a second exhaust bank 54.
  • Each exhaust bank 52, 54 has in each case a precatalyst 56 and 58 and in each case one of the precatalyst 56 and 58 downstream lambda probe LSF 60 and 62.
  • the first exhaust bank 52 additionally has a lambda probe LSU 64 in front of the precatalyst 56, whereas such a lambda probe LSU is not provided in front of the precatalyst 58 in the second exhaust bank 54.
  • the two exhaust banks 52 and 54 lead to a common exhaust line 66 together.
  • a temperature sensor 68, a main catalytic converter 70 and a NO x sensor 72 is arranged as seen in the flow direction.
  • the internal combustion engine 50 further includes a fresh air path 74 with throttle 76 and intake manifold pressure sensor 78.
  • the lambda probe LSU 64 upstream of the precatalyst 56 of the first exhaust bank 52 serves primarily to compensate for dynamically changing quantities with a corresponding influence on the mixture pilot control, such as intake manifold pressure, engine speed, fuel type, etc., which affect all exhaust banks 52, 54 equally , Therefore, it is sufficient to determine these influences and corrections of the dynamic quantities only for the first exhaust bank 52 and to transmit them to the second exhaust bank 54. For this reason, the lambda probe LSU precedes the precatalyst 58 of the second exhaust bank 54.
  • the adaptation control according to the invention is carried out according to flash adaptation, which also without lambda probe LSU gets by before the pre-catalyst.
  • this adaptation can be performed individually for both exhaust banks 52, 54.
  • a continuous lambda control is performed on the lambda after the precatalysts 56, 58, This results in a Lambda measurement after the pre-catalysts 56, 58 by means of the lambda probes LSF 60 and 62.
  • a start of the lambda control is already enabled with operational LSF probe 60, 62 and it does not have to wait for a later reached, predetermined Schukattemperatur at sensor 68 become.
  • the fast lambda adaptation takes place by the above-described flash adaptation separately for each exhaust bank.
  • Selected influencing variables for the dynamically improved fuel quantity pilot control are determined only for the first exhaust bank 52 and mirrored onto the second exhaust bank 54.
  • symmetrically usable signal components of the first exhaust bank 52 are used. The signal quality thereby approaches a real measured lambda value.
  • a structural overview of the mixture preparation for the twin-flow exhaust gas system according to FIG. 2 is shown schematically in FIG. 3. For clarity, a mixture coordination is shown only for the branch of the second exhaust bank 54.
  • a block 80 represents a lambda control function with a regulator variant LR_Bank_1 82 for the first exhaust bank 52 and a regulator variant LR_Bank_2 84 for the second exhaust bank 54.
  • the lambda control function 80 receives as input values lambda setpoint lambda_soll 86 and one on the first exhaust bank 52 upstream of the precatalyst 56 measured lambda actual value Lambda_ist_b1 88.
  • Selected fuel contributions from the regulator variant LR_Bank_1 82 for the first exhaust gas bank 52 are fed to a functional additive MIRR_B1_B2 in a block 90.
  • This block 90 mirrors these fuel contributions from the regulation of the first exhaust bank 52 LR_Bank_1 82 to the regulation of the second exhaust bank 54 LR_Bank_2 84, as indicated by arrow 92.
  • the lambda control function 80 then outputs a control factor Regel composition_b2 94 for the second exhaust bank 54 to a mixture coordination% GKO_B2 96 for the second exhaust bank 54. This acts on the second exhaust bank 54 associated engine part Motor_B2 98 and accordingly on the pre-catalyst 58 of the second exhaust bank 54.
  • a probe voltage 112 of the lambda probe LSF 62 after the pre-catalyst 58 of the second exhaust bank 54 (LSF_2) is fed to an adaptation function in a block 100.
  • This adaptation function 100 includes an adaptation variant for the first exhaust bank 52 ADAP_Bank_1 102 as well as an adaptation variant for the second exhaust bank 54 ADAP_Bank_2 104.
  • Selected Fuel contributions from the adaptation variant for the first exhaust bank 52 ADAP Bank_1 102 are supplied to the functional additive MIRR_B1_B2 in block 90.
  • This block 90 mirrors these fuel contributions from the adaptation variant for the first exhaust bank 52 ADAP_Bank_1 102 to the adaptation variant for the second exhaust bank 54 ADAP_Bank_2 104, as indicated by arrow 106.
  • the adaptation function 100 then outputs an adaptation intervention Adaptionseingriff_b2 108 for the second exhaust bank 54 to the mixture coordination% GKO_B2 96 for the second exhaust bank 54, with corresponding effects on Motor_B2 98 and the pre-catalyst 58 of the second exhaust bank 54th
  • a function for generating a lambda offset value is provided before the precatalyst 58 of the second exhaust bank 54 for the second exhaust bank 54 and for probe voltage correction.
  • This block 110 receives as input values the probe voltage 112 of the lambda probe LSF 62 of the second exhaust bank 54, a lambda difference Lambda_differenz_b1 114 of the first exhaust bank 52 and the Lambda actual value Lambda_ist_b1 88 before the Vorkatalysator 56 of the first exhaust bank 52.
  • the block 110 then outputs a calculated lambda Lambda-is-b2 116 before the pre-catalyst 58 of the second exhaust bank 54 from.
  • the mixture adaptation is divided into several parts. So there is ever an adaptation value for an additive error, a multiplicative error and possibly even for a temperature-dependent error.
  • the mixture deviation for all cylinders is determined with a lambda probe, among other things.
  • the sensor system is often carried out several times, ie, each exhaust bank has seen in the flow direction a pre-catalyst, a lambda probe before the pre-catalyst and a lambda probe after the pre-catalyst.
  • each adaptation value of the mixture adaptation there are a number of factors corresponding to the number of exhaust gas banks.
  • the additive adaptation value for the mixture precontrol which corrects the additive error of the mixture precontrol, only on one exhaust gas bank and to reflect it on the other exhaust gas banks.
  • the additive adaptation value for the mixture precontrol is formed on that exhaust bank, which has a lambda probe in front of the precatalyst immediately after engine outlet. This simplifies the adaptation of the mixture precontrol for multi-flow exhaust aftertreatment systems, since only the multiplicative adaptation value for the mixture precontrol, which corrects the multiplicative error of the mixture precontrol, must be determined separately for each exhaust gas bank.
  • Chimney-specific deviations on the exhaust bank / exhaust banks, in particular for the multiplicative adaptation range, are compensated for via a continuous lambda control after precatalyst on the basis of a binary or continuous lambda signal.
  • the lambda probes in front of the precatalysts can be dispensed with in all exhaust gas banks except for one exhaust gas bank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Claims (10)

  1. Procédé pour faire fonctionner un moteur à combustion interne, notamment un moteur diesel ou un moteur à allumage commandé, notamment d'un véhicule automobile, comprenant un équipement de post-traitement des gaz d'échappement avec au moins un pré-catalyseur et au moins un catalyseur principal disposé après le pré-catalyseur, une intervention du régulateur pour la commande du mélange étant calculée au moyen d'une régulation lambda à partir d'une différence entre une valeur lambda de consigne et une valeur lambda réelle mesurée après le pré-catalyseur, caractérisé en ce qu'à la fin d'une phase de fonctionnement du moteur à combustion interne stationnaire pendant une période donnée, une proportion I de la régulation lambda est enregistrée en tant que valeur d'adaptation d'une commande pilote de mélange pour cette phase de fonctionnement, utilisée immédiatement pendant cette phase de fonctionnement en tant que valeur d'adaptation pour la commande pilote de mélange et la proportion I de la régulation lambda est mise à zéro.
  2. Procédé selon la revendication 1, caractérisé en ce que la valeur d'adaptation est une valeur d'adaptation additive et/ou multiplicative pour la commande pilote de mélange.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une valeur lambda est calculée après le pré-catalyseur au moyen d'un modèle de catalyseur et un offset lambda est déterminé à partir de celle-ci.
  4. Procédé selon la revendication 3, caractérisé en ce qu'une vitesse de rotation du moteur, une valeur du volume d'air relatif remplissant une chambre de combustion du moteur à combustion interne et une valeur du débit massique de gaz d'échappement sont acheminées au modèle de catalyseur comme valeurs d'entrée.
  5. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que dans le cas d'un système de gaz d'échappement comprenant deux bancs de gaz d'échappement ou plus ayant chacun un pré-catalyseur ainsi que la sonde lambda correspondante après le pré-catalyseur, un seul banc de gaz d'échappement présentant une sonde lambda avant le pré-catalyseur, la valeur d'adaptation de la commande pilote de mélange est déterminée et enregistrée séparément pour chaque banc de gaz d'échappement.
  6. Procédé selon la revendication 5, caractérisé en ce que pour le banc de gaz d'échappement muni d'une sonde lambda avant le pré-catalyseur, des valeurs d'adaptation pour la commande pilote du mélange sont effectuées en fonction de la phase de fonctionnement sur la base d'une différence entre une valeur lambda de consigne et une valeur lambda réelle mesurée avant le pré-catalyseur en vue de compenser les variables dynamiques qui influencent communément tous les bancs de gaz d'échappement, notamment la pression dans le tube d'admission, la vitesse de rotation du moteur et/ou le type de carburant, puis transmises aux autres bancs de gaz d'échappement.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce qu'une valeur de remplacement pour la valeur lambda avant le pré-catalyseur est générée à partir d'une valeur lambda réelle avant le pré-catalyseur du banc de gaz d'échappement muni d'une sonde lambda avant le pré-catalyseur, d'une différence entre une valeur lambda de consigne et une valeur lambda réelle mesurée avant le pré-catalyseur du banc de gaz d'échappement muni d'une sonde lambda avant le pré-catalyseur et d'une tension de sonde de la sonde lambda après le pré-catalyseur d'un banc de gaz d'échappement sans sonde lambda avant le pré-catalyseur pour ce banc de gaz d'échappement sans sonde lambda avant le pré-catalyseur.
  8. Procédé selon la revendication 1, caractérisé en ce que dans le cas d'un système de gaz d'échappement comprenant deux bancs de gaz d'échappement ou plus ayant chacun un pré-catalyseur ainsi que la sonde lambda correspondante après le pré-catalyseur, un seul banc de gaz d'échappement présentant une sonde lambda avant le pré-catalyseur, une valeur d'adaptation additive pour la commande pilote du mélange est déterminée et enregistrée pour un banc de gaz d'échappement et transmise aux autres bancs de gaz d'échappement.
  9. Procédé selon la revendication 8, caractérisé en ce que la valeur d'adaptation additive est déterminée sur le banc de gaz d'échappement avec la sonde lambda avant le pré-catalyseur.
  10. Procédé selon la revendication 1, 8 ou 9, caractérisé en ce que dans le cas d'un système de gaz d'échappement comprenant deux bancs de gaz d'échappement ou plus ayant chacun un pré-catalyseur ainsi que la sonde lambda correspondante après le pré-catalyseur, un seul banc de gaz d'échappement présentant une sonde lambda avant le pré-catalyseur, une valeur d'adaptation multiplicative pour la commande pilote du mélange est déterminée et enregistrée individuellement pour chaque banc de gaz d'échappement.
EP04103442A 2003-08-13 2004-07-20 Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange Active EP1507079B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10337228A DE10337228A1 (de) 2003-08-13 2003-08-13 Verfahren zum Betreiben einer Brennkraftmaschine
DE10337228 2003-08-13

Publications (3)

Publication Number Publication Date
EP1507079A2 EP1507079A2 (fr) 2005-02-16
EP1507079A3 EP1507079A3 (fr) 2005-04-06
EP1507079B1 true EP1507079B1 (fr) 2006-06-07

Family

ID=33560314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04103442A Active EP1507079B1 (fr) 2003-08-13 2004-07-20 Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange

Country Status (3)

Country Link
EP (1) EP1507079B1 (fr)
AT (1) ATE329147T1 (fr)
DE (2) DE10337228A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156252A1 (fr) * 2022-02-15 2023-08-24 Vitesco Technologies GmbH Appareil et procédé de commande lambda de moteurs à allumage par étincelle, et véhicule à moteur

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216980A1 (de) * 2018-10-04 2020-04-09 Robert Bosch Gmbh Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators
DE102018218020A1 (de) * 2018-10-22 2020-04-23 Ford Global Technologies, Llc Verfahren zum Regeln einer Einspritzung durch eine Kraftstoffeinspritzeinheit, Regelvorrichtung und Computerprogramm
DE102020212457A1 (de) 2020-10-01 2022-04-07 Volkswagen Aktiengesellschaft Verfahren zur Optimierung eines Betriebsparameters eines Verbrennungsmotors, Motorsteuergerät und ein Fahrzeug

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341015A1 (de) * 1983-11-12 1985-05-30 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung fuer die gemischaufbereitung bei einer brennkraftmaschine
DE3816520A1 (de) * 1988-05-14 1989-11-23 Bosch Gmbh Robert Regelverfahren und -vorrichtung, insbesondere lambdaregelung
DE4423241C2 (de) * 1994-07-02 2003-04-10 Bosch Gmbh Robert Verfahren zur Einstellung der Zusammensetzung des Betriebsgemisches für eine Brennkraftmaschine
DE19633481A1 (de) * 1996-08-20 1998-03-05 Porsche Ag Brennkraftmaschine mit Lambda-Regelung und Störglied
DE19856367C1 (de) * 1998-12-07 2000-06-21 Siemens Ag Verfahren zur Reinigung des Abgases mit Lambda-Regelung
DE50112018D1 (de) * 2000-04-07 2007-03-29 Volkswagen Ag Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors
DE10029633A1 (de) * 2000-04-07 2001-10-11 Volkswagen Ag Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses
DE10043072A1 (de) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung
DE10043256A1 (de) * 2000-09-02 2002-03-14 Bosch Gmbh Robert Verfahren zur Gemischadaption
DE10064665C2 (de) * 2000-12-22 2003-04-30 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156252A1 (fr) * 2022-02-15 2023-08-24 Vitesco Technologies GmbH Appareil et procédé de commande lambda de moteurs à allumage par étincelle, et véhicule à moteur

Also Published As

Publication number Publication date
EP1507079A3 (fr) 2005-04-06
EP1507079A2 (fr) 2005-02-16
DE10337228A1 (de) 2005-03-17
ATE329147T1 (de) 2006-06-15
DE502004000690D1 (de) 2006-07-20

Similar Documents

Publication Publication Date Title
DE102016222418A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente
DE102008001569A1 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE102008042549A1 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102004004291B3 (de) Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE102012211683A1 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Zweipunkt-Lambdasonde
DE19612212B4 (de) Diagnosevorrichtung für einen Luft/Brennstoffverhältnis-Sensor
DE19839791B4 (de) Luft-Brennstoffverhältnisregelung für eine Brennkraftmaschine
DE102018216980A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators
DE102006037752B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005034690B3 (de) Verfahren und Vorrichtung zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE4328099C2 (de) Verfahren zum Erfassen der Verschlechterung des Katalysators eines Verbrennungsmotors
WO2009143858A1 (fr) Procédé de régulation d'une opération d'injection dans un moteur à combustion interne, appareil de commande pour moteur à combustion interne et moteur à combustion interne
EP1730391B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
DE102008006327A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
EP0976922B1 (fr) Méthode d'ajustement de couple moteur
DE10358988B3 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
DE19852294A1 (de) Abgasanlage einer Mehrzylinder-Brennkraftmaschine
EP1507079B1 (fr) Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange
EP1960645B1 (fr) Procede de diagnostic pour un catalyseur situe dans la zone des gaz d'echappement d'un moteur a combustion interne et dispositif permettant la mise en oeuvre dudit procede
DE102007035168B4 (de) Überwachen eines Nockenprofilumschaltsystems in Verbrennungsmotoren
DE10133555A1 (de) Verfahren zum zylinderindividuellen Abgleich der Einspritzmenge bei Brennkraftmaschinen
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015222022B4 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde
DE102006003487B4 (de) Verfahren zur Lambda-Modulation
DE102006043679B4 (de) Verfahren zur Einzelzylinderregelung bei einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20051006

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060607

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004000690

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060607

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060720

BERE Be: lapsed

Owner name: VOLKSWAGEN AG

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060720

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200731

Year of fee payment: 17

Ref country code: FR

Payment date: 20200728

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004000690

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004000690

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731