EP1507079B1 - Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange - Google Patents
Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange Download PDFInfo
- Publication number
- EP1507079B1 EP1507079B1 EP04103442A EP04103442A EP1507079B1 EP 1507079 B1 EP1507079 B1 EP 1507079B1 EP 04103442 A EP04103442 A EP 04103442A EP 04103442 A EP04103442 A EP 04103442A EP 1507079 B1 EP1507079 B1 EP 1507079B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lambda
- catalytic converter
- exhaust
- value
- primary catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 67
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 20
- 230000006978 adaptation Effects 0.000 claims abstract description 97
- 230000003197 catalytic effect Effects 0.000 claims description 44
- 238000011144 upstream manufacturing Methods 0.000 claims description 20
- 239000000446 fuel Substances 0.000 claims description 19
- 239000000654 additive Substances 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 11
- 230000001419 dependent effect Effects 0.000 claims description 8
- 239000000523 sample Substances 0.000 description 50
- 239000012041 precatalyst Substances 0.000 description 47
- 239000007789 gas Substances 0.000 description 23
- 239000003054 catalyst Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 8
- 238000012937 correction Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000009897 systematic effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013538 functional additive Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 102100035261 FYN-binding protein 1 Human genes 0.000 description 1
- 108091011190 FYN-binding protein 1 Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0082—Controlling each cylinder individually per groups or banks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
- F02D41/1443—Plural sensors with one sensor per cylinder or group of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1482—Integrator, i.e. variable slope
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/141—Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1422—Variable gain or coefficients
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
Definitions
- the invention relates to a method for operating an internal combustion engine, in particular a diesel engine or gasoline engine, in particular a motor vehicle, with an exhaust aftertreatment system with at least one precatalyst and at least one main catalyst downstream of the primary catalyst, wherein by means of a lambda control of a difference between a desired lambda value and one after the Pre-catalyst measured lambda actual value a control intervention for the mixture control is calculated, according to the preamble of claim 1.
- the prior art discloses internal combustion engines with exhaust gas systems which have at least one pre-catalyst close to the engine and at least one main catalytic converter arranged downstream of the pre-catalyst.
- To control the exhaust gas composition is usually upstream of the primary catalytic converter and a lambda sensor downstream of the main catalyst, a further lambda probe or a NO x sensor arranged with oxygen measuring.
- a broadband lambda probe is arranged in front of the precatalyst and a step response lambda probe behind the main catalytic converter.
- a mixture control and regulation is possible such that via the front probe a deviation of the actual mixture composition from a desired mixture composition is detected and the detected deviation is converted into a control intervention of a mixture precontrol.
- the front probe is arranged comparatively close to the internal combustion engine, so that deviations from the desired mixture composition can be quickly detected and corrected.
- the signal of the further lambda probe or NOx sensor with oxygen measuring device arranged downstream of the main catalytic converter is used.
- the control deviation for achieving a desired lambda value is included in the control of the mixture deviation via the front probe.
- Adaptation routines usually consist of slow controllers (I controllers), which are superimposed on the normal internal lambda control based on LSU (fast circuit).
- I controllers slow controllers
- LSU fast circuit
- the value of the I component of the superimposed adaptation controller corresponds to the learned systematic mixture pilot control error.
- This is permanently stored as a function of the operating point and allows the engine control in future driving cycles to have a more accurate, point-dependent mixture feedforward control. The regulation is thereby relieved when passing through various operating points and emissions are reduced accordingly.
- the systematic error of the mixture precontrol is detected via an integration of lambda deviations in selected operating states and the maps of the mixture precontrol for the fuel quantity are adapted by correction factors or changed map values.
- this adaptation can only be made slowly, since otherwise at the moment of adaptation suddenly two mechanisms, namely the map correction of the mixture precontrol and the lambda control, want to compensate for the same error, which leads to overcorrection and unstable states.
- the multi-flow exhaust system comprises at least two exhaust gas lines, in each of which one or more cylinders open.
- Each exhaust gas line has a separate primary catalytic converter and one lambda probe each downstream of the primary catalytic converter. Only one exhaust gas line also has a lambda probe upstream of the primary catalytic converter.
- the adaptation of the mixture precontrol is also used to diagnose the fuel supply system, for example to detect leakage air sources or faulty fuel injection valves. In principle, all errors in the fuel and air paths can be detected here.
- the object of the invention is to improve a method of the above-mentioned type with regard to accuracy in the adaptation of systematic errors of the mixture precontrol and to accelerate an adaptation speed.
- an I-part of the lambda control is stored as an adaptation value of a mixture precontrol for this operating state, used immediately for this operating state as an adaptation value for the mixture precontrol and the I-part of the lambda control set to zero.
- the adaptation value is an additive and / or multiplicative adaptation value for the mixture precontrol.
- a lambda value after the precatalyst is calculated by means of a catalyst model from an engine speed, a value for the relative air charge of a combustion chamber of the internal combustion engine and a value for the exhaust gas mass flow, and from this a lambda offset is determined.
- a preferred embodiment of the invention for Mehrflutige exhaust aftertreatment systems is in an exhaust system with two or more exhaust banks with respective pre-catalyst and respective lambda probe after the pre-catalyst, only one exhaust bank having a lambda probe before the pre-catalyst, the adaptation value of the mixture pilot for each exhaust bank separately determined and stored.
- an additive adaptation value for mixture pilot control for an exhaust gas bank is determined and stored transmit the other exhaust banks.
- the additive adaptation value is determined on the exhaust bank with the lambda probe before the pre-catalyst.
- a multiplicative adaptation value for the mixture pilot control is individually determined and stored for each exhaust gas bank.
- Fig. 1 illustrates an internal structure of a preferred embodiment of an inventive adaptation of a mixture feedforward control for an internal combustion engine with a pre-catalyst and a main catalyst arranged downstream of the pre-catalyst.
- a switch-on condition for the adaptation is checked.
- the block 10 receives as input values a probe voltage behind the precatalyst u_Sondehk 12 and a value for the air mass m_Air 14.
- the probe voltage behind the precatalyst u_Sondehk 12 is fed to a block 16 "filter”.
- An output of block 16 "Filter” is fed to a block 18 "Gradient".
- An output of the block 18 "Gradient” is fed to a block 20 "Settle-Check".
- the value for the air mass m_Air 14 is fed to a block 22 "integrator” and an output of the block 22 "integrator” is also fed to the block 20 "Settle-Check”.
- block 20 "Settle-Check” is checked from the input values from the block 18 "gradient” and the block 22 "integrator” whether a current operating condition of the internal combustion engine meets predetermined criteria, for example. With respect to a stationary / static operation, so that this operating state can be regarded as quasi-static and for a Adaptation is suitable.
- the block 20 "Settle-Check" outputs a release bit B_adapstart 24 to a block "Flash adaptation".
- the enable bit B_adapstart 24 starts the adaptation in block 26 "Flash adaptation", wherein an I component of a lambda controller is transmitted in a single calculation step into an operating-point-dependent adaptation matrix and then set to zero.
- the instantaneous value of the I component of the lambda controller is stored as an adaptation value for a mixture precontrol assigned to the current operating state. This value is then used for this operating state as an adaptation value for the mixture precontrol.
- the enable bit B_adapstart 24 also triggers the reset of the I component in the lambda controller, ie the I component is set to zero.
- the block 26 "Flash Adaption” also receives as input values a relative air charge of the combustion chamber rel_Füllung 28, an engine speed n_Motor 30, an intervention of the lambda (factor) f_Regler 32 and a multiplicative intervention of the adaptation of the mixture precontrol f_Adapt 34.
- the block 26 "Flash -Adaption "calculates an adaptation factor in a block 36 and stores it in block 38. As the output value, the block 26 "Flash Adaption” outputs a value for the multiplicative intervention of the adaptation of the mixture precontrol f_Adapt 34.
- a block 40 "catalyst model” is additionally provided.
- This block 40 "catalyst model” receives as input values the engine speed n_motor 30, the relative air charge of the combustion space rel_Füllung 28 and an exhaust gas mass flow ms exhaust 42. From this in block 40 "catalyst model” by means of an explicit catalyst model for observer-based lambda offset determination a lambda value calculated after the pre-catalyst , The output 44 of block 40 "catalyst model” is additionally supplied as input value to the block 20 “Settle-Check" and the block 26 "Flash Adaption".
- a fast Lambda adaptation is achieved by a fuel quantity neutral Umkopiervorgang in quasi-stationary states, the I-portion of the lambda controller is transmitted in a suitable operating state in a single calculation step in an operating point-dependent adaptation matrix and then set to zero.
- This is referred to herein as a "flash adaptation".
- the adaptation speed is accelerated.
- the catalyst model also allows the use of only briefly stationary operating states of the internal combustion engine for lambda adaptation.
- the model-based adaptation strategy according to the invention is active more frequently, reacting faster to changing operating conditions and relieving the lambda control on the basis of more accurate pilot control values for the mixture precontrol.
- the "flash adaptation" determines an error in the fuel metering, for example due to component tolerances or aging processes, in an extremely short time and recognizes this as a systematic error (snapshot of the lambda deviation).
- the adaptation value is copied into the adaptation memory and by means of the reset of the I component of the lambda control (set to zero), the lambda control is informed that this error is already taken into account in the metering of the fuel via the adaptation in the mixture precontrol and the lambda control accordingly takes this error into account does not have to and must compensate itself.
- FIG. 2 schematically illustrates a dual exhaust system for an engine 50 having a plurality of cylinders, with corresponding exhaust ports of some cylinders opening into a first exhaust bank 52 and corresponding exhaust ports of the remaining cylinders opening into a second exhaust bank 54.
- Each exhaust bank 52, 54 has in each case a precatalyst 56 and 58 and in each case one of the precatalyst 56 and 58 downstream lambda probe LSF 60 and 62.
- the first exhaust bank 52 additionally has a lambda probe LSU 64 in front of the precatalyst 56, whereas such a lambda probe LSU is not provided in front of the precatalyst 58 in the second exhaust bank 54.
- the two exhaust banks 52 and 54 lead to a common exhaust line 66 together.
- a temperature sensor 68, a main catalytic converter 70 and a NO x sensor 72 is arranged as seen in the flow direction.
- the internal combustion engine 50 further includes a fresh air path 74 with throttle 76 and intake manifold pressure sensor 78.
- the lambda probe LSU 64 upstream of the precatalyst 56 of the first exhaust bank 52 serves primarily to compensate for dynamically changing quantities with a corresponding influence on the mixture pilot control, such as intake manifold pressure, engine speed, fuel type, etc., which affect all exhaust banks 52, 54 equally , Therefore, it is sufficient to determine these influences and corrections of the dynamic quantities only for the first exhaust bank 52 and to transmit them to the second exhaust bank 54. For this reason, the lambda probe LSU precedes the precatalyst 58 of the second exhaust bank 54.
- the adaptation control according to the invention is carried out according to flash adaptation, which also without lambda probe LSU gets by before the pre-catalyst.
- this adaptation can be performed individually for both exhaust banks 52, 54.
- a continuous lambda control is performed on the lambda after the precatalysts 56, 58, This results in a Lambda measurement after the pre-catalysts 56, 58 by means of the lambda probes LSF 60 and 62.
- a start of the lambda control is already enabled with operational LSF probe 60, 62 and it does not have to wait for a later reached, predetermined Schukattemperatur at sensor 68 become.
- the fast lambda adaptation takes place by the above-described flash adaptation separately for each exhaust bank.
- Selected influencing variables for the dynamically improved fuel quantity pilot control are determined only for the first exhaust bank 52 and mirrored onto the second exhaust bank 54.
- symmetrically usable signal components of the first exhaust bank 52 are used. The signal quality thereby approaches a real measured lambda value.
- a structural overview of the mixture preparation for the twin-flow exhaust gas system according to FIG. 2 is shown schematically in FIG. 3. For clarity, a mixture coordination is shown only for the branch of the second exhaust bank 54.
- a block 80 represents a lambda control function with a regulator variant LR_Bank_1 82 for the first exhaust bank 52 and a regulator variant LR_Bank_2 84 for the second exhaust bank 54.
- the lambda control function 80 receives as input values lambda setpoint lambda_soll 86 and one on the first exhaust bank 52 upstream of the precatalyst 56 measured lambda actual value Lambda_ist_b1 88.
- Selected fuel contributions from the regulator variant LR_Bank_1 82 for the first exhaust gas bank 52 are fed to a functional additive MIRR_B1_B2 in a block 90.
- This block 90 mirrors these fuel contributions from the regulation of the first exhaust bank 52 LR_Bank_1 82 to the regulation of the second exhaust bank 54 LR_Bank_2 84, as indicated by arrow 92.
- the lambda control function 80 then outputs a control factor Regel composition_b2 94 for the second exhaust bank 54 to a mixture coordination% GKO_B2 96 for the second exhaust bank 54. This acts on the second exhaust bank 54 associated engine part Motor_B2 98 and accordingly on the pre-catalyst 58 of the second exhaust bank 54.
- a probe voltage 112 of the lambda probe LSF 62 after the pre-catalyst 58 of the second exhaust bank 54 (LSF_2) is fed to an adaptation function in a block 100.
- This adaptation function 100 includes an adaptation variant for the first exhaust bank 52 ADAP_Bank_1 102 as well as an adaptation variant for the second exhaust bank 54 ADAP_Bank_2 104.
- Selected Fuel contributions from the adaptation variant for the first exhaust bank 52 ADAP Bank_1 102 are supplied to the functional additive MIRR_B1_B2 in block 90.
- This block 90 mirrors these fuel contributions from the adaptation variant for the first exhaust bank 52 ADAP_Bank_1 102 to the adaptation variant for the second exhaust bank 54 ADAP_Bank_2 104, as indicated by arrow 106.
- the adaptation function 100 then outputs an adaptation intervention Adaptionseingriff_b2 108 for the second exhaust bank 54 to the mixture coordination% GKO_B2 96 for the second exhaust bank 54, with corresponding effects on Motor_B2 98 and the pre-catalyst 58 of the second exhaust bank 54th
- a function for generating a lambda offset value is provided before the precatalyst 58 of the second exhaust bank 54 for the second exhaust bank 54 and for probe voltage correction.
- This block 110 receives as input values the probe voltage 112 of the lambda probe LSF 62 of the second exhaust bank 54, a lambda difference Lambda_differenz_b1 114 of the first exhaust bank 52 and the Lambda actual value Lambda_ist_b1 88 before the Vorkatalysator 56 of the first exhaust bank 52.
- the block 110 then outputs a calculated lambda Lambda-is-b2 116 before the pre-catalyst 58 of the second exhaust bank 54 from.
- the mixture adaptation is divided into several parts. So there is ever an adaptation value for an additive error, a multiplicative error and possibly even for a temperature-dependent error.
- the mixture deviation for all cylinders is determined with a lambda probe, among other things.
- the sensor system is often carried out several times, ie, each exhaust bank has seen in the flow direction a pre-catalyst, a lambda probe before the pre-catalyst and a lambda probe after the pre-catalyst.
- each adaptation value of the mixture adaptation there are a number of factors corresponding to the number of exhaust gas banks.
- the additive adaptation value for the mixture precontrol which corrects the additive error of the mixture precontrol, only on one exhaust gas bank and to reflect it on the other exhaust gas banks.
- the additive adaptation value for the mixture precontrol is formed on that exhaust bank, which has a lambda probe in front of the precatalyst immediately after engine outlet. This simplifies the adaptation of the mixture precontrol for multi-flow exhaust aftertreatment systems, since only the multiplicative adaptation value for the mixture precontrol, which corrects the multiplicative error of the mixture precontrol, must be determined separately for each exhaust gas bank.
- Chimney-specific deviations on the exhaust bank / exhaust banks, in particular for the multiplicative adaptation range, are compensated for via a continuous lambda control after precatalyst on the basis of a binary or continuous lambda signal.
- the lambda probes in front of the precatalysts can be dispensed with in all exhaust gas banks except for one exhaust gas bank.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Claims (10)
- Procédé pour faire fonctionner un moteur à combustion interne, notamment un moteur diesel ou un moteur à allumage commandé, notamment d'un véhicule automobile, comprenant un équipement de post-traitement des gaz d'échappement avec au moins un pré-catalyseur et au moins un catalyseur principal disposé après le pré-catalyseur, une intervention du régulateur pour la commande du mélange étant calculée au moyen d'une régulation lambda à partir d'une différence entre une valeur lambda de consigne et une valeur lambda réelle mesurée après le pré-catalyseur, caractérisé en ce qu'à la fin d'une phase de fonctionnement du moteur à combustion interne stationnaire pendant une période donnée, une proportion I de la régulation lambda est enregistrée en tant que valeur d'adaptation d'une commande pilote de mélange pour cette phase de fonctionnement, utilisée immédiatement pendant cette phase de fonctionnement en tant que valeur d'adaptation pour la commande pilote de mélange et la proportion I de la régulation lambda est mise à zéro.
- Procédé selon la revendication 1, caractérisé en ce que la valeur d'adaptation est une valeur d'adaptation additive et/ou multiplicative pour la commande pilote de mélange.
- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une valeur lambda est calculée après le pré-catalyseur au moyen d'un modèle de catalyseur et un offset lambda est déterminé à partir de celle-ci.
- Procédé selon la revendication 3, caractérisé en ce qu'une vitesse de rotation du moteur, une valeur du volume d'air relatif remplissant une chambre de combustion du moteur à combustion interne et une valeur du débit massique de gaz d'échappement sont acheminées au modèle de catalyseur comme valeurs d'entrée.
- Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que dans le cas d'un système de gaz d'échappement comprenant deux bancs de gaz d'échappement ou plus ayant chacun un pré-catalyseur ainsi que la sonde lambda correspondante après le pré-catalyseur, un seul banc de gaz d'échappement présentant une sonde lambda avant le pré-catalyseur, la valeur d'adaptation de la commande pilote de mélange est déterminée et enregistrée séparément pour chaque banc de gaz d'échappement.
- Procédé selon la revendication 5, caractérisé en ce que pour le banc de gaz d'échappement muni d'une sonde lambda avant le pré-catalyseur, des valeurs d'adaptation pour la commande pilote du mélange sont effectuées en fonction de la phase de fonctionnement sur la base d'une différence entre une valeur lambda de consigne et une valeur lambda réelle mesurée avant le pré-catalyseur en vue de compenser les variables dynamiques qui influencent communément tous les bancs de gaz d'échappement, notamment la pression dans le tube d'admission, la vitesse de rotation du moteur et/ou le type de carburant, puis transmises aux autres bancs de gaz d'échappement.
- Procédé selon la revendication 5 ou 6, caractérisé en ce qu'une valeur de remplacement pour la valeur lambda avant le pré-catalyseur est générée à partir d'une valeur lambda réelle avant le pré-catalyseur du banc de gaz d'échappement muni d'une sonde lambda avant le pré-catalyseur, d'une différence entre une valeur lambda de consigne et une valeur lambda réelle mesurée avant le pré-catalyseur du banc de gaz d'échappement muni d'une sonde lambda avant le pré-catalyseur et d'une tension de sonde de la sonde lambda après le pré-catalyseur d'un banc de gaz d'échappement sans sonde lambda avant le pré-catalyseur pour ce banc de gaz d'échappement sans sonde lambda avant le pré-catalyseur.
- Procédé selon la revendication 1, caractérisé en ce que dans le cas d'un système de gaz d'échappement comprenant deux bancs de gaz d'échappement ou plus ayant chacun un pré-catalyseur ainsi que la sonde lambda correspondante après le pré-catalyseur, un seul banc de gaz d'échappement présentant une sonde lambda avant le pré-catalyseur, une valeur d'adaptation additive pour la commande pilote du mélange est déterminée et enregistrée pour un banc de gaz d'échappement et transmise aux autres bancs de gaz d'échappement.
- Procédé selon la revendication 8, caractérisé en ce que la valeur d'adaptation additive est déterminée sur le banc de gaz d'échappement avec la sonde lambda avant le pré-catalyseur.
- Procédé selon la revendication 1, 8 ou 9, caractérisé en ce que dans le cas d'un système de gaz d'échappement comprenant deux bancs de gaz d'échappement ou plus ayant chacun un pré-catalyseur ainsi que la sonde lambda correspondante après le pré-catalyseur, un seul banc de gaz d'échappement présentant une sonde lambda avant le pré-catalyseur, une valeur d'adaptation multiplicative pour la commande pilote du mélange est déterminée et enregistrée individuellement pour chaque banc de gaz d'échappement.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10337228 | 2003-08-13 | ||
DE10337228A DE10337228A1 (de) | 2003-08-13 | 2003-08-13 | Verfahren zum Betreiben einer Brennkraftmaschine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1507079A2 EP1507079A2 (fr) | 2005-02-16 |
EP1507079A3 EP1507079A3 (fr) | 2005-04-06 |
EP1507079B1 true EP1507079B1 (fr) | 2006-06-07 |
Family
ID=33560314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04103442A Expired - Lifetime EP1507079B1 (fr) | 2003-08-13 | 2004-07-20 | Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1507079B1 (fr) |
AT (1) | ATE329147T1 (fr) |
DE (2) | DE10337228A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023156252A1 (fr) * | 2022-02-15 | 2023-08-24 | Vitesco Technologies GmbH | Appareil et procédé de commande lambda de moteurs à allumage par étincelle, et véhicule à moteur |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018216980A1 (de) * | 2018-10-04 | 2020-04-09 | Robert Bosch Gmbh | Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators |
DE102018218020A1 (de) * | 2018-10-22 | 2020-04-23 | Ford Global Technologies, Llc | Verfahren zum Regeln einer Einspritzung durch eine Kraftstoffeinspritzeinheit, Regelvorrichtung und Computerprogramm |
DE102020212457A1 (de) | 2020-10-01 | 2022-04-07 | Volkswagen Aktiengesellschaft | Verfahren zur Optimierung eines Betriebsparameters eines Verbrennungsmotors, Motorsteuergerät und ein Fahrzeug |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3341015C2 (de) * | 1983-11-12 | 1987-03-26 | Robert Bosch Gmbh, 7000 Stuttgart | Einrichtung für ein Kraftstoffzumeßsystem bei einer Brennkraftmaschine |
DE3816520A1 (de) * | 1988-05-14 | 1989-11-23 | Bosch Gmbh Robert | Regelverfahren und -vorrichtung, insbesondere lambdaregelung |
DE4423241C2 (de) * | 1994-07-02 | 2003-04-10 | Bosch Gmbh Robert | Verfahren zur Einstellung der Zusammensetzung des Betriebsgemisches für eine Brennkraftmaschine |
DE19633481A1 (de) * | 1996-08-20 | 1998-03-05 | Porsche Ag | Brennkraftmaschine mit Lambda-Regelung und Störglied |
DE19856367C1 (de) * | 1998-12-07 | 2000-06-21 | Siemens Ag | Verfahren zur Reinigung des Abgases mit Lambda-Regelung |
DE10029633A1 (de) * | 2000-04-07 | 2001-10-11 | Volkswagen Ag | Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses |
DE50112018D1 (de) * | 2000-04-07 | 2007-03-29 | Volkswagen Ag | Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors |
DE10043072A1 (de) * | 2000-09-01 | 2002-03-14 | Bosch Gmbh Robert | Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung |
DE10043256A1 (de) * | 2000-09-02 | 2002-03-14 | Bosch Gmbh Robert | Verfahren zur Gemischadaption |
DE10064665C2 (de) * | 2000-12-22 | 2003-04-30 | Siemens Ag | Verfahren zum Steuern einer Brennkraftmaschine |
-
2003
- 2003-08-13 DE DE10337228A patent/DE10337228A1/de not_active Withdrawn
-
2004
- 2004-07-20 EP EP04103442A patent/EP1507079B1/fr not_active Expired - Lifetime
- 2004-07-20 AT AT04103442T patent/ATE329147T1/de not_active IP Right Cessation
- 2004-07-20 DE DE502004000690T patent/DE502004000690D1/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023156252A1 (fr) * | 2022-02-15 | 2023-08-24 | Vitesco Technologies GmbH | Appareil et procédé de commande lambda de moteurs à allumage par étincelle, et véhicule à moteur |
Also Published As
Publication number | Publication date |
---|---|
DE502004000690D1 (de) | 2006-07-20 |
EP1507079A2 (fr) | 2005-02-16 |
ATE329147T1 (de) | 2006-06-15 |
DE10337228A1 (de) | 2005-03-17 |
EP1507079A3 (fr) | 2005-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69708171T2 (de) | Steuerungsvorrichtung für das Kraftstoff/Luftverhältnis eines inneren Verbrennungsmotors | |
DE102016222418A1 (de) | Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente | |
DE102008001569A1 (de) | Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde | |
DE102008042549A1 (de) | Verfahren und Vorrichtung zur Diagnose einer Abgassonde | |
DE102012211683A1 (de) | Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Zweipunkt-Lambdasonde | |
DE102004004291B3 (de) | Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde | |
DE19612212B4 (de) | Diagnosevorrichtung für einen Luft/Brennstoffverhältnis-Sensor | |
DE102018216980A1 (de) | Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators | |
DE102006037752B3 (de) | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine | |
DE102005034690B3 (de) | Verfahren und Vorrichtung zum Anpassen des Erfassens eines Messsignals einer Abgassonde | |
DE69705150T2 (de) | Verfahren zur Diagnose des Wirkungsgrades eines stromabwärts von einem Katalysator angeordneten Stochiometrischen Abgassensors | |
DE4328099C2 (de) | Verfahren zum Erfassen der Verschlechterung des Katalysators eines Verbrennungsmotors | |
WO2009143858A1 (fr) | Procédé de régulation d'une opération d'injection dans un moteur à combustion interne, appareil de commande pour moteur à combustion interne et moteur à combustion interne | |
EP1730391B1 (fr) | Procede et dispositif de commande d'un moteur a combustion interne | |
EP0976922B1 (fr) | Méthode d'ajustement de couple moteur | |
DE10358988B3 (de) | Vorrichtung zum Steuern einer Brennkraftmaschine | |
DE19852294A1 (de) | Abgasanlage einer Mehrzylinder-Brennkraftmaschine | |
EP1507079B1 (fr) | Procédé de fonctionnement d'un moteur à combustion interne par adaption du command pilote du mélange | |
EP1960645B1 (fr) | Procede de diagnostic pour un catalyseur situe dans la zone des gaz d'echappement d'un moteur a combustion interne et dispositif permettant la mise en oeuvre dudit procede | |
DE102007035168B4 (de) | Überwachen eines Nockenprofilumschaltsystems in Verbrennungsmotoren | |
DE10133555A1 (de) | Verfahren zum zylinderindividuellen Abgleich der Einspritzmenge bei Brennkraftmaschinen | |
DE102012204332B4 (de) | Vorrichtung zum Betreiben einer Brennkraftmaschine | |
DE102015222022B4 (de) | Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde | |
DE102006003487B4 (de) | Verfahren zur Lambda-Modulation | |
DE102006043679B4 (de) | Verfahren zur Einzelzylinderregelung bei einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20051006 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060607 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004000690 Country of ref document: DE Date of ref document: 20060720 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060907 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061107 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20060607 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060720 |
|
BERE | Be: lapsed |
Owner name: VOLKSWAGEN AG Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060720 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200731 Year of fee payment: 17 Ref country code: FR Payment date: 20200728 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004000690 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004000690 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |