DE10029633A1 - Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses - Google Patents

Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses

Info

Publication number
DE10029633A1
DE10029633A1 DE10029633A DE10029633A DE10029633A1 DE 10029633 A1 DE10029633 A1 DE 10029633A1 DE 10029633 A DE10029633 A DE 10029633A DE 10029633 A DE10029633 A DE 10029633A DE 10029633 A1 DE10029633 A1 DE 10029633A1
Authority
DE
Germany
Prior art keywords
exhaust
gas sensor
exhaust system
catalyst
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10029633A
Other languages
English (en)
Inventor
Ekkehard Pott
Achim Donnerstag
Axel Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE10029633A priority Critical patent/DE10029633A1/de
Priority to DE50112018T priority patent/DE50112018D1/de
Priority to EP01250117A priority patent/EP1143131B1/de
Publication of DE10029633A1 publication Critical patent/DE10029633A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft eine mehrflutige Abgasanlage eines Mehrzylindermotors für Kraftfahrzeuge mit mindestens zwei Abgassträngen (24, 24'), in die jeweils ein oder mehrere Zylinder (12, 14, 16, 18) münden; einem ersten, in mindestens einem Abgasstrang (24) angeordneten Gassensor (28), wobei eine Anzahl der mit dem ersten Gassensor (28) bestückten Abgasstränge (24) kleiner als eine Gesamtzahl der Abgasstränge (24, 24') ist; und mindestens einer Regeleinrichtung (32, 32') zur Verarbeitung der durch den/die ersten Gassensor/en (28) bereitgestellten Signale und Regelung eines in die Zylinder (12, 14, 16, 18) einzuspeisenden Luft-Kraftstoff-Verhältnisses in Abhängigkeit der Signale. Weiterhin betrifft die Erfindung ein Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylindermotors für Kraftfahrzeuge mit der erfindungsgemäßen mehrflutigen Abgasanlage. DOLLAR A Der Verzicht eines ersten Gassensors (28) in mindestens einem der Abgasstränge (24, 24') bewirkt einen erheblichen Kostenvorteil gegenüber herkömmlichen Abgasanlagen. Das erfindungsgemäße Verfahren gewährleistet dennoch eine exakte und schnelle Lambdaregelung in allen Abgassträngen (24, 24').

Description

Die Erfindung betrifft eine mehrflutige Abgasanlage eines Mehrzylindermotors für Kraftfahrzeuge und ein Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses.
Es ist bekannt, mehrzylindrige Motoren von Kraftfahrzeugen mit Abgasanlagen, die mindestens zwei Abgasstränge umfassen, in die jeweils ein oder mehrere Zylinder münden, auszustatten. Üblicherweise sind in jedem Abgasstrang solch mehrflutiger Abgasanlagen ein oder mehrere Katalysatoren angeordnet, um eine Abgasnachbehandlung zu ermöglichen. Mehrflutige Abgasanlagen können gegenüber einflutigen Anlagen höhere Drehmomente erzielen. Darüber hinaus ist aus Bauraumgründen die Unterbringung mehrerer kleinvolumiger Katalysatoren häufig einfacher zu realisieren, als die Anordnung eines einzigen großvolumigen Katalysators. Dies gilt insbesondere für grundsätzlich viel Bauraum beanspruchende Speicherkatalysatoren. Schließlich besteht bei einer mehrflutigen Abgasanlage die Möglichkeit, eine strang- oder auch zylinderselektive Motorsteuerung, insbesondere Lambdaregelung, durchzuführen. Dieses kommt in erster Linie einem Abgasmanagement zugute, durch das sich beispielsweise einzelne Katalysatoren gezielt aufheizen oder regenerieren lassen, wodurch insgesamt eine höhere Schadstoffkonvertierung und ein geringerer Kraftstoffverbrauch erzielt werden kann.
Demgegenüber besteht ein Nachteil mehrflutiger Abgasanlagen in den hohen Kosten, die zum Teil durch eine aufwendige Sensorik verursacht werden. So erfordern immer strenger werdende Schadstoffrichtlinien eine äußerst präzise Lambdaregelung und eine ständige Überwachung der Katalysatoren. Infolgedessen muss in jedem einzelnen Abgasstrang ein umfangreicher Sensorsatz, der beispielsweise aus Lambdasonden, NOx-Sensoren und Temperatursensoren besteht, angeordnet werden. Hinzu kommt ein erhöhter Verkabelungs- und Steuergeräteaufwand zur Auswertung der Signale der Sensoren.
Der Erfindung liegt daher die Aufgabe zugrunde, eine mehrflutige Abgasanlage für Mehrzylindermotoren zur Verfügung zu stellen, mit der eine sehr genaue und schnelle Lambdaregelung möglich ist und die dennoch mit vergleichsweise geringen Kosten verbunden ist. Ferner soll ein Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines mit einer entsprechenden Abgasanlage ausgestatteten Mehrzylindermotors vorgeschlagen werden.
Diese Aufgabe wird mit einer mehrflutigen Abgasanlage mit den Merkmalen des Anspruchs 1 und ein Verfahren nach Anspruch 15 gelöst.
Die erfindungsgemäße mehrflutige Abgasanlage eines Mehrzylindermotors für Kraftfahrzeuge umfasst
  • - mindestens zwei Abgasstränge, in die jeweils ein oder mehrere Zylinder münden und die jeweils mindestens einen Katalysator beherbergen,
  • - einen ersten, in mindestens einem Abgasstrang angeordneten Gassensor, wobei eine Anzahl der mit dem ersten Gassensor bestückten Abgasstränge kleiner als eine Gesamtzahl der Abgasstränge ist, und
  • - mindestens eine Regeleinrichtung zur Verarbeitung der durch den/die ersten Gassensor/en bereitgestellten Signale und Regelung eines in die Zylinder einzuspeisenden Luft-Kraftstoff-Verhältnisses in Abhängigkeit der Signale.
Das Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses sieht die Schritte vor:
  • - Erfassung eines von einer Konzentration mindestens einer Abgaskomponente abhängigen Signals in mindestens einem mit einem ersten Gassensor stromab des Mehrzylindermotors bestückten (vollbestückten) Abgasstrang,
  • - Regelung eines Luft-Kraftstoff-Verhältnisses des/der dem vollbestückten Abgasstrang zugeordneten Zylinders in Abhängigkeit des Signals des ersten Gassensors,
  • - Speicherung eines Kennfeldes, welches Stellgrößen der Luft-Kraftstoff- Regelung des/der dem vollbestückten Abgasstrang zugeordneten Zylinder/s einem gemessenen Ist-Signalwert des ersten Gassensors zuordnet, und
  • - Vorsteuerung eines Luft-Kraftstoff-Verhältnisses des/der einem nicht mit einem ersten Gassensor (teilbestückten) Abgasstrang zugeordneten Zylinder/s mittels des Kennfeldes.
Erfindungsgemäß ist demnach nicht in jedem Abgasstrang ein erster Gassensor angeordnet, wodurch gegenüber nahe liegenden Konstruktionen mindestens ein Gassensor mitsamt einer für die Verarbeitung der von ihm bereitgestellten Signale erforderlichen Verkabelungs- und Regeleinrichtung eingespart wird. Vorzugsweise wird in der gesamten Anlage nur ein einziger erster Gassensor installiert, so dass bei mehr als zweiflutigen Anlagen sogar weitere Einsparungen möglich sind.
Es ist bevorzugt vorgesehen, dass der mindestens eine erste Gassensor eine Breitband- Lambdasonde ist, die in einem großen Bereich des Luft-Kraftstoff-Verhältnisses einen Sauerstoffanteil des Abgases messen kann und somit auch magere und fette Abgaszusammensetzungen ermitteln kann.
Gemäß einer äußerst vorteilhaften Ausgestaltung der Erfindung ist stromab des ersten Gassensors, insbesondere stromab eines ersten Katalysators oder eines weiteren Katalysators, in jedem Abgasstrang ein zweiter Gassensor, vorzugsweise eine Sprungantwort-Lambdasonde, und/oder ein Temperatursensor angeordnet. Sprungantwort-Lambdasonden haben gegenüber Breitband-Lambdasonden den Vorteil deutlich niedrigerer Kosten und einer größeren Kennlinienstabilität über ihre Lebensdauer. Letzteres Merkmal ermöglicht eine Kalibrierung der Kennlinie der vorgeschalteten Breitband-Lambdasonde mittels der nachgeschalteten Sprungantwort- Lambdasonde.
Im Falle der Anordnung des zweiten Gassensors sieht eine besonders vorteilhafte Ausgestaltung der Erfindung vor, dass eine Feinregelung des Luft-Kraftstoff- Verhältnisses sowohl in den voll- als auch in den teilbestückten Abgassträngen beziehungsweise der diesen Abgassträngen zugeordneten Zylinder in Abhängigkeit des von dem zweiten Gassensor erfassten Signals durchgeführt wird. Auch in dieser Ausführung ist die Verwendung einer Sprungantwort-Lambdasonde als zweiter Gassensor sehr vorteilhaft, da diese - zumindest in dem relevanten Regelungsbereich um λ = 1 - eine sehr hohe Auflösung aufweist, welche die Breitband-Lambdasonde nicht erreicht. Die Kombination aus Breitband- und Sprungantwort-Lambdasonde ermöglicht eine Genauigkeit der Lambdaregelung im Promillebereich.
Die Feinregelung des Luft-Kraftstoff-Verhältnisses des teilbestückten Abgasstranges ist im Gegensatz zu dem vollbestückten Abgasstrang verhältnismäßig langsam. Dies liegt zum einen an der vergleichsweise großen Distanz, die ein von einem Zylinder kommendes Abgas bis zum Erreichen des zweiten Gassensors zurücklegen muss. Ferner bestehen auch bei gleichen Stellgrößen der Regeleinrichtung insbesondere bei 4-Zylinder-Reihenmotoren üblicherweise Abweichungen der tatsächlichen Luft-Kraftstoff- Verhältnisse der einzelnen Zylinder untereinander. Dieser Nachteil wird durch eine weitere vorteilhafte Ausgestaltung der Erfindung überwunden. Diese sieht vor, zu einem Zeitpunkt, an dem die in einem teilbestückten und einem vollbestückten Abgasstrang angeordneten zweiten Gassensoren im Wesentlichen gleiche Ist-Signalwerte bereitstellen, eine Differenz der Stellgrößen zwischen den Abgassträngen in dem Kennfeld zu speichern und bei der Vorsteuerung der Zylinder des teilbestückten Abgasstranges zu berücksichtigen. Auf diese Weise kann die Feinregelung des teilbestückten Abgasstranges mit annähernd der gleichen Geschwindigkeit wie die des vollbestückten Abgasstranges erfolgen. Eine Präzision des Verfahrens kann außerdem durch Abspeicherung einer Betriebspunktabhängigkeit der Steilparameter und/oder des Differenzwertes der Steilparameter in dem Kennfeld erfolgen. Insbesondere kann ein Differenzwert einer momentanen Drehzahl oder Last des Kraftfahrzeuges zugeordnet werden. Denkbar ist ferner die Berücksichtigung von Temperatur- und Dynamikeinflüssen sowie eines Katalysatorzustandes in dem Kennfeld.
Gemäß einer anderen Ausführungsform der Erfindung wird das Signal des stromab eines Katalysators angeordneten zweiten Gassensors verwendet, um einen Katalysatorzustand des betreffenden Katalysators zu überwachen. Dabei wird eine Zeitverzögerung zwischen einer Änderung des der betreffenden Zylinder zugeführten Luft-Kraftstoff-Verhältnisses und einer Antwort des zweiten Gassensors registriert und verfolgt. In dieser Ausführung wird der Umstand genutzt, dass eine Sauerstoffspeicheraktivität des Katalysators mit seiner Konvertierungsaktivität korreliert. Eine abweichende Ausführungsform sieht vor, die Zustandsüberwachung des Katalysators anhand einer stromab des Katalysators, mittels eines Temperatursensors gemessenen Abgastemperatur durchzuführen. Hierbei wird der Zusammenhang zwischen Konvertierungsaktivität und einer Abgastemperaturerhöhung genutzt. Die hierfür erforderliche Kenntnis der Abgastemperatur stromauf des Katalysators kann entweder durch entsprechend angeordnete Temperatursensoren oder durch Berechnung erfolgen.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine zweiflutige Abgasanlage eines 4-Zylinder-Motors gemäß dem Stand der Technik;
Fig. 2 eine bevorzugte Ausführungsform einer erfindungsgemäßen zweiflutigen Abgasanlage;
Fig. 3 zeitliche Signalverläufe von Gassensoren gemäß der in Fig. 2 gezeigten Ausführungsform; und
Fig. 4 eine weitere Ausführungsform einer zweiflutigen Abgasanlage.
Fig. 1 zeigt eine zweiflutige Abgasanlage, wie sie sich einem Fachmann in nahe liegender Weise aus dem Stand der Technik ergibt. Ein Mehrzylindermotor 10, vorzugsweise ein direkteinspritzender Otto-Motor, umfasst vier in Reihe angeordnete Zylinder 12, 14, 16, 18. Eine Luftversorgung der Zylinder 12, 14, 16, 18 wird über eine gemeinsame Sauganlage 20 mit einem Stellmittel 22, beispielsweise einer Drosselklappe, zur Regelung eines Luftmassenstromes geleistet. Die vier Zylinder 12, 14, 16, 18 münden in zwei Abgasstränge 24, die jeweils einen kleinvolumigen Vorkatalysator 26, üblicherweise ein 3-Wege-Katalysator, beherbergen. An einer möglichst motornahen Position stromaufwärts der Vorkatalysatoren 26 ist eine Breitband-Lambdasonde 28 als ein erster Gassensor angeordnet. Diese dient der schnellen Vorregelung eines in die Zylinder 12, 14, 16, 18 einzuspeisendes Luft- Kraftstoff-Gemisches. Stromab eines jeden Vorkatalysators 26 ist jeweils ein zweiter Gassensor, insbesondere eine Sprungantwort-Lambdasonde 30, angeordnet. Die Sprungantwort-Lambdasonden 30 dienen einerseits einer Lambdafeinregelung der dem jeweiligen Abgasstrang 24 zugeordneten Zylinder 12, 14, 16, 18 und andererseits der Überwachung einer Konvertierungsaktivität der Katalysatoren 26. Die Signale der Breitband- sowie der Sprungantwort-Lambdasonden 28, 30 gehen in Regeleinrichtungen 32 ein, welche die Signale auswerten und das Luft-Kraftstoff-Verhältnis der Zylinder 12, 14, 16, 18 strang- oder zylinderselektiv auf eine Lambda-Sollvorgabe einregeln. Hierfür kann insbesondere vorgesehen sein, dass Einspritzparameter einer hier nicht dargestellten Einspritzanlage des Mehrzylindermotors 10, wie Einspritzmenge, Zündwinkel, Einspritzdauer, eine innere Abgasrückführrate und/oder Nacheinspritzparameter, geregelt werden. Darüber hinaus kann auch eine äußere Abgasrückführung vorgesehen sein, wobei eine äußere Abgasrückführrate beeinflussbar ist. In dem gezeigten Beispiel vereinigen sich die beiden Abgasstränge 24 stromabwärts der Sprungantwort-Lambdasonden 30 zu einem gemeinsamen Abgasstrang 34. In diesem befindet sich an einer motorfernen Position, insbesondere an einer Unterbodenposition des Kraftfahrzeuges, ein großvolumiger NOx-Speicherkatalysator 36, dessen Betrieb - insbesondere dessen Regenerationsintervalle - in bekannter Weise mittels eines stromauf des Katalysators angeordneten Temperatursensors 38 sowie eines nachgeschalteten NOx-Sensors 40 überwacht wird. In Abweichung zu dem gezeigten Beispiel können die Abgasstränge 24 auch bis zu einem Abgasauslass vollständig mehrflutig verlaufen. In diesem Fall sind in jedem Strang 24 jeweils ein entsprechend dimensionierter NOx-Speicherkatalysator 36 mit den zugehörigen Temperatur- und NOx-Sensoren 38, 40 anzuordnen. Es ist ferner möglich, zusätzlich zu dem NOx-Speicherkatalysator 36 oder an seiner Stelle einen oder mehrere weitere Katalysatoren, beispielsweise einen 3-Wege-Hauptkatalysator, vorzusehen.
Fig. 2 zeigt eine im Wesentlichen der Fig. 1 entsprechende, aber gemäß einer ersten bevorzugten Ausführungsform der Erfindung ausgestaltete Abgasanlage. Erfindungsgemäß wird hier in mindestens einem Abgasstrang 24' auf die Installation der Breitband-Lambdasonde 28 stromauf des Vorkatalysators 26' verzichtet. Insbesondere wird auch in einer Abgasanlage, die mehr als zwei Abgasstränge umfasst, die Verwendung genau einer Breitband-Lambdasonde 28 bevorzugt. In dieser Konstellation kann demnach zwischen einem vollbestückten Abgasstrang 24, der mit jeweils einer Breitband-Lambdasonde 28 und einer Sprungantwort-Lambdasonde 30 ausgestattet ist, und einem teilbestückten Abgasstrang 24' mit nur einer Sprungantwort-Lambdasonde 30' unterschieden werden. Die Regelung der Luft-Kraftstoff-Verhältnisse der dem vollbestückten Abgasstrang 24 zugeordneten Zylinder 12, 18 erfolgt durch die Regeleinrichtung 32, welche die Signale der Gassensoren 28, 30 verarbeitet. Auf der anderen Seite werden die dem teilbestückten Abgasstrang 24' zugeordneten Zylinder 14, 16 durch die Regeleinrichtung 32', welche die Signale der Sprungantwort- Lambdasonde 30' empfängt, geregelt. Selbstverständlich ist im Rahmen der Erfindung auch eine Lambdaregelung aller Zylinder 12, 14, 16, 18 durch eine einzige Regeleinrichtung denkbar, in der die Signale sämtlicher Sonden Eingang finden. Ferner werden von der Erfindung auch Motoren mit einer von der Darstellung abweichenden Anzahl und Anordnung von Zylindern sowie mehrteilige Sauganlagen, insbesondere bei V-Motoren, erfasst.
Nachfolgend soll die Lambdaregelung des Mehrzylindermotors 10 mit der in Fig. 2 gezeigten Abgasanlage erläutert werden. Zunächst wird der Mehrzylindermotor 10 mit einer einheitlichen Lambdaregelung des vollbestückten Abgasstranges 24 gefahren. Dafür wird aus einem von der Sauganlage 20 angesaugten Luftmassenstrom und dem gewünschten Lambdawert (Sollwert) eine grobe Vorgabe für die Kraftstoffeinspritzmenge ermittelt. Über die Breitband-Lambdasonde 28, die einen Ist- Lambdawert des Abgases ermittelt, wird der Lambdawert in bekannter Weise auf den Sollwert eingeregelt. Da die Abweichung des Ist-Lambdawertes vom Soll-Lambdawert durch die möglichst motornah angeordnete Breitband-Lambdasonde 28 unmittelbar gemessen wird, ist eine direkte Korrektur des Ist-Lambdawertes durch Änderung der Einspritzmenge proportional zur gemessenen Abweichung möglich. Infolge dessen erfolgt die Vorregelung sehr schnell. Eine Feinregelung des Lambdawertes der Zylinder 12, 14, 16, 18 erfolgt zunächst durch die nachgeschaltete Sprungantwort-Lambdasonde 30. Die Verwendung einer Sprungantwort-Lambdasonde an dieser Stelle hat den Vorteil, dass sie im Hauptapplikationsbereich, in welchem der genaueste Regelungsbedarf besteht, nämlich um λ = 1, eine höhere Auflösung als Breitband-Lambdasonden aufweist. In dieser Stufe der Lambdaregelung entspricht der gemessene Lambdawert (Ist-Lambda) im vollbestückten Abgasstrang 24 also sehr exakt der Lambdavorgabe (Soll-Lambda). Im teilbestückten Abgasstrang 24' wird hingegen mit großer Wahrscheinlichkeit eine gewisse Abweichung des Ist-Lambdawertes von dem Sollwert vorliegen. Diese Abweichung ist hauptsächlich, durch eine ungleichmäßige Luftzufuhr zu den einzelnen Zylindern 12, 14, 16, 18 begründet. Im dargestellten Beispiel eines 4-Zylinder-Reihenmotors 10 etwa, werden die beiden inneren Zylinder 14, 16 des teilbestückten Abgasstranges 24' gewöhnlich mit einer etwas höheren angesaugten Luftmasse versorgt als die beiden äußeren Zylinder 12, 18. Infolge dessen liegt nach alleiniger Regelung durch die Sonden 28, 30 des vollbestückten Stranges 24 ein geringfügig zu mageres Luft-Kraftstoff-Verhältnis im teilbestückten Abgasstrang 24' vor. Die endgültige Lambda-Feinregelung des teilbestückten Abgasstranges 24' erfolgt daher durch die Regeleinrichtung 32' in Abhängigkeit des Signals der Sprungantwort- Lambdasonde 30'. Hierfür wird eine kontinuierliche Verschiebung des Luft-Kraftstoff- Gemisches der Zylinder 14, 16 in Richtung der vermuteten Abweichung durchgeführt, gemäß dem dargestellten Beispiel wird also kontinuierlich "angefettet", bis auch im Strang 24' der gewünschte Lambdawert vorliegt. In einem Kennfeld werden Wertepaare, die aus den Stellgrößen des Eingriffs der Regeleinrichtung 32 einerseits und den im vollbestückten Abgasstrang 24 gemessenen Lambdawerten andererseits bestehen, abgespeichert. Anhand dieses Kennfeldes kann eine Vorsteuerung des teilbestückten Abgasstranges 24' auch zylinderselektiv, d. h. mit einer vom vollbestückten Strang 24 abweichenden Lambdavorgabe, erfolgen. Vorteilhafterweise werden in dem Kennfeld zusätzliche Betriebspunkte des Fahrzeuges und/oder Randparameter gespeichert, die den Ist-Lambdawert beeinflussen.
Da im teilbestückten Abgasstrang 24' keine direkte Messung einer Abweichung des Ist- Lambdas vom Soll-Lambda möglich ist, erfolgt die Feinregelung in diesem Strang deutlich langsamer als im vollbestückten Abgasstrang 24. Eine Beschleunigung der Lambdaregelung im teilbestückten Abgasstrang 24' wird durch eine besonders vorteilhafte Ausgestaltung der Erfindung erreicht. Diese sieht vor, zu einem Zeitpunkt annähernd gleicher Lambdawerte in beiden Abgassträngen 24, 24' die Abweichung der Stellgrößen des Reglereingriffs in beiden Strängen 24, 24' zu bestimmen und in dem Kennfeld abzuspeichern. Zusätzlich sollte eine Betriebspunkt-Abhängigkeit der des Differenzwertes der Stellgrößen, insbesondere eine Drehzahl- und/oder eine Lastabhängigkeit, in dem Kennfeld gespeichert werden, so dass für jeden Betriebspunkt des Kraftfahrzeuges die theoretische Stellgröße sowie der Differenzwert bekannt ist. Bei einem erneuten Anfahren des gleichen Betriebspunktes kann somit die Differenz des Reglereingriffs direkt berücksichtigt werden. Im Prinzip wird dabei auf den für den vollbestückten Abgasstrang 24 vermerkten Reglereingriff der entsprechende Differenzwert aufaddiert. Im Resultat muss in beiden Strängen 24, 24' annähernd die gleiche Feinregelung durch die Sonden 30, 30' durchgeführt werden, so dass in beiden Abgassträngen 24, 24' die. Lambdaregelung mit ungefähr der gleichen Geschwindigkeit durchgeführt werden kann. Dieses kommt einer Emissionsstabilität zugute.
Das Kennfeld kann noch weiter verfeinert werden. Beispielsweise können weitere Randbedingungen, welche die Lambdaregelung beeinflussen, berücksichtigt werden. So können etwa Dynamikeinflüsse, die eine Abhängigkeit einer Stellung eines Pedalwinkelgebers und/oder einer Geschwindigkeit, mit welcher sich Drehzahl, Luftmassen und/oder Einspritzsollvorgaben ändern, umfassen, Temperatureinflüsse und/oder ein Zustand des Katalysators 26, 26' hinsichtlich seiner Aktivität und/oder seiner Sauerstoffspeicherfähigkeit, mit in dem Kennfeld abgespeichert werden. Ferner kann eine fortlaufende Präzisierung des Kennfeldes durchgeführt werden, indem die Stellgrößen des Kennfeldes bei Vorliegen gleicher oder ähnlicher Betriebspunkte und Randbedingungen gemittelt werden. Bei der Mittelwertsbildung kann ferner eine Gewichtung vorgesehen sein.
Die in Fig. 2 gezeigte Sensorkonfiguration ermöglicht nicht nur eine exakte und schnelle Lambdaregelung in beiden Abgassträngen 24, 24', sondern auch eine kontinuierliche Überwachung des Zustandes der Vorkatalysatoren 26, 26'. Dieses wird durch die Fig. 3 näher erläutert, in welcher ein vereinfachter zeitlicher Verlauf einer Sondenspannung US einer Breitband-Lambdasonde 28 (US(28)) sowie einer Sprungantwort-Lambdasonde 30 (US(30)) während einer langsamen linearen Anfettung des Luft-Kraftstoff-Gemisches dargestellt ist. Die Sondenspannung US(28) der Breitband-Lambdasonde 28 spiegelt praktisch ohne zeitliche Verzögerung die lineare Anfettung des Luft-Kraftstoff-Gemisches wider. Zu einem Zeitpunkt t1 entspricht das Signal US(28) der Breitband-Lambdasonde 28 einem Lambdawert von 1. Der Verlauf der Sondenspannung US(30) der nachgeschalteten Sprungantwort-Lambdasonde 30 zeigt einen typisch sigmoidalen Verlauf mit einer sprungartigen Spannungsänderung und einem Wendepunkt bei λ = 1. Die Sprungantwort-Lambdasonde 30 zeigt erst nach einer gewissen Verzögerung gegenüber der vorgeschalteten Breitband-Lambdasonde 28, nämlich zu einem Zeitpunkt t2, einen Signalwert US(30) an, der λ = 1 entspricht. Die Zeitdifferenz Δt, die zwischen den übereinstimmenden Sensorsignalen vergeht, hängt einerseits von der zurückzulegenden Weglänge des Abgases zwischen den beiden Sonden 28, 30 ab. Auf der anderen Seite ist die Zeitverzögerung Δt proportional zu einer Sauerstoffspeicherfähigkeit des Katalysators 26. Hat dieser nämlich während der vorausgegangenen Magerphase, in welcher Sauerstoff in einem stöchiometrischen Überschuss im Abgas vorliegt, Sauerstoff eingelagert, so wird dieser sorbierte Sauerstoff bei dem Mager-Fett-Übergang wieder freigesetzt, so dass für eine gewisse Dauer nach dem Übergang stromab des Katalysators 26, 26' noch eine sauerstoffhaltige, das heißt magere Atmosphäre detektiert wird. Da die Sauerstoffspeicherfähigkeit des Katalysators 26, 26' wiederum mit seiner Konvertierungsaktivität korreliert, kann durch Registrierung und Beobachtung von Δt die Katalysatoraktivität mit hoher Empfindlichkeit überwacht werden. Alternativ kann statt des Signalverlaufs der Breitband-Lambdasonde 28 auch der Zeitpunkt eines Eingriffs in die Luft-Kraftstoff-Regelung der betreffenden Zylinder für die Berechnung von Δt verwendet werden.
Die Fig. 4 zeigt eine alternative Ausgestaltung einer erfindungsgemäßen mehrsträngigen Abgasanlage. Wie bereits in dem in Fig. 2 dargestellten Beispiel, umfasst die Abgasanlage einen vollbestückten und einen teilbestückten Abgasstrang 24, 24'. Auf die Darstellung der/die Regeleinrichtung 32 wurde hier verzichtet. Gemäß dieser Ausführung werden beide den Katalysatoren 26, 26' nachgeschalteten Sprungantwort- Lambdasonden durch die Temperatursensoren 42, 42' ersetzt. In dieser Ausführung erfolgt die Lambdaregelung in beiden Abgassträngen 24, 24' ausschließlich in Abhängigkeit der vorgeschalteten Lambdasonde 28. Eine Zustandsüberwachung der Katalysatoren 26, 26' erfolgt anhand der durch die Temperaturmessstellen 42, 42' erfassten Abgastemperaturen hinter den Katalysatoren 26, 26'. Die von den Sensoren 42, 42' ermittelten Abgastemperaturen werden mit den stromauf der Katalysatoren 26, 26' vorliegenden Abgastemperaturen verglichen. Letztere können entweder durch weitere, entsprechend angeordnete Temperaturmessstellen ermittelt werden oder - günstiger - anhand bekannter Betriebsparameter des Motors 10 hinreichend genau modelliert werden. Bei dieser Konstellation wird von der Tatsache Gebrauch gemacht, dass eine Konvertierungsaktivität eines Katalysators immer mit einer Temperaturerhöhung des Abgases einher geht. Demzufolge kann eine Schädigung der Katalysatoren 26, 26' festgestellt werden, wenn keine oder lediglich zu geringe Temperaturanstiege hinter den Katalysatoren 26, 26' gemessen werden. Gegenüber der in Fig. 2 gezeigten Ausführung, bei welcher die Katalysatorüberwachung mittels nachgeschalteter Lambdasonden 30, 30' erfolgt, können mittels der Temperatursensoren 42, 42' jedoch nur verhältnismäßig starke Schädigungen des Katalysators 26, 26' detektiert werden. Die Anordnung hat jedoch den Vorteil, dass auf ein einem NOx-Speicherkatalysator 36 vorgeschalteter Temperatursensor 38 (vgl. Fig. 2) verzichtet werden kann.
BEZUGSZEICHENLISTE
10
Mehrzylindermotor
12
,
14
,
16
,
18
Zylinder
20
Sauganlage
22
Stellmittel
24
Abgasstrang (vollbestückt)
24
' Abgasstrang (teilbestückt)
26
,
26
' erster Katalysator/Vorkatalysator
28
erster Gassensor/Breitband-Lambdasonde
30
,
30
' zweiter Gassensor/Sprungantwort-Lambdasonde
32
,
32
' Regeleinrichtung
34
gemeinsamer Abgasstrang
36
zweiter Katalysator/NOx
-Speicherkatalysator
38
Temperatursensor
40
NOx
-Sensor
42
,
42
' Temperatursensor
US
Sondenspannung
t Zeit
Δt Zeitdifferenz

Claims (25)

1. Mehrflutige Abgasanlage eines Mehrzylindermotors für Kraftfahrzeuge mit
  • - mindestens zwei Abgassträngen (24, 24'), in die jeweils ein oder mehrere Zylinder (12, 14, 16, 18) münden,
  • - einem ersten, in mindestens einem Abgasstrang (24) angeordneten Gassensor (28), wobei eine Anzahl der mit dem ersten Gassensor (28) bestückten Abgasstränge (24) kleiner als eine Gesamtzahl der Abgasstränge (24, 24') ist,
  • - mindestens einer Regeleinrichtung (32, 32') zur Verarbeitung der durch den/die ersten Gassensor/en (28) bereitgestellten Signale und Regelung eines in die Zylinder (12, 14, 16, 18) einzuspeisenden Luft-Kraftstoff-Verhältnisses in Abhängigkeit der Signale.
2. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass stromab des ersten Gassensors (28), insbesondere stromab eines ersten Katalysators (26, 26') oder eines weiteren Katalysators, in jedem Abgasstrang (24, 24') ein zweiter Gassensor (30, 30') und/oder ein Temperatursensor (42, 42') angeordnet ist.
3. Abgasanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine erste Gassensor (28) eine Lambdasonde, insbesondere eine Breitband-Lambdasonde, ist.
4. Abgasanlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der zweite Gassensor (30, 30') eine Lambdasonde, insbesondere eine Sprungantwort- Lambdasonde, ist.
5. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Gassensor (28) an einer möglichst motornahen Position des Abgasstranges (24) angeordnet ist.
6. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass genau ein erster Gassensor (28) vorgesehen ist.
7. Abgasanlage nach Anspruch 2, dadurch gekennzeichnet, dass der erste Katalysator (26, 26') ein Vorkatalysator, insbesondere eine 3-Wege-Vorkatalysator, ist.
8. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass stromab des Katalysators (26, 26'), insbesondere an einer Unterbodenposition, mindestens ein zweiter Katalysator (36), insbesondere ein 3- Wege-Katalysator und/oder ein NOx-Speicherkatalysator, angeordnet ist.
9. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abgasstränge (24, 24') bis zu einem Abgasauslass vollständig mehrflutig verlaufen.
10. Abgasanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich mindestens zwei Abgasstränge (24, 24') an einer dem Abgasauslass vorgelagerten Position, insbesondere unmittelbar vor einem gemeinsamen zweiten Katalysator (36), zu einem oder mehreren Abgassträngen (34) vereinigen.
11. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mehrzylindermotors(10) ein Ottomotor, insbesondere ein direkteinspritzender Ottomotor, ist.
12. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das in die Zylinder (12, 14, 16, 18) einzuspeisende Luft- Kraftstoff-Verhältnis strangselektiv, insbesondere zylinderselektiv, steuerbar ist.
13. Abgasanlage nach Anspruch 12, dadurch gekennzeichnet, dass Einspritzparameter der Zylinder (12, 14, 16, 18), wie Einspritzmenge, Zündwinkel, Einspritzdauer, innere Abgasrückführrate und/oder Nacheinspritzparameter, strang- oder zylinderselektiv beeinflussbar sind.
14. Abgasanlage nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass eine Abgasrückführung vorgesehen ist, wobei eine äußere Abgasrückführrate strang- oder zylinderselektiv beeinflussbar ist.
15. erfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylindermotors für Kraftfahrzeuge mit einer mehrfiutigen Abgasanlage mit mindestens zwei Abgassträngen, in die jeweils ein oder mehrere Zylinder münden, mit den Schritten:
  • - Erfassung eines von einer Konzentration mindestens einer Abgaskomponente abhängigen Signals in mindestens einem mit einem ersten Gassensor (28) stromab des Mehrzylindermotors (10) bestückten (vollbestückten) Abgasstrang (24),
  • - Regelung eines Luft-Kraftstoff-Verhältnisses des/der dem vollbestückten Abgasstrang (24) zugeordneten Zylinders (12, 18) in Abhängigkeit des Signals des ersten Gassensors (28),
  • - Speicherung eines Kennfeldes, welches Stellgrößen der Luft-Kraftstoff- Regelung des/der dem vollbestückten Abgasstrang (24) zugeordneten Zylinders (12, 18) einem gemessenen Ist-Signalwert des ersten Gassensors (28) zuordnet, und
  • - Vorsteuerung eines Luft-Kraftstoff-Verhältnisses des/der einem nicht mit einem ersten Gassensor (28) bestückten (teilbestückten) Abgasstrang (24') zugeordneten Zylinder/s (14, 16) mittels des Kennfeldes.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der mindestens eine erste Gassensor (28) eine Lambdasonde, insbesondere eine Breitband- Lambdasonde, ist.
17. Verfahren nach Anspruch 15 bis 16, dadurch gekennzeichnet, dass eine Feinregelung des Luft-Kraftstoff-Verhältnisses des/der einem voll- oder teilbestückten Abgasstrang (24, 24') zugeordneten Zylinder/s (12, 14, 16, 18) in Abhängigkeit eines mittels eines stromab des ersten Gassensors (28), insbesondere stromab eines ersten Katalysators (26, 26') oder eines weiteren Katalysators angeordneten zweiten Gassensors (30, 30') erfassten Signals, das von der Konzentration der mindestens einen Abgaskomponente abhängt, erfolgt.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass der zweite Gassensor (30, 30') eine Lambdasonde, insbesondere eine Sprungantwort- Lambdasonde, ist.
19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass ein Differenzwert der Stellgrößen der Luft-Kraftstoff-Regelung zwischen den Zylindern (12, 18) eines vollbestückten Abgasstranges (24) und den Zylindern (14, 16) eines teilbestückten Abgasstranges (24') bei im Wesentlichen gleichen Ist- Signalwerten der zweiten Gassensoren (30, 30') in den Abgassträngen (24, 24') in dem Kennfeld gespeichert und bei der Vorsteuerung des/der dem teilbestückten Abgasstrang (24') zugeordneten Zylinder/s (14, 16) einkalkuliert wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass eine Betriebspunkt- Abhängigkeit der Stellgrößen und/oder des Differenzwertes der Stellgrößen des Kraftfahrzeugs, insbesondere eine Drehzahl- und/oder eine Last-Abhängigkeit, in dem Kennfeld gespeichert wird.
21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass weitere, die Stellgrößen und/oder die Differenz der Stellgrößen beeinflussende Randbedingungen, wie eine Stellung eines Pedalwertgebers, eine Änderungsgeschwindigkeit einer Sollvorgabe einer Drehzahl, eines Luftmassenstroms und einer Einspritzmenge, eine Temperatur, eine Katalysatoraktivität, eine Sauerstoffspeicherfähigkeit des Katalysators (26, 26'), in dem Kennfeld gespeichert werden.
22. Verfahren nach einem der Ansprüche 19 bis 20, dadurch gekennzeichnet, dass Kennwerte des Kennfeldes fortlaufend durch gewichtete oder ungewichtete Mittelung der Kennwerte bei mehrmaligem Auftreten gleicher oder ähnlicher Betriebspunkte gefiltert werden.
23. Verfahren nach einem der Ansprüche 15 bis 22, dadurch gekennzeichnet, dass in Abhängigkeit einer Zeitverzögerung (Δt), die zwischen einer Änderung des der/dem Zylinder/s (12, 14, 16, 18) zugeführten Luft-Kraftstoff-Verhältnisses und einer Antwort des stromab des Katalysators (26, 26') angeordneten zweiten Gassensors (30, 30') erfolgt, eine Zustandsüberwachung des Katalysators (26, 26') durchgeführt wird.
24. Verfahren nach einem der Ansprüche 15 bis 22, dadurch gekennzeichnet, dass in Abhängigkeit einer stromab des Katalysators (26, 26') gemessenen Abgastemperatur eine Zustandsüberwachung des Katalysators (26, 26') durchgeführt wird.
25. Verfahren nach Anspruch 16 und 18, dadurch gekennzeichnet, dass eine Kalibrierung der Breitband-Lambdasonde (28) mittels der stromab von dieser angeordneten Sprungantwort-Lambdasonde (30) erfolgt.
DE10029633A 2000-04-07 2000-06-15 Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses Withdrawn DE10029633A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10029633A DE10029633A1 (de) 2000-04-07 2000-06-15 Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses
DE50112018T DE50112018D1 (de) 2000-04-07 2001-04-03 Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors
EP01250117A EP1143131B1 (de) 2000-04-07 2001-04-03 Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10017386 2000-04-07
DE10029633A DE10029633A1 (de) 2000-04-07 2000-06-15 Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses

Publications (1)

Publication Number Publication Date
DE10029633A1 true DE10029633A1 (de) 2001-10-11

Family

ID=7637962

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10029633A Withdrawn DE10029633A1 (de) 2000-04-07 2000-06-15 Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses

Country Status (1)

Country Link
DE (1) DE10029633A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236732A1 (de) * 2002-08-09 2004-02-12 Bayerische Motoren Werke Ag Abgaseinrichtung für eine Mehrzylinderbrennkraftmaschine
DE10337228A1 (de) * 2003-08-13 2005-03-17 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102016218794A1 (de) 2016-09-29 2018-03-29 Robert Bosch Gmbh Stationärer Erdgasmotor mit wenigstens einem Stickoxidsensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236008A1 (de) * 1992-10-24 1994-04-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur adaptiven Einzelzylinder-Lambdaregelung bei einem Motor mit variabler Ventilsteuerung
DE19735367C1 (de) * 1997-08-14 1998-09-03 Siemens Ag Verfahren zur Lambda-Regelung einer Brennkraftmaschine mit zwei Zylindergruppen
DE19844745C1 (de) * 1998-09-29 1999-12-30 Siemens Ag Regenerationsverfahren für einen NOx-Speicherkatalysator einer Brennkraftmaschine
DE19503852C2 (de) * 1994-02-09 2000-01-27 Fuji Heavy Ind Ltd Kraftstoff-Luftverhältnis-Regeleinrichtung und Verfahren zum Regeln des Kraftstoff-Luftverhältnisses eines Motors
DE19846393A1 (de) * 1998-10-08 2000-04-13 Bayerische Motoren Werke Ag Zylinderselektive Regelung des Luft-Kraftstoff-Verhältnisses
DE19852294A1 (de) * 1998-11-12 2000-05-18 Bayerische Motoren Werke Ag Abgasanlage einer Mehrzylinder-Brennkraftmaschine
DE19936355A1 (de) * 1999-08-03 2001-02-08 Volkswagen Ag Verfahren zur Plausibilitätsprüfung von Motorgrößen und Sensorgrößen unter Verwendung einer stetigen Lambda-Sonde

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236008A1 (de) * 1992-10-24 1994-04-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur adaptiven Einzelzylinder-Lambdaregelung bei einem Motor mit variabler Ventilsteuerung
DE19503852C2 (de) * 1994-02-09 2000-01-27 Fuji Heavy Ind Ltd Kraftstoff-Luftverhältnis-Regeleinrichtung und Verfahren zum Regeln des Kraftstoff-Luftverhältnisses eines Motors
DE19735367C1 (de) * 1997-08-14 1998-09-03 Siemens Ag Verfahren zur Lambda-Regelung einer Brennkraftmaschine mit zwei Zylindergruppen
DE19844745C1 (de) * 1998-09-29 1999-12-30 Siemens Ag Regenerationsverfahren für einen NOx-Speicherkatalysator einer Brennkraftmaschine
DE19846393A1 (de) * 1998-10-08 2000-04-13 Bayerische Motoren Werke Ag Zylinderselektive Regelung des Luft-Kraftstoff-Verhältnisses
DE19852294A1 (de) * 1998-11-12 2000-05-18 Bayerische Motoren Werke Ag Abgasanlage einer Mehrzylinder-Brennkraftmaschine
DE19936355A1 (de) * 1999-08-03 2001-02-08 Volkswagen Ag Verfahren zur Plausibilitätsprüfung von Motorgrößen und Sensorgrößen unter Verwendung einer stetigen Lambda-Sonde

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236732A1 (de) * 2002-08-09 2004-02-12 Bayerische Motoren Werke Ag Abgaseinrichtung für eine Mehrzylinderbrennkraftmaschine
DE10337228A1 (de) * 2003-08-13 2005-03-17 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102016218794A1 (de) 2016-09-29 2018-03-29 Robert Bosch Gmbh Stationärer Erdgasmotor mit wenigstens einem Stickoxidsensor
WO2018059834A1 (de) 2016-09-29 2018-04-05 Robert Bosch Gmbh Stationärer erdgasmotor mit wenigstens einem stickoxidsensor

Similar Documents

Publication Publication Date Title
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE4208002B4 (de) System zur Steuerung einer Brennkraftmaschine
DE102016222418A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente
WO2001059282A1 (de) Verfahren und einrichtung zur bestimmung zylinderindividueller unterschiede einer steuergröss bei einer mehrzylindrigen brennkraftmaschine
DE69634580T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
DE102008001569A1 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE10205817A1 (de) Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses
DE102018216980A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators
DE10130054B4 (de) Abgasanlage einer mehrzylindrigen Verbrennungskraftmaschine und Verfahren zur Reinigung eines Abgases
WO1997021029A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102016222108A1 (de) Verfahren zum Einstellen eines Kraftstoff/Luft-Verhältnisses eines Verbrennungsmotors
WO2008017528A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE19926139A1 (de) Kalibrierung eines NOx-Sensors
EP1143131B1 (de) Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors
EP0826100B1 (de) Verfahren zur zylinderselektiven lambda-regelung einer mehrzylinder-brennkraftmaschine
WO1990007053A1 (de) Verfahren zur kraftstoffmengenbestimmung
DE10358988B3 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
AT413887B (de) Verfahren zum ermitteln der partikelemissionen
WO2005095777A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschi­ne
EP2550443A1 (de) Verfahren und vorrichtung zur anpassung von adaptionswerten für die ansteuerung von einspritzventilen in einem motorsystem mit mehreren einspritzungsarten
DE10115956A1 (de) Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses
DE10029633A1 (de) Mehrflutige Abgasanlage eines Mehrzylindermotors und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses
DE102005005765A1 (de) Verfahren und Vorrichtung zur Gleichstellung von Lambda-Werten der einzelnen Zylinder eines Verbrennungsmotors
DE102006043679B4 (de) Verfahren zur Einzelzylinderregelung bei einer Brennkraftmaschine
WO2013079468A1 (de) Verfahren und vorrichtung zur regelung eines luft-kraftstoff-verhältnisses eines verbrennungsmotors

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8130 Withdrawal