EP1502153A2 - Masque pour photolithographie a elements absorbeurs/dephaseurs inclus - Google Patents

Masque pour photolithographie a elements absorbeurs/dephaseurs inclus

Info

Publication number
EP1502153A2
EP1502153A2 EP03749925A EP03749925A EP1502153A2 EP 1502153 A2 EP1502153 A2 EP 1502153A2 EP 03749925 A EP03749925 A EP 03749925A EP 03749925 A EP03749925 A EP 03749925A EP 1502153 A2 EP1502153 A2 EP 1502153A2
Authority
EP
European Patent Office
Prior art keywords
substrate
phase
mask
absorber
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03749925A
Other languages
German (de)
English (en)
Inventor
Philippe Thony
Bernard Aspar
Gilles Fanget
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1502153A2 publication Critical patent/EP1502153A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Definitions

  • the present invention relates to a photolithography mask with absorbing / phase-shifting elements included.
  • Photolithography masks are widely used for the manufacture of components in the fields of microelectronics, microsystems and integrated optics. They allow in particular to fix the shape and dimensions of components, parts of components, or even intermediate structures used for the production of components.
  • the invention finds applications in the technical fields indicated above, and in particular for the production of very small patterns, by means of a short wavelength insolation light.
  • Photolithography is one of the fundamental techniques of microelectronics. It uses photosensitive intermediate and sacrificial layers. These layers, for example resin, are deposited on layers of material to be treated. After exposure and development, the resins, formed, can constitute masks for etching or doping the underlying layers to be treated. To give the photosensitive resins a desired pattern, they are themselves insolated through an exposure mask. This corresponds, possibly on a larger scale, to the desired pattern. Insolation light is generally a coherent monochromatic light from a laser. An optical system associated with the mask, and receiving the insolation light, makes it possible to form an image of the pattern of the mask on the layer of photosensitive resin.
  • the exposure masks can advantageously be installed in a photo-repeater for successively exposing different fields of a support, exactly according to the same pattern.
  • FIG. 1 appended illustrates, in a simplified manner, an exposure mask of known type.
  • the mask of FIG. 1 comprises a transparent substrate 10 made of silica or quartz. On this substrate are absorbing / phase-shifting elements 12. These correspond to the sunshine pattern or to a complementary pattern, depending on whether the photosensitive resin is of the positive or negative type.
  • the absorber / phase-shifting elements can be opaque or semi-transparent elements.
  • Opaque absorbers / phase shifters such as chrome elements, for example, can be used to make a binary insolation mask.
  • absorber / phase-shifting elements made of a semi-transparent material, such as an alloy of silicon and molybdenum, make it possible to produce a phase shift insolation mask.
  • the light that crosses the elements absorbers / phase shifters in fact undergoes a phase shift with respect to the light which passes outside the elements.
  • a covering film 20 This is, for example, a polymer film.
  • the film 20 is kept away from the absorber / phase-shifter elements 12 by means of a frame 22 bonded to the substrate 10.
  • the role of the film is essentially to prevent dust from settling on the face of the substrate carrying the absorbent elements / phase shifters.
  • the image of the mask that is formed on a photosensitive layer to be exposed corresponds to the image of the absorber / phase-shifting elements.
  • the optical system associated with the mask is developed for a focal plane conjugated to the face of the substrate 10 carrying the absorbing / phase-shifting elements.
  • the spacing between the film 20 and the absorber / phase-shifter elements 12 of the mask makes it possible to move the image of any dust or scratches out of the field of sharpness.
  • the contrast of the blurred dust image is then sufficiently low so that the resin to be exposed is not sensitive to it.
  • the substrate of the mask, as well as the projection lenses, can possibly be made of materials capable of offering a satisfactory light transmission.
  • the covering film 20 absorbs a large amount of insolation light for short wavelengths. The same applies to the air located in the space between the substrate 10 of the mask and the covering film 20. A significant absorption harms the contrast of the projected image and therefore the resolution of lithography.
  • One solution envisaged consists in replacing the flexible covering film 20, which is made of polymer, by a film of a hard material having better light-transmitting properties.
  • the use of a hard material for the covering film is however liable to disturb more significantly the path of a light beam of sunshine. This can lead to deformations of the image of the mask projected onto a layer of photosensitive material to be exposed.
  • the installation of a covering film of a hard material increases the complexity and the cost of manufacturing the masks.
  • This type of mask poses a problem because the technological process must comprise two stages, one relating to quartz for producing the phase mask and the other relating to chromium to produce the chromium mask, these two stages being carried out on the same substrate. It is difficult to achieve a flawless chromium deposit on the etched surface of the substrate. It is also difficult to produce the patterns in the chromium layer, again because of the topology of the surface (spreading of resin and exposure by electron beam or by laser).
  • the object of the present invention is to propose a photolithography mask which does not have the limitations and difficulties mentioned above.
  • One aim is in particular to propose a mask compatible with short wavelengths of sunshine, and in particular with a wavelength of the order of 157 nm, or even less.
  • An aim is thus to propose a mask which does not introduce significant deformations of the projected image and which does not significantly absorb the insolation light.
  • the invention relates more precisely to a mask for photolithography comprising a transparent substrate, the substrate comprising a first portion of substrate and a second portion of substrate, integral with the first portion of substrate, at least one absorber / phase-shifter element being embedded in the substrate, characterized in that the first part of the substrate is bonded, without adding material, to the second part of the substrate.
  • the mask may have only one absorber / phase-shifter element, possibly of complex shape, it generally includes several.
  • the absorber / phase-shifting elements are considered to be included in the substrate and to form a monolithic assembly with the substrate, when they are embedded therein so that the mask does not have a cavity in contact with the absorbing / phase-shifting elements, or when a possible cavity is small enough not to significantly absorb a light beam capable of passing through the substrate.
  • the mask does not contain, if not very little air or gas absorbing the light of insolation.
  • the absorber / phase-shifting elements are included, their main faces capable of being exposed to light are covered by the substrate. They are thus protected from dust and possible scratches. More specifically, dust and possible scratches may appear on an external face of the substrate, that is to say outside of a plane or of a region comprising the absorber / phase-shifting elements.
  • the spacing between the absorber / phase shifting elements and a surface likely to be polluted corresponds to the thickness of the substrate or of a part of the substrate that covers the elements, not a cavity. Furthermore, such elements are easily cleaned with standard methods such as chemical baths.
  • At least one absorber / phase-shifter element can be embedded in one of said substrate parts, by being flush with one contact face of the other of said substrate parts.
  • the second part of the substrate constitutes a cover which exactly covers the face of the first part of the substrate on which the absorber / phase-shifting elements are flush.
  • the first and second parts can be interchangeable.
  • each of the two parts can both have recessed absorbers / phase shifters and serve as a cover for the other part.
  • the absorber / phase-shifting elements can be chosen from opaque elements, transparent or semi-transparent elements having a refractive index different from that of the substrate, or a combination of such elements.
  • the first and second parts of substrate in direct contact with each other, can be made of identical materials. This makes it possible to avoid any discontinuity in the propagation of light through the mask.
  • the materials can also be chosen different to voluntarily introduce phase shifts of the light.
  • the assembly of the first and second substrate parts is carried out for example by bonding and advantageously the bonding is of the molecular adhesion type.
  • the absorbing / phase-shifting elements can also be in contact via a filling material placed between the first and second parts of the substrate.
  • the absorber / phase-shifting elements can be embedded in the first and second parts of the substrate.
  • the absorbers / phase shifters can also be embedded in the filling infill layer and sandwiched between the first and second parts " of substrate.
  • One of the first and second parts of the substrate, or optionally the two parts, can be etched before they are assembled so that at least one first part of the substrate has a face with depressions facing a second part of the substrate.
  • the depressions can be filled with a filling material. It is, for example, the intermediate material between the substrate parts.
  • the cavities, filled with the filling material can constitute light-shifting elements when the filling material has an optical index different from that of the first and / or second substrate parts.
  • FIG. 2 is a schematic section of a photolithography mask according to the invention, with a substrate in two parts.
  • FIGS. 4 and 5 are schematic sections of photolithography masks in accordance with the invention, and constituting variants of the masks of FIGS. 2 and 3.
  • FIG. 6 and 7 are schematic sections of photolithography masks according to the invention with phase shifting elements.
  • FIGS. 8 and 9 are schematic sections of photolithography masks according to the invention, and constituting variants of the mask of FIG. 7.
  • Figure 2 shows a mask according to the invention. It comprises a transparent substrate 100 and, included in this substrate, light absorbing / phase shifting elements 112.
  • the substrate is made of a hard material. It is, for example, made of silica or quartz or any other transparent material for a wavelength of the insolation light.
  • the light absorbing / phase shifting elements may be made of an opaque material such as a metal. For example, a layer of chrome. They can also be made of a semi-transparent material, such as oSi. When a material is semi-transparent, it makes it possible to introduce a phase shift in the insolation lumen.
  • the transmission coefficient of transparent materials is, for example, of the order of 6 to 12%.
  • the value of the phase shift which exists between the beams which pass through the absorber / phase-shifter elements and those which do not pass through them, can be adjusted by acting on the composition and / or on the thickness of these elements. The composition and the thickness are, for example, adjusted to introduce phase opposition into the beams.
  • the making of a. mask according to FIG. 2 comprises, for example, the etching of cavities in a first part 110 of the substrate, the deposition of a layer of material suitable for the manufacture of the absorber / phase-shifting elements, then the leveling of this layer with stop on the first part of the substrate.
  • absorber / phase-shifting elements 112 are obtained which are flush with one face of the first part of substrate 110.
  • the shape of the elements corresponds to that of the cavities previously etched.
  • the mask is completed by bonding a second part of substrate 120 to the face on which the absorber / phase-shifting elements are flush.
  • the bonding can be a direct molecular bonding, that is to say without the addition of material. It then results from an appropriate preparation for polishing and cleaning the faces of the first and second parts of the substrate brought into contact.
  • a bonding of hydrophilic type can be carried out. For this, before contacting, the two parts of the substrate are cleaned in order to obtain good hydrophilicity (for example with chemical cleaning of the SCI type).
  • Mechanical-chemical polishing can be carried out in order to attenuate or even eliminate the surface roughness.
  • a heat treatment can be carried out to increase the bonding forces and ensure good stability over time (for example this treatment can be carried out at 300 K for 2 hours).
  • the first and second substrate parts may be made of different materials or, preferably, of the same material.
  • the fact of using the same material makes it possible not to affect the path of a light beam passing from the first part of substrate to the second part of substrate.
  • FIG. 3 shows another possibility of making the photolithography mask.
  • a layer of opaque or semi-transparent material is deposited on one face of a first portion of substrate 110. This layer is then etched to give it a desired pattern and thus form one or more absorbing / phase-shifting elements 112.
  • the interstices between the absorber / phase shifter elements are then filled with a transparent or semi-transparent filling material 114 such as fused silica or fused silica modified by the addition of chlorinated or fluorinated compounds.
  • This filling material can also be an organo-mineral glass deposited in solution in a solvent, by centrifugation and annealing (sol-gel process).
  • the choice of this material is not particularly critical.
  • the thickness of the absorber / phase-shifter elements 112, and therefore that of the filling material, is generally small. Thus, the filling material does not absorb a large amount of insolation light. You can also choose a quasi-transparent or transparent filling material.
  • the first part of substrate 110 is assembled with the second part of substrate 120, also called superstrate, so as to cover the absorbing / phase-shifting elements 112 .
  • FIG. 4 shows a variant of the photolithography mask of FIG. 3.
  • the filling material covers the absorber / phase-shifting elements 112. During the manufacture of the mask, the leveling of this material does not take place with stop on the absorber / phase-shifting elements, but before reaching these elements.
  • the filling material can optionally be used for bonding by promoting the adhesion of the first and second parts.
  • FIG. 5 shows a variant of the photolithography mask of FIG. 2.
  • FIG. 6 shows a particular embodiment of a photolithography mask according to the invention in which the absorber / phase-shifting elements 112 are associated with phase-shifting elements 118 formed directly in one of the parts 110 of the substrate.
  • the first part of substrate 110 has depressions 116 etched from the face carrying the absorber / phase-shifting elements.
  • the depressions can be etched before or after the formation of the absorber / phase shifter elements 112 and are located in particular between the locations provided for these elements.
  • the phase shifting elements 118 are constituted by the combination of the depressions 116 and of a filling material which fills these depressions.
  • the depressions are filled with the transparent material of filling 114 already mentioned with reference to the preceding figures.
  • the depressions 116 cause a beam to pass through varying thicknesses of substrate and filling material. Variable phase shifts can thus be introduced into the beams as a function of the depth of the depressions 116.
  • FIG. 7 shows another possible embodiment of a photolithography mask comprising two types of absorber / phase-shifting elements 112a, 112d.
  • Two layers of materials are successively deposited on a portion of substrate 110 and shaped by etching according to desired patterns. It is, in order, a layer of transparent or semi-transparent material having an optical index different from that of the first portion of substrate 110, then a layer of opaque material. The etching of these layers makes it possible to form phase-shifting elements 112d and absorbing elements 112a corresponding respectively to the transparent / semi-transparent layer and to the opaque layer.
  • absorbing elements 112a can partially cover and obscure phase-shifting elements 112d.
  • the space between the absorber elements and phase shifters is filled with filling material 114 in the manner already described. If necessary, the filling material can also constitute phase-shifting elements.
  • Figures 8 and 9 simply illustrate alternative embodiments of the photolithography mask of Figure 7, also with absorbing elements 112a and phase-shifting elements 112d.
  • the absorbing elements 112a are formed on an assembly face of the first part 110 of the substrate while the phase-shifting elements 112d are embedded in the second part 120 of the substrate.
  • a transparent material 114 coats the absorbing elements 112a. It can be observed that the absorbent elements of the second part of substrate 120 coincide with certain gaps left between absorbent elements of the first part of substrate.
  • the phase-shifting elements 112d can be solid or gaseous.
  • phase-shifting elements 112d are defined on the second part 120 of the substrate, for example by etching a layer, and absorbing elements, 112a are defined on the first part of substrate 110.
  • the first and second parts are then assembled by comparing the absorber / phase-shifting elements and connecting them by means of a layer 114 of transparent filling material. This layer coats the elements.

Abstract

La présente invention se rapporte à un masque d'insolation comprenant un substrat (100) transparent et au moins un élément absorbeur/déphaseur (112) inclus à l'intérieur du substrat, de façon à former avec le substrat un ensemble monolithique. Application à la photolithographie.

Description

MASQUE POUR PHOTOLITHOGRAPHIE A ELEMENTS ABSORBEURS/DEPHASEURS INCLUS.
Domaine technique La présente invention concerne un masque de photolithographie à éléments absorbeurs/déphaseurs inclus .
Les masques de photolithographie sont largement mis en œuvre pour la fabrication de composants dans les domaines de la microélectronique, des microsystèmes et de l'optique intégrée. Ils permettent notamment de fixer la forme et les dimensions de composants, de parties de composants, ou encore de structures intermédiaires mises en œuvre pour la réalisation de composants.
L' invention trouve des applications dans les domaines techniques indiqués ci-dessus, et notamment pour la réalisation de motifs de très faibles dimensions, au moyen d'une lumière d'insolation à longueur d'onde courte.
Etat de la technique antérieure .
La photolithographie est l'une des techniques fondamentales de la microëlectronique . Elle fait appel à des couches intermédiaires et sacrificielles photosensibles. Ces couches, par exemple en résine, sont déposées sur des couches de matériau à traiter. Après insolation et développement, les résines, mises en forme, peuvent constituer des masques de gravure ou de dopage des couches à traiter sous-jacentes . Pour conférer aux résines photosensibles un motif souhaité, celles-ci sont elles-mêmes insolêes à travers un masque d'insolation. Celui-ci correspond, éventuellement à une plus grande échelle, au motif souhaité. La lumière d'insolation est généralement une lumière cohérente monochromatique d'un laser. Un système optique associé au masque, et recevant la lumière d'insolation, permet de former une image du motif du masque sur la couche de résine photosensible. Les masques d'insolation peuvent avantageusement être installés dans un photo-répéteur pour insoler successivement différents champs d'un support, exactement selon le même motif.
La figure 1 annexée illustre, de façon simplifiée, un masque d'insolation de type connu.
Le masque de la figure 1, comprend un substrat transparent 10 en silice ou en quartz. Sur ce substrat se trouvent des éléments absorbeurs/déphaseurs 12. Ceux-ci correspondent au motif d'insolation ou à un motif complémentaire, selon que la résine photosensible est du type positif ou négatif. Les éléments absorbeurs/déphaseurs peuvent être des éléments opaques ou semi-transparents .
Des éléments absorbeurs/déphaseurs opaques, tels que des éléments de chrome, par exemple, peuvent être utilisés pour réaliser un masque d' insolation binaire. Par ailleurs, des éléments absorbeurs/déphaseurs en un matériau semi-transparent, tel qu'un alliage de silicium et de molybdène, permettent de réaliser un masque d'insolation à décalage de phase. La lumière qui traverse les éléments absorbeurs/déphaseurs subit en effet un décalage de phase par rapport à la lumière qui passe en-dehors des éléments .
Au-dessus des éléments absorbeurs/déphaseurs du masque se trouve une pellicule de recouvrement 20. Il s'agit, par exemple, d'un film de polymère. La pellicule 20 est maintenue à distance des éléments absorbeurs/déphaseurs 12 au moyen d'un cadre 22 collé sur le substrat 10. La pellicule a essentiellement pour rôle d'éviter que des poussières ne se déposent sur la face du substrat portant les éléments absorbeurs/déphaseurs .
L'image du masque que l'on forme sur une couche photosensible à insoler correspond à 1 ' image des éléments absorbeurs/déphaseurs. En d'autres termes, le système optique associé au masque est mis au point pour un plan focal conjugué à la face du substrat 10 portant les éléments absorbeurs/déphaseurs. Ainsi, l'espacement entre la pellicule 20 et les éléments absorbeurs/déphaseurs 12 du masque permet de déplacer l'image d'éventuelles poussières ou rayures hors du champ de netteté .
Le contraste de l'image floue des poussières est alors suffisamment faible pour que la résine à exposer n'y soit pas sensible.
L'évolution des techniques de microélectronique vers la fabrication de composants toujours plus rapides et performants, conduit à la réalisation de motifs de photolithographie toujours plus petits. Dans le cadre de cette évolution, des améliorations des équipements d' insolation peuvent porter sur les composants optiques de projection de l'image du masque. Il s'agit, par exemple, d'un accroissement de leur ouverture. Un autre paramètre important est la longueur d' onde de la lumière d'insolation. Une tendance est de réduire la longueur d'onde en la faisant passer de 193 nm, pour les photo-répéteurs actuels à 157 nm pour des unités de production futures. La réduction de la longueur d'onde permet en effet la projection de détails plus fins.
Une difficulté apparaît toutefois avec une longueur d'onde aussi courte que 157 nm. Elle est liée à une transmission limitée de la lumière à travers le masque et à travers les moyens optiques de projection.
Le substrat du masque, de même que les lentilles de projection, peuvent éventuellement être réalisés en des matériaux susceptibles d'offrir une transmission satisfaisante de la lumière. En revanche, la pellicule de recouvrement 20 absorbe une grande quantité de lumière d' insolation pour des longueurs d'onde courtes. Il en va de même de l'air situé dans l'espace entre le substrat 10 du masque et la pellicule de recouvrement 20. Une absorption importante nuit au contraste de l'image projetée et donc à la résolution de lithographie.
Une solution envisagée consiste à remplacer la pellicule de recouvrement souple 20, qui est en polymère, par une pellicule en un matériau dur présentant de meilleures propriétés de transmission de la lumière. L'usage d'un matériau dur pour la pellicule de recouvrement est cependant susceptible de perturber de façon plus importante le trajet d'un faisceau lumineux d'insolation. Ceci peut conduire à des déformations de l'image du masque projetée sur une couche de matériau photosensible à insoler. De plus, la mise en place d'une pellicule de recouvrement en un matériau dur augmente la complexité et le coût de fabrication des masques.
Par ailleurs, pour éviter une absorption de la lumière par l'air contenu dans l'espace libre entre le substrat et la pellicule de recouvrement, un système peut être prévu pour purger cet espace avant utilisation. Cette opération est cependant délicate et a également une influence négative sur le coût final du masque.
Une illustration complémentaire de l'état de la technique peut être trouvée dans les documents (1) et (2) dont les références complètes sont précisées à la fin de la description.
Il existe un autre type de masque : les masques de type PSM alternés dits auto-alignés . Cet état de la technique est illustré par le document (3) dont la référence complète est précisée à la fin de la description. Ces masques comportent des motifs de chrome et des gravures du quartz pour les déphaseurs . Les déphaseurs sont réalisés dans un premier temps sur le substrat. Puis, une couche de chrome est déposée. Ensuite, les motifs de chrome sont réalisés dans cette couche. Ces masques sont nommés SCAA pour "Sidewall Chrome Alterning Aperture".
La réalisation de ce type de masque pose problème du fait que le procédé technologique doit comprendre deux étapes, l'une concernant le quartz pour réaliser le masque de phase et l'autre concernant le chrome pour réaliser le masque de chrome, ces deux étapes étant réalisées sur un même substrat. Il est difficile de réaliser un dépôt de chrome sans défaut sur la surface gravée du substrat. Il est aussi difficile de réaliser les motifs dans la couche de chrome, toujours à cause de la topologie de la surface (étalement de résine et insolation par faisceau d'électrons ou par laser).
Exposé de l'invention.
La présente invention a pour but de proposer un masque de photolithographie ne présentant pas les limitations et difficultés mentionnées ci-dessus.
Un but est en particulier de proposer un masque compatible avec de faibles longueurs d'onde d'insolation, et notamment avec une longueur d'onde de l'ordre de 157 nm, voire inférieure.
Un but est ainsi de proposer un masque qui n'introduise pas de déformations sensibles de l'image projetée et qui n'absorbe pas significativement la lumière d'insolation.
Un autre but est de proposer un masque qui ne nécessite pas de purge et dont le coût de fabrication est modéré. Pour atteindre ces buts, l'invention concerne plus précisément un masque pour photolithographie comprenant un substrat transparent, le substrat comprenant une première partie de substrat et une deuxième partie de substrat, solidaire de la première partie de substrat, au moins un élément absorbeur/déphaseur étant encastré dans le substrat, caractérisé en ce que la première partie de substrat est collée, sans apport de matière, sur la deuxième partie de substrat.
Bien que le masque puisse ne comporter qu'un seul élément absorbeur/déphaseur, éventuellement de forme complexe, il en comprend généralement plusieurs.
Dans la suite du texte il est fait ainsi référence à une pluralité d'éléments absorbeurs/déphaseurs.
Les éléments absorbeurs/déphaseurs sont considérés comme inclus dans le substrat et comme formant un ensemble monolithique avec le substrat, lorsqu' ils y sont encastrés de façon que le masque ne présente pas de cavité en contact avec les éléments absorbeurs/déphaseurs, ou lorsqu'une éventuelle cavité est suffisamment petite pour ne pas absorber significativement un faisceau lumineux susceptible de traverser le substrat.
Grâce au caractère monolithique du masque celui-ci ne contient pas, sinon très peu d'air ou de gaz absorbant la lumière d'insolation. Par ailleurs, comme les éléments absorbeurs/déphaseurs sont inclus, leurs faces principales susceptibles d'être exposées à la lumière sont recouvertes par le substrat. Elles sont ainsi protégées de la poussière et d'éventuelles rayures. De façon plus précise, les poussières et d'éventuelles rayures peuvent apparaître sur une face externe du substrat, c'est-à-dire hors d'un plan ou d'une région comprenant les éléments absorbeurs/déphaseurs. L'espacement entre les éléments absorbeurs/déphaseurs et une surface susceptible d'être polluée correspond à l'épaisseur du substrat ou d'une partie du substrat qui recouvre les éléments, et non à une cavité. Par ailleurs, de tels éléments sont facilement nettoyables avec des procédés standard comme des bains chimiques . Au moins un élément absorbeur/déphaseur peut être encastré dans l'une desdites parties de substrat, en affleurant à une face de contact de l'autre desdites parties de substrat. Dans cette réalisation, la deuxième partie de substrat constitue un couvercle qui recouvre exactement la face de la première partie de substrat à laquelle affleurent les éléments absorbeurs/déphaseurs. Les première et deuxième parties peuvent être interchangeables. En d'autres termes, chacune des deux parties peut à la fois comporter des éléments absorbeurs/déphaseurs encastrés et servir de couvercle pour l'autre partie. Ainsi, les problèmes liés à la réalisation de masques de type PSM alternés sont évités. Chaque fonction (masque de phase et masque de chrome) est réalisée sur un substrat qui lui est propre avant assemblage. Il n'y a pas interférence des deux substrats .
Les éléments absorbeurs/déphaseurs peuvent être choisis parmi des éléments opaques, des éléments transparents ou semi-transparents présentant un indice de réfraction différent de celui du substrat, ou une combinaison de tels éléments.
De façon avantageuse les première et deuxième parties de substrat, en contact direct l'une avec l'autre, peuvent être réalisées en des matériaux identiques. Ceci permet d'éviter toute discontinuité de propagation de la lumière à travers le masque. Les matériaux peuvent aussi être choisis différents pour introduire volontairement des déphasages de la lumière. L'assemblage des première et deuxième parties de substrat est effectué par exemple par collage et avantageusement le collage est de type à adhésion moléculaire.
Selon une variante, les éléments absorbeurs/déphaseurs peuvent aussi être en contact par l'intermédiaire d'un matériau de remplissage disposé entre les première et deuxième parties de substrat. Les éléments absorbeurs/déphaseurs peuvent être encastrés dans les première et deuxième parties du substrat. Les éléments absorbeurs/déphaseurs peuvent aussi être encastrés dans la couche intercalaire de remplissage et pris en sandwich entre les première et deuxième parties " de substrat . -
Une des première et deuxième parties de substrat, ou éventuellement les deux parties, peuvent être gravées avant leur assemblage de sorte qu'au moins une première partie du substrat présente une face avec des dépressions tournées vers une seconde partie du substrat. Les dépressions peuvent être emplies d'un matériau de remplissage. Il s'agit, par exemple, du matériau intercalaire entre les parties de substrat. Les cavités, emplies du matériau de remplissage, peuvent constituer des éléments déphaseurs de la lumière lorsque le matériau de remplissage présente un indice optique différent de celui des première et/ou deuxième parties de substrat. D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.
Brève description des figures.
- La figure 1, déjà décrite, est une coupe schématique simplifiée d'un masque de photolithographie de type connu.
- La figure 2, est une coupe schématique d'un masque de photolithographie conforme à l'invention, avec un substrat en deux parties.
- La figure 3, est une coupe schématique d'un masque de photolithographie conforme à l'invention, avec un matériau de remplissage intermédiaire. - Les figure 4 et 5 sont des coupes schématiques de masques de photolithographie conformes à l'invention, et constituant des variantes aux masques des figures 2 et 3.
- Les figures 6 et 7 sont des coupes schématiques de masques de photolithographie conformes à l'invention avec des éléments déphaseurs.
- Les figure 8 et 9 sont des coupes schématiques de masques de photolithographie conformes à l'invention, et constituant des variantes du masque de la figure 7.
Description détaillée de modes de mise en œuyre de 1' invention
Dans la description qui suit, des parties identiques, similaires ou équivalentes des différentes figures sont repérées par les mêmes signes de référence pour faciliter le report entre les figures. Par ailleurs, et dans un souci de clarté des figures, tous les éléments ne sont pas représentés selon une échelle uniforme. La figure 2, montre un masque conforme à l'invention. Il comprend un substrat transparent 100 et, inclus dans ce substrat des éléments absorbeurs/déphaseurs de lumière 112. Le substrat est en un matériau dur. Il est, par exemple, en silice ou en quartz ou en tout autre matériau transparent pour une longueur d'onde de la lumière d'insolation.
Les éléments absorbeurs/déphaseurs de lumière peuvent être en un matériau opaque tel qu'un métal. Par exemple, une couche de chrome. Ils peuvent aussi être en un matériau semi-transparent, tel que le oSi. Lorsqu'un matériau est semi-transparent, il permet d'introduire un déphasage dans la lumière d'insolation. Le coefficient de transmission des matériaux transparents est, par exemple, de l'ordre de 6 à 12 %. La valeur du déphasage qui existe entre les faisceaux qui traversent les éléments absorbeurs/déphaseurs et ceux qui ne les traversent pas, peut être ajustée en agissant sur la composition et/ou sur l'épaisseur de ces éléments. La composition et l'épaisseur sont, par exemple, ajustées pour introduire dans les faisceaux une opposition de phase.
La réalisation d'un. masque conforme à la figure 2 comprend, par exemple, la gravure de cavités dans une première partie 110 du substrat, le dépôt d'une couche de matériau approprié pour la fabrication des éléments absorbeurs/déphaseurs, puis le planage de cette couche avec arrêt sur la première partie de substrat. Au terme de cette opération, on obtient des éléments absorbeurs/déphaseurs 112 qui affleurent à une face de la première partie de substrat 110. La forme des éléments correspond à celle des cavités gravées au préalable. Le masque est achevé en collant une deuxième partie de substrat 120 sur la face à laquelle affleurent les éléments absorbeurs/déphaseurs.
Le collage peut être un collage moléculaire direct, c'est-à-dire sans apport de matière. Il résulte alors d'une préparation appropriée de polissage et de nettoyage des faces des première et deuxième parties du substrat mises en contact. Par exemple, un collage de type hydrophile peut être réalisé. Pour cela, avant la mise en contact, les deux parties du substrat sont nettoyées afin d'obtenir une bonne hydrophilie (par exemple avec un nettoyage chimique de type SCI) . Un polissage mécano-chimique peut être réalisé afin d'atténuer voire de supprimer la rugosité de surface. Après l'assemblage, un traitement thermique peut être effectué pour augmenter les forces de collage et assurer une bonne stabilité dans le temps (par exemple ce traitement peut être effectué à 300 K pendant 2 heures) .
Les première et deuxième parties de substrat peuvent être en des matériaux différents ou, de préférence, en un même matériau. Le fait d'utiliser un même matériau permet de ne pas affecter le trajet d'un faisceau lumineux passant de la première partie de substrat à la deuxième partie de substrat. La figure 3 montre une autre possibilité de réalisation du masque de photolithographie. Dans cet exemple, une couche de matériau opaque ou semi- transparent est déposée sur une face d'une première partie de substrat 110. Cette couche est ensuite gravée pour lui conférer un motif souhaité et former ainsi un ou plusieurs éléments absorbeurs/déphaseurs 112. Les interstices entre les éléments absorbeurs/déphaseurs sont ensuite comblés d'un matériau de remplissage 114 transparent ou semi-transparent tel que de la silice fondue ou de la silice fondue modifiée par l'ajout de composés chlorés ou fluorés. Ce matériau de remplissage peut aussi être un verre organo-minéral déposé en solution dans un solvant, par centrifugation et recuit (procédé sol-gel). Le choix de ce matériau n'est pas particulièrement critique. L'épaisseur des éléments absorbeurs/déphaseurs 112, et donc celle du matériau de remplissage, est généralement faible. Ainsi, le matériau de remplissage n'absorbe pas une quantité de lumière d'insolation importante. On peut aussi choisir un matériau de remplissage quasi-transparent ou transparent . Après un planage du matériau de remplissage, réalisé par exemple par un procédé de polissage mécano-chimique, la première partie de substrat 110 est assemblée avec la deuxième partie de substrat 120, encore appelée superstrat, de façon à recouvrir les éléments absorbeurs/déphaseurs 112.
La figure 4, montre une variante du masque de photolithographie de la figure 3. Selon cette variante, le matériau de remplissage recouvre les éléments absorbeurs/déphaseurs 112. Lors de la fabrication du masque, le planage de ce matériau n'a pas lieu avec arrêt sur les éléments absorbeurs/déphaseurs, mais avant d'atteindre ces éléments. Lors de l'assemblage des première et deuxième parties de substrat 110, 120, le matériau de remplissage peut éventuellement servir pour le collage en favorisant l'adhésion des première et deuxième parties.
La figure 5 montre une variante du masque de photolithographie de la figure 2. Avant assemblage des première et deuxième parties de substrat 110, 120, une couche de matériau transparent 114, comparable au matériau de remplissage, est déposée sur la face de la première partie de substrat 110, à laquelle affleurent les éléments absorbeurs/déphaseurs 112. La couche de matériau transparent 114 est, par exemple, une colle.
La figure 6 montre une réalisation particulière d'un masque de photolithographie conforme à l'invention dans lequel on associe aux éléments absorbeurs/déphaseurs 112 des éléments déphaseurs 118 pratiqués directement dans l'une des parties 110 du substrat. On observe que la première partie de substrat 110 présente des dépressions 116 gravées depuis la face portant les éléments absorbeurs/déphaseurs . Les dépressions peuvent être gravées avant ou après la formation des éléments absorbeurs/déphaseurs 112 et sont situées notamment entre les emplacements prévus pour ces éléments. Les éléments déphaseurs 118 sont constitués par la combinaison des dépressions 116 et d'un matériau de remplissage qui comble ces dépressions. Dans l'exemple illustré, les dépressions sont comblées avec le matériau transparent de remplissage 114 déjà évoqué en référence aux figures précédentes. Les dépressions 116 font qu'un faisceau traverse des épaisseurs variables de substrat et de matériau de remplissage. Des déphasages variables peuvent être ainsi introduits dans les faisceaux en fonction de la profondeur des dépressions 116.
La figure 7 montre une autre réalisation possible d'un masque de photolithographie comprenant deux types d'éléments absorbeurs/déphaseurs 112a, 112d. Deux couches de matériaux sont successivement déposées sur une partie de substrat 110 et mises en forme par gravure selon des motifs souhaités. Il s'agit dans l'ordre d'une couche de matériau transparent ou semi- transparent présentant un indice optique différent de celui de la première partie de substrat 110, puis d'une couche de matériau opaque . La gravure de ces couches permet de former des éléments déphaseurs 112d et des éléments absorbeurs 112a correspondant respectivement à la couche transparente/semi-transparente et à la couche opaque.
On peut observer que des éléments absorbeurs 112a peuvent recouvrir et occulter partiellement des éléments déphaseurs 112d. L'espace entre les éléments absorbeurs et déphaseurs est comblé de matériau de remplissage 114 de la façon déjà décrite. Le cas échéant, le matériau de remplissage peut aussi constituer des éléments déphaseurs.
Les figures 8 et 9 illustrent simplement des variantes de réalisation du masque de photolithographie de la figure 7, avec également des éléments absorbeurs 112a et des éléments déphaseurs 112d. Dans le cas de la figure 8, les éléments absorbeurs 112a sont formés sur une face d'assemblage de première partie 110 du substrat tandis que les éléments déphaseurs 112d sont encastrés dans la deuxième partie 120 du substrat. Un matériau transparent 114 enrobe les éléments absorbeurs 112a. On peut observer que les éléments absorbeurs de la deuxième partie de substrat 120 coïncident avec certains interstices laissés entre des éléments absorbeurs de la première partie de substrat. Il convient de noter que dans une réalisation du masque conforme à la figure 8, les éléments déphaseurs 112d peuvent être solides ou gazeux.
Dans le dernier exemple, donné par la figure 9, des éléments déphaseurs 112d sont définis sur la deuxième partie 120 du substrat, par exemple par gravure d'une couche, et des éléments absorbeurs, 112a sont définis sur la première partie de substrat 110.
Les première et deuxième parties sont ensuite assemblées en mettant en regard les éléments absorbeurs/déphaseurs et en les reliant par l'intermédiaire d'une couche 114 de matériau de remplissage transparent. Cette couche enrobe les éléments .
Dans un mode particulier de réalisation, après le collage des première et deuxième parties du substrat, au moins l'une des parties est amincie afin d'obtenir une épaisseur de substrat inférieure à la somme des épaisseurs des deux parties. La mise en place du masque dans les équipements est ainsi facilitée. DOCUMENTS CITES (D
"Mechanical analysis of hard pellicles form 157 nm lithography" de Philip L. Reu et al., Optical
Microlithography XIV, Proceedings of SPIE, vol.
4346 (2001), pages 1166-1174, (2)
"157-nm Photomask Handling and Infrastructure: Requirements and Feasibility" , de Jerry Cullings,
Ed Muzio, Optical Microlithography XIV, Proceedings of SPIE, vol. 4346 (2001) pages 52-60. (3)
"Phase Phirst ! An improved strong-PSM paradigm" de Marc D. Levenson et al., Proc . of SPIE 4186, 20th
Annual BACUS Symposium on Photomask Technology and
Management, ed. Brian J. Grenon, Giang T. Dao
(Janvier 2001) .

Claims

REVENDICATIONS
1. Masque pour photolithographie comprenant un substrat transparent (100) , le substrat comprenant une première partie de substrat (110) et une deuxième partie de substrat (120) , solidaire de la première partie de substrat, au moins un élément absorbeur/déphaseur (112) étant encastré dans le substrat, caractérisé en ce que la première partie de substrat est collée, sans apport de matière, sur la deuxième partie de substrat.
2. Masque selon la revendication 1, caractérisé en ce qu'il comprend une première partie de substrat collée par adhésion moléculaire sur une deuxième partie de substrat .
3. Masque selon la revendication 1, dans lequel au moins un élément absorbeur/déphaseur est encastré dans chacune des première et deuxième parties de substrat.
4. Masque selon la revendication 1, dans lequel au moins un élément absorbeur/déphaseur (112) est encastré dans l'une desdites parties de substrat, en affleurant à une face de contact de l'autre desdites parties de substrat.
5. Masque selon la revendication 1, dans lequel l'élément absorbeur/déphaseur est en contact avec un matériau de remplissage (114) entre les première et deuxième parties de substrat (110, 120).
6. Masque selon la revendication 5, dans lequel au moins un élément de masque est pris en sandwich entre une première et une deuxième parties du substrat.
7. Masque selon la revendication 1, dans lequel au moins un élément absorbeur/déphaseur est choisi parmi des éléments opaques, des éléments semi- transparents présentant un indice de réfraction différent du substrat, et une combinaison de tels éléments .
8. Masque selon la revendication 1, dans lequel au moins une première partie du substrat (110) présente une face avec des dépressions (116) tournées vers une seconde partie du substrat (120) , les dépressions étant emplies d'un matériau de remplissage (114) .
EP03749925A 2002-05-07 2003-05-06 Masque pour photolithographie a elements absorbeurs/dephaseurs inclus Withdrawn EP1502153A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0205718A FR2839560B1 (fr) 2002-05-07 2002-05-07 Masque pour photolithographie a elements absorbeurs/dephaseurs inclus
FR0205718 2002-05-07
PCT/FR2003/001400 WO2003096121A2 (fr) 2002-05-07 2003-05-06 Masque pour photolithographie a elements absorbeurs/dephaseurs inclus

Publications (1)

Publication Number Publication Date
EP1502153A2 true EP1502153A2 (fr) 2005-02-02

Family

ID=29286355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03749925A Withdrawn EP1502153A2 (fr) 2002-05-07 2003-05-06 Masque pour photolithographie a elements absorbeurs/dephaseurs inclus

Country Status (5)

Country Link
US (1) US20050158634A1 (fr)
EP (1) EP1502153A2 (fr)
JP (1) JP2005524877A (fr)
FR (1) FR2839560B1 (fr)
WO (1) WO2003096121A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241539B2 (en) * 2002-10-07 2007-07-10 Samsung Electronics Co., Ltd. Photomasks including shadowing elements therein and related methods and systems
FR2865813B1 (fr) * 2004-01-30 2006-06-23 Production Et De Rech S Appliq Masque a motifs proteges, pour la lithographie par reflexion dans le domaine de l'extreme uv et des rayons x mous
US7264415B2 (en) * 2004-03-11 2007-09-04 International Business Machines Corporation Methods of forming alternating phase shift masks having improved phase-shift tolerance
US7313780B2 (en) * 2005-03-10 2007-12-25 Chartered Semiconductor Manufacturing Ltd. System and method for designing semiconductor photomasks
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
CN114114824B (zh) * 2022-01-26 2022-05-20 上海传芯半导体有限公司 一种光掩模保护罩、具有保护结构的光掩模及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309495A (en) * 1978-08-02 1982-01-05 Ppg Industries, Inc. Method for making stained glass photomasks from photographic emulsion
JPS59143156A (ja) * 1983-02-07 1984-08-16 Seiko Epson Corp ガラス・マスク
US4499162A (en) * 1983-06-24 1985-02-12 At&T Technologies, Inc. Photomask and method of using same
JPS6087327A (ja) * 1983-10-19 1985-05-17 Akai Electric Co Ltd クロムマスクの製造方法
JPS60257448A (ja) * 1984-06-04 1985-12-19 Hitachi Ltd フオトマスク
JPS63173052A (ja) * 1987-01-13 1988-07-16 Nec Corp ホトマスク
US5260150A (en) * 1987-09-30 1993-11-09 Sharp Kabushiki Kaisha Photo-mask with light shielding film buried in substrate
JPH02287542A (ja) * 1989-04-28 1990-11-27 Fujitsu Ltd 位相シフトマスク
US5691115A (en) * 1992-06-10 1997-11-25 Hitachi, Ltd. Exposure method, aligner, and method of manufacturing semiconductor integrated circuit devices
US5480747A (en) * 1994-11-21 1996-01-02 Sematech, Inc. Attenuated phase shifting mask with buried absorbers
US5474865A (en) * 1994-11-21 1995-12-12 Sematech, Inc. Globally planarized binary optical mask using buried absorbers
KR100215876B1 (ko) * 1996-12-26 1999-08-16 구본준 위상반전 마스크 및 그 제조방법
JPH1126355A (ja) * 1997-07-07 1999-01-29 Toshiba Corp 露光用マスク及びその製造方法
US6841309B1 (en) * 2001-01-11 2005-01-11 Dupont Photomasks, Inc. Damage resistant photomask construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03096121A2 *

Also Published As

Publication number Publication date
US20050158634A1 (en) 2005-07-21
WO2003096121A2 (fr) 2003-11-20
FR2839560B1 (fr) 2005-10-14
WO2003096121A3 (fr) 2004-11-04
JP2005524877A (ja) 2005-08-18
FR2839560A1 (fr) 2003-11-14

Similar Documents

Publication Publication Date Title
US6004702A (en) Phase-shifting mask structure and method of fabricating the same
KR102291647B1 (ko) 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템
US5480747A (en) Attenuated phase shifting mask with buried absorbers
US5474865A (en) Globally planarized binary optical mask using buried absorbers
FR2899697A1 (fr) Masque de photolitographie en extreme ultra-violet, avec couche d'arret resonante
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
EP2701005B1 (fr) Procédé de fabrication de masques EUV minimisant l'impact des défauts de substrat
FR2891066A1 (fr) Systeme et procede de photolithographie dans la fabrication de semi conducteurs
KR960029896A (ko) 리소그래픽 마스크 형성 방법
EP1502153A2 (fr) Masque pour photolithographie a elements absorbeurs/dephaseurs inclus
CN100428055C (zh) 光刻制程、掩膜版及其制造方法
EP1121622B1 (fr) Structure pour masque de lithographie en reflexion et procede pour sa realisation
WO2002097485A2 (fr) Procede de modification controlee de proprietes reflectives d'un multicouche
JP2922715B2 (ja) 位相シフトパターンの欠陥修正方法
FR2672739A1 (fr) Laser, gyroscope a laser en anneau et procede pour supprimer les modes desaxes de propagation d'ondes lumineuses dans une cavite.
WO2005083516A2 (fr) Masque a motifs proteges, pour la lithographie par reflexion dans le domaine de l’extreme uv et des rayons x mous
WO2022138170A1 (fr) Ébauche de masque réfléchissant, masque réfléchissant, procédé de fabrication de masque réfléchissant et procédé de fabrication de dispositif à semi-conducteur
EP1803031B1 (fr) Masque de lithographie reflechissant et procede de fabrication associe
JP2021043285A (ja) 反射型マスク
FR2545949A1 (fr) Structure de masque pour la lithographie par rayonnement ultraviolet
FR2957687A1 (fr) Photorepeteur ou scanner pour la lithographie en extreme ultra-violet
WO2021038013A1 (fr) Procédé de fabrication de structures dissymétriques en résine
Pawlowski et al. Multilevel diffractive optical elements fabricated with a single amplitude-phase mask
JP5292669B2 (ja) 極端紫外線露光用マスク及びその製造方法並びに極端紫外線の露光方法
FR2804517A1 (fr) Masque de lithographie a decalage de phase et procede de realisation d'un tel masque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091201