EP1497540A1 - Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle - Google Patents

Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle

Info

Publication number
EP1497540A1
EP1497540A1 EP03746236A EP03746236A EP1497540A1 EP 1497540 A1 EP1497540 A1 EP 1497540A1 EP 03746236 A EP03746236 A EP 03746236A EP 03746236 A EP03746236 A EP 03746236A EP 1497540 A1 EP1497540 A1 EP 1497540A1
Authority
EP
European Patent Office
Prior art keywords
coolant
internal combustion
combustion engine
branch
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03746236A
Other languages
German (de)
French (fr)
Other versions
EP1497540B1 (en
Inventor
Karsten Mann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003116017 external-priority patent/DE10316017A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1497540A1 publication Critical patent/EP1497540A1/en
Application granted granted Critical
Publication of EP1497540B1 publication Critical patent/EP1497540B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/52Heat exchanger temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a method for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle, in which a coolant is circulated by a coolant pump and in which the coolant flows outside the internal combustion engine at least through a cooler branch and through a bypass branch.
  • the invention further relates to a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, with a coolant pump for circulating a coolant and with at least one cooler branch and a bypass branch through which coolant can flow outside the internal combustion engine.
  • a cooling circuit for an internal combustion engine of a motor vehicle includes in the
  • a heat source to be cooled (the internal combustion engine), which is cooled by means of a coolant by free or forced convection.
  • the temperature difference above the heat source depends on the heat input and the size of the coolant flow, while the absolute temperature of the coolant is determined by the heat input from the heat source, the heat dissipation via coolers in the circuit and the heat capacities of the materials.
  • mechanical water pumps are used in motor cooling systems of motor vehicles, which are driven by the crankshaft of the engine via V-belts.
  • the pumps are dimensioned so that even in the most critical operating conditions, For example, when driving uphill at high speed, high load and low vehicle speed, there is no impermissibly high engine temperature or temperature difference above the engine.
  • the mixing ratio between the bypass branch and the cooler branch is set by an expansion-operated thermostatic valve depending on the coolant temperature.
  • the thermostatic valve is dimensioned in such a way that there is no impermissibly high coolant temperature.
  • a cooling system for an internal combustion engine of a motor vehicle has become known, in which the pump is designed as a mechanically driven coolant pump.
  • the author proposes to throttle the coolant flow of the coolant pump.
  • Two different versions are proposed for this.
  • the author suggests that a throttle plate be inserted in the bypass branch of the cooling system.
  • the author suggests installing a throttle valve directly at the pump outlet.
  • the coolant flow can be can be regulated by branch, while in the second alternative the total coolant flow of the cooling system can be regulated.
  • the invention has for its object to provide a flexible control and / or regulation of the coolant flows in a cooling system of an internal combustion engine of a motor vehicle.
  • the object is achieved by a method for controlling and / or regulating a
  • Cooling system of an internal combustion engine of a motor vehicle in which a coolant is circulated by a coolant pump, in which the coolant flows outside of the internal combustion engine at least through a cooler branch and through a bypass branch and in which control means and / or regulating means throttling a coolant flow through the cooler branch and of a coolant flow through the bypass branch is carried out independently of one another.
  • the coolant flows can be specified particularly flexibly in the method according to the invention.
  • One measure provides that a desired temperature of the coolant is set by means of a predeterminable activation of the control and / or regulating means.
  • the method according to the invention is used to set a coolant target temperature in a particularly flexible manner.
  • a predeterminable total coolant flow is set by means of the control and / or regulating means.
  • the method according to the invention also makes it possible for a predeterminable mixing ratio of the coolant flows through the cooler and bypass branch to be set independently of the boundary condition of the predetermined total coolant flow by means of the control and / or regulating means. In other words, it is possible to simultaneously set a specific total coolant flow and a mixing ratio of the coolant flows between the cooler and the bypass branches. (The mixing ratio is the manipulated variable for motor temperature control).
  • the object is further achieved by a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, with a coolant pump for
  • control and / or regulation according to the invention has the same advantages as the method according to the invention.
  • FIG. 1 shows a cooling system according to the prior art
  • Figure 2 shows a cooling system according to the invention
  • Figure 3a shows a first embodiment of a method according to the invention
  • Figure 3b shows the same exemplary embodiment in a different representation
  • Figure 4 shows a hydraulic network according to the invention
  • FIG. 5 shows an illustration for determining the desired hydraulic resistance in accordance with the invention.
  • the control of the coolant flow (volume flow) and the temperature level in a cooling system of the internal combustion engine is also possible with a conventional mechanical water pump if the bypass and the cooler branches are decoupled from one another can be throttled.
  • the throttling of the cooler branch and the bypass branch can be adjusted independently of one another to allow the mixing ratio of the coolant flows through the cooler branch and the bypass branch to be set flexibly.
  • the coolant flow can be adjusted despite the operating point of the mechanical water pump, which is determined by the speed of the internal combustion engine, by changing the total hydraulic resistance of the system.
  • the throttle valves are set in such a way that the desired mixing ratio between the cooler and the bypass branch as well as the desired total hydraulic resistance is set in the system, from which a desired total coolant flow of the cooling system results.
  • a prerequisite for carrying out the method according to the invention is knowledge of the hydraulic resistances of the cooling circuit components and knowledge of the pump characteristic of the mechanical water pump.
  • FIG. 1 shows an example of a conventional cooling system.
  • an internal combustion engine 1 has a coolant flowing through it.
  • the coolant flows out of the internal combustion engine 1 via a line 2 and flows back into the internal combustion engine 1 via a three-way cooler valve 3, a bypass branch 4, a coolant pump 5 and a line 6.
  • part of the coolant flows, starting from the Three-way cooler valve 3, via a line 7 to a cooler 8, from there via a line 9 and also via the coolant pump 5 and line 6 back to the internal combustion engine 1.
  • the coolant leaves the internal combustion engine 1 via a line 10 and flows from there via a heater valve 11, a line 12, a heating heat exchanger 13, a line 14, the coolant pump 5 and line 6 back to the internal combustion engine 1.
  • the line 10 , the heating valve 11, the line 12, the heating heat exchanger 13 and the line 14 form a heating branch.
  • FIG. 1 also shows three temperature sensors which record the temperatures at specific points in the cooling system. These are the temperature sensor 15 that the temperature sensor 15 that the temperature sensor 15 that the temperature sensor
  • the temperature sensor 16 which detects the temperature in line 6 and the temperature sensor 17, which detects the temperature in line 9.
  • the temperature sensor 15 thus detects the temperature at an output of the internal combustion engine 1.
  • the temperature sensor 16 thus detects the temperature at an input of the Internal combustion engine 1.
  • the temperature sensor 17 thus detects the temperature of the coolant at an outlet of the radiator fan system 8.
  • FIG. 2 shows a cooling system according to the invention.
  • Those parts which correspond to the parts shown in FIG. 1 are each provided with the same reference numerals, and only the difference from FIG. 1 is discussed below.
  • the three-way cooler valve 3 shown there is replaced by two separate valves 3 a and 3 b.
  • a cooler valve 3 a is inserted into line 7, whereby line 7 is divided into two sub-lines 7 a and 7 b.
  • a bypass valve 3 b was used, whereby the line 4 is divided into the parts 4a and 4b.
  • the cooler valve 3, the sub-lines 7a, 7b, the cooler 8 and the line 9 form a cooler branch.
  • the bypass valve 3 and the sub-lines 4a, 4b form a bypass branch.
  • the target mixing ratio and the total target coolant flow can be set. If necessary, it must be assumed that all other branches that short-circuit the coolant pump 5 can also be disconnected, such as the heating branch 10-14. On the determination of the target mixing ratio between the cooler branch 3, 7a, 7b, 8, 9 and the bypass branch 3b, 4a, 4b and on the determination of the
  • FIG. 3 a shows a first exemplary embodiment of the method according to the invention. This shows schematically how the corresponding positions of the two valves 3a and 3b according to FIG. 2 are determined from the target mixing ratio and the total target coolant flow.
  • the operating point of the coolant pump 5 is determined as a function of the speed n of the internal combustion engine 1 and the desired hydraulic system resistance R is determined as a function of the total target coolant flow Vp by means of a first map 31.
  • This desired hydraulic system resistance R and a desired mixing ratio MV are the inputs of the second and third characteristic Fields 32, 33.
  • the cooler valve 3a is activated from the second characteristic diagram 32 and the bypass valve 3b from the third characteristic diagram 33. Accordingly, signals are obtained from the two characteristic diagrams 32, 33, which correspond to the desired positions of the valves 3a, 3b.
  • valves 3 a and 3 b The control of the valves 3 a and 3 b according to the invention is thus achieved by the corresponding connection of the three characteristic diagrams 31, 32, 33.
  • two three-dimensional maps can be used instead of the three two-dimensional maps 31, 32, 33.
  • Figure 3b shows the same embodiment in a different representation.
  • a first step 34 the input variables setpoint mixing ratio MV, total setpoint coolant flow Vp and speed n of internal combustion engine 1 are recorded. Based on these input data, the total hydraulic resistance R of the cooling system is determined in a step 35 by means of the total target coolant flow Vp and the speed n.
  • step 36 This total hydraulic resistance R is transmitted to step 36, in which, based on the target mixing ratio MV and the total target coolant flow Vp, control variables for the cooler valve 3a and the bypass valve 3b are determined.
  • step 37 the cooler valve 3a and the bypass valve 3b are finally activated accordingly.
  • the first characteristic diagram 31 for determining the desired hydraulic resistance R and optionally the second and third characteristic diagrams 32, 33 can be generated automatically when the internal combustion engine is applied.
  • the characteristic diagram of the coolant pump 5 must be known, which specifies the pressure difference over the pump dependency of the coolant flow and the pump or internal combustion engine speed.
  • the hydraulic resistances of the components should be known if necessary. In the case of the pump map, a hydraulic resistance can clearly be found for each pair of data from the coolant flow and speed.
  • FIG. 4 An example of such a hydraulic network according to the invention is shown in FIG. 4.
  • the individual resistances of the components add up to the total resistance analogously to an electrical circuit. This results in the system characteristic.
  • the desired total coolant flow of the cooling system through the coolant pump 5 then results from the intersection of the pump characteristic curve with the system characteristic curve.
  • the hydraulic resistors 44, 45 of the bypass valve 3b and the remaining bypass branch 4a, 4b are connected in series. This series connection is in turn connected in parallel to the series connection of hydraulic resistor 46 of cooler valve 3 a and hydraulic resistor 47 of the remaining cooler branch 7a, 7, 8, 9.
  • Figure 5 shows characteristic curves for determining the desired hydraulic resistance.
  • 5 shows coolant flows Vp on the horizontal axis, while pressure differences dp are shown on the vertical axis. Pump characteristics 51, 52, 53 are shown for the speeds nl, n2 and n3 (nl>n2> n3).
  • a system characteristic curve 54 which (in the case of turbulent flow) results from the multiplication of the hydraulic resistance R by the square of the coolant flow Vp.
  • the system characteristic curve 54 thus represents a parabola, the pressure difference dp being a function of the square of the coolant flow Vp, the square of the coolant flow Vp being linked to the hydraulic resistance R as a factor.
  • the slope of the system characteristic 54 thus becomes smaller and ultimately results in a system-related minimum hydraulic resistance R sys min, the dependence on the coolant flow Vp of which is given the reference number 55. If, on the other hand, the hydraulic resistance R increases, the system characteristic 54 increases, and the system characteristic 54 would shift further in the direction of the vertical axis. Knowing the current speed n of the internal combustion engine 1 and a desired total coolant flow Vp, it is thus possible to determine the desired system characteristic from the intersection of the coolant flow Vp sought with the corresponding pump characteristic 51-53, from which the sought hydraulic resistance R can be determined. For example, in the illustration according to FIG.
  • intersection points 56, 57 and 58 are shown for the coolant flows Vpl, Vp2, Vp3 with the corresponding pump characteristic curve 51-53.
  • the system characteristic curve 54 results from these intersection points 56-58, as a result of which the sought hydraulic resistance R can be inferred.
  • the method according to the invention shown can be integrated, for example, in a control unit of a motor vehicle, which additionally takes on the task of controlling internal combustion engine 1, for example.
  • the functional relationships shown can include e.g. B. can be represented by corresponding mathematical functions, a multi-dimensional map or by several maps in the engine control unit. All in all, there is a particularly flexible and exact possibility of independently controlling coolant flows Vp and mixing ratios between cooler branch 3a, 7a, 7b, 8, 9 and bypass branch 3b, 4a, 4b, which enables simple, possibly computer-aided or automated applicability.
  • the for the application The required data are easy to measure, but should also be known or made known as part of the cooling system dimensioning from the vehicle manufacturer or from the component supplier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method for controlling and/or regulating a cooling system for an internal combustion engine (1) of a motor vehicle. According to said method, a coolant is circulated by a coolant pump (5) and the coolant flows outside the internal combustion engine (1) at least through one radiator branch (3a, 7a, 7b, 8, 9) and one bypass branch (3b, 4a, 4b). The invention also relates to the control and/or regulation of a cooling system for an internal combustion engine (1) of a motor vehicle, comprising a coolant pump (5) for circulating a coolant and at least one radiator branch (3a, 7a, 7b, 8, 9) and one bypass branch (3b, 4a, 4b), through which the coolant can flow outside the internal combustion engine (1).

Description

Verfahren zur Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines KraftfahrzeugsMethod for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren zur Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem ein Kühlmittel von einer Kühlmittelpumpe umgewälzt wird und bei dem das Kühlmittel außerhalb der Brennkraftmaschine wenigstens durch einen Kühlerzweig und durch einen Bypasszweig fließt.The invention relates to a method for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle, in which a coolant is circulated by a coolant pump and in which the coolant flows outside the internal combustion engine at least through a cooler branch and through a bypass branch.
Die Erfindung betrifft weiterhin eine Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, mit einer Kühlmittelpumpe zum Umwälzen eines Kühlmittels und mit wenigstens einem Kühlerzweig und einem Bypasszweig, durch die Kühlmittel außerhalb der Brennkraftmaschine fließen kann.The invention further relates to a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, with a coolant pump for circulating a coolant and with at least one cooler branch and a bypass branch through which coolant can flow outside the internal combustion engine.
Zu einem Kühlkreislauf für eine Brennkraftmaschine eines Kraftfahrzeugs gehören in derA cooling circuit for an internal combustion engine of a motor vehicle includes in the
Regel eine zu kühlende Wärmequelle (der Brennkraftmaschine), die mittels eines Kühlmittels durch freie oder erzwungene Konvektion gekühlt wird. Die Temperaturdifferenz über der Wärmequelle ist vom Wärmeeintrag und von der Größe des Kühlmittelstroms abhängig, während die absolute Temperatur des Kühlmittels durch den Wärmeeintrag der Wärmequelle, die Wärmeabfuhr über im Kreislauf befindliche Kühler und die Wärmekapazitäten der Materialien bestimmt wird.Usually a heat source to be cooled (the internal combustion engine), which is cooled by means of a coolant by free or forced convection. The temperature difference above the heat source depends on the heat input and the size of the coolant flow, while the absolute temperature of the coolant is determined by the heat input from the heat source, the heat dissipation via coolers in the circuit and the heat capacities of the materials.
Derzeit werden in Motorkühlsystemen von Kraftfahrzeugen mechanische Wasserpumpen eingesetzt, die über Keilriemen von der Kurbelwelle des Motors angetrieben werden. Die Pumpen sind hierbei derart dimensioniert, dass selbst in kritischsten Betriebszuständen, beispielsweise bei Bergfahrt mit hoher Drehzahl, hoher Last und geringer Fahrzeuggeschwindigkeit, keine unzulässig hohe Motortemperatur bzw. Temperaturdifferenz über dem Motor entsteht. Das Mischverhältnis zwischen dem Bypasszweig und dem Kühlerzweig wird durch ein dehnstoffbetriebenes Thermostatventil in Abhängigkeit von der Kühlmitteltemperatur eingestellt. Das Thermostatventil ist so dimensioniert, dass sich keine unzulässig hohe Kühlmitteltemperatur einstellt.At present, mechanical water pumps are used in motor cooling systems of motor vehicles, which are driven by the crankshaft of the engine via V-belts. The pumps are dimensioned so that even in the most critical operating conditions, For example, when driving uphill at high speed, high load and low vehicle speed, there is no impermissibly high engine temperature or temperature difference above the engine. The mixing ratio between the bypass branch and the cooler branch is set by an expansion-operated thermostatic valve depending on the coolant temperature. The thermostatic valve is dimensioned in such a way that there is no impermissibly high coolant temperature.
Um ein effizienteres Wärmemanagement im Kühlsystem einer Brennkraftmaschine für ein Kraftfahrzeug zu erreichen, besteht z. B. die Möglichkeit einer bedarfsgerechten An- Steuerung bzw. Regelung des Motorkühlsystems mit dem Ziel, den Kraftstoffverbrauch und die Emission zu verringern bzw. Abgasgrenzwerte einzuhalten und zudem den Komfort zu erhöhen. Dabei dürfen kritische Grenzen der Bauteilbelastung nicht überschritten werden. Ein besonders kritisches Bauteil ist hierbei z. B. die Zylinderkopftemperatur. Diese Ziele können durch eine Optimierung des Kühlmittelstroms und die lastabhängige Regelung des Temperaturniveaus des Motors erreicht werden.In order to achieve more efficient heat management in the cooling system of an internal combustion engine for a motor vehicle, there is, for. B. the possibility of a needs-based control or regulation of the engine cooling system with the aim of reducing fuel consumption and emissions or to comply with exhaust gas limit values and also to increase comfort. Critical limits of component loading must not be exceeded. A particularly critical component is z. B. the cylinder head temperature. These goals can be achieved by optimizing the coolant flow and load-dependent control of the engine temperature level.
Eine Alternative, die eine bedarfsgerechte Einstellung des Kühlmittelstroms ermöglicht, sieht eine elektrisch regelbare Wasserpumpe vor, die jedoch den Nachteil aufweist, dass sie zum einen deutlich teurer als eine mechanische Wasserpumpe ist und zum anderen in heutigen Bordnetzen mit 12V Spannung teilweise die benötigten Pumpleistungen nicht ohne Weiteres realisierbar sind.An alternative that allows the coolant flow to be adjusted as required provides an electrically controllable water pump, which has the disadvantage, however, that on the one hand it is significantly more expensive than a mechanical water pump and on the other hand in pump systems with 12V voltage it does not have the required pumping capacity More can be realized.
Aus dem SAE Technical Paper Series 961813 von Jilian Yangg von der Ford Motor Co. mit dem Titel „Coolant Pump Throttling - A Simple Method to Improve the Control Over SI Engine Cooling System" von der International Off-Highway & Powerplant CongressFrom SAE Technical Paper Series 961813 by Jilian Yangg from Ford Motor Co. entitled "Coolant Pump Throttling - A Simple Method to Improve the Control Over SI Engine Cooling System" by the International Off-Highway & Powerplant Congress
& Exposition, Indianapolis, Indiana, August 26-28, 1996 ist ein Kühlsystem für eine Brennkraftmaschine eines Kraftfalirzeugs bekannt geworden, bei dem die Pumpe als eine mechanisch angetriebene Kühlmittelpumpe ausgeführt ist. Mit dem Ziel eines verbesserten Erwärmens der Brennräume nach einem Kaltstart und einer Verbesserung von Abgas- und Verbrauchswerten schlägt der Autor vor, den Kühlmittelstrom der Kühlmittelpumpe zu drosseln. Hierzu werden zwei unterschiedliche Ausführungen vorgeschlagen. Zum einen schlägt der Autor vor, in den Bypasszweig des Kühlsystems eine Drosselblende einzusetzen. Zum anderen schlägt der Autor vor, eine Drosselklappe unmittelbar am Pumpenausgang anzubringen. Bei der ersten Alternative kann der Kühlmittelstrom im By- passzweig geregelt werden, während bei der zweiten Alternative der Gesamt- Kühlmittelstrom des Kühlsystems geregelt werden kann.& Exposition, Indianapolis, Indiana, August 26-28, 1996. A cooling system for an internal combustion engine of a motor vehicle has become known, in which the pump is designed as a mechanically driven coolant pump. With the aim of improved heating of the combustion chambers after a cold start and an improvement in exhaust gas and consumption values, the author proposes to throttle the coolant flow of the coolant pump. Two different versions are proposed for this. On the one hand, the author suggests that a throttle plate be inserted in the bypass branch of the cooling system. On the other hand, the author suggests installing a throttle valve directly at the pump outlet. In the first alternative, the coolant flow can be can be regulated by branch, while in the second alternative the total coolant flow of the cooling system can be regulated.
Der Erfindung liegt die Aufgabe zugrunde, eine flexible Steuerung und/oder Regelung der Kühlmittelströme in einem Kühlsystem einer Brennkraftmaschine eines Kraftfahrzeugs anzugeben.The invention has for its object to provide a flexible control and / or regulation of the coolant flows in a cooling system of an internal combustion engine of a motor vehicle.
Vorteile der ErfindungAdvantages of the invention
Die Aufgabe wird gelöst durch ein Verfahren zur Steuerung und/oder Regelung einesThe object is achieved by a method for controlling and / or regulating a
Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem ein Kühlmittel von einer Kühlmittelpumpe umgewälzt wird, bei dem das Kühlmittel außerhalb der Brennkraftmaschine wenigstens durch einen Kühlerzweig und durch einen Bypasszweig fließt und bei dem mit Steuer- und/oder Regelmitteln eine Drosselung eines Kühlmittelstroms durch den Kühlerzweig und eines Kühlmittelstroms durch den Bypasszweig unabhängig voneinander durchgeführt wird.Cooling system of an internal combustion engine of a motor vehicle, in which a coolant is circulated by a coolant pump, in which the coolant flows outside of the internal combustion engine at least through a cooler branch and through a bypass branch and in which control means and / or regulating means throttling a coolant flow through the cooler branch and of a coolant flow through the bypass branch is carried out independently of one another.
Durch die voneinander unabhängige Steuerung und/oder Regelung der Kühlmittelströme durch den Kühlerzweig und durch den Bypasszweig können bei dem erfindungsgemäßen Verfahren die Kühlmittelströme besonders flexibel vorgegeben werden. Insbesondere ist es gegenüber konventionellen Kühlkreislaufsystemen möglich, nach einem Kaltstart nicht nur den Kühlerzweig vollständig zu unterbrechen, um eine schnellere Erwärmung der Brennkraftmaschine zu erreichen, sondern es kann zusätzlich der Kühlmittelstrom durch den Bypasszweig gedrosselt werden, um das Erwärmen der Brennkraftmaschine noch schneller zu erreichen.Due to the independent control and / or regulation of the coolant flows through the cooler branch and through the bypass branch, the coolant flows can be specified particularly flexibly in the method according to the invention. In particular, compared to conventional cooling circuit systems, it is possible not only to completely interrupt the cooler branch after a cold start in order to achieve faster heating of the internal combustion engine, but in addition the coolant flow through the bypass branch can be throttled in order to achieve heating of the internal combustion engine even faster.
Eine Maßnahme sieht vor, dass mittels einer vorgebbaren Ansteuerung der Steuer- und/oder Regelmittel eine gewünschte Temperatur des Kühlmittels eingestellt wird. Durch diese Weiterbildung wird das erfindungsgemäße Verfahren dazu genutzt, in be- sonders flexibler Art und Weise eine Kühlmittelsolltemperatur einzustellen.One measure provides that a desired temperature of the coolant is set by means of a predeterminable activation of the control and / or regulating means. Through this development, the method according to the invention is used to set a coolant target temperature in a particularly flexible manner.
Eine andere Weiterbildung sieht vor, dass mittels der Steuer- und/oder Regelmittel ein vorgebbarer Gesamt-Kühlmittelstrom eingestellt wird. Das erfindungsgemäße Verfahren ermöglicht es weiterhin, dass unabhängig von der Randbedingung des vorgegebenen Gesamt-Kühlmittelstroms mittels der Steuer- und/oder Regelmittel ein vorgebbares Mischverhältnis der Kühlmittelströme durch Kühler- und Bypasszweig eingestellt werden kann. Mit anderen Worten: Es ist möglich, gleichzeitig einen bestimmten Gesamt-Kühlmittelstrom und ein Mischverhältnis der Kühlmittelströme zwischen dem Kühler- und dem Bypasszweig einzustellen. (Das Mischverhältnis ist die Stellgröße zur Motortemperatur-Regelung).Another development provides that a predeterminable total coolant flow is set by means of the control and / or regulating means. The method according to the invention also makes it possible for a predeterminable mixing ratio of the coolant flows through the cooler and bypass branch to be set independently of the boundary condition of the predetermined total coolant flow by means of the control and / or regulating means. In other words, it is possible to simultaneously set a specific total coolant flow and a mixing ratio of the coolant flows between the cooler and the bypass branches. (The mixing ratio is the manipulated variable for motor temperature control).
Die Aufgabe wird weiterhin gelöst durch eine Steuerung und/oder Regelung eines Kühl- Systems einer Brennkraftmaschine eines Kraftfahrzeugs, mit einer Kühlmittelpumpe zumThe object is further achieved by a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, with a coolant pump for
Umwälzen eines Kühlmittels und mit wenigstens einem Kühlerzweig und einem Bypasszweig, durch die Kühlmittel außerhalb der Brennkraftmaschine fließen kann, wobei das Steuer- und/oder Regelmittel zur unabhängigen Drosselung eines Kühlmittelstroms durch den Kühlerzweig und eines Kühlmittelstroms durch den Bypasszweig ausgebildet ist.Circulating a coolant and with at least one cooler branch and a bypass branch, through which coolant can flow outside the internal combustion engine, the control and / or regulating means being designed to independently throttle a coolant flow through the cooler branch and a coolant flow through the bypass branch.
Die erfindungsgemäße Steuerung und/oder Regelung weist die gleichen Vorteile auf wie das erfindungsgemäße Verfahren.The control and / or regulation according to the invention has the same advantages as the method according to the invention.
Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens bzw. der erfindungs- gemäßen Steuerung und/oder Regelung ergeben sich aus abhängigen Ansprüchen sowie aus der nachfolgenden Beschreibung.Advantageous further developments of the method according to the invention or of the control and / or regulation according to the invention result from the dependent claims and from the following description.
Zeichnungdrawing
Figur 1 zeigt ein Kühlsystem nach dem Stand der Technik, Figur 2 zeigt ein Kühlsystem gemäß der Erfindung, Figur 3a zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Verfahrens, Figur 3b zeigt das gleiche Ausfuhrungsbeispiel in anderer Darstellung, Figur 4 zeigt ein hydraulisches Netzwerk entsprechend der Erfindung und Figur 5 zeigt eine Darstellung zur Ermittlung des gewünschten hydraulischen Widerstands entsprechend der Erfindung.Figure 1 shows a cooling system according to the prior art, Figure 2 shows a cooling system according to the invention, Figure 3a shows a first embodiment of a method according to the invention, Figure 3b shows the same exemplary embodiment in a different representation, Figure 4 shows a hydraulic network according to the invention and FIG. 5 shows an illustration for determining the desired hydraulic resistance in accordance with the invention.
Die Regelung des Kühlmittelstroms (Volumenstrom) und des Temperaturniveaus in einem Kühlsystem der Brennkraftmaschine ist auch mit konventioneller mechanischer Wasserpumpe möglich, wenn der Bypass- und der Kühlerzweig entkoppelt voneinander angedrosselt werden können. Durch die unabhängig voneinander mögliche Androsselung des Kühler- und des Bypasszweiges kann das Mischverhältnis der Kühlmittelströme durch den Kühler- und den Bypasszweig flexibel eingestellt werden. Der Kühlmittelstrom kann trotz des durch die Drehzahl der Brennkraftmaschine festgelegten Arbeitspunkts der mechanischen Wasserpumpe eingestellt werden, indem der hydraulische Gesamtwiderstand des Systems verändert wird. Dabei werden die Drosselventile derart eingestellt, dass sich im System das gewünschte Mischverhältnis zwischen dem Kühler- und dem Bypasszweig sowie der gewünschte hydraulische Gesamtwiderstand einstellt, aus dem sich ein gewünschter Gesamt-Kühlmittelstrom des Kühlsystems ergibt. Eine Vorausset- zung zur Durchführung des erfindungsgemäßen Verfahrens ist die Kenntnis der hydraulischen Widerstände der Kühlkreislaufkomponenten sowie die Kenntnis der Pumpenkenn- linie der mechanischen Wasserpumpe.The control of the coolant flow (volume flow) and the temperature level in a cooling system of the internal combustion engine is also possible with a conventional mechanical water pump if the bypass and the cooler branches are decoupled from one another can be throttled. The throttling of the cooler branch and the bypass branch can be adjusted independently of one another to allow the mixing ratio of the coolant flows through the cooler branch and the bypass branch to be set flexibly. The coolant flow can be adjusted despite the operating point of the mechanical water pump, which is determined by the speed of the internal combustion engine, by changing the total hydraulic resistance of the system. The throttle valves are set in such a way that the desired mixing ratio between the cooler and the bypass branch as well as the desired total hydraulic resistance is set in the system, from which a desired total coolant flow of the cooling system results. A prerequisite for carrying out the method according to the invention is knowledge of the hydraulic resistances of the cooling circuit components and knowledge of the pump characteristic of the mechanical water pump.
Figur 1 zeigt ein Beispiel eines konventionellen Kühlsystems. Entsprechend Figur 1 wird eine Brennkraftmaschine 1 von einem Kühlmittel durchflössen. Das Kühlmittel fließt ü- ber eine Leitung 2 aus der Brennkraftmaschine 1 heraus und fließt über ein Dreiwege- kühlerventil 3, über einen Bypasszweig 4, eine Kühlmittelpumpe 5 und eine Leitung 6 zurück in die Brennkraftmaschine 1. Weiterhin fließt ein Teil des Kühlmittels, ausgehend vom Dreiwegekühlerventil 3, über eine Leitung 7 zu einem Kühler 8, von dort über eine Leitung 9 und ebenfalls über die Kühlmittelpumpe 5 und Leitung 6 zurück zur Brennkraftmaschine 1.Figure 1 shows an example of a conventional cooling system. According to FIG. 1, an internal combustion engine 1 has a coolant flowing through it. The coolant flows out of the internal combustion engine 1 via a line 2 and flows back into the internal combustion engine 1 via a three-way cooler valve 3, a bypass branch 4, a coolant pump 5 and a line 6. Furthermore, part of the coolant flows, starting from the Three-way cooler valve 3, via a line 7 to a cooler 8, from there via a line 9 and also via the coolant pump 5 and line 6 back to the internal combustion engine 1.
An anderer Stelle verlässt das Kühlmittel über eine Leitung 10 die Brennkraftmaschine 1 und fließt von dort über ein Heizungsventil 11, eine Leitung 12, einen Heizungswärmeü- bertrager 13, eine Leitung 14, der Kühlmittelpumpe 5 und Leitung 6 zurück zur Brennkraftmaschine 1. Die Leitung 10, das Heizungsventil 11, die Leitung 12, der Heizungswärmübertrager 13 sowie die Leitung 14 bilden einen Heizzweig.At another point, the coolant leaves the internal combustion engine 1 via a line 10 and flows from there via a heater valve 11, a line 12, a heating heat exchanger 13, a line 14, the coolant pump 5 and line 6 back to the internal combustion engine 1. The line 10 , the heating valve 11, the line 12, the heating heat exchanger 13 and the line 14 form a heating branch.
In Figur 1 sind weiterhin drei Temperatursensoren gezeigt, die die Temperaturen an be- stimmten Stellen des Kühlsystems erfassen. Dies sind der Temperatursensor 15, der dieFIG. 1 also shows three temperature sensors which record the temperatures at specific points in the cooling system. These are the temperature sensor 15 that the
Temperatur in Leitung 2 erfasst, der Temperatursensor 16, der die Temperatur in Leitung 6 erfasst und der Temperatursensor 17, der die Temperatur in Leitung 9 erfasst. Der Temperatursensor 15 erfasst somit die Temperatur an einem Ausgang der Brennkraftmaschine 1. Der Temperatursensor 16 erfasst somit die Temperatur an einem Eingang der Brennkraftmaschine 1. Der Temperatursensor 17 erfasst somit die Temperatur des Kühlmittels an einem Ausgang des Kühlerlüftersystems 8.Temperature detected in line 2, the temperature sensor 16, which detects the temperature in line 6 and the temperature sensor 17, which detects the temperature in line 9. The temperature sensor 15 thus detects the temperature at an output of the internal combustion engine 1. The temperature sensor 16 thus detects the temperature at an input of the Internal combustion engine 1. The temperature sensor 17 thus detects the temperature of the coolant at an outlet of the radiator fan system 8.
Figur 2 zeigt ein Kühlsystem entsprechend der Erfindung. Hierbei sind diejenigen Teile, die mit den in Figur 1 gezeigten Teilen übereinstimmen jeweils mit denselben Bezugszeichen versehen und es wird im Folgenden lediglich auf den Unterschied zur Figur 1 eingegangen. Im Unterschied zu Figur 1 ist das dort gezeigte Dreiwegekühlerventil 3 durch zwei getrennte Ventile 3 a und 3 b ersetzt. Hierbei ist ein Kühlerventil 3 a in die Leitung 7 eingesetzt, wodurch sich die Leitung 7 in zwei Teilleitungen 7a und 7b aufteilt. In die Leitung 4 wurde ein Bypassventil 3 b eingesetzt, wodurch die Leitung 4 in die Teile 4a und 4b aufgeteilt wird. Das Kühlerventil 3, die Teilleitungen 7a, 7b, der Kühler 8 und die Leitung 9 bilden einen Kühlerzweig. Das Bypassventil 3 und die Teilleitungen 4a, 4b bilden einen Bypasszweig.Figure 2 shows a cooling system according to the invention. Those parts which correspond to the parts shown in FIG. 1 are each provided with the same reference numerals, and only the difference from FIG. 1 is discussed below. In contrast to Figure 1, the three-way cooler valve 3 shown there is replaced by two separate valves 3 a and 3 b. Here, a cooler valve 3 a is inserted into line 7, whereby line 7 is divided into two sub-lines 7 a and 7 b. In the line 4, a bypass valve 3 b was used, whereby the line 4 is divided into the parts 4a and 4b. The cooler valve 3, the sub-lines 7a, 7b, the cooler 8 and the line 9 form a cooler branch. The bypass valve 3 and the sub-lines 4a, 4b form a bypass branch.
Durch den erfindungsgemäßen Einsatz von zwei getrennten Ventilen 3 a und 3 b können das Soll-Mischverhältnis und der Gesamtsoll-Kühlmittelstrom eingestellt werden. Gegebenenfalls muss hierbei vorausgesetzt werden, dass sämtliche die Kühlmittelpumpe 5 kurzschließenden anderen Zweige ebenfalls abgetrennt werden können, wie beispielsweise der Heizzweig 10-14. Auf die Ermittlung des Soll-Mischverhältnisses zwischen dem Kühlerzweig 3, 7a, 7b, 8, 9 und dem Bypasszweig 3b, 4a, 4b sowie auf die Ermittlung desBy using two separate valves 3 a and 3 b according to the invention, the target mixing ratio and the total target coolant flow can be set. If necessary, it must be assumed that all other branches that short-circuit the coolant pump 5 can also be disconnected, such as the heating branch 10-14. On the determination of the target mixing ratio between the cooler branch 3, 7a, 7b, 8, 9 and the bypass branch 3b, 4a, 4b and on the determination of the
Gesamt-Kühlmittelstroms durch das gesamte Kühlsystem wird im Rahmen dieser Erfindung nicht weiter eingegangen, da dies für das Wesen der Erfindung nicht von Bedeutung ist und diese Daten in einer separaten Thermomanagement-Prozessführung ermittelt werden können.Total coolant flow through the entire cooling system is not further discussed in the context of this invention, since this is of no importance for the essence of the invention and this data can be determined in a separate thermal management process control.
Figur 3 a zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Hierbei ist schematisch dargestellt, wie aus dem Soll-Mischverhältnis und dem Gesamtsoll- Kühlmittelstrom die entsprechenden Stellungen der zwei Ventile 3a und 3b nach Figur 2 ermittelt werden.FIG. 3 a shows a first exemplary embodiment of the method according to the invention. This shows schematically how the corresponding positions of the two valves 3a and 3b according to FIG. 2 are determined from the target mixing ratio and the total target coolant flow.
Zunächst wird in Abhängigkeit von der Drehzahl n der Brennkraftmaschine 1 der Arbeitspunkt der Kühlmittelpumpe 5 bestimmt und in Abhängigkeit von dem Gesamtsoll- Kühlmittelstrom Vp mittels eines ersten Kennfeldes 31 der gewünschte hydraulische Systemwiderstand R ermittelt. Dieser gewünschte hydraulische Systemwiderstand R und ein gewünschtes Mischverhältnis MV sind die Eingänge des zweiten und dritten Kenn- felds 32, 33. Aus dem zweiten Kennfeld 32 heraus wird das Kühlerventil 3a und aus dem dritten Kennfeld 33 heraus das Bypassventil 3b angesteuert. Aus den beiden Kennfeldern 32, 33 werden demnach Signale gewonnen, die den Sollstellungen des Ventile 3a, 3b entsprechen.First, the operating point of the coolant pump 5 is determined as a function of the speed n of the internal combustion engine 1 and the desired hydraulic system resistance R is determined as a function of the total target coolant flow Vp by means of a first map 31. This desired hydraulic system resistance R and a desired mixing ratio MV are the inputs of the second and third characteristic Fields 32, 33. The cooler valve 3a is activated from the second characteristic diagram 32 and the bypass valve 3b from the third characteristic diagram 33. Accordingly, signals are obtained from the two characteristic diagrams 32, 33, which correspond to the desired positions of the valves 3a, 3b.
Durch die entsprechende Verschaltung der drei Kennfelder 31, 32, 33 wird also die erfindungsgemäße Ansteuerung der Ventile 3 a und 3 b erreicht. Alternativ kann statt der drei zweidimensionalen Kennfelder 31, 32, 33 auch auf zwei dreidimensionale Kennfelder zurückgegriffen werden.The control of the valves 3 a and 3 b according to the invention is thus achieved by the corresponding connection of the three characteristic diagrams 31, 32, 33. Alternatively, two three-dimensional maps can be used instead of the three two-dimensional maps 31, 32, 33.
Figur 3b zeigt das gleiche Ausführungsbeispiel in anderer Darstellung. In einem ersten Schritt 34 werden die Eingangsgrößen Soll-Mischverhältnis MV, Gesamtsoll- Kühlmittelstrom Vp und Drehzahl n der Brennkraftmaschine 1 erfasst. Ausgehend von diesen Eingangsdaten wird in einem Schritt 35 mittels des Gesamtsoll-Kühlmittelstrom Vp und der Drehzahl n der hydraulische Gesamtwiderstand R des Kühlsystems ermittelt.Figure 3b shows the same embodiment in a different representation. In a first step 34, the input variables setpoint mixing ratio MV, total setpoint coolant flow Vp and speed n of internal combustion engine 1 are recorded. Based on these input data, the total hydraulic resistance R of the cooling system is determined in a step 35 by means of the total target coolant flow Vp and the speed n.
Dieser hydraulische Gesamtwiderstand R wird an den Schritt 36 übermittelt, worin, ausgehend vom Soll-Mischverhältnis MV und des Gesamtsoll-Kühlmittelstrom Vp Ansteu- ergrößen für das Kühlerventil 3a und das Bypassventil 3b bestimmt werden. Im abschließenden Schritt 37 werden schließlich das Kühlerventil 3a und das Bypassventil 3b ent- sprechend angesteuert.This total hydraulic resistance R is transmitted to step 36, in which, based on the target mixing ratio MV and the total target coolant flow Vp, control variables for the cooler valve 3a and the bypass valve 3b are determined. In the final step 37, the cooler valve 3a and the bypass valve 3b are finally activated accordingly.
Das erste Kennfeld 31 zur Ermittlung des gewünschten hydraulischen Widerstands R sowie gegebenenfalls das zweite und dritte Kennfeld 32, 33 können bei der Applikation der Brennkraftmaschine automatisch generiert werden. Hierbei muss das Kennfeld der Kühlmittelpumpe 5 bekannt sein, das die Druckdifferenz über der Pumpenabhängigkeit des Kühlmittelstroms und der Pumpen- bzw. Brennkraftmaschinendrehzahl angibt. Weiterhin sollten gegebenenfalls die hydraulischen Widerstände der Komponenten bekannt sein. Im Falle des Pumpenkennfelds kann zu jedem Datenpaar aus Kühlmittelstrom und Drehzahl eindeutig ein hydraulischer Widerstand gefunden werden. Zur Ermittlung der Kennfelder 32, 33 muss in dem jeweiligen Kennfeld in Abhängigkeit vom gewünschtenThe first characteristic diagram 31 for determining the desired hydraulic resistance R and optionally the second and third characteristic diagrams 32, 33 can be generated automatically when the internal combustion engine is applied. Here, the characteristic diagram of the coolant pump 5 must be known, which specifies the pressure difference over the pump dependency of the coolant flow and the pump or internal combustion engine speed. Furthermore, the hydraulic resistances of the components should be known if necessary. In the case of the pump map, a hydraulic resistance can clearly be found for each pair of data from the coolant flow and speed. To determine the maps 32, 33 in the respective map depending on the desired
Mischverhältnis und dem gewünschten hydraulischen Widerstand die jeweilige Ventilbzw. Drosselkörperstellung abgelegt sein. Die Daten der Kennfelder 32, 33 sind stark miteinander verkoppelt, da das Mischverhältnis und, je nach Arbeitspunkt, auch der hydraulische Widerstand des Kühlsystems stark von der Ventilstellung jedes einzelnen Ven- tils 3a, 3b bzw. von der Stellung jedes Drosselkörpers abhängt. Unter der Annahme von turbulenter Strömung ist der Druckabfall näherungsweise proportional zum Quadrat des Kühlmittelstroms. Für alle Ventilstellungen kann in Analogie zur Elektrotechnik ein hydraulischer Ersatzwiderstand R des Kühlsystems mithilfe eines hydraulischen Netzes ermittelt werden, sofern die hydraulischen Widerstände der Komponenten sowie die Wi- derstandskennlinien der Ventile 3a, 3b bekannt sind.Mixing ratio and the desired hydraulic resistance the respective valve or. Throttle body position be stored. The data of the characteristic diagrams 32, 33 are strongly coupled to one another, since the mixing ratio and, depending on the working point, also the hydraulic resistance of the cooling system strongly depend on the valve position of each individual valve 3a, 3b or on the position of each throttle body. Assuming turbulent flow, the pressure drop is approximately proportional to the square of the coolant flow. Analogous to electrical engineering, a hydraulic equivalent resistance R of the cooling system can be determined for all valve positions using a hydraulic network, provided the hydraulic resistances of the components and the resistance characteristics of the valves 3a, 3b are known.
Ein Beispiel für ein solches hydraulisches Netzwerk entsprechend der Erfindung ist in Figur 4 dargestellt. Die Einzelwiderstände der Komponenten addieren sich analog einer e- lektrischen Schaltung zum Gesamtwiderstand. Daraus ergibt sich die Systemkennlinie. Der gesuchte Gesamt-Kühlmittelstrom des Kühlsystems durch die Kühlmittelpumpe 5 ergibt sich dann aus dem Schnitt der Pumpenkennlinie mit der Systemkennlinie.An example of such a hydraulic network according to the invention is shown in FIG. 4. The individual resistances of the components add up to the total resistance analogously to an electrical circuit. This results in the system characteristic. The desired total coolant flow of the cooling system through the coolant pump 5 then results from the intersection of the pump characteristic curve with the system characteristic curve.
Im Einzelnen sind in Figur 4 dargestellt: der hydraulische Widerstand 41 der Brennkraftmaschine 1, der hydraulische Widerstand 42 des Heizzweiges 10-14, der hydraulische Widerstand 43 eines nicht näher gezeigten, in der Brennkraftmaschine 1 enthaltenen Zylinderkopfes, der hydraulische Widerstand 44 des Bypassventils 3b, der hydraulische Widerstand 45 des Bypasszweiges 4a, 4b ohne das Bypassventil 3b, der hydraulische Widerstand 46 des Kühlerventils 3 a und der hydraulische Widerstand 47 des restlichen Kühlerzweiges 7a, 7b, 8, 9 ohne das Kühlerventil 3a. Hierbei sind die hydraulischen Widerstän- de 44, 45 des Bypassventils 3b und des restlichen Bypasszweigs 4a, 4b in Reihe geschaltet. Diese Reihenschaltung ist wiederum parallel geschaltet zur Reihenschaltung aus hydraulischem Widerstand 46 des Kühlerventils 3 a und hydraulischem Widerstand 47 des restlichen Kühlerzweiges 7a, 7, 8, 9. Die Parallelschaltung der hydraulischen Widerstände 44, 45 einerseits und 46, 47 andererseits ist wiederum in Reihe geschaltet zum hyd- raulischen Widerstand 43 des Zylinderkopfes der Brennkraftmaschine 1. Die somit entstandene Reihenschaltung der hydraulischen Widerstände ist wiederum parallel geschaltet zum hydraulischen Widerstand 42 des Heizzweiges 10-14. Die bis jetzt vorliegende Schaltung der hydraulischen Widerstände 42-47 ist ihrerseits in Reihe geschaltet zum hydraulischen Widerstand 41 der Brennkraftmaschine 1. Insgesamt ergeben sich aus der in Figur 4 gezeigten Reihen- und Parallelschaltung der hydraulischen Widerstände 41-47 der hydraulische Gesamtwiderstand des Kühlsystems. Außerdem ergibt sich aus der Parallelschaltung der Reihenschaltungen der hydraulischen Widerstände 44, 45 und 46, 4 7 das Verhältnis der Durchströmung des Bypass- und Kühlerzweigs 3b, 4a, 4b; 3 a, 7a, 7b, 8, 9 und somit das Mischverhältnis. Figur 5 zeigt Kennlinien zur Ermittlung des gewünschten hydraulischen Widerstands. In Figur 5 sind auf der waagerechten Achse Kühlmittelströme Vp dargestellt, während auf der senkrechten Achse Druckdifferenzen dp dargestellt sind. Für die Drehzahlen nl, n2 und n3 (nl > n2 > n3) sind jeweils Pumpenkennlinien 51, 52, 53 dargestellt. Weiterhin dargestellt ist eine Systemkennlinie 54, die sich (bei turbulenter Strömung) aus der Multiplikation des hydraulischen Widerstandes R mit dem Quadrat des Kühlmittelstroms Vp ergibt. Mathematisch gesehen stellt somit die Systemkennlinie 54 eine Parabel dar, wobei die Druckdifferenz dp eine Funktion des Quadrats des Kühlmittelstroms Vp ist, wobei das Quadrat des Kühlmittelstroms Vp mit dem hydraulischen Widerstand R als Faktor verknüpft ist.4 shows in detail: the hydraulic resistance 41 of the internal combustion engine 1, the hydraulic resistance 42 of the heating branch 10-14, the hydraulic resistance 43 of a cylinder head, not shown in detail, contained in the internal combustion engine 1, the hydraulic resistance 44 of the bypass valve 3b, the hydraulic resistance 45 of the bypass branch 4a, 4b without the bypass valve 3b, the hydraulic resistance 46 of the cooler valve 3a and the hydraulic resistance 47 of the rest of the cooler branch 7a, 7b, 8, 9 without the cooler valve 3a. In this case, the hydraulic resistors 44, 45 of the bypass valve 3b and the remaining bypass branch 4a, 4b are connected in series. This series connection is in turn connected in parallel to the series connection of hydraulic resistor 46 of cooler valve 3 a and hydraulic resistor 47 of the remaining cooler branch 7a, 7, 8, 9. The parallel connection of hydraulic resistors 44, 45 on the one hand and 46, 47 on the other hand is in turn connected in series to the hydraulic resistance 43 of the cylinder head of the internal combustion engine 1. The series connection of the hydraulic resistors thus created is in turn connected in parallel to the hydraulic resistance 42 of the heating branch 10-14. The circuit of the hydraulic resistors 42-47 so far is in turn connected in series with the hydraulic resistor 41 of the internal combustion engine 1. Overall, the total hydraulic resistance of the cooling system results from the series and parallel connection of the hydraulic resistors 41-47 shown in FIG. In addition, from the parallel connection of the series connections of the hydraulic resistors 44, 45 and 46, 47, the ratio of the flow through the bypass and cooler branches 3b, 4a, 4b; 3 a, 7a, 7b, 8, 9 and thus the mixing ratio. Figure 5 shows characteristic curves for determining the desired hydraulic resistance. 5 shows coolant flows Vp on the horizontal axis, while pressure differences dp are shown on the vertical axis. Pump characteristics 51, 52, 53 are shown for the speeds nl, n2 and n3 (nl>n2> n3). Also shown is a system characteristic curve 54 which (in the case of turbulent flow) results from the multiplication of the hydraulic resistance R by the square of the coolant flow Vp. Mathematically, the system characteristic curve 54 thus represents a parabola, the pressure difference dp being a function of the square of the coolant flow Vp, the square of the coolant flow Vp being linked to the hydraulic resistance R as a factor.
Mit sinkendem hydraulischem Widerstand R wird somit die Steigung der Systemkennlinie 54 geringer und resultiert schließlich in einem systembedingten minimalen hydraulischen Widerstand R sys min, dessen Abhängigkeit vom Kühlmittelstrom Vp mit der Be- zugszahl 55 versehen ist. Steigt hingegen der hydraulische Widerstand R, ergibt sich eine größere Steigung der Systemkennlinie 54, und die Systemkennlinie 54 würde sich weiter in Richtung der senkrechten Achse verschieben. In Kenntnis der aktuellen Drehzahl n der Brennkraftmaschine 1 und eines gewünschten Sollgesamt-Kühlmittelstroms Vp lässt sich somit aus dem Schnittpunkt des gesuchten Kühlmittelstroms Vp mit der entsprechend Pumpenkennlinie 51-53 die gesuchte Systemkennlinie bestimmen, aus welcher der gesuchte hydraulische Widerstand R bestimmt werden kann. Beispielsweise sind in der Darstellung nach Figur 5 für die Kühlmittelströme Vpl, Vp2, Vp3 die Schnittpunkte 56, 57 und 58 mit der jeweils entsprechenden Pumpenkennlinie 51-53 gezeigt. Durch diese Schnittpunkte 56-58 ergibt sich die Systemkennlinie 54, wodurch auf den gesuchten hyd- raulischen Widerstand R rückgeschlossen werden kann.As the hydraulic resistance R decreases, the slope of the system characteristic 54 thus becomes smaller and ultimately results in a system-related minimum hydraulic resistance R sys min, the dependence on the coolant flow Vp of which is given the reference number 55. If, on the other hand, the hydraulic resistance R increases, the system characteristic 54 increases, and the system characteristic 54 would shift further in the direction of the vertical axis. Knowing the current speed n of the internal combustion engine 1 and a desired total coolant flow Vp, it is thus possible to determine the desired system characteristic from the intersection of the coolant flow Vp sought with the corresponding pump characteristic 51-53, from which the sought hydraulic resistance R can be determined. For example, in the illustration according to FIG. 5, the intersection points 56, 57 and 58 are shown for the coolant flows Vpl, Vp2, Vp3 with the corresponding pump characteristic curve 51-53. The system characteristic curve 54 results from these intersection points 56-58, as a result of which the sought hydraulic resistance R can be inferred.
Das dargestellte erfindungsgemäße Verfahren kann beispielsweise in einem Steuergerät eines Kraftfahrzeugs integriert sein, welches zusätzlich beispielsweise die Aufgabe der Steuerung der Brennkraftmaschine 1 übernimmt. Die gezeigten funktionalen Zusammen- hänge können z. B. durch entsprechende mathematische Funktionen, ein mehrdimensionales Kennfeld oder auch durch mehrere Kennfelder im Motorsteuergerät abgebildet sein. Insgesamt ergibt sich eine besonders flexible und exakte Möglichkeit der unabhängigen Steuerung von Kühlmittelströmen Vp und Mischungsverhältnissen zwischen Kühlerzweig 3a, 7a, 7b, 8, 9 und Bypasszweig 3b, 4a, 4b, wodurch eine einfache, gegebenenfalls rechnergestützte bzw. automatisierte Applizierbarkeit gegeben ist. Die für die Applikati- on benötigten Daten sind leicht messbar, sollten aber auch im Rahmen der Kühlsystem- dimensionierung vom Fahrzeughersteller bzw. vom Komponentenlieferanten her bekannt sein bzw. bekannt gemacht werden. The method according to the invention shown can be integrated, for example, in a control unit of a motor vehicle, which additionally takes on the task of controlling internal combustion engine 1, for example. The functional relationships shown can include e.g. B. can be represented by corresponding mathematical functions, a multi-dimensional map or by several maps in the engine control unit. All in all, there is a particularly flexible and exact possibility of independently controlling coolant flows Vp and mixing ratios between cooler branch 3a, 7a, 7b, 8, 9 and bypass branch 3b, 4a, 4b, which enables simple, possibly computer-aided or automated applicability. The for the application The required data are easy to measure, but should also be known or made known as part of the cooling system dimensioning from the vehicle manufacturer or from the component supplier.

Claims

Ansprüche Expectations
1. Verfahren zur Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine (1) eines Kraftfahrzeugs, wobei ein Kühlmittel von einer Kühlmittelpumpe (5) umgewälzt wird und wobei das Kühlmittel außerhalb der Brennkraftmaschine (1) wenigstens durch einen Kühlerzweig (3 a, 7a, 7b, 8, 9) und durch einen Bypasszweig1. A method for controlling and / or regulating a cooling system of an internal combustion engine (1) of a motor vehicle, a coolant being circulated by a coolant pump (5) and the coolant outside the internal combustion engine (1) at least through a cooler branch (3a, 7a, 7b, 8, 9) and through a bypass branch
(3b, 4a, 4b) fließt, dadurch gekennzeichnet, dass mit Steuer- und/oder Regelmitteln eine Drosselung eines Kühlmittelstroms durch den Kühlerzweig (3a, 7a, 7b, 8, 9) und eines Kühlmittelstroms durch den Bypasszweig (3 b, 4a, 4b) unabhängig voneinander durchgeführt wird.(3b, 4a, 4b) flows, characterized in that with control and / or regulating means a throttling of a coolant flow through the cooler branch (3a, 7a, 7b, 8, 9) and a coolant flow through the bypass branch (3 b, 4a, 4b) is carried out independently of one another.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mittels einer vorgebbaren Ansteuerung der Steuer- und/oder Regelmittel eine Temperatur des Kühlmittels eingestellt wird.2. The method according to claim 1, characterized in that a temperature of the coolant is set by means of a predeterminable control of the control and / or regulating means.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mittels der Steuer- und/oder Regelmittel ein vorgebbarer Gesamt-Kühlmittelstrom (Vp) des Kühlmittels eingestellt wird.3. The method according to claim 1 or 2, characterized in that a predetermined total coolant flow (Vp) of the coolant is set by means of the control and / or regulating means.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass mittels der Steuer- und/oder Regelmittel ein vorgebbares Mischverhältnis der Kühlmittelströme durch4. The method according to claim 3, characterized in that by means of the control and / or regulating means by a predetermined mixing ratio of the coolant flows
Kühler- und Bypasszweig (3a, 7a, 7b, 8, 9; 3b, 4a, 4b) eingestellt wird. Cooler and bypass branch (3a, 7a, 7b, 8, 9; 3b, 4a, 4b) is set.
5. Verfahren nach 4, dadurch gekennzeichnet, dass wenigstens aus dem vorgebbaren Mischverhältnis, dem vorgebbaren Gesamt-Kühlmittelstrom (Vp) und einer Drehzahl (n) der Brennkraftmaschine (1) und/oder der Kühlmittelpumpe (5) und/oder einer Stellung des Heizungsventils (11) Ansteuergrößen für die Steuer- und/oder Regel- mittel bestimmt werden.5. The method according to 4, characterized in that at least from the predetermined mixing ratio, the predetermined total coolant flow (Vp) and a speed (n) of the internal combustion engine (1) and / or the coolant pump (5) and / or a position of the heating valve (11) Control variables for the control and / or regulating means are determined.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass aus dem vorgebbaren Gesamt-Kühlmittelstrom (Vp) und der Drehzahl (n) der Brennkraftmaschine (1) und/oder der Kühlmittelpumpe (5) ein hydraulischer Gesamtwiderstand (R) des Kühlsystems bestimmt wird.6. The method according to claim 5, characterized in that a total hydraulic resistance (R) of the cooling system is determined from the predeterminable total coolant flow (Vp) and the speed (s) of the internal combustion engine (1) and / or the coolant pump (5).
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass aus Kennfeldern (31, 32, 33) Ansteuergrößen für ein Kühlerventil (3a) im Kühlerzweig (3a, 7a, 7b, 8, 9) und ein Bypassventil (3b) im Bypasszweig (3b, 4a, 4b) bestimmt werden.7. The method according to claim 5 or 6, characterized in that from characteristic maps (31, 32, 33) control variables for a cooler valve (3a) in the cooler branch (3a, 7a, 7b, 8, 9) and a bypass valve (3b) in the bypass branch (3b, 4a, 4b) can be determined.
8. Verfahren nach den Ansprüchen 6 und 7, dadurch gekemizeichnet, dass die Kennfelder (31, 32, 33) wenigstens in Abhängigkeit von dem vorgebbaren Mischverhältnis und dem hydraulischen Gesamtwiderstand (R) des Kühlsystems in einem Speicher abgelegt sind.8. The method according to claims 6 and 7, characterized in that the maps (31, 32, 33) are stored in a memory at least as a function of the predefinable mixing ratio and the total hydraulic resistance (R) of the cooling system.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zur Bestimmung des hydraulischen Gesamtwiderstands (R) des Kühlsystems ein Kennfeld (31, 32, 33) in einem Speicher abgelegt ist. .9. The method according to claim 6, characterized in that a map (31, 32, 33) is stored in a memory for determining the total hydraulic resistance (R) of the cooling system. ,
10. Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine (1) eines10. Control and / or regulation of a cooling system of an internal combustion engine (1)
Kraftfahrzeugs, mit einer Kühlmittelpumpe (5) zum Umwälzen eines Kühlmittels, mit wenigstens einem Kühlerzweig (3a, 7a, 7b, 8, 9) und einem Bypasszweig (3b, 4a, 4b) durch welche das Kühlmittel außerhalb der Brennkraftmaschine (1) fließen kann, dadurch gekennzeichnet, dass Steuer- und/oder Regelmittel zur unabhängigen Dros- seiung eines Kühlmittelstroms durch den Kühlerzweig (3 a, 7a, 7b, 8, 9) und einesMotor vehicle, with a coolant pump (5) for circulating a coolant, with at least one cooler branch (3a, 7a, 7b, 8, 9) and a bypass branch (3b, 4a, 4b) through which the coolant can flow outside the internal combustion engine (1) , characterized in that control and / or regulating means for the independent throttling of a coolant flow through the cooler branch (3 a, 7a, 7b, 8, 9) and one
Kühlmittelstroms durch den Bypasszweig (3b, 4a, 4b) vorgesehen sind. Coolant flow through the bypass branch (3b, 4a, 4b) are provided.
EP03746236A 2002-04-15 2003-04-11 Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle Expired - Lifetime EP1497540B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10216646 2002-04-15
DE10216646 2002-04-15
DE2003116017 DE10316017A1 (en) 2003-04-07 2003-04-07 Method for regulating and controlling a cooling system for a motor vehicle combustion engine has throttle controlled cooling and bypasss branches in cooling circuit
DE10316017 2003-04-07
PCT/DE2003/001228 WO2003087552A1 (en) 2002-04-15 2003-04-11 Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle

Publications (2)

Publication Number Publication Date
EP1497540A1 true EP1497540A1 (en) 2005-01-19
EP1497540B1 EP1497540B1 (en) 2008-10-01

Family

ID=29251760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746236A Expired - Lifetime EP1497540B1 (en) 2002-04-15 2003-04-11 Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle

Country Status (3)

Country Link
EP (1) EP1497540B1 (en)
DE (1) DE50310574D1 (en)
WO (1) WO2003087552A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2475079B (en) * 2009-11-05 2015-02-18 Ford Global Tech Llc Cooling systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033261C2 (en) * 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperature controlled cooling circuit of an internal combustion engine
US6178928B1 (en) * 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
FR2804721B1 (en) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
JP4337207B2 (en) * 2000-02-10 2009-09-30 株式会社デンソー Cooling device for liquid-cooled internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03087552A1 *

Also Published As

Publication number Publication date
EP1497540B1 (en) 2008-10-01
DE50310574D1 (en) 2008-11-13
WO2003087552A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
EP1509687B1 (en) Method for regulating the heat of an internal combustion engine for vehicles
EP0744539B1 (en) Cooling system with an electrically controlled actuator
DE10359581B4 (en) Method for controlling a vehicle engine cooling system
DE102019102235A1 (en) SYSTEM AND METHOD FOR MOTOR COOLING
DE19803653B4 (en) Control device for direct injection engines
DE10024034A1 (en) Control method for vehicle drive train with automatic gearbox and internal combustion engine involves selecting different transmission ratio if current speed exceeds limit for gear change
DE112013003619T5 (en) Heat cold start system with multifunction valve
EP1454039B1 (en) Method for the temperature regulation of an engine
DE10210586A1 (en) Cooling fan control algorithm method and apparatus
DE10342935B4 (en) Internal combustion engine with a cooling circuit
DE102018110234B4 (en) Cooling device for an internal combustion engine
WO2019149792A1 (en) Method for regulating the temperature of a coolant in a coolant circuit of a drive unit on a test stand
DE60217434T2 (en) Control system and method for a multi-cylinder internal combustion engine
DE10260260A1 (en) Engine cooling system
DE68906971T2 (en) Jerk control system for a drive system.
DE102005062294A1 (en) Method for cooling an internal combustion engine
DE102015113200A1 (en) COOLANT CONTROL SYSTEMS AND METHOD FOR AVOIDING COOLANT SEEDS
EP0744538A2 (en) Cooling system with an electrically controlled actuator
DE10316017A1 (en) Method for regulating and controlling a cooling system for a motor vehicle combustion engine has throttle controlled cooling and bypasss branches in cooling circuit
EP1497540B1 (en) Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle
DE3610962C1 (en) Method for regulating the interior temperature, in particular of a motor vehicle
DE60123402T2 (en) METHOD AND DEVICE FOR COOLING A COMBUSTION ENGINE OF A MOTOR VEHICLE
DE102008032102A1 (en) Control system for vehicle interior heating
DE102014108175B4 (en) Coolant control method for a transmission temperature control vehicle
EP1523612B1 (en) Method and device for regulating the temperature of a coolant in an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50310574

Country of ref document: DE

Date of ref document: 20081113

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140423

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140429

Year of fee payment: 12

Ref country code: FR

Payment date: 20140416

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150411

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150411

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160628

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310574

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103