EP1497540B1 - Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle - Google Patents

Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle Download PDF

Info

Publication number
EP1497540B1
EP1497540B1 EP03746236A EP03746236A EP1497540B1 EP 1497540 B1 EP1497540 B1 EP 1497540B1 EP 03746236 A EP03746236 A EP 03746236A EP 03746236 A EP03746236 A EP 03746236A EP 1497540 B1 EP1497540 B1 EP 1497540B1
Authority
EP
European Patent Office
Prior art keywords
coolant
internal combustion
combustion engine
predefinable
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03746236A
Other languages
German (de)
French (fr)
Other versions
EP1497540A1 (en
Inventor
Karsten Mann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003116017 external-priority patent/DE10316017A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1497540A1 publication Critical patent/EP1497540A1/en
Application granted granted Critical
Publication of EP1497540B1 publication Critical patent/EP1497540B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/52Heat exchanger temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a method for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle, in which a coolant is circulated by a coolant pump and in which the coolant flows outside the internal combustion engine at least through a cooler branch and through a bypass branch.
  • the invention further relates to a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, with a coolant pump for circulating a coolant and with at least one radiator branch and a bypass branch, can flow through the coolant outside of the internal combustion engine.
  • a cooling circuit for an internal combustion engine of a motor vehicle usually include a heat source to be cooled (the internal combustion engine), which is cooled by means of a coolant by free or forced convection.
  • the temperature difference across the heat source is dependent on the heat input and the size of the coolant flow, while the absolute temperature of the coolant is determined by the heat input of the heat source, the heat removal via recirculating coolers and the heat capacities of the materials.
  • z. B the possibility of a demand-driven control or regulation of the engine cooling system with the aim to reduce fuel consumption and emissions or to comply with emission limits and also to increase comfort.
  • critical limits of the component load must not be exceeded.
  • a particularly critical component here is z. B. the cylinder head temperature.
  • the invention has for its object to provide a flexible control and / or regulation of the coolant flows in a cooling system of an internal combustion engine of a motor vehicle.
  • the object is achieved by a method for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle, according to claim 1.
  • the coolant flows can be given in a particularly flexible manner in the method according to the invention.
  • One measure provides that a desired temperature of the coolant is set by means of a presettable actuation of the control and / or regulating means.
  • the inventive method used to set a coolant target temperature in a particularly flexible manner.
  • Another development provides that by means of the control and / or regulating means a predeterminable total coolant flow is set.
  • the method according to the invention furthermore makes it possible, independently of the boundary condition of the predetermined total coolant flow, to set a specifiable mixing ratio of the coolant flows through the radiator and bypass branch by means of the control and / or regulating means. In other words, it is possible to simultaneously set a certain total coolant flow and a mixing ratio of the coolant flows between the radiator and the bypass branch.
  • the mixing ratio is the control value for motor temperature control).
  • the object is further achieved by a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, having the features according to claim 8.
  • control and / or regulation according to the invention has the same advantages as the method according to the invention.
  • FIG. 1 shows an example of a conventional cooling system.
  • an internal combustion engine 1 is traversed by a coolant.
  • the coolant flows out via a line 2 from the internal combustion engine 1 and flows through a three-way radiator valve 3, via a bypass branch 4, a coolant pump 5 and a line 6 back into the internal combustion engine 1.
  • a portion of the coolant starting from the three-way radiator valve 3, over a line 7 to a radiator 8, from there via a line 9 and also via the coolant pump 5 and line 6 back to the internal combustion engine. 1
  • the coolant leaves the internal combustion engine 1 via a line 10 and flows from there via a heating valve 11, a line 12, a heating heat exchanger 13, a line 14, the coolant pump 5 and line 6 back to the internal combustion engine 1.
  • the line 10, the Heating valve 11, the line 12, the Schuungstrermübertrager 13 and the line 14 form a heating branch.
  • FIG. 1 Furthermore, three temperature sensors are shown, which detect the temperatures at certain points of the cooling system. These are the temperature sensor 15, which detects the temperature in line 2, the temperature sensor 16, which detects the temperature in line 6, and the temperature sensor 17, which detects the temperature in line 9.
  • the temperature sensor 15 thus detects the temperature at an output of the internal combustion engine 1.
  • the temperature sensor 16 thus detects the temperature at an input of the Internal combustion engine 1
  • the temperature sensor 17 thus detects the temperature of the coolant at an outlet of the radiator fan 8.
  • FIG. 2 shows a cooling system according to the invention.
  • the three-way radiator valve 3 shown there is replaced by two separate valves 3a and 3b.
  • a cooler valve 3a is inserted into the line 7, whereby the line 7 is divided into two sub-lines 7a and 7b.
  • a bypass valve 3b has been inserted, whereby the conduit 4 is divided into the parts 4a and 4b.
  • the cooler valve 3, the partial lines 7a, 7b, the radiator 8 and the line 9 form a cooler branch.
  • the bypass valve 3 and the sub-lines 4a, 4b form a bypass branch.
  • the desired mixing ratio and the total nominal coolant flow can be set. If necessary, it must be assumed in this case that all the other branches short-circuiting the coolant pump 5 can likewise be disconnected, for example the heating branch 10-14.
  • the desired mixing ratio between the radiator branch 3, 7a, 7b, 8, 9 and the bypass branch 3b, 4a, 4b as well as on the determination of the total coolant flow through the entire cooling system is not discussed in the context of this invention, since this is not relevant to the essence of the invention and this data can be determined in a separate thermal management process management.
  • FIG. 3a shows a first embodiment of the method according to the invention. Here, it is shown schematically how from the desired mixing ratio and the total target coolant flow, the corresponding positions of the two valves 3a and 3b after FIG. 2 be determined.
  • the operating point of the coolant pump 5 is determined as a function of the rotational speed n of the internal combustion engine 1, and the desired hydraulic system resistance R is determined as a function of the total target coolant flow Vp by means of a first characteristic map 31.
  • This desired hydraulic system resistance R and a desired mixing ratio MV are the inputs of the second and third maps 32, 33. From the second map 32 out the cooling valve 3a and from the third map 33 out the bypass valve 3b is driven. Accordingly, signals are obtained from the two characteristic diagrams 32, 33 which correspond to the desired positions of the valves 3a, 3b.
  • FIG. 3b shows the same embodiment in a different representation.
  • a first step 34 the input variables setpoint mixing ratio MV, total setpoint coolant flow Vp and rotational speed n of the internal combustion engine 1 are detected. Based on these input data, the hydraulic total resistance R of the cooling system is determined in a step 35 by means of the total target coolant flow Vp and the rotational speed n. This total hydraulic resistance R is transmitted to step 36, wherein, based on the desired mixing ratio MV and the total target refrigerant flow Vp drive quantities for the cooling valve 3a and the bypass valve 3b are determined. Finally, in the final step 37, the radiator valve 3a and the bypass valve 3b are activated accordingly.
  • the first map 31 for determining the desired hydraulic resistance R and optionally the second and third maps 32, 33 can be generated automatically during the application of the internal combustion engine.
  • the map of the coolant pump 5 must be known, which indicates the pressure difference across the pump dependence of the coolant flow and the pump or engine speed.
  • the hydraulic resistances of the components should be known. In the case of the pump map, a hydraulic resistance can be clearly found for each data pair of coolant flow and speed.
  • the respective valve or throttle body position must be stored in the respective map depending on the desired mixing ratio and the desired hydraulic resistance.
  • a hydraulic equivalent resistance R of the cooling system can be determined by means of a hydraulic network analogous to electrical engineering, as long as the hydraulic resistances of the components and the resistance characteristics of the valves 3a, 3b are known.
  • FIG. 1 An example of such a hydraulic network according to the invention is shown in FIG.
  • the individual resistances of the components add up analogously to an electrical circuit for total resistance. This results in the system characteristic.
  • the sought total coolant flow of the cooling system through the coolant pump 5 then results from the intersection of the pump curve with the system curve.
  • FIG. 4 illustrated: the hydraulic resistance 41 of the internal combustion engine 1, the hydraulic resistance 42 of the heating branch 10-14, the hydraulic resistance 43 of a cylinder head, not shown in detail, contained in the internal combustion engine 1, the hydraulic resistance 44 of the bypass valve 3b, the hydraulic resistance 45 of the bypass branch 4a, 4b without the bypass valve 3b, the hydraulic resistance 46 of the radiator valve 3a and the hydraulic resistance 47 of the remaining radiator branch 7a, 7b, 8, 9 without the radiator valve 3a.
  • the hydraulic resistors 44, 45 of the bypass valve 3b and the remaining bypass branch 4a, 4b are connected in series. This series circuit is in turn connected in parallel to the series circuit of hydraulic resistance 46 of the radiator valve 3a and hydraulic resistor 47 of the remaining radiator branch 7a, 7, 8, 9.
  • FIG. 5 shows characteristics to determine the desired hydraulic resistance.
  • Vp On the horizontal axis coolant flows Vp are shown, while on the vertical axis pressure differences dp are shown.
  • n1, n2 and n3 pump characteristics 51, 52, 53 are respectively shown.
  • system characteristic curve 54 which results (in the case of turbulent flow) from the multiplication of the hydraulic resistance R by the square of the coolant flow Vp.
  • the system characteristic 54 represents a parabola, where the pressure difference dp is a function of the square of the refrigerant flow Vp, where the square of the refrigerant flow Vp is linked to the hydraulic resistance R as a factor.
  • the slope of the system characteristic curve 54 thus becomes smaller and finally results in a system-dependent minimum hydraulic resistance R sys min, the dependence of which on the coolant flow Vp is provided with the reference number 55. If, on the other hand, the hydraulic resistance R increases, the system characteristic curve 54 will increase in size, and the system characteristic curve 54 would continue to shift in the direction of the vertical axis. Knowing the current speed n of the internal combustion engine 1 and a desired total desired coolant flow Vp can thus be determined from the intersection of the sought coolant flow Vp with the corresponding pump curve 51-53 the desired system characteristic, from which the sought hydraulic resistance R can be determined. For example, in the illustration after FIG.
  • the illustrated method according to the invention can be integrated, for example, in a control unit of a motor vehicle, which additionally assumes, for example, the task of controlling the internal combustion engine 1.
  • the functional relationships shown may, for. B. be represented by corresponding mathematical functions, a multi-dimensional map or by multiple maps in the engine control unit.
  • the for the application required data are easily measurable, but should also be known or made known in the context of cooling system dimensioning by the vehicle manufacturer or by the component supplier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zur Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem ein Kühlmittel von einer Kühlmittelpumpe umgewälzt wird und bei dem das Kühlmittel außerhalb der Brennkraftmaschine wenigstens durch einen Kühlerzweig und durch einen Bypasszweig fließt.The invention relates to a method for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle, in which a coolant is circulated by a coolant pump and in which the coolant flows outside the internal combustion engine at least through a cooler branch and through a bypass branch.

Die Erfindung betrifft weiterhin eine Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, mit einer Kühlmittelpumpe zum Umwälzen eines Kühlmittels und mit wenigstens einem Kühlerzweig und einem Bypasszweig, durch die Kühlmittel außerhalb der Brennkraftmaschine fließen kann.The invention further relates to a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, with a coolant pump for circulating a coolant and with at least one radiator branch and a bypass branch, can flow through the coolant outside of the internal combustion engine.

Zu einem Kühlkreislauf für eine Brennkraftmaschine eines Kraftfahrzeugs gehören in der Regel eine zu kühlende Wärmequelle (der Brennkraftmaschine), die mittels eines Kühlmittels durch freie oder erzwungene Konvektion gekühlt wird. Die Temperaturdifferenz über der Wärmequelle ist vom Wärmeeintrag und von der Größe des Kühlmittelstroms abhängig, während die absolute Temperatur des Kühlmittels durch den Wärmeeintrag der Wärmequelle, die Wärmeabfuhr über im Kreislauf befindliche Kühler und die Wärmekapazitäten der Materialien bestimmt wird.To a cooling circuit for an internal combustion engine of a motor vehicle usually include a heat source to be cooled (the internal combustion engine), which is cooled by means of a coolant by free or forced convection. The temperature difference across the heat source is dependent on the heat input and the size of the coolant flow, while the absolute temperature of the coolant is determined by the heat input of the heat source, the heat removal via recirculating coolers and the heat capacities of the materials.

Derzeit werden in Motorkühlsystemen von Kraftfahrzeugen mechanische Wasserpumpen eingesetzt, die über Keilriemen von der Kurbelwelle des Motors angetrieben werden. Die Pumpen sind hierbei derart dimensioniert, dass selbst in kritischsten Betriebszuständen, beispielsweise bei Bergfahrt mit hoher Drehzahl, hoher Last und geringer Fahrzeuggeschwindigkeit, keine unzulässig hohe Motortemperatur bzw. Temperaturdifferenz über dem Motor entsteht. Das Mischverhältnis zwischen dem Bypasszweig und dem Kühlerzweig wird durch ein dehnstoffbetriebenes Thermostatventil in Abhängigkeit von der Kühlmitteltemperatur eingestellt. Das Thermostatventil ist so dimensioniert, dass sich keine unzulässig hohe Kühlmitteltemperatur einstellt.Currently motor water cooling systems of motor vehicles use mechanical water pumps which are driven via V-belts by the crankshaft of the engine. The pumps are in this case dimensioned such that even in the most critical operating states, For example, when driving uphill at high speed, high load and low vehicle speed, no unacceptably high engine temperature or temperature difference across the engine arises. The mixing ratio between the bypass branch and the radiator branch is adjusted by means of a worm-operated thermostatic valve as a function of the coolant temperature. The thermostatic valve is dimensioned so that no inadmissibly high coolant temperature is established.

Um ein effizienteres Wärmemanagement im Kühlsystem einer Brennkraftmaschine für ein Kraftfahrzeug zu erreichen, besteht z. B. die Möglichkeit einer bedarfsgerechten Ansteuerung bzw. Regelung des Motorkühlsystems mit dem Ziel, den Kraftstoffverbrauch und die Emission zu verringern bzw. Abgasgrenzwerte einzuhalten und zudem den Komfort zu erhöhen. Dabei dürfen kritische Grenzen der Bauteilbelastung nicht überschritten werden. Ein besonders kritisches Bauteil ist hierbei z. B. die Zylinderkopftemperatur. Diese Ziele können durch eine Optimierung des Kühlmittelstroms und die lastabhängige Regelung des Temperaturniveaus des Motors erreicht werden.In order to achieve a more efficient thermal management in the cooling system of an internal combustion engine for a motor vehicle, z. B. the possibility of a demand-driven control or regulation of the engine cooling system with the aim to reduce fuel consumption and emissions or to comply with emission limits and also to increase comfort. At the same time, critical limits of the component load must not be exceeded. A particularly critical component here is z. B. the cylinder head temperature. These goals can be achieved by optimizing the coolant flow and load-dependent control of the temperature level of the engine.

Eine Alternative, die eine bedarfsgerechte Einstellung des Kühlmittelstroms ermöglicht, sieht eine elektrisch regelbare Wasserpumpe vor, die jedoch den Nachteil aufweist, dass sie zum einen deutlich teurer als eine mechanische Wasserpumpe ist und zum anderen in heutigen Bordnetzen mit 12V Spannung teilweise die benötigten Pumpleistungen nicht ohne Weiteres realisierbar sind.An alternative that allows a needs-based adjustment of the coolant flow, provides an electrically controllable water pump, but has the disadvantage that it is significantly more expensive than a mechanical water pump and partly in today's electrical systems with 12V voltage partly the required pump power not without Further feasible.

Aus dem SAE Technical Paper Series 961813 von Jilian Yangg von der Ford Motor Co. mit dem Titel "Coolant Pump Throttling - A Simple Method to Improve the Control Over SI Engine Cooling System" von der International Off-Highway & Powerplant Congress & Exposition, Indianapolis, Indiana, August 26-28, 1996 ist ein Kühlsystem für eine Brennkraftmaschine eines Kraftfahrzeugs bekannt geworden, bei dem die Pumpe als eine mechanisch angetriebene Kühlmittelpumpe ausgeführt ist. Mit dem Ziel eines verbesserten Erwärmens der Brennräume nach einem Kaltstart und einer Verbesserung von Abgas- und Verbrauchswerten schlägt der Autor vor, den Kühlmittelstrom der Kühlmittelpumpe zu drosseln. Hierzu werden zwei unterschiedliche Ausführungen vorgeschlagen. Zum einen schlägt der Autor vor, in den Bypasszweig des Kühlsystems eine Drosselblende einzusetzen. Zum anderen schlägt der Autor vor, eine Drosselklappe unmittelbar am Pumpenausgang anzubringen. Bei der ersten Alternative kann der Kühlmittelstrom im Bypasszweig geregelt werden, während bei der zweiten Alternative der Gesamt-Kühlmittelstrom des Kühlsystems geregelt werden kann.From the SAE Technical Paper Series 961813 by Jilian Yangg of the Ford Motor Co. entitled "Coolant Pump Throttling - A Simple Method to Improve the Control Over SI Engine Cooling System" by the International Off-Highway & Powerplant Congress & Exposition, Indianapolis , Indiana, August 26-28, 1996, a cooling system for an internal combustion engine of a motor vehicle has become known, in which the pump is designed as a mechanically driven coolant pump. With the aim of improved heating of the combustion chambers after a cold start and an improvement of exhaust gas and consumption values, the author proposes to throttle the coolant flow of the coolant pump. For this purpose, two different embodiments are proposed. On the one hand, the author proposes to use an orifice plate in the bypass branch of the cooling system. On the other hand, the author proposes to install a throttle valve directly on the pump outlet. In the first alternative, the coolant flow in the bypass branch be regulated, while in the second alternative, the total coolant flow of the cooling system can be controlled.

Aus der DE 40 33 261 A1 ist bereits eine Verbrennungskraftmaschine mit einer darin enthaltenen Kühlmittelleitung, die von einem flüssigen Kühlmittel durchströmbar ist, bekannt, wobei der Kühlmittelleitung zumindest ein Hilfsmittel zur Reduzierung des Kühlmittelmassenstroms zugeordnet ist, gemäß Anspruch 1 bzw. 8, erster Teil.From the DE 40 33 261 A1 is already an internal combustion engine with a coolant line therein, which is traversed by a liquid coolant, known, wherein the coolant line is associated with at least one aid to reduce the coolant mass flow, according to claim 1 or 8, the first part.

Der Erfindung liegt die Aufgabe zugrunde, eine flexible Steuerung und/oder Regelung der Kühlmittelströme in einem Kühlsystem einer Brennkraftmaschine eines Kraftfahrzeugs anzugeben.The invention has for its object to provide a flexible control and / or regulation of the coolant flows in a cooling system of an internal combustion engine of a motor vehicle.

Vorteile der ErfindungAdvantages of the invention

Die Aufgabe wird gelöst durch ein Verfahren zur Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, gemäß Anspruch 1.The object is achieved by a method for controlling and / or regulating a cooling system of an internal combustion engine of a motor vehicle, according to claim 1.

Durch die voneinander unabhängige Steuerung und/oder Regelung der Kühlmittelströme durch den Kühlerzweig und durch den Bypasszweig können bei dem erfindungsgemäßen Verfahren die Kühlmittelströme besonders flexibel vorgegeben werden. Insbesondere ist es gegenüber konventionellen Kühlkreislaufsystemen möglich, nach einem Kaltstart nicht nur den Kühlerzweig vollständig zu unterbrechen, um eine schnellere Erwärmung der Brennkraftmaschine zu erreichen, sondern es kann zusätzlich der Kühlmittelstrom durch den Bypasszweig gedrosselt werden, um das Erwärmen der Brennkraftmaschine noch schneller zu erreichen.Due to the independent control and / or regulation of the coolant flows through the radiator branch and through the bypass branch, the coolant flows can be given in a particularly flexible manner in the method according to the invention. In particular, it is possible over conventional cooling circuit systems to not only completely interrupt the cooler branch after a cold start in order to achieve faster heating of the internal combustion engine, but additionally the coolant flow through the bypass branch can be throttled in order to achieve even faster heating of the internal combustion engine.

Eine Maßnahme sieht vor, dass mittels einer vorgebbaren Ansteuerung der Steuer- und/oder Regelmittel eine gewünschte Temperatur des Kühlmittels eingestellt wird. Durch diese Weiterbildung wird das erfindungsgemäße Verfahren dazu genutzt, in besonders flexibler Art und Weise eine Kühlmittelsolltemperatur einzustellen.One measure provides that a desired temperature of the coolant is set by means of a presettable actuation of the control and / or regulating means. By this development, the inventive method used to set a coolant target temperature in a particularly flexible manner.

Eine andere Weiterbildung sieht vor, dass mittels der Steuer- und/oder Regelmittel ein vorgebbarer Gesamt-Kühlmittelstrom eingestellt wird.Another development provides that by means of the control and / or regulating means a predeterminable total coolant flow is set.

Das erfindungsgemäße Verfahren ermöglicht es weiterhin, dass unabhängig von der Randbedingung des vorgegebenen Gesamt-Kühlmittelstroms mittels der Steuer- und/oder Regelmittel ein vorgebbares Mischverhältnis der Kühlmittelströme durch Kühler- und Bypasszweig eingestellt werden kann. Mit anderen Worten: Es ist möglich, gleichzeitig einen bestimmten Gesamt-Kühlmittelstrom und ein Mischverhältnis der Kühlmittelströme zwischen dem Kühler- und dem Bypasszweig einzustellen. (Das Mischverhältnis ist die Stellgröße zur Motortemperatur-Regelung).The method according to the invention furthermore makes it possible, independently of the boundary condition of the predetermined total coolant flow, to set a specifiable mixing ratio of the coolant flows through the radiator and bypass branch by means of the control and / or regulating means. In other words, it is possible to simultaneously set a certain total coolant flow and a mixing ratio of the coolant flows between the radiator and the bypass branch. (The mixing ratio is the control value for motor temperature control).

Die Aufgabe wird weiterhin gelöst durch eine Steuerung und/oder Regelung eines Kühlsystems einer Brennkraftmaschine eines Kraftfahrzeugs, mit den Merkmalen gemäß Anspruch 8.The object is further achieved by a control and / or regulation of a cooling system of an internal combustion engine of a motor vehicle, having the features according to claim 8.

Die erfindungsgemäße Steuerung und/oder Regelung weist die gleichen Vorteile auf wie das erfindungsgemäße Verfahren.The control and / or regulation according to the invention has the same advantages as the method according to the invention.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Steuerung und/oder Regelung ergeben sich aus abhängigen Ansprüchen sowie aus der nachfolgenden Beschreibung.Advantageous developments of the method and the control and / or regulation according to the invention will be apparent from the dependent claims and from the following description.

Zeichnungdrawing

  • Figur 1 zeigt ein Kühlsystem nach dem Stand der Technik, Figur 2 zeigt ein Kühlsystem gemäß der Erfindung, Figur 3a zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Verfahrens, Figur 3b zeigt das gleiche Ausführungsbeispiel in anderer Darstellung, Figur 4 zeigt ein hydraulisches Netzwerk entsprechend der Erfindung und Figur 5 zeigt eine Darstellung zur Ermittlung des gewünschten hydraulischen Widerstands entsprechend der Erfindung. FIG. 1 shows a cooling system according to the prior art, FIG. 2 shows a cooling system according to the invention, FIG. 3a shows a first embodiment of a method according to the invention, FIG. 3b shows the same embodiment in another representation, FIG. 4 shows a hydraulic network according to the invention and FIG. 5 shows a representation for determining the desired hydraulic resistance according to the invention.
  • Die Regelung des Kühlmittelstroms (Volumenstrom) und des Temperaturniveaus in einem Kühlsystem der Brennkraftmaschine ist auch mit konventioneller mechanischer Wasserpumpe möglich, wenn der Bypass- und der Kühlerzweig entkoppelt voneinander angedrosselt werden können. Durch die unabhängig voneinander mögliche Androsselung des Kühler- und des Bypasszweiges kann das Mischverhältnis der Kühlmittelströme durch den Kühler- und den Bypasszweig flexibel eingestellt werden. Der Kühlmittelstrom kann trotz des durch die Drehzahl der Brennkraftmaschine festgelegten Arbeitspunkts der mechanischen Wasserpumpe eingestellt werden, indem der hydraulische Gesamtwiderstand des Systems verändert wird. Dabei werden die Drosselventile derart eingestellt, dass sich im System das gewünschte Mischverhältnis zwischen dem Kühler- und dem Bypasszweig sowie der gewünschte hydraulische Gesamtwiderstand einstellt, aus dem sich ein gewünschter Gesamt-Kühlmittelstrom des Kühlsystems ergibt. Eine Voraussetzung zur Durchführung des erfindungsgemäßen Verfahrens ist die Kenntnis der hydraulischen Widerstände der Kühlkreislaufkomponenten sowie die Kenntnis der Pumpenkennlinie der mechanischen Wasserpumpe.The regulation of the coolant flow (volume flow) and the temperature level in a cooling system of the internal combustion engine is also possible with a conventional mechanical water pump when the bypass and the radiator branch are decoupled from each other can be throttled. Due to the independently possible throttling of the radiator and the bypass branch, the mixing ratio of the coolant flows through the radiator and the bypass branch can be set flexibly. The coolant flow can be adjusted despite the operating point of the mechanical water pump set by the engine speed by changing the overall hydraulic resistance of the system. In this case, the throttle valves are adjusted such that the desired mixing ratio between the cooler and the bypass branch and the desired total hydraulic resistance is set in the system, from which results in a desired total coolant flow of the cooling system. A prerequisite for carrying out the method according to the invention is the knowledge of the hydraulic resistances of the cooling circuit components and the knowledge of the pump characteristic of the mechanical water pump.

Figur 1 zeigt ein Beispiel eines konventionellen Kühlsystems. Entsprechend Figur 1 wird eine Brennkraftmaschine 1 von einem Kühlmittel durchflossen. Das Kühlmittel fließt über eine Leitung 2 aus der Brennkraftmaschine 1 heraus und fließt über ein Dreiwegekühlerventil 3, über einen Bypasszweig 4, eine Kühlmittelpumpe 5 und eine Leitung 6 zurück in die Brennkraftmaschine 1. Weiterhin fließt ein Teil des Kühlmittels, ausgehend vom Dreiwegekühlerventil 3, über eine Leitung 7 zu einem Kühler 8, von dort über eine Leitung 9 und ebenfalls über die Kühlmittelpumpe 5 und Leitung 6 zurück zur Brennkraftmaschine 1. FIG. 1 shows an example of a conventional cooling system. Corresponding FIG. 1 an internal combustion engine 1 is traversed by a coolant. The coolant flows out via a line 2 from the internal combustion engine 1 and flows through a three-way radiator valve 3, via a bypass branch 4, a coolant pump 5 and a line 6 back into the internal combustion engine 1. Furthermore, a portion of the coolant, starting from the three-way radiator valve 3, over a line 7 to a radiator 8, from there via a line 9 and also via the coolant pump 5 and line 6 back to the internal combustion engine. 1

An anderer Stelle verlässt das Kühlmittel über eine Leitung 10 die Brennkraftmaschine 1 und fließt von dort über ein Heizungsventil 11, eine Leitung 12, einen Heizungswärmeübertrager 13, eine Leitung 14, der Kühlmittelpumpe 5 und Leitung 6 zurück zur Brennkraftmaschine 1. Die Leitung 10, das Heizungsventil 11, die Leitung 12, der Heizungswärmübertrager 13 sowie die Leitung 14 bilden einen Heizzweig.Elsewhere, the coolant leaves the internal combustion engine 1 via a line 10 and flows from there via a heating valve 11, a line 12, a heating heat exchanger 13, a line 14, the coolant pump 5 and line 6 back to the internal combustion engine 1. The line 10, the Heating valve 11, the line 12, the Heizungswärmübertrager 13 and the line 14 form a heating branch.

In Figur 1 sind weiterhin drei Temperatursensoren gezeigt, die die Temperaturen an bestimmten Stellen des Kühlsystems erfassen. Dies sind der Temperatursensor 15, der die Temperatur in Leitung 2 erfasst, der Temperatursensor 16, der die Temperatur in Leitung 6 erfasst und der Temperatursensor 17, der die Temperatur in Leitung 9 erfasst. Der Temperatursensor 15 erfasst somit die Temperatur an einem Ausgang der Brennkraftmaschine 1. Der Temperatursensor 16 erfasst somit die Temperatur an einem Eingang der Brennkraftmaschine 1, Der Temperatursensor 17 erfasst somit die Temperatur des Kühlmittels an einem Ausgang des Kühlerlüftersystems 8.In FIG. 1 Furthermore, three temperature sensors are shown, which detect the temperatures at certain points of the cooling system. These are the temperature sensor 15, which detects the temperature in line 2, the temperature sensor 16, which detects the temperature in line 6, and the temperature sensor 17, which detects the temperature in line 9. The temperature sensor 15 thus detects the temperature at an output of the internal combustion engine 1. The temperature sensor 16 thus detects the temperature at an input of the Internal combustion engine 1, The temperature sensor 17 thus detects the temperature of the coolant at an outlet of the radiator fan 8.

Figur 2 zeigt ein Kühlsystem entsprechend der Erfindung. Hierbei sind diejenigen Teile, die mit den in Figur 1 gezeigten Teilen übereinstimmen jeweils mit denselben Bezugszeichen versehen und es wird im Folgenden lediglich auf den Unterschied zur Figur 1 eingegangen. Im Unterschied zu Figur 1 ist das dort gezeigte Dreiwegekühlerventil 3 durch zwei getrennte Ventile 3a und 3b ersetzt. Hierbei ist ein Kühlerventil 3a in die Leitung 7 eingesetzt, wodurch sich die Leitung 7 in zwei Teilleitungen 7a und 7b aufteilt. In die Leitung 4 wurde ein Bypassventil 3b eingesetzt, wodurch die Leitung 4 in die Teile 4a und 4b aufgeteilt wird. Das Kühlerventil 3, die Teilleitungen 7a, 7b, der Kühler 8 und die Leitung 9 bilden einen Kühlerzweig. Das Bypassventil 3 und die Teilleitungen 4a, 4b bilden einen Bypasszweig. FIG. 2 shows a cooling system according to the invention. Here are those parts with the in FIG. 1 parts shown correspond in each case with the same reference numerals and it will only be the difference to FIG. 1 received. In contrast to FIG. 1 the three-way radiator valve 3 shown there is replaced by two separate valves 3a and 3b. In this case, a cooler valve 3a is inserted into the line 7, whereby the line 7 is divided into two sub-lines 7a and 7b. Into the conduit 4, a bypass valve 3b has been inserted, whereby the conduit 4 is divided into the parts 4a and 4b. The cooler valve 3, the partial lines 7a, 7b, the radiator 8 and the line 9 form a cooler branch. The bypass valve 3 and the sub-lines 4a, 4b form a bypass branch.

Durch den erfindungsgemäßen Einsatz von zwei getrennten Ventilen 3a und 3b können das Soll-Mischverhältnis und der Gesamtsoll-Kühlmittelstrom eingestellt werden. Gegebenenfalls muss hierbei vorausgesetzt werden, dass sämtliche die Kühlmittelpumpe 5 kurzschließenden anderen Zweige ebenfalls abgetrennt werden können, wie beispielsweise der Heizzweig 10-14. Auf die Ermittlung des Soll-Mischverhältnisses zwischen dem Kühlerzweig 3, 7a, 7b, 8, 9 und dem Bypasszweig 3b, 4a, 4b sowie auf die Ermittlung des Gesamt-Kühlmittelstroms durch das gesamte Kühlsystem wird im Rahmen dieser Erfindung nicht weiter eingegangen, da dies für das Wesen der Erfindung nicht von Bedeutung ist und diese Daten in einer separaten Thermomanagement-Prozessführung ermittelt werden können.By the use according to the invention of two separate valves 3a and 3b, the desired mixing ratio and the total nominal coolant flow can be set. If necessary, it must be assumed in this case that all the other branches short-circuiting the coolant pump 5 can likewise be disconnected, for example the heating branch 10-14. On the determination of the desired mixing ratio between the radiator branch 3, 7a, 7b, 8, 9 and the bypass branch 3b, 4a, 4b as well as on the determination of the total coolant flow through the entire cooling system is not discussed in the context of this invention, since this is not relevant to the essence of the invention and this data can be determined in a separate thermal management process management.

Figur 3a zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Hierbei ist schematisch dargestellt, wie aus dem Soll-Mischverhältnis und dem Gesamtsoll-Kühlmittelstrom die entsprechenden Stellungen der zwei Ventile 3a und 3b nach Figur 2 ermittelt werden. FIG. 3a shows a first embodiment of the method according to the invention. Here, it is shown schematically how from the desired mixing ratio and the total target coolant flow, the corresponding positions of the two valves 3a and 3b after FIG. 2 be determined.

Zunächst wird in Abhängigkeit von der Drehzahl n der Brennkraftmaschine 1 der Arbeitspunkt der Kühlmittelpumpe 5 bestimmt und in Abhängigkeit von dem Gesamtsoll-Kühlmittelstrom Vp mittels eines ersten Kennfeldes 31 der gewünschte hydraulische Systemwiderstand R ermittelt. Dieser gewünschte hydraulische Systemwiderstand R und ein gewünschtes Mischverhältnis MV sind die Eingänge des zweiten und dritten Kennfelds 32, 33. Aus dem zweiten Kennfeld 32 heraus wird das Kühlerventil 3a und aus dem dritten Kennfeld 33 heraus das Bypassventil 3b angesteuert. Aus den beiden Kennfeldern 32, 33 werden demnach Signale gewonnen, die den Sollstellungen des Ventile 3a, 3b entsprechend.First, the operating point of the coolant pump 5 is determined as a function of the rotational speed n of the internal combustion engine 1, and the desired hydraulic system resistance R is determined as a function of the total target coolant flow Vp by means of a first characteristic map 31. This desired hydraulic system resistance R and a desired mixing ratio MV are the inputs of the second and third maps 32, 33. From the second map 32 out the cooling valve 3a and from the third map 33 out the bypass valve 3b is driven. Accordingly, signals are obtained from the two characteristic diagrams 32, 33 which correspond to the desired positions of the valves 3a, 3b.

Durch die entsprechende Verschaltung der drei Kennfelder 31, 32, 33 wird also die erfmdungsgemäße Ansteuerung der Ventile 3a und 3b erreicht. Alternativ kann statt der drei zweidimensionalen Kennfelder 31, 32, 33 auch auf zwei dreidimensionale Kennfelder zurückgegriffen werden.By the corresponding interconnection of the three maps 31, 32, 33 so the erfmdungsgemäße actuation of the valves 3a and 3b is achieved. Alternatively, two three-dimensional maps can be used instead of the three two-dimensional maps 31, 32, 33.

Figur 3b zeigt das gleiche Ausführungsbeispiel in anderer Darstellung. In einem ersten Schritt 34 werden die Eingangsgrößen Soll-Mischverhältnis MV, Gesamtsoll-Kühlmittelstrom Vp und Drehzahl n der Brennkraftmaschine 1 erfasst. Ausgehend von diesen Eingangsdaten wird in einem Schritt 35 mittels des Gesamtsoll-Kühlmittelstrom Vp und der Drehzahl n der hydraulische Gesamtwiderstand R des Kühlsystems ermittelt. Dieser hydraulische Gesamtwiderstand R wird an den Schritt 36 übermittelt, worin, ausgehend vom Soll-Mischverhältnis MV und des Gesamtsoll-Kühlmittelstrom Vp Ansteuergrößen für das Kühlerventil 3a und das Bypassventil 3b bestimmt werden. Im abschließenden Schritt 37 werden schließlich das Kühlerventil 3a und das Bypassventil 3b entsprechend angesteuert. FIG. 3b shows the same embodiment in a different representation. In a first step 34, the input variables setpoint mixing ratio MV, total setpoint coolant flow Vp and rotational speed n of the internal combustion engine 1 are detected. Based on these input data, the hydraulic total resistance R of the cooling system is determined in a step 35 by means of the total target coolant flow Vp and the rotational speed n. This total hydraulic resistance R is transmitted to step 36, wherein, based on the desired mixing ratio MV and the total target refrigerant flow Vp drive quantities for the cooling valve 3a and the bypass valve 3b are determined. Finally, in the final step 37, the radiator valve 3a and the bypass valve 3b are activated accordingly.

Das erste Kennfeld 31 zur Ermittlung des gewünschten hydraulischen Widerstands R sowie gegebenenfalls das zweite und dritte Kennfeld 32, 33 können bei der Applikation der Brennkraftmaschine automatisch generiert werden. Hierbei muss das Kennfeld der Kühlmittelpumpe 5 bekannt sein, das die Druckdifferenz über der Pumpenabhängigkeit des Kühlmittelstroms und der Pumpen- bzw. Brennkraftmaschinendrehzahl angibt. Weiterhin sollten gegebenenfalls die hydraulischen Widerstände der Komponenten bekannt sein. Im Falle des Pumpenkennfelds kann zu jedem Datenpaar aus Kühlmittelstrom und Drehzahl eindeutig ein hydraulischer Widerstand gefunden werden. Zur Ermittlung der Kennfelder 32, 33 muss in dem jeweiligen Kennfeld in Abhängigkeit vom gewünschten Mischverhältnis und dem gewünschten hydraulischen Widerstand die jeweilige Ventil- bzw. Drosselkörperstellung abgelegt sein. Die Daten der Kennfelder 32, 33 sind stark miteinander verkoppelt, da das Mischverhältnis und, je nach Arbeitspunkt, auch der hydraulische Widerstand des Kühlsystems stark von der Ventilstellung jedes einzelnen Ventils 3a, 3b bzw. von der Stellung jedes Drosselkörpers abhängt. Unter der Annahme von turbulenter Strömung ist der Druckabfall näherungsweise proportional zum Quadrat des Kühlmittelstroms. Für alle Ventilstellungen kann in Analogie zur Elektrotechnik ein hydraulischer Ersatzwiderstand R des Kühlsystems mithilfe eines hydraulischen Netzes ermittelt werden, sofern die hydraulischen Widerstände der Komponenten sowie die Widerstandskennlinien der Ventile 3a, 3b bekannt sind.The first map 31 for determining the desired hydraulic resistance R and optionally the second and third maps 32, 33 can be generated automatically during the application of the internal combustion engine. Here, the map of the coolant pump 5 must be known, which indicates the pressure difference across the pump dependence of the coolant flow and the pump or engine speed. Furthermore, if necessary, the hydraulic resistances of the components should be known. In the case of the pump map, a hydraulic resistance can be clearly found for each data pair of coolant flow and speed. To determine the maps 32, 33, the respective valve or throttle body position must be stored in the respective map depending on the desired mixing ratio and the desired hydraulic resistance. The data of the maps 32, 33 are strongly coupled with each other, since the mixing ratio and, depending on the operating point, and the hydraulic resistance of the cooling system strongly depends on the valve position of each valve 3a, 3b or of the position of each throttle body. Under the assumption of turbulent flow, the pressure drop is approximately proportional to the square of the coolant flow. For all valve positions, a hydraulic equivalent resistance R of the cooling system can be determined by means of a hydraulic network analogous to electrical engineering, as long as the hydraulic resistances of the components and the resistance characteristics of the valves 3a, 3b are known.

Ein Beispiel für ein solches hydraulisches Netzwerk entsprechend der Erfindung ist in Figur 4 dargestellt. Die Einzelwiderstände der Komponenten addieren sich analog einer elektrischen Schaltung zum Gesamtwiderstand. Daraus ergibt sich die Systemkennlinie. Der gesuchte Gesamt-Kühlmittelstrom des Kühlsystems durch die Kühlmittelpumpe 5 ergibt sich dann aus dem Schnitt der Pumpenkennlinie mit der Systemkennlinie.An example of such a hydraulic network according to the invention is shown in FIG. The individual resistances of the components add up analogously to an electrical circuit for total resistance. This results in the system characteristic. The sought total coolant flow of the cooling system through the coolant pump 5 then results from the intersection of the pump curve with the system curve.

Im Einzelnen sind in Figur 4 dargestellt: der hydraulische Widerstand 41 der Brennkraftmaschine 1, der hydraulische Widerstand 42 des Heizzweiges 10-14, der hydraulische Widerstand 43 eines nicht näher gezeigten, in der Brennkraftmaschine 1 enthaltenen Zylinderkopfes, der hydraulische Widerstand 44 des Bypassventils 3b, der hydraulische Widerstand 45 des Bypasszweiges 4a, 4b ohne das Bypassventil 3b, der hydraulische Widerstand 46 des Kühlerventils 3a und der hydraulische Widerstand 47 des restlichen Kühlerzweiges 7a, 7b, 8, 9 ohne das Kühlerventil 3a. Hierbei sind die hydraulischen Widerstände 44, 45 des Bypassventils 3b und des restlichen Bypasszweigs 4a, 4b in Reihe geschaltet. Diese Reihenschaltung ist wiederum parallel geschaltet zur Reihenschaltung aus hydraulischem Widerstand 46 des Kühlerventils 3a und hydraulischem Widerstand 47 des restlichen Kühlerzweiges 7a, 7, 8, 9. Die Parallelschaltung der hydraulischen Widerstände 44, 45 einerseits und 46, 47 andererseits ist wiederum in Reihe geschaltet zum hydraulischen Widerstand 43 des Zylinderkopfes der Brennkraftmaschine 1. Die somit entstandene Reihenschaltung der hydraulischen Widerstände ist wiederum parallel geschaltet zum hydraulischen Widerstand 42 des Heizzweiges 10-14. Die bis jetzt vorliegende Schaltung der hydraulischen Widerstände 42-47 ist ihrerseits in Reihe geschaltet zum hydraulischen Widerstand 41 der Brennkraftmaschine 1. Insgesamt ergeben sich aus der in Figur 4 gezeigten Reihen- und Parallelschaltung der hydraulischen Widerstände 41-47 der hydraulische Gesamtwiderstand des Kühlsystems. Außerdem ergibt sich aus der Parallelschaltung der Reihenschaltungen der hydraulischen Widerstände 44, 45 und 46, 4 7 das Verhältnis der Durchströmung des Bypass- und Kühlerzweigs 3b, 4a, 4b; 3a, 7a, 7b, 8, 9 und somit das Mischverhältnis.In detail are in FIG. 4 illustrated: the hydraulic resistance 41 of the internal combustion engine 1, the hydraulic resistance 42 of the heating branch 10-14, the hydraulic resistance 43 of a cylinder head, not shown in detail, contained in the internal combustion engine 1, the hydraulic resistance 44 of the bypass valve 3b, the hydraulic resistance 45 of the bypass branch 4a, 4b without the bypass valve 3b, the hydraulic resistance 46 of the radiator valve 3a and the hydraulic resistance 47 of the remaining radiator branch 7a, 7b, 8, 9 without the radiator valve 3a. Here, the hydraulic resistors 44, 45 of the bypass valve 3b and the remaining bypass branch 4a, 4b are connected in series. This series circuit is in turn connected in parallel to the series circuit of hydraulic resistance 46 of the radiator valve 3a and hydraulic resistor 47 of the remaining radiator branch 7a, 7, 8, 9. The parallel connection of the hydraulic resistors 44, 45 on the one hand and 46, 47 on the other hand, in turn connected in series hydraulic resistance 43 of the cylinder head of the internal combustion engine 1. The thus resulting series connection of the hydraulic resistors is in turn connected in parallel to the hydraulic resistance 42 of the heating branch 10-14. The hitherto present circuit of the hydraulic resistors 42-47 is in turn connected in series with the hydraulic resistance 41 of the internal combustion engine 1. Overall, resulting from the in FIG. 4 shown series and parallel connection of the hydraulic resistors 41-47 of the hydraulic total resistance of the cooling system. In addition, it follows from the parallel connection of the series circuits of the hydraulic resistors 44, 45 and 46, 4 7, the ratio of the flow through the bypass and radiator branch 3b, 4a, 4b; 3a, 7a, 7b, 8, 9 and thus the mixing ratio.

Figur 5 zeigt Kennlinien zur Ermittlung des gewünschten hydraulischen Widerstands. In Figur 5 sind auf der waagerechten Achse Kühlmittelströme Vp dargestellt, während auf der senkrechten Achse Druckdifferenzen dp dargestellt sind. Für die Drehzahlen n1, n2 und n3 (n1 > n2 > n3) sind jeweils Pumpenkennlinien 51, 52, 53 dargestellt. Weiterhin dargestellt ist eine Systemkennlinie 54, die sich (bei turbulenter Strömung) aus der Multiplikation des hydraulischen Widerstandes R mit dem Quadrat des Kühlmittelstroms Vp ergibt. Mathematisch gesehen stellt somit die Systemkennlinie 54 eine Parabel dar, wobei die Druckdifferenz dp eine Funktion des Quadrats des Kühlmittelstroms Vp ist, wobei das Quadrat des Kühlmittelstroms Vp mit dem hydraulischen Widerstand R als Faktor verknüpft ist. FIG. 5 shows characteristics to determine the desired hydraulic resistance. In FIG. 5 On the horizontal axis coolant flows Vp are shown, while on the vertical axis pressure differences dp are shown. For the rotational speeds n1, n2 and n3 (n1>n2> n3) pump characteristics 51, 52, 53 are respectively shown. Also shown is a system characteristic curve 54 which results (in the case of turbulent flow) from the multiplication of the hydraulic resistance R by the square of the coolant flow Vp. Thus, mathematically, the system characteristic 54 represents a parabola, where the pressure difference dp is a function of the square of the refrigerant flow Vp, where the square of the refrigerant flow Vp is linked to the hydraulic resistance R as a factor.

Mit sinkendem hydraulischem Widerstand R wird somit die Steigung der Systemkennlinie 54 geringer und resultiert schließlich in einem systembedingten minimalen hydraulischen Widerstand R sys min, dessen Abhängigkeit vom Kühlmittelstrom Vp mit der Bezugszahl 55 versehen ist. Steigt hingegen der hydraulische Widerstand R, ergibt sich eine größere Steigung der Systemkennlinie 54, und die Systemkennlinie 54 würde sich weiter in Richtung der senkrechten Achse verschieben. In Kenntnis der aktuellen Drehzahl n der Brennkraftmaschine 1 und eines gewünschten Sollgesamt-Kühlmittelstroms Vp lässt sich somit aus dem Schnittpunkt des gesuchten Kühlmittelstroms Vp mit der entsprechend Pumpenkennlinie 51-53 die gesuchte Systemkennlinie bestimmen, aus welcher der gesuchte hydraulische Widerstand R bestimmt werden kann. Beispielsweise sind in der Darstellung nach Figur 5 für die Kühlmittelströme Vp1, Vp2, Vp3 die Schnittpunkte 56, 57 und 58 mit der jeweils entsprechenden Pumpenkennlinie 51-53 gezeigt. Durch diese Schnittpunkte 56-58 ergibt sich die Systemkennlinie 54, wodurch auf den gesuchten hydraulischen Widerstand R rückgeschlossen werden kann.With decreasing hydraulic resistance R, the slope of the system characteristic curve 54 thus becomes smaller and finally results in a system-dependent minimum hydraulic resistance R sys min, the dependence of which on the coolant flow Vp is provided with the reference number 55. If, on the other hand, the hydraulic resistance R increases, the system characteristic curve 54 will increase in size, and the system characteristic curve 54 would continue to shift in the direction of the vertical axis. Knowing the current speed n of the internal combustion engine 1 and a desired total desired coolant flow Vp can thus be determined from the intersection of the sought coolant flow Vp with the corresponding pump curve 51-53 the desired system characteristic, from which the sought hydraulic resistance R can be determined. For example, in the illustration after FIG. 5 for the coolant flows Vp1, Vp2, Vp3 the points of intersection 56, 57 and 58 are shown with the respective corresponding pump characteristic 51-53. Through these intersections 56-58 results in the system characteristic 54, which can be deduced the sought hydraulic resistance R.

Das dargestellte erfindungsgemäße Verfahren kann beispielsweise in einem Steuergerät eines Kraftfahrzeugs integriert sein, welches zusätzlich beispielsweise die Aufgabe der Steuerung der Brennkraftmaschine 1 übernimmt. Die gezeigten funktionalen Zusammenhänge können z. B. durch entsprechende mathematische Funktionen, ein mehrdimensionales Kennfeld oder auch durch mehrere Kennfelder im Motorsteuergerät abgebildet sein. Insgesamt ergibt sich eine besonders flexible und exakte Möglichkeit der unabhängigen Steuerung von Kühlmittelströmen Vp und Mischungsverhältnissen zwischen Kühlerzweig 3a, 7a, 7b, 8, 9 und Bypasszweig 3b, 4a, 4b, wodurch eine einfache, gegebenenfalls rechnergestützte bzw. automatisierte Applizierbarkeit gegeben ist. Die für die Applikation benötigten Daten sind leicht messbar, sollten aber auch im Rahmen der Kühlsystemdimensionierung vom Fahrzeughersteller bzw. vom Komponentenlieferanten her bekannt sein bzw. bekannt gemacht werden.The illustrated method according to the invention can be integrated, for example, in a control unit of a motor vehicle, which additionally assumes, for example, the task of controlling the internal combustion engine 1. The functional relationships shown may, for. B. be represented by corresponding mathematical functions, a multi-dimensional map or by multiple maps in the engine control unit. Overall, a particularly flexible and exact possibility of independent control of coolant flows Vp and mixing ratios between cooler branch 3a, 7a, 7b, 8, 9 and bypass branch 3b, 4a, 4b, whereby a simple, possibly computer-aided or automated applicability is given. The for the application required data are easily measurable, but should also be known or made known in the context of cooling system dimensioning by the vehicle manufacturer or by the component supplier.

Claims (8)

  1. Method for controlling and/or regulating a cooling system of an internal combustion engine (1) of a motor vehicle, a coolant being circulated by a coolant pump (5) and the coolant flowing outside the internal combustion engine (1) at least through a radiator branch (3a, 7a, 7b, 8, 9) and through a bypass branch (3b, 4a, 4b),
    - throttling of a coolant flow through the radiator branch (3a, 7a, 7b, 8, 9) and of a coolant flow through the bypass channel (3b, 4a, 4b) being carried out independently of one another by way of control and/or regulating means,
    characterized
    - in that a predefinable overall coolant flow (Vp) of the coolant is set by means of the control and/or regulating means,
    - in that a predefinable mixing ratio of the coolant flows through the radiator and bypass branch (3a, 7a, 7b, 8, 9; 3b, 4a, 4b) is set by means of the control and/or regulating means,
    - in that a hydraulic overall resistance (R) of the cooling system is determined proceeding from the predefinable overall coolant flow Vp, the predefinable mixing ratio (MV) and the rotational speed (n) of the internal combustion engine (1),
    - and actuating variables are determined for the radiator valve (3a, 7a, 7b, 8) and the bypass valve (3b, 4a, 4b).
  2. Method according to Claim 1, characterized in that a temperature of the coolant is set by means of predefinable actuation of the control and/or regulating means.
  3. Method according to at least one of the preceding claims, characterized in that actuating variables for the control and/or regulating means are determined at least from the predefinable mixing ratio, the predefinable overall coolant flow (Vp) and a rotational speed (n) of the internal combustion engine (1) and/or the coolant pump (5) and/or a position of the heating valve (11).
  4. Method according to Claim 3, characterized in that a hydraulic overall resistance (R) of the cooling system is determined from the predefinable overall coolant flow (Vp) and the rotational speed (n) of the internal combustion engine (1) and/or the coolant pump (5).
  5. Method according to Claim 3 or 4, characterized in that actuating variables for a radiator valve (3a) in the radiator branch (3a, 7a, 7b, 8, 9) and a bypass valve (3b) in the bypass branch (3b, 4a, 4b) are determined from characteristic diagrams (31, 32, 33).
  6. Method according to Claims 4 and 5, characterized in that the characteristic diagrams (31, 32, 33) are stored in a memory at least as a function of the predefinable mixing ratio and the hydraulic overall resistance (R) of the cooling system.
  7. Method according to Claim 4, characterized in that a characteristic diagram (31, 32, 33) is stored in a memory in order to determine the hydraulic overall resistance (R) of the cooling system.
  8. Control and/or regulation of a cooling system of an internal combustion engine (1) of a motor vehicle, having a coolant pump (5) for circulating a coolant, having at least one radiator branch (3a, 7a, 7b, 8, 9) and one bypass branch (3b, 4a, 4b), through which the coolant can flow outside the internal combustion engine (1),
    - throttling of a coolant flow through the radiator branch (3a, 7a, 7b, 8, 9) and of a coolant flow through the bypass channel (3b, 4a, 4b) being carried out independently of one another by way of control and/or regulating means, characterized in that
    - a predefinable overall coolant flow (Vp) of the coolant is set by means of the control and/or regulating means,
    - a predefinable mixing ratio of the coolant flows through the radiator and bypass branch (3a, 7a, 7b, 8, 9; 3b, 4a, 4b) is set by means of the control and/or regulating means,
    - in that a hydraulic overall resistance (R) of the cooling system is determined proceeding from the predefinable overall coolant flow Vp, the predefinable mixing ratio (MV) and the rotational speed (n) of the internal combustion engine (1),
    - and actuating variables are determined for the radiator valve (3a, 7a, 7b, 8) and the bypass valve (3b, 4a, 4b).
EP03746236A 2002-04-15 2003-04-11 Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle Expired - Lifetime EP1497540B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10216646 2002-04-15
DE10216646 2002-04-15
DE2003116017 DE10316017A1 (en) 2003-04-07 2003-04-07 Method for regulating and controlling a cooling system for a motor vehicle combustion engine has throttle controlled cooling and bypasss branches in cooling circuit
DE10316017 2003-04-07
PCT/DE2003/001228 WO2003087552A1 (en) 2002-04-15 2003-04-11 Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle

Publications (2)

Publication Number Publication Date
EP1497540A1 EP1497540A1 (en) 2005-01-19
EP1497540B1 true EP1497540B1 (en) 2008-10-01

Family

ID=29251760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746236A Expired - Lifetime EP1497540B1 (en) 2002-04-15 2003-04-11 Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle

Country Status (3)

Country Link
EP (1) EP1497540B1 (en)
DE (1) DE50310574D1 (en)
WO (1) WO2003087552A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2475079B (en) * 2009-11-05 2015-02-18 Ford Global Tech Llc Cooling systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033261C2 (en) * 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperature controlled cooling circuit of an internal combustion engine
US6178928B1 (en) * 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
FR2804721B1 (en) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
JP4337207B2 (en) * 2000-02-10 2009-09-30 株式会社デンソー Cooling device for liquid-cooled internal combustion engine

Also Published As

Publication number Publication date
EP1497540A1 (en) 2005-01-19
WO2003087552A1 (en) 2003-10-23
DE50310574D1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
DE102013205124B4 (en) Methods and systems for controlling an engine cooling system to vary coolant temperature
DE10359581B4 (en) Method for controlling a vehicle engine cooling system
DE69829957T2 (en) METHOD AND DEVICE FOR CHECKING THE COOLING OF A COMBUSTION ENGINE
DE10224063A1 (en) Method for heat regulation of an internal combustion engine for vehicles
DE102005062294A1 (en) Method for cooling an internal combustion engine
DE19754461A1 (en) Automobile automatic transmission control e.g. during garage manoeuvring
EP1454039B1 (en) Method for the temperature regulation of an engine
EP1936183A2 (en) Method for regulating the temperature of a glow plug of a combustion engine
DE10210586A1 (en) Cooling fan control algorithm method and apparatus
WO2019149792A1 (en) Method for regulating the temperature of a coolant in a coolant circuit of a drive unit on a test stand
DE112018002922B4 (en) Cooling device and cooling method for an internal combustion engine with an EGR system
EP0814327A1 (en) Method for recording the correct external temperature
DE102018110234B4 (en) Cooling device for an internal combustion engine
EP1399656B1 (en) Method for monitoring a coolant circuit of an internal combustion engine
DE10342935B4 (en) Internal combustion engine with a cooling circuit
DE102009056616A1 (en) Vehicle with a coolant circuit for heat distribution to vehicle units
DE112015004273T5 (en) Control device and method for a refrigeration system
DE19519378A1 (en) Cooling system with electrically adjustable actuator
EP1497540B1 (en) Method for controlling and/or regulating a cooling system for an internal combustion engine of a motor vehicle
DE10316017A1 (en) Method for regulating and controlling a cooling system for a motor vehicle combustion engine has throttle controlled cooling and bypasss branches in cooling circuit
DE10301797A1 (en) Internal combustion engine with coolant circuit, has coolant pump connected to fourth switching element on outlet side, heat storage device connected to fifth switching element on input side
DE60123402T2 (en) METHOD AND DEVICE FOR COOLING A COMBUSTION ENGINE OF A MOTOR VEHICLE
EP0239842B1 (en) Method for regulating interior temperature, especially that of a motor vehicle
EP0885758B1 (en) Method of operating of an exhaust heat exchanger in an internal-combustion engine for a motor vehicle
DE102008032102A1 (en) Control system for vehicle interior heating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50310574

Country of ref document: DE

Date of ref document: 20081113

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140423

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140429

Year of fee payment: 12

Ref country code: FR

Payment date: 20140416

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150411

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150411

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160628

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310574

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103