EP1497319A2 - Proteine der zelladhäsion und extrazellulären matrix - Google Patents
Proteine der zelladhäsion und extrazellulären matrixInfo
- Publication number
- EP1497319A2 EP1497319A2 EP02766901A EP02766901A EP1497319A2 EP 1497319 A2 EP1497319 A2 EP 1497319A2 EP 02766901 A EP02766901 A EP 02766901A EP 02766901 A EP02766901 A EP 02766901A EP 1497319 A2 EP1497319 A2 EP 1497319A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- polynucleotide
- polypeptide
- seq
- amino acid
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 title abstract description 44
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 title abstract description 44
- 230000021164 cell adhesion Effects 0.000 title abstract description 30
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 350
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 350
- 239000002157 polynucleotide Substances 0.000 claims abstract description 350
- 238000000034 method Methods 0.000 claims abstract description 188
- 210000004027 cell Anatomy 0.000 claims abstract description 172
- 230000014509 gene expression Effects 0.000 claims abstract description 128
- 239000005557 antagonist Substances 0.000 claims abstract description 18
- 239000000556 agonist Substances 0.000 claims abstract description 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 245
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 230
- 229920001184 polypeptide Polymers 0.000 claims description 223
- 239000012634 fragment Substances 0.000 claims description 135
- 150000001875 compounds Chemical class 0.000 claims description 119
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 113
- 239000000523 sample Substances 0.000 claims description 88
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 83
- 150000007523 nucleic acids Chemical class 0.000 claims description 81
- 125000003729 nucleotide group Chemical group 0.000 claims description 71
- 239000002773 nucleotide Substances 0.000 claims description 69
- 238000012360 testing method Methods 0.000 claims description 59
- 230000000694 effects Effects 0.000 claims description 58
- 238000009396 hybridization Methods 0.000 claims description 58
- 239000000203 mixture Substances 0.000 claims description 55
- 102000039446 nucleic acids Human genes 0.000 claims description 45
- 108020004707 nucleic acids Proteins 0.000 claims description 45
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 43
- 201000010099 disease Diseases 0.000 claims description 42
- 230000000295 complement effect Effects 0.000 claims description 39
- 230000027455 binding Effects 0.000 claims description 38
- 108091034117 Oligonucleotide Proteins 0.000 claims description 32
- 239000012472 biological sample Substances 0.000 claims description 28
- 238000012216 screening Methods 0.000 claims description 27
- 238000011282 treatment Methods 0.000 claims description 23
- 230000002163 immunogen Effects 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 241001465754 Metazoa Species 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 16
- 231100000419 toxicity Toxicity 0.000 claims description 13
- 230000001988 toxicity Effects 0.000 claims description 13
- 230000003247 decreasing effect Effects 0.000 claims description 11
- 108060003951 Immunoglobulin Proteins 0.000 claims description 10
- 102000018358 immunoglobulin Human genes 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 230000009870 specific binding Effects 0.000 claims description 8
- 230000009261 transgenic effect Effects 0.000 claims description 8
- 238000012408 PCR amplification Methods 0.000 claims description 5
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 4
- 210000004408 hybridoma Anatomy 0.000 claims description 4
- 238000002493 microarray Methods 0.000 claims description 4
- 230000003053 immunization Effects 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 3
- 230000002018 overexpression Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 230000005875 antibody response Effects 0.000 claims 2
- 210000000628 antibody-producing cell Anatomy 0.000 claims 2
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 239000013604 expression vector Substances 0.000 abstract description 18
- 210000005260 human cell Anatomy 0.000 abstract description 3
- 230000001594 aberrant effect Effects 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 222
- 102000004169 proteins and genes Human genes 0.000 description 138
- 235000018102 proteins Nutrition 0.000 description 127
- 239000002299 complementary DNA Substances 0.000 description 69
- 108020004414 DNA Proteins 0.000 description 62
- 239000013598 vector Substances 0.000 description 58
- 108091028043 Nucleic acid sequence Proteins 0.000 description 46
- 238000002869 basic local alignment search tool Methods 0.000 description 45
- 210000001519 tissue Anatomy 0.000 description 44
- 238000004458 analytical method Methods 0.000 description 42
- 208000035475 disorder Diseases 0.000 description 41
- 235000001014 amino acid Nutrition 0.000 description 40
- 239000013615 primer Substances 0.000 description 37
- 150000001413 amino acids Chemical class 0.000 description 36
- 229940024606 amino acid Drugs 0.000 description 35
- 241000282414 Homo sapiens Species 0.000 description 34
- 206010028980 Neoplasm Diseases 0.000 description 30
- 238000003752 polymerase chain reaction Methods 0.000 description 30
- 239000013612 plasmid Substances 0.000 description 28
- 230000002068 genetic effect Effects 0.000 description 26
- 238000004422 calculation algorithm Methods 0.000 description 25
- 238000003556 assay Methods 0.000 description 23
- 201000011510 cancer Diseases 0.000 description 23
- 102000000905 Cadherin Human genes 0.000 description 22
- 108050007957 Cadherin Proteins 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 22
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 21
- 238000011161 development Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 19
- 206010009944 Colon cancer Diseases 0.000 description 18
- 208000029742 colonic neoplasm Diseases 0.000 description 18
- 230000018109 developmental process Effects 0.000 description 18
- 230000001105 regulatory effect Effects 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 18
- 125000000539 amino acid group Chemical group 0.000 description 17
- 210000002744 extracellular matrix Anatomy 0.000 description 17
- 238000012163 sequencing technique Methods 0.000 description 17
- 108010026552 Proteome Proteins 0.000 description 16
- 230000035772 mutation Effects 0.000 description 16
- 239000003814 drug Substances 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 230000000692 anti-sense effect Effects 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 14
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 108020004635 Complementary DNA Proteins 0.000 description 12
- -1 Fll Proteins 0.000 description 12
- 102000003886 Glycoproteins Human genes 0.000 description 12
- 108090000288 Glycoproteins Proteins 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 210000002569 neuron Anatomy 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- 230000014616 translation Effects 0.000 description 12
- 108091023037 Aptamer Proteins 0.000 description 11
- 108700024394 Exon Proteins 0.000 description 11
- 238000012217 deletion Methods 0.000 description 11
- 230000037430 deletion Effects 0.000 description 11
- 108020001507 fusion proteins Proteins 0.000 description 11
- 102000037865 fusion proteins Human genes 0.000 description 11
- 239000003446 ligand Substances 0.000 description 11
- 230000003612 virological effect Effects 0.000 description 11
- 208000012239 Developmental disease Diseases 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 10
- 241000700584 Simplexvirus Species 0.000 description 10
- 230000003321 amplification Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 208000011580 syndromic disease Diseases 0.000 description 10
- 241001430294 unidentified retrovirus Species 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 9
- 108010067306 Fibronectins Proteins 0.000 description 9
- 102000016359 Fibronectins Human genes 0.000 description 9
- 108010046569 Galectins Proteins 0.000 description 9
- 102000007563 Galectins Human genes 0.000 description 9
- 208000012902 Nervous system disease Diseases 0.000 description 9
- 108010038807 Oligopeptides Proteins 0.000 description 9
- 102000015636 Oligopeptides Human genes 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 210000000349 chromosome Anatomy 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 238000001415 gene therapy Methods 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- 102000006495 integrins Human genes 0.000 description 9
- 108010044426 integrins Proteins 0.000 description 9
- 230000003834 intracellular effect Effects 0.000 description 9
- 210000004379 membrane Anatomy 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 210000000653 nervous system Anatomy 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 241000710929 Alphavirus Species 0.000 description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 description 8
- 102000016611 Proteoglycans Human genes 0.000 description 8
- 108010067787 Proteoglycans Proteins 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 210000000988 bone and bone Anatomy 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 210000000170 cell membrane Anatomy 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000002759 chromosomal effect Effects 0.000 description 8
- 238000003745 diagnosis Methods 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 230000002062 proliferating effect Effects 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 230000010076 replication Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 102000053642 Catalytic RNA Human genes 0.000 description 7
- 108090000994 Catalytic RNA Proteins 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 7
- 241000282412 Homo Species 0.000 description 7
- 206010061218 Inflammation Diseases 0.000 description 7
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 7
- 102000004856 Lectins Human genes 0.000 description 7
- 108090001090 Lectins Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 102000014105 Semaphorin Human genes 0.000 description 7
- 108050003978 Semaphorin Proteins 0.000 description 7
- 210000001124 body fluid Anatomy 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 208000018631 connective tissue disease Diseases 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 208000026278 immune system disease Diseases 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000002523 lectin Substances 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 239000002987 primer (paints) Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 108091092562 ribozyme Proteins 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 231100000167 toxic agent Toxicity 0.000 description 7
- 239000003440 toxic substance Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 241000701161 unidentified adenovirus Species 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- 102100037084 C4b-binding protein alpha chain Human genes 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 201000005569 Gout Diseases 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 6
- 208000025966 Neurological disease Diseases 0.000 description 6
- 101710187339 Neuronal growth regulator 1 Proteins 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 101710136733 Proline-rich protein Proteins 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 235000014633 carbohydrates Nutrition 0.000 description 6
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 6
- 230000007812 deficiency Effects 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 206010015037 epilepsy Diseases 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 230000013595 glycosylation Effects 0.000 description 6
- 238000006206 glycosylation reaction Methods 0.000 description 6
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 6
- 238000003018 immunoassay Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 208000014674 injury Diseases 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 229920002521 macromolecule Polymers 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000004850 protein–protein interaction Effects 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000002864 sequence alignment Methods 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 102100034452 Alternative prion protein Human genes 0.000 description 5
- 108010049777 Ankyrins Proteins 0.000 description 5
- 102000008102 Ankyrins Human genes 0.000 description 5
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 5
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 108091035707 Consensus sequence Proteins 0.000 description 5
- 238000001712 DNA sequencing Methods 0.000 description 5
- 102000012545 EGF-like domains Human genes 0.000 description 5
- 108050002150 EGF-like domains Proteins 0.000 description 5
- 208000036626 Mental retardation Diseases 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 108090000184 Selectins Proteins 0.000 description 5
- 102000003800 Selectins Human genes 0.000 description 5
- 238000012300 Sequence Analysis Methods 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 208000029664 classic familial adenomatous polyposis Diseases 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- VZFRNCSOCOPNDB-UHFFFAOYSA-N domoic acid Natural products OC(=O)C(C)C=CC=C(C)C1CNC(C(O)=O)C1CC(O)=O VZFRNCSOCOPNDB-UHFFFAOYSA-N 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 230000013020 embryo development Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 210000004901 leucine-rich repeat Anatomy 0.000 description 5
- 210000000265 leukocyte Anatomy 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 230000033607 mismatch repair Effects 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 210000000496 pancreas Anatomy 0.000 description 5
- 230000026731 phosphorylation Effects 0.000 description 5
- 238000006366 phosphorylation reaction Methods 0.000 description 5
- 102000054765 polymorphisms of proteins Human genes 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000002685 pulmonary effect Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 241001529453 unidentified herpesvirus Species 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 4
- 102100036465 Autoimmune regulator Human genes 0.000 description 4
- 208000023095 Autosomal dominant epidermolytic ichthyosis Diseases 0.000 description 4
- 206010009900 Colitis ulcerative Diseases 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 239000003155 DNA primer Substances 0.000 description 4
- 102000016942 Elastin Human genes 0.000 description 4
- 108010014258 Elastin Proteins 0.000 description 4
- 201000009040 Epidermolytic Hyperkeratosis Diseases 0.000 description 4
- 201000006107 Familial adenomatous polyposis Diseases 0.000 description 4
- 201000011240 Frontotemporal dementia Diseases 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 4
- 101710154606 Hemagglutinin Proteins 0.000 description 4
- 208000017095 Hereditary nonpolyposis colon cancer Diseases 0.000 description 4
- 101000928549 Homo sapiens Autoimmune regulator Proteins 0.000 description 4
- 206010061598 Immunodeficiency Diseases 0.000 description 4
- 208000029462 Immunodeficiency disease Diseases 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 102000018697 Membrane Proteins Human genes 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 208000009905 Neurofibromatoses Diseases 0.000 description 4
- 108050009450 Neuropilin Proteins 0.000 description 4
- 102000002111 Neuropilin Human genes 0.000 description 4
- 208000001132 Osteoporosis Diseases 0.000 description 4
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 4
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 4
- 208000037062 Polyps Diseases 0.000 description 4
- 108091000054 Prion Proteins 0.000 description 4
- 101710176177 Protein A56 Proteins 0.000 description 4
- 201000004681 Psoriasis Diseases 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 208000033464 Reiter syndrome Diseases 0.000 description 4
- 108091028664 Ribonucleotide Proteins 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 208000005400 Synovial Cyst Diseases 0.000 description 4
- 201000009594 Systemic Scleroderma Diseases 0.000 description 4
- 206010042953 Systemic sclerosis Diseases 0.000 description 4
- 201000006704 Ulcerative Colitis Diseases 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical group O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 208000007502 anemia Diseases 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 201000009771 autoimmune polyendocrine syndrome type 1 Diseases 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 206010008129 cerebral palsy Diseases 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 210000004292 cytoskeleton Anatomy 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 201000001981 dermatomyositis Diseases 0.000 description 4
- 229920002549 elastin Polymers 0.000 description 4
- 208000033286 epidermolytic ichthyosis Diseases 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 239000000185 hemagglutinin Substances 0.000 description 4
- 210000000688 human artificial chromosome Anatomy 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000007813 immunodeficiency Effects 0.000 description 4
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 201000006417 multiple sclerosis Diseases 0.000 description 4
- 206010028417 myasthenia gravis Diseases 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 201000004931 neurofibromatosis Diseases 0.000 description 4
- 201000008482 osteoarthritis Diseases 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 208000005987 polymyositis Diseases 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000003127 radioimmunoassay Methods 0.000 description 4
- 208000002574 reactive arthritis Diseases 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 description 4
- 239000002336 ribonucleotide Substances 0.000 description 4
- 125000002652 ribonucleotide group Chemical group 0.000 description 4
- 108010038196 saccharide-binding proteins Proteins 0.000 description 4
- 208000012672 seasonal affective disease Diseases 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 231100000027 toxicology Toxicity 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 3
- 102100036601 Aggrecan core protein Human genes 0.000 description 3
- 108010067219 Aggrecans Proteins 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 3
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 3
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 3
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 3
- 201000003874 Common Variable Immunodeficiency Diseases 0.000 description 3
- 108010002947 Connectin Proteins 0.000 description 3
- 201000003883 Cystic fibrosis Diseases 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 230000007067 DNA methylation Effects 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 101150044894 ER gene Proteins 0.000 description 3
- 241001635598 Enicostema Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 208000008051 Hereditary Nonpolyposis Colorectal Neoplasms Diseases 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 3
- 208000001126 Keratosis Diseases 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 201000005027 Lynch syndrome Diseases 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 3
- 208000001826 Marfan syndrome Diseases 0.000 description 3
- 108010072582 Matrilin Proteins Proteins 0.000 description 3
- 102000055008 Matrilin Proteins Human genes 0.000 description 3
- 241000469204 Mellita Species 0.000 description 3
- 108010063954 Mucins Proteins 0.000 description 3
- 102000015728 Mucins Human genes 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 102100033954 Protein PRRC2A Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 241000710961 Semliki Forest virus Species 0.000 description 3
- 102100036407 Thioredoxin Human genes 0.000 description 3
- 102000002938 Thrombospondin Human genes 0.000 description 3
- 108060008245 Thrombospondin Proteins 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 102100026260 Titin Human genes 0.000 description 3
- 241000723873 Tobacco mosaic virus Species 0.000 description 3
- 241000700618 Vaccinia virus Species 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 210000000625 blastula Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 201000002006 bullous congenital ichthyosiform erythroderma Diseases 0.000 description 3
- 210000000845 cartilage Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000006037 cell lysis Effects 0.000 description 3
- 230000012292 cell migration Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 208000016532 chronic granulomatous disease Diseases 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000000112 colonic effect Effects 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000009918 complex formation Effects 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000007877 drug screening Methods 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 102000015694 estrogen receptors Human genes 0.000 description 3
- 108010038795 estrogen receptors Proteins 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 210000000232 gallbladder Anatomy 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 208000003906 hydrocephalus Diseases 0.000 description 3
- 230000006607 hypermethylation Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 230000011987 methylation Effects 0.000 description 3
- 238000007069 methylation reaction Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- 230000014511 neuron projection development Effects 0.000 description 3
- 201000001119 neuropathy Diseases 0.000 description 3
- 230000007823 neuropathy Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 108010048477 olfactomedin Proteins 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000008177 pharmaceutical agent Substances 0.000 description 3
- 230000002974 pharmacogenomic effect Effects 0.000 description 3
- 230000001323 posttranslational effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 108060008226 thioredoxin Proteins 0.000 description 3
- 229940113082 thymine Drugs 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000008791 toxic response Effects 0.000 description 3
- 230000002110 toxicologic effect Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- 108091022879 ADAMTS Proteins 0.000 description 2
- 102000029750 ADAMTS Human genes 0.000 description 2
- 108700001666 APC Genes Proteins 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- 208000026872 Addison Disease Diseases 0.000 description 2
- 102100036664 Adenosine deaminase Human genes 0.000 description 2
- 208000007887 Alphavirus Infections Diseases 0.000 description 2
- 208000024985 Alport syndrome Diseases 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 2
- 208000031091 Amnestic disease Diseases 0.000 description 2
- 206010002198 Anaphylactic reaction Diseases 0.000 description 2
- 235000002198 Annona diversifolia Nutrition 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 102400000059 Arg-vasopressin Human genes 0.000 description 2
- 101800001144 Arg-vasopressin Proteins 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 2
- 206010003253 Arthritis enteropathic Diseases 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 208000004300 Atrophic Gastritis Diseases 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 208000023328 Basedow disease Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000004020 Brain Abscess Diseases 0.000 description 2
- 206010006811 Bursitis Diseases 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000000584 Calmodulin Human genes 0.000 description 2
- 108010041952 Calmodulin Proteins 0.000 description 2
- 241000282832 Camelidae Species 0.000 description 2
- 241000222122 Candida albicans Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 206010007747 Cataract congenital Diseases 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010008723 Chondrodystrophy Diseases 0.000 description 2
- 201000005262 Chondroma Diseases 0.000 description 2
- 208000010126 Chondromatosis Diseases 0.000 description 2
- 208000019591 Chondromyxoid fibroma Diseases 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 206010008748 Chorea Diseases 0.000 description 2
- 208000013725 Chronic Kidney Disease-Mineral and Bone disease Diseases 0.000 description 2
- 208000031879 Chédiak-Higashi syndrome Diseases 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 108020004394 Complementary RNA Proteins 0.000 description 2
- 206010018325 Congenital glaucomas Diseases 0.000 description 2
- 208000011990 Corticobasal Degeneration Diseases 0.000 description 2
- 108091029523 CpG island Proteins 0.000 description 2
- 208000019736 Cranial nerve disease Diseases 0.000 description 2
- 206010011321 Craniorachischisis Diseases 0.000 description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 206010011891 Deafness neurosensory Diseases 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- 208000016192 Demyelinating disease Diseases 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- 206010012438 Dermatitis atopic Diseases 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- 206010012565 Developmental glaucoma Diseases 0.000 description 2
- 208000000398 DiGeorge Syndrome Diseases 0.000 description 2
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 2
- 208000011345 Duchenne and Becker muscular dystrophy Diseases 0.000 description 2
- 206010013883 Dwarfism Diseases 0.000 description 2
- 208000002197 Ehlers-Danlos syndrome Diseases 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 206010014950 Eosinophilia Diseases 0.000 description 2
- 206010015226 Erythema nodosum Diseases 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 108091060211 Expressed sequence tag Proteins 0.000 description 2
- 206010061846 Extradural abscess Diseases 0.000 description 2
- 201000008808 Fibrosarcoma Diseases 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 206010052753 Fibrous cortical defect Diseases 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 208000036495 Gastritis atrophic Diseases 0.000 description 2
- 208000007569 Giant Cell Tumors Diseases 0.000 description 2
- 206010018364 Glomerulonephritis Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 206010018634 Gouty Arthritis Diseases 0.000 description 2
- 208000015023 Graves' disease Diseases 0.000 description 2
- 206010061201 Helminthic infection Diseases 0.000 description 2
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 2
- 206010019668 Hepatic fibrosis Diseases 0.000 description 2
- 206010019860 Hereditary angioedema Diseases 0.000 description 2
- 101000977638 Homo sapiens Immunoglobulin superfamily containing leucine-rich repeat protein Proteins 0.000 description 2
- 101001068634 Homo sapiens Protein PRRC2A Proteins 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- 201000002980 Hyperparathyroidism Diseases 0.000 description 2
- 208000007924 IgA Deficiency Diseases 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 208000004575 Infectious Arthritis Diseases 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241000282838 Lama Species 0.000 description 2
- 102100028263 Limbic system-associated membrane protein Human genes 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 206010025327 Lymphopenia Diseases 0.000 description 2
- 102100026553 Mannose-binding protein C Human genes 0.000 description 2
- 206010027202 Meningitis bacterial Diseases 0.000 description 2
- 206010027260 Meningitis viral Diseases 0.000 description 2
- 206010068836 Metabolic myopathy Diseases 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 208000019022 Mood disease Diseases 0.000 description 2
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 2
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 102100021831 Myelin-associated glycoprotein Human genes 0.000 description 2
- 208000003926 Myelitis Diseases 0.000 description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 2
- 206010028643 Myopathy endocrine Diseases 0.000 description 2
- 208000023137 Myotoxicity Diseases 0.000 description 2
- 108050000637 N-cadherin Proteins 0.000 description 2
- 206010061309 Neoplasm progression Diseases 0.000 description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 description 2
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 2
- 102000011830 Neural cell adhesion Human genes 0.000 description 2
- 108050002172 Neural cell adhesion Proteins 0.000 description 2
- 102100023616 Neural cell adhesion molecule L1-like protein Human genes 0.000 description 2
- 108090000189 Neuropeptides Proteins 0.000 description 2
- 102000017943 Ninjurin Human genes 0.000 description 2
- 108050007017 Ninjurin Proteins 0.000 description 2
- 102100027889 Ninjurin-2 Human genes 0.000 description 2
- 101710091555 Ninjurin-2 Proteins 0.000 description 2
- 208000010191 Osteitis Deformans Diseases 0.000 description 2
- 208000001715 Osteoblastoma Diseases 0.000 description 2
- 208000000035 Osteochondroma Diseases 0.000 description 2
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 2
- 206010031252 Osteomyelitis Diseases 0.000 description 2
- 206010031264 Osteonecrosis Diseases 0.000 description 2
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 2
- 101800000989 Oxytocin Proteins 0.000 description 2
- 102400000050 Oxytocin Human genes 0.000 description 2
- 208000001052 Pachyonychia Congenita Diseases 0.000 description 2
- 208000027868 Paget disease Diseases 0.000 description 2
- 206010033645 Pancreatitis Diseases 0.000 description 2
- 208000027099 Paranoid disease Diseases 0.000 description 2
- 208000030852 Parasitic disease Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 2
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 2
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 2
- 208000010067 Pituitary ACTH Hypersecretion Diseases 0.000 description 2
- 208000020627 Pituitary-dependent Cushing syndrome Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 102100036143 Polycystin-1 Human genes 0.000 description 2
- 101710146367 Polycystin-1 Proteins 0.000 description 2
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 2
- 206010057846 Primitive neuroectodermal tumour Diseases 0.000 description 2
- 208000024777 Prion disease Diseases 0.000 description 2
- 108700040559 Protocadherins Proteins 0.000 description 2
- 206010037075 Protozoal infections Diseases 0.000 description 2
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 2
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 2
- 108020004518 RNA Probes Proteins 0.000 description 2
- 239000003391 RNA probe Substances 0.000 description 2
- 206010037779 Radiculopathy Diseases 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 2
- 101710160580 Schwann cell myelin protein Proteins 0.000 description 2
- 206010039710 Scleroderma Diseases 0.000 description 2
- 206010039915 Selective IgA immunodeficiency Diseases 0.000 description 2
- 102000013008 Semaphorin-3A Human genes 0.000 description 2
- 108010090319 Semaphorin-3A Proteins 0.000 description 2
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- 201000001388 Smith-Magenis syndrome Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 201000010829 Spina bifida Diseases 0.000 description 2
- 208000029033 Spinal Cord disease Diseases 0.000 description 2
- 208000006097 Spinal Dysraphism Diseases 0.000 description 2
- 208000010112 Spinocerebellar Degenerations Diseases 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 201000000002 Subdural Empyema Diseases 0.000 description 2
- 108091027544 Subgenomic mRNA Proteins 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 2
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 2
- 208000000323 Tourette Syndrome Diseases 0.000 description 2
- 208000016620 Tourette disease Diseases 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 208000006038 Urogenital Abnormalities Diseases 0.000 description 2
- 206010046851 Uveitis Diseases 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 201000007960 WAGR syndrome Diseases 0.000 description 2
- 201000011032 Werner Syndrome Diseases 0.000 description 2
- 206010072666 White sponge naevus Diseases 0.000 description 2
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 208000008919 achondroplasia Diseases 0.000 description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 description 2
- 208000009621 actinic keratosis Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 230000004520 agglutination Effects 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 230000006986 amnesia Effects 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 208000003455 anaphylaxis Diseases 0.000 description 2
- 206010002320 anencephaly Diseases 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 208000008303 aniridia Diseases 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 208000007474 aortic aneurysm Diseases 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 2
- 208000011775 arteriosclerosis disease Diseases 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 201000008937 atopic dermatitis Diseases 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 201000009904 bacterial meningitis Diseases 0.000 description 2
- 208000018300 basal ganglia disease Diseases 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000008236 biological pathway Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 206010006451 bronchitis Diseases 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 2
- 229940043256 calcium pyrophosphate Drugs 0.000 description 2
- 229940095731 candida albicans Drugs 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 206010007776 catatonia Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 201000001352 cholecystitis Diseases 0.000 description 2
- 201000005217 chondroblastoma Diseases 0.000 description 2
- 208000017568 chondrodysplasia Diseases 0.000 description 2
- 208000012601 choreatic disease Diseases 0.000 description 2
- 208000016644 chronic atrophic gastritis Diseases 0.000 description 2
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 2
- 230000007882 cirrhosis Effects 0.000 description 2
- 208000019425 cirrhosis of liver Diseases 0.000 description 2
- 210000004922 colonic epithelial cell Anatomy 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 208000010247 contact dermatitis Diseases 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 210000004268 dentin Anatomy 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 208000016097 disease of metabolism Diseases 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 208000010118 dystonia Diseases 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 208000007150 epidermolysis bullosa simplex Diseases 0.000 description 2
- 201000000165 epidural abscess Diseases 0.000 description 2
- 230000001667 episodic effect Effects 0.000 description 2
- 201000006061 fatal familial insomnia Diseases 0.000 description 2
- 101150031187 fba gene Proteins 0.000 description 2
- 206010016629 fibroma Diseases 0.000 description 2
- 201000010103 fibrous dysplasia Diseases 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 2
- 210000001650 focal adhesion Anatomy 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 102000054767 gene variant Human genes 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 208000002566 gonadal dysgenesis Diseases 0.000 description 2
- 230000010005 growth-factor like effect Effects 0.000 description 2
- 238000001631 haemodialysis Methods 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 230000000322 hemodialysis Effects 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 208000013057 hereditary mucoepithelial dysplasia Diseases 0.000 description 2
- 208000001722 hereditary mucosal leukokeratosis Diseases 0.000 description 2
- 208000003215 hereditary nephritis Diseases 0.000 description 2
- 210000003917 human chromosome Anatomy 0.000 description 2
- 229940099552 hyaluronan Drugs 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 208000003532 hypothyroidism Diseases 0.000 description 2
- 230000002989 hypothyroidism Effects 0.000 description 2
- 206010021198 ichthyosis Diseases 0.000 description 2
- 201000007156 immunoglobulin alpha deficiency Diseases 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000008611 intercellular interaction Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 208000002551 irritable bowel syndrome Diseases 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 206010023497 kuru Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 108010059830 limbic system-associated membrane protein Proteins 0.000 description 2
- 230000029226 lipidation Effects 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 231100001023 lymphopenia Toxicity 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 208000027202 mammary Paget disease Diseases 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- VKHAHZOOUSRJNA-GCNJZUOMSA-N mifepristone Chemical compound C1([C@@H]2C3=C4CCC(=O)C=C4CC[C@H]3[C@@H]3CC[C@@]([C@]3(C2)C)(O)C#CC)=CC=C(N(C)C)C=C1 VKHAHZOOUSRJNA-GCNJZUOMSA-N 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 230000000921 morphogenic effect Effects 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 208000005264 motor neuron disease Diseases 0.000 description 2
- 229940051875 mucins Drugs 0.000 description 2
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 201000006938 muscular dystrophy Diseases 0.000 description 2
- 206010028537 myelofibrosis Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- 201000010193 neural tube defect Diseases 0.000 description 2
- 208000018360 neuromuscular disease Diseases 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 208000003388 osteoid osteoma Diseases 0.000 description 2
- 208000008798 osteoma Diseases 0.000 description 2
- 208000005368 osteomalacia Diseases 0.000 description 2
- 208000002865 osteopetrosis Diseases 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 2
- 229960001723 oxytocin Drugs 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000000849 parathyroid Effects 0.000 description 2
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 2
- 210000003899 penis Anatomy 0.000 description 2
- 208000029308 periodic paralysis Diseases 0.000 description 2
- 208000027232 peripheral nervous system disease Diseases 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- 208000037244 polycythemia vera Diseases 0.000 description 2
- 210000003538 post-synaptic density Anatomy 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 108010092804 postsynaptic density proteins Proteins 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 2
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 230000006916 protein interaction Effects 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 206010061928 radiculitis Diseases 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 201000006409 renal osteodystrophy Diseases 0.000 description 2
- 201000010384 renal tubular acidosis Diseases 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 208000007442 rickets Diseases 0.000 description 2
- 210000003079 salivary gland Anatomy 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 210000004116 schwann cell Anatomy 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 208000029138 selective IgA deficiency disease Diseases 0.000 description 2
- 231100000879 sensorineural hearing loss Toxicity 0.000 description 2
- 208000023573 sensorineural hearing loss disease Diseases 0.000 description 2
- 201000001223 septic arthritis Diseases 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 201000004595 synovitis Diseases 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 208000001608 teratocarcinoma Diseases 0.000 description 2
- 210000001550 testis Anatomy 0.000 description 2
- 206010043554 thrombocytopenia Diseases 0.000 description 2
- 201000005990 thymic dysplasia Diseases 0.000 description 2
- 230000002992 thymic effect Effects 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 108010083867 toposome glycoprotein complex Proteins 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 230000010415 tropism Effects 0.000 description 2
- 101150066142 tsr gene Proteins 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000005751 tumor progression Effects 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 210000001635 urinary tract Anatomy 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 201000006744 villonodular synovitis Diseases 0.000 description 2
- 201000010044 viral meningitis Diseases 0.000 description 2
- 108010047303 von Willebrand Factor Proteins 0.000 description 2
- 102100036537 von Willebrand factor Human genes 0.000 description 2
- 229960001134 von willebrand factor Drugs 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- PFCLMNDDPTZJHQ-XLPZGREQSA-N 2-amino-7-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PFCLMNDDPTZJHQ-XLPZGREQSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- CXISPYVYMQWFLE-VKHMYHEASA-N Ala-Gly Chemical compound C[C@H]([NH3+])C(=O)NCC([O-])=O CXISPYVYMQWFLE-VKHMYHEASA-N 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 101150050490 Alox5 gene Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 108010093579 Arachidonate 5-lipoxygenase Proteins 0.000 description 1
- BNODVYXZAAXSHW-IUCAKERBSA-N Arg-His Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 BNODVYXZAAXSHW-IUCAKERBSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- HZYFHQOWCFUSOV-IMJSIDKUSA-N Asn-Asp Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O HZYFHQOWCFUSOV-IMJSIDKUSA-N 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 208000012219 Autonomic Nervous System disease Diseases 0.000 description 1
- 208000010061 Autosomal Dominant Polycystic Kidney Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 201000001321 Bardet-Biedl syndrome Diseases 0.000 description 1
- 102100036597 Basement membrane-specific heparan sulfate proteoglycan core protein Human genes 0.000 description 1
- OGBVRMYSNSKIEF-UHFFFAOYSA-N Benzylphosphonic acid Chemical class OP(O)(=O)CC1=CC=CC=C1 OGBVRMYSNSKIEF-UHFFFAOYSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108090000342 C-Type Lectins Proteins 0.000 description 1
- 102000003930 C-Type Lectins Human genes 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 101710196896 Cadherin-22 Proteins 0.000 description 1
- 102100022481 Cadherin-22 Human genes 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- 101100152433 Caenorhabditis elegans tat-1 gene Proteins 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000173351 Camvirus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108010067316 Catenins Proteins 0.000 description 1
- 102000016362 Catenins Human genes 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 201000006868 Charcot-Marie-Tooth disease type 3 Diseases 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 239000005496 Chlorsulfuron Substances 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000006630 Contactin 2 Human genes 0.000 description 1
- 108010087196 Contactin 2 Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 208000014311 Cushing syndrome Diseases 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- HAYVTMHUNMMXCV-IMJSIDKUSA-N Cys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CS HAYVTMHUNMMXCV-IMJSIDKUSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- 102100028630 Cytoskeleton-associated protein 2 Human genes 0.000 description 1
- 101150097493 D gene Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 1
- 102000004237 Decorin Human genes 0.000 description 1
- 108090000738 Decorin Proteins 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 108010049959 Discoidins Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 101800001224 Disintegrin Proteins 0.000 description 1
- 108700004970 Drosophila Hmu Proteins 0.000 description 1
- 208000001708 Dupuytren contracture Diseases 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241000701867 Enterobacteria phage T7 Species 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 206010049466 Erythroblastosis Diseases 0.000 description 1
- 206010015251 Erythroblastosis foetalis Diseases 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 206010053717 Fibrous histiocytoma Diseases 0.000 description 1
- 102100031812 Fibulin-1 Human genes 0.000 description 1
- 101710170731 Fibulin-1 Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010009066 Gastric Mucins Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 1
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- FYYSIASRLDJUNP-WHFBIAKZSA-N Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O FYYSIASRLDJUNP-WHFBIAKZSA-N 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 208000024869 Goodpasture syndrome Diseases 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 208000006411 Hereditary Sensory and Motor Neuropathy Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- WSDOHRLQDGAOGU-BQBZGAKWSA-N His-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 WSDOHRLQDGAOGU-BQBZGAKWSA-N 0.000 description 1
- WZOGEMJIZBNFBK-CIUDSAMLSA-N His-Asp-Asn Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O WZOGEMJIZBNFBK-CIUDSAMLSA-N 0.000 description 1
- YADRBUZBKHHDAO-XPUUQOCRSA-N His-Gly-Ala Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)NCC(=O)N[C@@H](C)C(O)=O YADRBUZBKHHDAO-XPUUQOCRSA-N 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000766848 Homo sapiens Cytoskeleton-associated protein 2 Proteins 0.000 description 1
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 1
- 101000576894 Homo sapiens Macrophage mannose receptor 1 Proteins 0.000 description 1
- 101001056128 Homo sapiens Mannose-binding protein C Proteins 0.000 description 1
- 101000835893 Homo sapiens Mothers against decapentaplegic homolog 4 Proteins 0.000 description 1
- 101000972278 Homo sapiens Mucin-6 Proteins 0.000 description 1
- 101000613329 Homo sapiens Protocadherin alpha-C2 Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 101001042049 Human herpesvirus 1 (strain 17) Transcriptional regulator ICP22 Proteins 0.000 description 1
- 101000999690 Human herpesvirus 2 (strain HG52) E3 ubiquitin ligase ICP22 Proteins 0.000 description 1
- 101710191341 Hyaluronan and proteoglycan link protein 1 Proteins 0.000 description 1
- 102100028084 Hyaluronan and proteoglycan link protein 1 Human genes 0.000 description 1
- 208000031300 Hydrocephalus with stenosis of the aqueduct of Sylvius Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 1
- 101150027427 ICP4 gene Proteins 0.000 description 1
- 101150064122 ISLR gene Proteins 0.000 description 1
- 208000009349 Ichthyosis Bullosa of Siemens Diseases 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102100023538 Immunoglobulin superfamily containing leucine-rich repeat protein Human genes 0.000 description 1
- 102000016844 Immunoglobulin-like domains Human genes 0.000 description 1
- 108050006430 Immunoglobulin-like domains Proteins 0.000 description 1
- 208000032578 Inherited retinal disease Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 102100023129 Keratin, type I cytoskeletal 9 Human genes 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 206010056715 Laurence-Moon-Bardet-Biedl syndrome Diseases 0.000 description 1
- 108700005090 Lethal Genes Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 201000002961 MASA syndrome Diseases 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 101150069038 MUC6 gene Proteins 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 108010087870 Mannose-Binding Lectin Proteins 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- PQMWYJDJHJQZDE-UHFFFAOYSA-M Methantheline bromide Chemical compound [Br-].C1=CC=C2C(C(=O)OCC[N+](C)(CC)CC)C3=CC=CC=C3OC2=C1 PQMWYJDJHJQZDE-UHFFFAOYSA-M 0.000 description 1
- 101710143112 Mothers against decapentaplegic homolog 4 Proteins 0.000 description 1
- 102100022496 Mucin-5AC Human genes 0.000 description 1
- 102100022493 Mucin-6 Human genes 0.000 description 1
- 108700005084 Multigene Family Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100042271 Mus musculus Sema3b gene Proteins 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 108010013731 Myelin-Associated Glycoprotein Proteins 0.000 description 1
- 102100029839 Myocilin Human genes 0.000 description 1
- 101710196550 Myocilin Proteins 0.000 description 1
- 101710202061 N-acetyltransferase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 208000011644 Neurologic Gait disease Diseases 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 102000000470 PDZ domains Human genes 0.000 description 1
- 108050008994 PDZ domains Proteins 0.000 description 1
- 208000032136 Palmoplantar Epidermolytic Keratoderma Diseases 0.000 description 1
- 241000526686 Paracoccidioides brasiliensis Species 0.000 description 1
- 206010033892 Paraplegia Diseases 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 229920000037 Polyproline Polymers 0.000 description 1
- 102100022364 Polyunsaturated fatty acid 5-lipoxygenase Human genes 0.000 description 1
- 241000881705 Porcine endogenous retrovirus Species 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 101710130886 Protein PRRC2A Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108091008103 RNA aptamers Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 208000032430 Retinal dystrophy Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 102100027296 SCO-spondin Human genes 0.000 description 1
- 108010010180 SCO-spondin Proteins 0.000 description 1
- 102000000395 SH3 domains Human genes 0.000 description 1
- 108050008861 SH3 domains Proteins 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- 102000009203 Sema domains Human genes 0.000 description 1
- 108050000099 Sema domains Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- FFOKMZOAVHEWET-IMJSIDKUSA-N Ser-Cys Chemical compound OC[C@H](N)C(=O)N[C@@H](CS)C(O)=O FFOKMZOAVHEWET-IMJSIDKUSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108050001286 Somatostatin Receptor Proteins 0.000 description 1
- 102000011096 Somatostatin receptor Human genes 0.000 description 1
- 208000032930 Spastic paraplegia Diseases 0.000 description 1
- 108091027076 Spiegelmer Proteins 0.000 description 1
- 101710092167 Spondin-1 Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102100035721 Syndecan-1 Human genes 0.000 description 1
- 108090000058 Syndecan-1 Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000000479 TCF Transcription Factors Human genes 0.000 description 1
- 108010016283 TCF Transcription Factors Proteins 0.000 description 1
- 108091005735 TGF-beta receptors Proteins 0.000 description 1
- 102100024549 Tenascin-X Human genes 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- GXDLGHLJTHMDII-WISUUJSJSA-N Thr-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CO)C(O)=O GXDLGHLJTHMDII-WISUUJSJSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 102100036034 Thrombospondin-1 Human genes 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000016715 Transforming Growth Factor beta Receptors Human genes 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 102100033663 Transforming growth factor beta receptor type 3 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- IMMPMHKLUUZKAZ-WMZOPIPTSA-N Trp-Phe Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=CC=C1 IMMPMHKLUUZKAZ-WMZOPIPTSA-N 0.000 description 1
- LWFWZRANSFAJDR-JSGCOSHPSA-N Trp-Val Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C(C)C)C(O)=O)=CNC2=C1 LWFWZRANSFAJDR-JSGCOSHPSA-N 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- AFWXOGHZEKARFH-ACRUOGEOSA-N Tyr-Tyr-His Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CC=C(O)C=C1 AFWXOGHZEKARFH-ACRUOGEOSA-N 0.000 description 1
- 101150032479 UNC-5 gene Proteins 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 108010090932 Vitellogenins Proteins 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 108700029631 X-Linked Genes Proteins 0.000 description 1
- 208000026197 X-linked hydrocephalus with stenosis of the aqueduct of Sylvius Diseases 0.000 description 1
- 208000028247 X-linked inheritance Diseases 0.000 description 1
- 101000655642 Xenopus laevis Thyroid hormone-induced protein B Proteins 0.000 description 1
- 102100021142 Zonadhesin Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000011256 aggressive treatment Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 201000007201 aphasia Diseases 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 208000022185 autosomal dominant polycystic kidney disease Diseases 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 230000004652 axonal fasciculation Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 101150024147 bax gene Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 208000001119 benign fibrous histiocytoma Diseases 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 108010079292 betaglycan Proteins 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000022159 cartilage development Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000008619 cell matrix interaction Effects 0.000 description 1
- 230000032341 cell morphogenesis Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000017455 cell-cell adhesion Effects 0.000 description 1
- 230000023549 cell-cell signaling Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 230000000723 chemosensory effect Effects 0.000 description 1
- 230000035606 childbirth Effects 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 201000002758 colorectal adenoma Diseases 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 208000027478 diffuse nonepidermolytic palmoplantar keratoderma Diseases 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- WOERBKLLTSWFBY-UHFFFAOYSA-M dihydrogen phosphate;tetramethylazanium Chemical compound C[N+](C)(C)C.OP(O)([O-])=O WOERBKLLTSWFBY-UHFFFAOYSA-M 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000029600 embryonic pattern specification Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000005216 enteric neuron Anatomy 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 201000006011 epidermolytic palmoplantar keratoderma Diseases 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 230000008622 extracellular signaling Effects 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 208000001031 fetal erythroblastosis Diseases 0.000 description 1
- 102000013370 fibrillin Human genes 0.000 description 1
- 108060002895 fibrillin Proteins 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 201000006321 fundus dystrophy Diseases 0.000 description 1
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 210000000020 growth cone Anatomy 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 208000019691 hematopoietic and lymphoid cell neoplasm Diseases 0.000 description 1
- 210000001551 hemic and immune system Anatomy 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 102000057179 human ISLR Human genes 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 208000017532 inherited retinal dystrophy Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 244000000056 intracellular parasite Species 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 210000003644 lens cell Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 101710130522 mRNA export factor Proteins 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000011645 metastatic carcinoma Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000001724 microfibril Anatomy 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229960003248 mifepristone Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000003990 molecular pathway Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000002346 musculoskeletal system Anatomy 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000007514 neuronal growth Effects 0.000 description 1
- 201000006079 nonepidermolytic palmoplantar keratoderma Diseases 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 210000004416 odontoblast Anatomy 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 108700025694 p53 Genes Proteins 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 108010049224 perlecan Proteins 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- BQVCCPGCDUSGOE-UHFFFAOYSA-N phenylarsine oxide Chemical compound O=[As]C1=CC=CC=C1 BQVCCPGCDUSGOE-UHFFFAOYSA-N 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 108010094020 polyglycine Proteins 0.000 description 1
- 229920000232 polyglycine polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 108010026466 polyproline Proteins 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 1
- 210000001176 projection neuron Anatomy 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 244000000040 protozoan parasite Species 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000001044 sensory neuron Anatomy 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 102000015340 serglycin Human genes 0.000 description 1
- 108010050065 serglycin Proteins 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000001548 stomatognathic system Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 208000031509 superficial epidermolytic ichthyosis Diseases 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000032312 synaptic target recognition Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 108010020352 tenascin X Proteins 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 201000005060 thrombophlebitis Diseases 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 208000009999 tuberous sclerosis Diseases 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
- 108010036899 zonadhesin Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/78—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- This invention relates to nucleic acid and amino acid sequences of cell adhesion and extracellular matrix proteins and to the use of these sequences in the diagnosis, treatment, and prevention of immune system disorders, neurological disorders, developmental disorders, connective tissue disorders, and cell proliferative disorders, including cancer, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of cell adhesion and extracellular matrix proteins.
- the surface of a cell is rich in transmembrane proteoglycans, glycoproteins, glycolipids, and receptors. These macromolecules mediate adhesion with other cells and with components of the ECM.
- the interaction of the cell with its surroundings profoundly influences cell shape, strength, flexibility, motility, and adhesion. These dynamic properties are intimately associated with signal transduction pathways controlling cell proliferation and differentiation, tissue construction, and . embryonic development. Families of cell adhesion molecules include the cadherins, integrins, lectins, neural cell adhesion proteins, and some members of the proline-rich proteins.
- Cadherins comprise a family of calcium-dependent glycoproteins that function in mediating cell-cell adhesion in virtually all solid tissues of multicellular organisms.
- cadherin molecules cooperate to form focal contacts, or adhesion plaques, between adjacent epithelial cells.
- the cadherin family includes the classical cadherins and protocadherins.
- Classical cadherins include the E-cadherin, N-cadherin, and P-cadherin subfamilies.
- E-cadherin is present on many types of epithelial cells and is especially important for embryonic development.
- N-cadherin is present on nerve, muscle, and lens cells and is also critical for embryonic development.
- P-cadherin is present on cells of the placenta and epidermis.
- cadherins are involved in a variety of cell-cell interactions (Suzuki, S.T. (1996) J. Cell Sci. 109 :2609-2611).
- the intracellular anchorage of cadherins is regulated by their dynamic association with catenins, a family of cytoplasmic signal transduction proteins associated with the actin cytoskeleton.
- the anchorage of cadherins to the actin cytoskeleton appears to be regulated by protein tyrosine phosphorylation, and the cadherins are the target of phosphorylation-induced junctional disassembly (Aberle, H. et al. (1996) J. Cell. Biochem. 61:514-523).
- Integrins are ubiquitous transmembrane adhesion molecules that link the ECM to the internal cytoskeleton. Integrins are composed of two noncovalently associated transmembrane glycoprotein subunits called ⁇ and ⁇ . Integrins function as receptors that play a role in signal transduction. For example, binding of integrin to its extracellular ligand may stimulate changes in intracellular calcium levels or protein kinase activity (Sjaastad, M.D. and Nelson, W.J. (1997) BioEssays 19:47-55). At least ten cell surface receptors of the integrin family recognize the ECM component fibronectin, which is involved in many different biological processes including cell migration and embryogenesis (Johansson, S. et al. (1997) Front.
- Lectins comprise a ubiquitous family of extracellular glycoproteins which bind cell surface carbohydrates specifically and reversibly, resulting in the agglutination of cells (reviewed in Drickamer, K. and Taylor, M. E. (1993) Annu. Rev. Cell Biol. 9:237-264). This function is particularly important for activation of the immune response. Lectins mediate the agglutination and mitogenic stimulation of lymphocytes at sites of inflammation (Lasky, L. A. (1991) J. Cell. Biochem. 45:139-146; Paietta, E. et al. (1989) J. Immunol. 143:2850-2857).
- Lectins are further classified into subfamilies based on carbohydrate-binding specificity and other criteria.
- the galectin subfamily includes lectins that bind ⁇ -galactoside carbohydrate moieties in a thiol-dependent manner (reviewed in Hadari, Y. R. et al. (1998) J. Biol. Chem. 270:3447-3453).
- Galectins are widely expressed and developmentally regulated.
- Galectins contain a characteristic carbohydrate recognition domain (CRD).
- the CRD comprises about 140 amino acids and contains several stretches of about 1 - 10 amino acids which are highly conserved among all galectins.
- a particular 6-amino acid motif within the CRD contains conserved tryptophan and arginine residues which are critical for carbohydrate binding.
- the CRD of some galectins also contains cysteine residues which may be important for disulfide bond formation. Secondary structure predictions indicate that the CRD forms several ⁇ -sheets.
- Galectins play a number of roles in diseases and conditions associated with cell-cell and cell- matrix interactions. For example, certain galectins associate with sites of inflammation and bind to cell surface nnmunoglobulin E molecules. In addition, galectins may play an important role in cancer metastasis. Galectin overexpression is correlated with the metastatic potential of cancers in humans and mice. Moreover, anti-galectin antibodies inhibit processes associated with cell transformation, such as cell aggregation and anchorage-independent growth (see, for example, Su, Z.-Z. et al. (1996) Proc. Natl. Acad. Sci. USA 93:7252-7257).
- Selectins comprise a specialized lectin subfamily involved primarily in inflammation and leukocyte adhesion (Reviewed in Lasky, supra). Selectins mediate the recruitment of leukocytes from the circulation to sites of acute inflammation and are expressed on the surface of vascular endothelial cells in response to cytokine signaling. Selectins bind to specific ligands on the leukocyte cell membrane and enable the leukocyte to adhere to and migrate along the endothelial surface. Binding of selectin to its ligand leads to polarized rearrangement of the actin cytoskeleton and stimulates signal transduction within the leukocyte (Brenner, B. et al. (1997) Biochem. Biophys. Res. Commun.
- NCAPs Neural cell adhesion proteins
- NCAPS genes encoding NCAPS are linked with neurological diseases, including hereditary neuropathy, Charcot-Marie-Tooth disease, Dejerine-Sottas disease, X-linked hydrocephalus, MASA syndrome (mental retardation, aphasia, shuffling gait and adducted thumbs), and spastic paraplegia type I.
- expression of NCAP is not restricted to the nervous system.
- Ll for example, is expressed in melanoma cells and hematopoietic tumor cells where it is implicated in cell spreading and migration, and may play a role in tumor progression (Montgomery, A.M. et al. (1996) J. Cell Biol. 132:475-485).
- NCAPs have at least one immunoglobulin constant or variable domain (Uyemura, supra). They are generally linked to the plasma membrane through a transmembrane domain and/or a glycosyl-phosphatidylinositol (GPI) anchor. The GPI linkage can be cleaved by GPI phospholipase C. Most NCAPs consist of an extracellular region made up of one or more immunoglobulin domains, a membrane spanning domain, and an intracellular region. Many NCAPs contain post-translational modifications including covalently attached oligosaccharide, glucuronic acid, and sulfate. NCAPs fall into three subgroups: simple-type, complex-type, and mixed-type.
- Simple-type NCAPs contain one or more variable or constant immunoglobulin domains, but lack other types of domains.
- Members of the simple-type subgroup include Schwann cell myelin protein (SMP), limbic system-associated membrane protein (LAMP), opiate-binding cell-adhesion molecule (OBCAM), and myelin-associated glycoprotein (MAG).
- SMP Schwann cell myelin protein
- LAMP limbic system-associated membrane protein
- OBCAM opiate-binding cell-adhesion molecule
- MAG myelin-associated glycoprotein
- the complex-type NCAPs contain fibronectin type HI domains in addition to the immunoglobulin domains.
- the complex-type subgroup includes neural cell-adhesion molecule (NCAM), axonin-1, Fll, Bravo, and Ll.
- NCAPs contain a combination of inimunoglobulin domains and other motifs such as tyrosine kinase and epidermal growth factor-like domains.
- This subgroup includes Trk receptors of nerve growth factors such as nerve growth factor (NGF) and neurotropin 4 (NT4), Neu differentiation factors such as glial growth factor H (GGFII) and acetylcholine receptor-inducing factor (ARIA), and the semaphorin/collapsin family such as semaphorin B and collapsin.
- NGF nerve growth factor
- NT4 neurotropin 4
- Neu differentiation factors such as glial growth factor H (GGFII) and acetylcholine receptor-inducing factor (ARIA)
- semaphorin/collapsin family such as semaphorin B and collapsin.
- Semaphorins are a large group of axonal guidance molecules consisting of at least 30 different members and are found in vertebrates, invertebrates, and even certain viruses. All semaphorins contain the sema domain which is approximately 500 amino acids in length. Neuropilin, a semaphorin receptor, has been shown to promote neurite outgrowth in vitro. The extracellular region of neuropilins consists of three different domains: CUB, discoidin, and MAM domains. The CUB and the MAM motifs of neuropilin have been proposed to have roles in protein-protein interactions and are suggested to be involved in the binding of semaphorins through the sema and the C-terminal domains (reviewed in Raper, J.A. (2000) Curr. Opin. Neurobiol. 10:88-94).
- NCAP subfamily includes cell adhesion proteins expressed on distinct subpopulations of brain neurons.
- Members of the NCAP-LON subgroup possess three immunoglobulin domains and bind to cell membranes through GPI anchors.
- Kilon (a kindred of NCAP-LON), for example, is expressed in the brain cerebral cortex and hippocampus (Funatsu, N. et al. (1999) J. Biol. Chem. 274:8224-8230). hnmunostaining localizes Kilon to the dendrites and soma of pyramidal neurons.
- Kilon has three C2 type immunoglobulin-like domains, six predicted glycosylation sites, and a GPI anchor. Expression of Kilon is developmentally regulated.
- the neurexophilins are ligands for the neuron-specific cell surface proteins, the ⁇ -neurexins. Neurexophilins and neurexins may participate in a neuron signaling pathway (Missler, M. and T.C. Sudhof (1998) J. Neurosci. 18:3630-3638; Missler, M. et al. (1998) J. Biol. Chem. 273:34716-34723).
- Ninjurin is a neuron cell surface protein which plays a role in cell adhesion and in nerve regeneration following injury. Ninjurin is up-regulated after nerve injury in dorsal root ganglion neurons and in Schwann cells (Araki, T. and Milbrandt, J.
- Ninjurin2 is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. Ninjurin2 is upregulated in Schwann cells surrounding the distal segment of injured nerve with a time course similar to that of ninjurinl, neural CAM, and Ll (Araki, T. and Milbrandt, J. (2000) J. Neurosci. 20:187-195).
- PRPs proline-rich proteins
- PRPs are defined by a high frequency of proline, ranging from 20-50% of the total amino acid content. Some PRPs have short domains which are rich in proline. These proline-rich regions are associated with protein-protein interactions.
- PRPs proline-rich synapse-associated proteins
- PSD postsynaptic density
- ProSAP family Members of the ProSAP family contain six to seven ankyrin repeats at the N-terminus, followed by an SH3 domain, a PDZ domain, and seven proline-rich regions and a SAM domain at the C terminus.
- Another member of the PRP family is the HLA-B-associated transcript 2 protein (BAT2) which is rich in proline and includes short tracts of polyproline, polyglycine, and charged amino acids.
- BAT2 also contains four RGD (Arg-Gly-Asp) motifs typical of integrins (Banerji, J. et al. (1990) Proc. Natl. Acad. Sci. USA 87:2374-2378).
- Toposome is a cell-adhesion glycoprotein isolated from mesenchyme-blastula embryos. Toposome precursors including vitellogenin promote cell adhesion of dissociated blastula cells. There are additional specific domains characteristic of cell adhesion proteins. One such domain is the MAM domain, a domain of about 170 amino acids found in the extracellular region of diverse proteins. These proteins all share a receptor-like architecture comprising a signal peptide, followed by a large N-terminal extracellular domain, a transmembrane region, and an intracellular domain (PROSITE document PDOC00604 MAM domain signature and profile).
- MAM domain proteins include zonadhesin, a sperm-specific membrane protein that binds to the zona pellucida of the egg; neuropilin, a cell adhesion molecule that functions during the formation of certain neuronal circuits, and Xenopus laevis thyroid hormone induced protein B, which contains four MAM domains and is involved in metamorphosis (Brown, D.D. et al. (1996) Proc. Natl. Acad. Sci. USA 93:1924- 1929).
- the WSC domain was originally found in the yeast WSC (cell-wall integrity and stress response component) proteins which act as sensors of environmental stress.
- the WSC domains are extracellular and are thought to possess a carbohydrate binding role (Ponting, CP. et al. (1999) Cu ⁇ . Biol. 9:S1-S2).
- a WSC domain has recently been identified in polycystin-1, a human plasma membrane protein. Mutations in polycystin-1 are the cause of the commonest form of autosomal dominant polycystic kidney disease (Ponting, CP. et al. (1999) Cu ⁇ . Biol. 9:R585-R588).
- LRR Leucine rich repeats
- LRR motifs are short motifs found in numerous proteins from a wide range of species. LRR motifs are of variable length, most commonly 20-29 amino acids, and multiple repeats are typically present in tandem. LRR motifs are important for protein/protein interactions and cell adhesion, and LRR proteins are involved in cell/cell interactions, morphogenesis, and development (Kobe, B. and Deisenhofer, J. (1995) Cu ⁇ . Opin. Struct. Biol. 5:409-416).
- the human ISLR (immunoglobulin superfamily containing leucine-rich repeat) protein contains a C2-type immunoglobulin domain as well as LRR motifs.
- the ISLR gene is linked to the critical region for Bardet-Biedl syndrome, a developmental disorder of which the most common feature is retinal dystrophy (Nagasawa, A. et al. (1999) Genomics 61:37-43).
- SAM sterile alpha motif
- the SAM domain can potentially function as a protein interaction module through its ability to form homo- or hetero-oligomers with other SAM domains (Schultz, J. et al. (1997) Protein Sci. 6:249-253).
- Extracellular Matrix Proteins are important to function as a protein interaction module through its ability to form homo- or hetero-oligomers with other SAM domains (Schultz, J. et al. (1997) Protein Sci. 6:249-253).
- the extracellular matrix is a complex network of glycoproteins, polysaccharides, proteoglycans, and other macromolecules that are secreted from the cell into the extracellular space.
- the ECM remains in close association with the cell surface and provides a supportive meshwork that profoundly influences cell shape, motility, strength, flexibility, and adhesion. In fact, adhesion of a cell to its su ⁇ ounding matrix is required for cell survival except in the case of metastatic tumor cells, which have overcome the need for cell-ECM anchorage. This phenomenon suggests that the ECM plays a critical role in the molecular mechanisms of growth control and metastasis. (Reviewed in Ruoslahti, E. (1996) Sci. Am. 275:72-77.) Furthermore, the ECM determines the structure and physical properties of connective tissue and is particularly important for morphogenesis and other processes associated with embryonic development and pattern formation.
- the collagens comprise a family of ECM proteins that provide structure to bone, teeth, skin, ligaments, tendons, cartilage, blood vessels, and basement membranes. Multiple collagen proteins have been identified. Three collagen molecules fold together in a triple helix stabilized by interchain disulfide bonds. Bundles of these triple helices then associate to form fibrils.
- Elastin and related proteins confer elasticity to tissues such as skin, blood vessels, and lungs.
- Elastin is a highly hydrophobic protein of about 750 amino acids that is rich in proline and glycine residues.
- Elastin molecules are highly cross-linked, forming an extensive extracellular network of fibers and sheets.
- Elastin fibers are su ⁇ ounded by a sheath of microfibrils which are composed of a number of glycoproteins, including fibrillin.
- Fibronectin is a large ECM glycoprotein found in all vertebrates. Fibronectin exists as a dimer of two subunits, each containing about 2,500 amino acids. Each subunit folds into a rod-like structure containing multiple domains. The domains each contain multiple repeated modules, the most common of which is the type HI fibronectin repeat. The type HI fibronectin repeat is about 90 amino acids in length and is also found in other ECM proteins and in some plasma membrane and cytoplasmic proteins. Furthermore, some type UJ fibronectin repeats contain a characteristic tripeptide consisting of Arginine-Glycine-Aspartic acid (RGD). The RGD sequence is recognized by the integrin family of cell surface receptors and is also found in other ECM proteins. (Reviewed in Alberts, et al. (1994) Molecular Biology of the Cell. Garland Publishing, New York, NY. pp. 986-987.)
- Laminin is a major glycoprotein component of the basal lamina which underlies and supports epithelial cell sheets.
- Laminin is one of the first ECM proteins synthesized in the developing embryo.
- Lanrinin is an 850 kilodalton protein composed of three' polypeptide chains joined in the shape of a cross by disulfide bonds.
- Laminin is especially important for angiogenesis and, in particular, for guiding the formation of capillaries. (Reviewed in Alberts, supra, pp. 990-991.)
- proteoglycans are composed of unbranched polysaccharide chains (glycosaminoglycans) attached to protein cores. Common proteoglycans include aggrecan, betaglycan, decorin, perlecan, serglycin, and syndecan-1. Some of these molecules not only provide mechanical support, but also bind to extracellular signaling molecules, such as fibroblast growth factor and transforming growth factor ⁇ , suggesting a role for proteoglycans in cell-cell communication. (Reviewed in Alberts, supra, pp. 973-978.)
- Dentin phosphoryn is a major component of the dentin ECM.
- DPP is a proteoglycan that is synthesized and expressed by odontoblasts (Gu, K., et al. (1998) Eur. J. Oral Sci. 106:1043- 1047). DPP is believed to nucleate or modulate the formation of hydroxyapatite crystals.
- Mucins are highly glycosylated glycoproteins that are the major structural component of the mucus gel. The physiological functions of mucins are cytoprotection, mechanical protection, maintenance of viscosity in secretions, and cellular recognition.
- MUC6 is a human gastric mucin that is also found in gall bladder, pancreas, seminal vesicles, and female reproductive tract (Toribara, N.W., et al. (1997) J. Biol. Chem. 272:16398-16403). The MUC6 gene has been mapped to human chromosome 11 (Toribara, N.W., et al. (1993) J. Biol. Chem. 268:5879-5885). Hemomucin is a novel Drosoph ⁇ la surface mucin that may be involved in the induction of antibacterial effector molecules (Theopold, U., et al. (1996) J. Biol. Chem. 217:12708-12715).
- Olfactomedin was originally identified as the major component of the mucus layer surrounding the chemosensory dendrites of olfactory neurons. Olfactomedin-related proteins are secreted glycoproteins with conserved C-terminal motifs. The ⁇ GR/myocilin protein, an olfactomedin-related protein expressed in the eye, is associated with the pathogenesis of glaucoma (Kulkarni, N.H. et al. (2000) Genet. Res. 76:41-50). Ankyrin (ANK) repeats mediate protein-protein interactions associated with diverse intracellular functions.
- ANK repeats are composed of about 33 amino acids that form a helix-turn- helix core preceded by a protruding "tip.” These tips are of variable sequence and may play a role in protein-protein interactions.
- the helix-turn-helix region of the ANK repeats stack on top of one another and are stabilized by hydrophobic interactions (Yang, Y. et al. (1998) Structure 6:619-626).
- Sushi repeats also called short consensus repeats (SCR), are found in a number of proteins that share the common feature of binding to other proteins. For example, in the C-terminal domain of versican, the sushi domain is important for heparin binding.
- Sushi domains contain basic amino acid residues, which may play a role in binding (Oleszewski, M. et al. (2000) J. Biol. Chem. 275:34478- 34485).
- Link, or X-link, modules are hyaluronan-binding domains found in proteins involved in the assembly of extracellular matrix, cell adhesion, and migration.
- the Link module superfamily includes CD44, cartilage link protein, and aggrecan. There is close similarity between the Link module and the C-type lectin domain, with the predicted hyaluronan-binding site at an analogous position to the carbohydrate-binding pocket in E-selectin (Kohda, D. et al. (1996) Cell, Vol.
- Multidomain or mosaic proteins play an important role in the diverse functions of the extracellular matrix (Engel, J. et al. (1994) Development (Camb.) S35-42).
- ECM proteins are frequently characterized by the presence of one or more domains which may contain a number of potential intracellular disulfide bridge motifs.
- domains which match the epidermal growth factor (EGF) tandem repeat consensus are present within several known extracellular proteins that promote cell growth, development, and cell signaling.
- This signature sequence is about forty amino acid residues in length and includes six conserved cysteine residues, and a calcium-binding site near the N-terminus of the signature sequence.
- the main structure is a two-stranded beta-sheet followed by a loop to a C-terminal short two-stranded sheet.
- Subdomains between the conserved cysteines vary in length (Davis, CG. New Biol (1990) May;2(5):410-9).
- Post-translational hydroxylation of aspartic acid or asparagine residues has been associated with EGF-like domains in several proteins (Prosite PDOCOOOlO Aspartic acid and asparagine hydroxylation site).
- EGF-like domain signature sequences A number of proteins that contain calcium-binding EGF-like domain signature sequences are involved in growth and differentiation. Examples include bone morphogenic protein 1, which induces the formation of cartilage and bone; crumbs, which is a Drosophila epithelial development protein; Notch and a number of its homologs, which are involved in neural growth and differentiation, and transforming growth factor beta-1 binding protein (Expasy PROSTTE document PDOC00913 ; Soler, C. and Carpenter, G., in Nicola, N.A. (1994) The Cytokine Facts Book, Oxford University Press, Oxford, UK, pp 193-197). EGF-like domains mediate protein-protein interactions for a variety of proteins.
- EGF-like domains in the ECM glycoprotein fibulin-1 have been shown to mediate both self-association and binding to fibronectin (Tran, H. et al. (1997) J. Biol. Chem. 272:22600-22606).
- Point mutations in the EGF-like domains of ECM proteins have been identified as the cause of human disorders such as Marfan syndrome and pseudochondroplasia (Maurer, P. et al. (1996) Cu ⁇ . Opin. Cell Biol. 8:609-617).
- the CUB domain is an extracellular domain of approximately 110 amino acid residues found mostly in developmentally regulated proteins.
- the CUB domain contains four conserved cysteine residues and is predicted to have a structure similar to that of immunoglobulins.
- Vertebrate bone morphogenic protein 1, which induces cartilage and bone formation, and fibropellins I and DI from sea urchin, which form the apical lamina component of the ECM, are examples of proteins that contain both CUB and EGF domains (PROSITE PDOC00908 CUB domain profile).
- ECM proteins are members of the type A domain of von Willebrand factor (vWFA)- like module superfamily, a diverse group of proteins with a module sharing high sequence similarity.
- the vWFA-like module is found not only in plasma proteins but also in plasma membrane and ECM proteins (Colombatti, A. and Bonaldo, P. (1991) Blood 77:2305-2315). Crystal structure analysis of an integrin vWFA-like module shows a classic "Rossmann" fold and suggests a metal ion-dependent adhesion site for binding protein ligands (Lee, J.-O. et al. (1995) Cell 80:631-638).
- Matrilin-2 an extracellular matrix protein that is expressed in a broad range of mammalian tissues and organs.
- Matrilin-2 is thought to play a role in ECM assembly by bridging collagen fibrils and the aggrecan network (Deak, F. et al. (1997) J. Biol. Chem. 272:9268-9274).
- the thrombospondins are multimeric, calcium-binding extracellular glycoproteins found widely in the embryonic extracellular matrix. These proteins are expressed in the developing nervous system or at specific sites in the adult nervous system after injury. Thrombospondins contain multiple EGF- type repeats, as well as a motif known as the thrombospondin type 1 repeat (TSR).
- TSR thrombospondin type 1 repeat
- the TSR is approximately 60 amino acids in length and contains six conserved cysteine residues. Motifs within TSR domains are involved in mediating cell adhesion through binding to proteoglycans and sulfated glycolipids.
- Thrombospondin- 1 inhibits angiogenesis and modulates endothelial cell adhesion, motility, and growth.
- TSR domains are found in a diverse group of other proteins, most of which are expressed in the developing nervous system and have potential roles in the guidance of cell and growth cone migration. Proteins that contain TSRs include the F-spondin gene family, the semaphorin 5 family, UNC-5, and SCO-spondin.
- the TSR superfa ily includes the ADAMTS proteins which contain an ADAM (A Disintegrin and Metalloproteinase) domain as well as one or more TSRs.
- the ADAMTS proteins have roles in regulating the turnover of cartilage matrix, regulation of blood vessel growth, and possibly development of the nervous system. (Reviewed in Adams, J.C and Tucker, R. P. (2000) Dev. Dyn. 218:280-299.)
- F ⁇ brinogen the principle protein of vertebrate blood clotting, is a hexamer consisting of two sets of three different chains (alpha, beta, and gamma).
- the C-terminal domain of the beta and gamma chains comprises about 270 amino acid residues and contains four cysteines involved in two disulfide bonds. This domain has also been found in mammalian tenascin-X, an ECM protein that appears to be involved in cell adhesion (Prosite PDOC00445 Fibrinogen beta and gamma chains C- terminal domain signature).
- Expression profiling Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
- arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
- Colorectal cancer is the fourth most common cancer and the second most common cause of cancer death in the United States with approximately 130,000 new cases and 55,000 deaths per year. Colon and rectal cancers share many environmental risk factors and both are found in individuals with specific genetic syndromes. (See Potter, J.D. (1999) J. Natl. Cancer Institate 91:916-932 for a review of colorectal cancer.) Colon cancer is the only cancer that occurs with approximately equal frequency in men and women, and the five-year survival rate following diagnosis of colon cancer is around 55% in the United States (Ries et al. (1990) National Institutes of Health, DHHS Publ No. (NIH)90-2789).
- Colon cancer is causally related to both genes and the environment.
- Several molecular pathways have been linked to the development of colon cancer, and the expression of key genes in any of these pathways may be lost by inherited or acquired mutation or by hypermethylation.
- There is a particular need to identify genes for which changes in expression may provide an early indicator of colon cancer or a predisposition for the development of colon cancer.
- DNA methyltransferase the enzyme that performs DNA methylation
- histologicalfy normal mucosa from patients with colon cancer or the benign polyps that precede cancer, and this increase continues during the progression of colonic neoplasms (Wafik, S. et al. (1991) Proc. Natl. Acad. Sci. USA 88:3470-3474).
- CpG islands G+C rich areas of genomic DNA termed "CpG islands” that are important for maintenance of an "open” transcriptional conformation around genes, and that hypermethylation of these regions results in a "closed” conformation that silences gene transcription. It has been suggested that the silencing or downregulation of differentiation genes by such abnormal methylation of CpG islands may prevent differentiation in immortalized cells (Antequera, F. et al. (1990) Cell 62:503-514). Familial Adenomatous Polyposis (FAP) is a rare autosomal dominant syndrome that precedes colon cancer and is caused by an inherited mutation in the adenomatous polyposis coli (APC) gene.
- FAP Familial Adenomatous Polyposis
- FAP is characterized by the early development of multiple colorectal adenomas that progress to cancer at a mean age of 44 years.
- the APC gene is a part of the APC- ⁇ -catenin-Tcf (T-cell factor) pathway. Impairment of this pathway results in the loss of orderly replication, adhesion, and migration of colonic epithelial cells that results in the growth of polyps.
- a series of other genetic changes follow activation of the APC- ⁇ -catenin-Tcf pathway and accompanies the transition from normal colonic mucosa to metastatic carcinoma.
- HNPCC Hereditary nonpolyposis Colorectal Cancer
- loss of MMR activity contributes to cancer progression through accumulation of other gene mutations and deletions, such as loss of the BAX gene which controls apoptosis, and the TGF ⁇ receptor D gene which controls cell growth. Because of the potential for irreparable damage to DNA in an individual with a DNA MMR defect, progression to carcinoma is more rapid than usual.
- ulcerative colitis is a minor contributor to colon cancer
- affected individuals have about a 20-fold increase in risk for developing cancer.
- Progression is characterized by loss of the p53 gene which may occur early, appearing even in histologically normal tissue.
- the progression of the disease from ulcerative colitis to dysplasia/carcinoma without an intermediate polyp state suggests a high degree of mutagenic activity resulting from the exposure of proliferating cells in the colonic mucosa to the colonic contents.
- the invention features purified polypeptides, cell adhesion and extracellular matrix proteins, refe ⁇ ed to collectively as “CADECM” and individually as “CADECM-1,” “CADECM-2,” “CADECM-3 ,” “CADECM-4,” “CADECM-5,” “CADECM-6,” “CADECM-7,” “CADECM-8,” “CADECM-9,” “CADECM-10,” and “CADECM-11.”
- the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-ll, b) a polypeptide comprising a naturally occu ⁇ ing amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-ll, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-ll, and d) an immunogenic fragment of
- the invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, b) a polypeptide comprising a naturally occu ⁇ ing amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ LO NO:l- 11, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll.
- polynucleotide encodes a polypeptide selected from the group consisting of SEQ DD NO:l-ll. In another alternative, the polynucleotide is selected from the group consisting of SEQ DD NO: 12-22.
- the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-l 1, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll.
- the invention provides a cell transformed with the recombinant polynucleotide.
- the invention provides a transgenic organism comprising the recombinant polynucleotide.
- the invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, b) a polypeptide comprising a naturally occu ⁇ ing amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-l 1, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll.
- the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
- the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO.1-11, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll.
- the invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the polynucleotide comprises at least 60 contiguous nucleotides.
- the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:12-22, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
- the probe comprises at least 60 contiguous nucleotides.
- the invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:12-22, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:12-22, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
- the invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, and a pharmaceutically acceptable excipient.
- the composition comprises an amino acid sequence selected from the group consisting of SEQ DD NO:l-l 1.
- the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional CADECM, comprising administering to a patient in need of such treatment the composition.
- the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-l 1, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected fro the group consisting of SEQ DD NO:l-ll.
- the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
- the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
- the invention provides a method of treating a disease or condition associated with decreased expression of functional CADECM, comprising administering to a patient in need of such treatment the composition.
- the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll.
- the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
- the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
- the invention provides a method of treating a disease or condition associated with overexpression of functional CADECM, comprising administering to a patient in need of such treatment the composition.
- the invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-11, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll.
- the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
- the invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-ll, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-l 1.
- the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
- the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
- the invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv
- Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO: 12-22, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
- the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
- Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
- Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog, and the PROTEOME database identification numbers and annotations of PROTEOME database homologs, for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
- Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
- Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
- Table 5 shows the representative cDNA library for polynucleotides of the invention.
- Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
- Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
- CADECM refers to the amino acid sequences of substantially purified CADECM obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
- the te ⁇ n "agonist” refers to a molecule which intensifies or mimics the biological activity of CADECM.
- Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of CADECM either by directly interacting with CADECM or by acting on components of the biological pathway in which CADECM participates.
- An "allelic variant” is an alternative form of the gene encoding CADECM. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered.
- a gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
- altered nucleic acid sequences encoding CADECM include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as CADECM or a polypeptide with at least one functional characteristic of CADECM. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding CADECM, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding CADECM.
- the encoded protein may also be "altered " and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent CADECM.
- Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of CADECM is retained.
- negatively charged amino acids may include aspartic acid and glutamic acid
- positively charged aniino acids may include lysine and arginine.
- Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
- Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine
- amino acid and amino acid sequence refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
- Amplification relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
- PCR polymerase chain reaction
- Antagonist refers to a molecule which inhibits or attenuates the biological activity of CADECM.
- Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of CADECM either by directly interacting with CADECM or by acting on components of the biological pathway in which CADECM participates.
- antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
- Antibodies that bind CADECM polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
- the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
- an animal e.g., a mouse, a rat, or a rabbit
- Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
- antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
- an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
- aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target.
- Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
- Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
- the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
- Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
- Aptamers maybe specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)
- RNA aptamer refers to an aptamer which is expressed in vivo.
- a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl Acad. Sci. USA 96:3606-3610).
- spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
- antisense refers to any composition capable of base-pairing with the "sense”
- Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; t>r oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
- Antisense molecules may be produced by any method including chemical synthesis or transcription.
- the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
- the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
- biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
- immunologically active or “immunogenic” refers to the capability of the natural, recombinant, or synthetic CADECM, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
- Complementary describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3 * -TCA-5 ⁇
- composition comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
- the composition may comprise a dry formulation or an aqueous solution.
- Compositions comprising polynucleotide sequences encoding CADECM or fragments of CADECM may be employed as hybridization probes.
- the probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
- the probe In hybridizations, the probe maybe deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
- salts e.g., NaCl
- detergents e.g., sodium dodecyl sulfate; SDS
- other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
- Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELNEEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
- Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
- the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
- Trp Phe Tyr Tyr His, Phe, Trp Val De, Leu, Thr
- Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
- a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
- derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
- a derivative polynucleotide encodes a polypeptide which retains at least one biological or i munological function of the natural molecule.
- a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
- a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
- “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons maybe carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
- Exon shuffling refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins maybe assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
- a “fragment” is a unique portion of CADECM or the polynucleotide encoding CADECM which is identical in sequence to but shorter in length than the parent sequence.
- a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
- a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
- a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
- these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, maybe encompassed by the present embodiments.
- a fragment of SEQ DD NO: 12-22 comprises a region of unique polynucleotide sequence that specifically identifies SEQ DD NO:12-22, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
- a fragment of SEQ DD NO:12-22 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ DD NO: 12-22 from related polynucleotide sequences.
- the precise length of a fragment of SEQ DD NO:12-22 and the region of SEQ DD NO:12-22 to which the fragment co ⁇ esponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
- a fragment of SEQ DD NO:l-ll is encoded by a fragment of SEQ DD NO:12-22.
- a fragment of SEQ DD NO: 1-11 comprises a region of unique amino acid sequence that specifically identifies SEQ DD NO:l-ll.
- a fragment of SEQ DD NO:l-ll is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ DD NO:l-ll.
- the precise length of a fragment of SEQ DD NO:l-l 1 and the region of SEQ DD NO: 1-11 to which the fragment co ⁇ esponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
- a “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
- a “full length” polynucleotide sequence encodes a “full length” polypeptide sequence.
- “Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
- percent identity refers to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
- BLAST Basic Local Alignment Search Tool
- BLAST 2 Sequences can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.htrhl.
- the "BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below).
- BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters maybe, for example:
- Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ DD number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
- Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, maybe used to describe a length over which percentage identity may be measured.
- nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
- percent identity and % identity refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm.
- Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
- Gap x drop-off 50 Expect: 10 Word Size: 3 Filter: on
- Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ DD number, or maybe measured over a shorter length, for example, over the length of a fragment taken fro a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
- Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, maybe used to describe a length over which percentage identity maybe measured.
- HACs Human artificial chromosomes
- HACs are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
- humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
- Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s).
- the washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
- Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and maybe consistent among hybridization experiments, whereas wash conditions maybe varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ l sheared, denatured salmon sperm DNA.
- wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T,,,) for the specific sequence at a defined ionic strength and pH.
- T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
- High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C maybe used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
- blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
- Organic solvent such as formamide at a concentration of about 35-50% v/v
- RNA:DNA hybridizations Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
- Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
- hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases.
- a hybridization complex maybe formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
- Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
- An "immunogenic fragment” is a polypeptide or oligopeptide fragment of CADECM which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
- immunogenic fragment also includes any polypeptide or oligopeptide fragment of CADECM which is useful in any of the antibody production methods disclosed herein or known in the art.
- microa ⁇ ay refers to an a ⁇ angement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
- element and "a ⁇ ay element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microa ⁇ ay.
- modulate refers to a change in the activity of CADECM. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of CADECM.
- nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which maybe single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
- PNA peptide nucleic acid
- operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
- PNA protein nucleic acid
- PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell. •
- Post-translational modification of an CADECM may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of CADECM.
- Probe refers to nucleic acid sequences encoding CADECM, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences.
- Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
- Primmers are short nucleic acids, usually DNA oligonucleotides, which maybe annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme.
- Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers maybe considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, maybe used.
- PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
- Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome- wide scope.
- the Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "n ⁇ spriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microa ⁇ ays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.)
- the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
- this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
- the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microa ⁇ ay elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
- a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.
- recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
- a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
- Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
- such recombinant nucleic acids maybe part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
- a “regulatory element” refers to a nucleic acid sequence usually derived from uCADECMslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' uCADECMslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
- Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chen ⁇ luminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
- RNA equivalent in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occu ⁇ ences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
- sample is used in its broadest sense. A sample suspected of containing
- CADECM nucleic acids encoding CADECM, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA,
- RNA, or cDNA in solution or bound to a substrate; a tissue; a tissue print; etc.
- binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic dete ⁇ ninant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
- substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
- substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
- Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
- the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
- a “transcript image” or “expression profile” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
- Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
- transformed cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
- a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
- the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
- the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C et al. (2002) Science 295:868-872).
- the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
- the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
- the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
- a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
- Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
- a variant may be described as, for example, an "allelic” (as defined above), “splice,” “species,” or “polymorphic” variant.
- a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing.
- the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
- Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other.
- a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
- Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
- SNPs single nucleotide polymorphisms
- the presence of SNPs maybe indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
- a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
- Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
- the invention is based on the discovery of new human cell adhesion and extracellular matrix proteins (CADECM), the polynucleotides encoding CADECM, and the use of these compositions for the diagnosis, treatment, or prevention of immune system disorders, neurological disorders, developmental disorders, connective tissue disorders, and cell proliferative disorders, including cancer.
- Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its co ⁇ esponding polypeptide are co ⁇ elated to a single Incyte project identification number (Incyte Project DD).
- Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ DD NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide DD) as shown.
- Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide DD) as shown.
- Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database and the PROTEOME database.
- Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ DD NO:) and the co ⁇ esponding Incyte polypeptide sequence number (Incyte Polypeptide DD) for polypeptides of the invention.
- Column 3 shows the GenBank identification number (GenBank DD NO:) of the nearest GenBank homolog and the PROTEOME database identification numbers (PROTEOME DD NO:) of the nearest PROTEOME database homologs.
- Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s).
- Column 5 shows the annotation of the GenBank and PROTEOME database homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.
- Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2
- FIG. 3 shows the number of amino acid residues in each polypeptide.
- Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI).
- Column 6 shows amino acid residues comprising signature sequences, domains, and motifs.
- Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
- SEQ DD NO:2 is 92% identical, from residue Ml to residue S828, to murine PB-cadherin (GenBank DD g4760578) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
- SEQ DD NO:2 also contains cadherin and cadherin cytoplasmic domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
- HMM hidden Markov model
- SEQ DD NO:4 is 27% identical, from residue E2 to residue A1230, to chicken connectin/titin (GenBank DD gl513030) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.0e-177, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:4 also contains 25 immunoglobulin domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)- based PFAM database of conserved protein family domains.
- HMM hidden Markov model
- SEQ DD NO:4 is a titin, a muscle protein containing of repetitive modules of hnmunoglobulin and fibronectin motifs interspersed with unique sequences.
- SEQ DD NO:5 is 42% identical, from residue L4 to residue R705, to human protocadherin alpha C2 short form protein (GenBank DD g5456991) as determined by the Basic Local Alignment Search Tool (BLAST).
- SEQ DD NO:5 also contains cadherin domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
- HMM hidden Markov model
- PROFILESCAN analyses and BLAST analyses of the PRODOM and DOMO databases provide further corroborative evidence that SEQ DD NO:5 contains cadherin domains and is a cell adhesion protein.
- SPSCAN and HMMER analyses indicate that SEQ DD NO:5 contains a signal peptide and TMAP analysis indicates that SEQ DD NO:5 contains three transmembrane domains.
- SEQ DD NO:10 is 97% identical, from residue Ml to residue V666, to neurexin D-beta-a (GenBank DD g205719) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
- SEQ DD NO: 10 also contains a laminin G domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from additional BLAST analysis provide further co ⁇ oborative evidence that SEQ DD NO:3 is a neurexin. SEQ DD NO:2-3, SEQ DD NO:6-9, and SEQ DD NO:ll were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ DD NO:l-l 1 are described in Table 7.
- the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
- Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ DD NO:), the co ⁇ esponding Incyte polynucleotide consensus sequence number (Incyte DD) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs.
- Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide sequences of the invention, and of fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ DD NO: 12-22 or that distinguish between SEQ DD NO: 12-22 and related polynucleotide sequences.
- the polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries.
- the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotide sequences.
- the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST").
- the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e. , those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (i.e. , those sequences including the designation "NP”).
- the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm.
- a polynucleotide sequence identified as r ⁇ J(XXXXX_N 1 _N 2 _YYYYY_N 3 _N 4 represents a "stitched" sequence in which aXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N 1A3m , if present, represent specific exons that may have been manually edited during analysis (See Example V).
- the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
- a polynucleotide sequence identified as FLXXXXX_gAAAAA_gBBBBB_l_N is a "stretched" sequence, with XXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
- a RefSeq identifier (denoted by "NM,” “NP,” or “NT”) maybe used in place of the GenBank identifier (i.e., gBBBBB).
- a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods.
- the following Table lists examples of component sequence prefixes and co ⁇ esponding sequence analysis methods associated with the prefixes (see Example IN and Example V).
- Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
- Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences.
- the representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences.
- the tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
- the invention also encompasses CADECM variants.
- a prefe ⁇ ed CADECM variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the CADECM amino acid sequence, and which contains at least one functional or structural characteristic of CADECM.
- the invention also encompasses polynucleotides which encode CADECM.
- the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO: 12-22, which encodes CADECM.
- the polynucleotide sequences of SEQ DD NO: 12-22 as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occu ⁇ ences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
- the invention also encompasses a variant of a polynucleotide sequence encoding CADECM.
- a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding CADECM.
- a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO: 12- 22 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ DD NO: 12-22. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of CADECM.
- a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding CADECM.
- a splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding CADECM, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing.
- a splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to the polynucleotide sequence encoding CADECM over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding CADECM.
- a polynucleotide comprising a sequence of SEQ DD NO:22 is a splice variant of a polynucleotide comprising a sequence of SEQ DD NO:21. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of CADECM.
- nucleotide sequences which encode CADECM and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring CADECM under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding CADECM or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons maybe selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
- RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
- the invention also encompasses production of DNA sequences which encode CADECM and CADECM derivatives, or fragments thereof, entirely by synthetic chemistry.
- the synthetic sequence maybe inserted into any of the many available expression vectors and cell systems using reagents well known in the art.
- synthetic chemistry may be used to introduce mutations into a sequence encoding CADECM or any fragment thereof.
- polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ DD NO: 12-22 and fragments thereof under various conditions of stringency.
- Hybridization conditions including annealing and wash conditions, are described in "Definitions.” Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
- the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD).
- sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems).
- Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art.
- the resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, RA. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)
- the nucleic acid sequences encoding CADECM maybe extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
- PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
- one method which maybe employed, restriction-site PCR uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)
- Another method, inverse PCR uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
- the template is derived from restriction fragments comprising a known genomic locus and su ⁇ ounding sequences.
- a third method, capture PCR involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
- capture PCR involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
- multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
- Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res.
- primers maybe designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C ,
- Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
- Capillary electrophoresis systems which are commercially available maybe used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
- capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
- Output light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
- Capillary electrophoresis is especially preferable for sequencing small DNA fragments which maybe present in limited amounts in a particular sample.
- polynucleotide sequences or fragments thereof which encode CADECM may be cloned in recombinant DNA molecules that direct expression of CADECM, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence maybe produced and used to express CADECM.
- nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter CADECM-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
- DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
- oligonucleotide- mediated site-directed mutagenesis maybe used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
- the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No.
- DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties.
- prefe ⁇ ed variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
- genetic diversity is created through "artificial' * ' breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations maybe recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene maybe recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
- sequences encoding CADECM maybe synthesized, in whole or in part, using chemical methods well known in the art.
- CADECM itself or a fragment thereof may be synthesized using chemical methods.
- peptide synthesis can be performed using various solution-phase or solid-phase techniques.
- the peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
- the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
- the nucleotide sequences encoding CADECM or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
- These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3 'uCADECMslated regions in the vector and in polynucleotide sequences encoding CADECM.
- Such elements may vary in their strength and specificity.
- Specific initiation signals may also be used to achieve more efficient translation of sequences encoding CADECM. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
- yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., baculovirus)
- plant cell systems transformed with viral expression vectors e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV
- bacterial expression vectors e.g., Ti or pBR322 plasmids
- Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population.
- the invention is not limited by the host cell employed.
- cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding CADECM.
- routine cloning, subcloning, and propagation of polynucleotide sequences encoding CADECM can be achieved using a multifunctional E. coli vector such as PBLUESCPJPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding CADECM into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules.
- these vectors maybe useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence.
- vectors which direct high level expression of CADECM may be used.
- vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
- Yeast expression systems may be used for production of CADECM.
- a number of vectors containing constitutive or inducible promoters may be used in the yeast Saccharomvces cerevisiae or Pichia pastoris.
- constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters
- such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
- Plant systems may also be used for expression of CADECM.
- Transcription of sequences encoding CADECM maybe driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311).
- viral promoters e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:181-311).
- plant promoters such as the small subunit of RUBISCO or heat shock promoters maybe used.
- constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection.
- pathogen-mediated transfection See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.
- a number of viral-based expression systems may be utilized.
- sequences encoding CADECM may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses CADECM in host cells.
- transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
- SV40 or EBV-based vectors may also be used for high-level protein expression.
- HACs Human artificial chromosomes
- HACs may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
- HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345- 355.)
- sequences encoding CADECM can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector.
- cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
- the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
- Resistant clones of stably transformed cells maybe propagated using tissue culture techniques appropriate to the cell type.
- selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
- dhfr confers resistance to methotrexate
- neo confers resistance to the aminoglycosides neomycin and G-418
- als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
- Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites.
- Visible markers e.g., anlhocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
- marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
- sequence encoding CADECM is inserted within a marker gene sequence
- transformed cells containing sequences encoding CADECM can be identified by the absence of marker gene function.
- a marker gene can be placed in tandem with a sequence encoding CADECM under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
- host cells that contain the nucleic acid sequence encoding CADECM and that express CADECM may be identified by a variety of procedures known to those of skill in the art.
- a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on CADECM is prefe ⁇ ed, but a competitive binding assay may be employed.
- assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Cu ⁇ ent Protocols in Immunology, Greene Pub. Associates and Wiley- ⁇ nterscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)
- Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding CADECM include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
- the sequences encoding CADECM, or any fragments thereof maybe cloned into a vector for the production of an mRNA probe.
- RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
- reporter molecules or labels which maybe used for ease of detection include radionuclides, enzymes, fluorescent, chemilurninescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
- Host cells transformed with nucleotide sequences encoding CADECM may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
- the protein produced by a transformed cell maybe secreted or retained intracellularly depending on the sequence and/or the vector used.
- expression vectors containing polynucleotides which encode CADECM maybe designed to contain signal sequences which direct secretion of CADECM through a prokaryotic or eukaryotic cell membrane.
- a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
- Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
- Post-translational processing which cleaves a "prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
- Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
- ATCC American Type Culture Collection
- natural, modified, or recombinant nucleic acid sequences encoding CADECM maybe ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
- a chimeric CADECM protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of CADECM activity.
- Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
- Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c- myc, and hemagglutinin (HA).
- GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
- FLAG, c-myc, and hemagglutinin (HA) enable immunoafrinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
- a fusion protein may also be engineered to contain a proteolytic cleavage site located between the CADECM encoding sequence and the heterologous protein sequence, so that CADECM may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
- synthesis of radiolabeled CADECM maybe achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
- CADECM of the present invention or fragments thereof may be used to screen for compounds that specifically bind to CADECM.
- At least one and up to a plurality of test compounds maybe screened for specific binding to CADECM.
- test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
- the compound thus identified is closely related to the natural ligand of CADECM, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner.
- the compound can be closely related to the natural receptor to which CADECM binds, or to at least a fragment of the receptor, e.g., the ligand binding site.
- the compound can be rationally designed using known techniques.
- screening for these compounds involves producing appropriate cells which express CADECM, either as a secreted protein or on the cell membrane.
- Prefe ⁇ ed cells include cells from mammals, yeast, Drosophila. or K coli. Cells expressing CADECM or cell membrane fractions which contain CADECM are then contacted with a test compound and binding, stimulation, or inhibition of activity of either CADECM or the compound is analyzed.
- An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
- the assay may comprise the steps of combining at least one test compound with CADECM, either in solution or affixed to a solid support, and detecting the binding of CADECM to the compound.
- the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
- the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) maybe free in solution or affixed to a solid support.
- CADECM of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of CADECM.
- Such compounds may include agonists, antagonists, or partial or inverse agonists.
- an assay is performed under conditions permissive for CADECM activity, wherein CADECM is combined with at least one test compound, and the activity of CADECM in the presence of a test compound is compared with the activity of CADECM in the absence of the test compound. A change in the activity of CADECM in the presence of the test compound is indicative of a compound that modulates the activity of CADECM.
- a test compound is combined with an in vitro or cell-free system comprising CADECM under conditions suitable for CADECM activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of CADECM may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds maybe screened.
- polynucleotides encoding CADECM or their mammalian homologs maybe "knocked out” in an animal model system using homologous recombination in embryonic stem (ES) cells.
- ES embryonic stem
- Such techniques are well known in the art and are useful for the generation of animal models of human disease.
- mouse ES cells such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture.
- the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
- a marker gene e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
- the vector integrates into the co ⁇ esponding region of the host genome by homologous recombination.
- homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
- Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
- the blastocysts are surgically transfe ⁇ ed to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
- Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
- Polynucleotides encoding CADECM may also be manipulated in vitro in ES cells derived from human blastocysts.
- Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
- Polynucleotides encoding CADECM can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
- knockin technology a region of a polynucleotide encoding CADECM is injected into animal ES cells, and the injected sequence integrates into the aiiimal cell genome.
- Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
- Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
- a mammal inbred to overexpress CADECM e.g., by secreting CADECM in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
- THERAPEUTICS e.g., by secreting CADECM in its milk.
- CADECM appears to play a role in immune system disorders, neurological disorders, developmental disorders, connective tissue disorders, and cell proliferative disorders, including cancer.
- CADECM In the treatment of disorders associated with increased CADECM expression or activity, it is desirable to decrease the expression or activity of CADECM.
- CADECM In the treatment of disorders associated with decreased CADECM expression or activity, it is desirable to increase the expression or activity of CADECM.
- CADECM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CADECM.
- disorders include, but are not limited to, an immune system disorder, such as acquired immunodeficiency syndrome (ADDS), X-linked agammaglobinemia of Bruton, common variable immunodeficiency (CVT), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCDD), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing's disease, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, athe
- ADDS acquired immuno
- Parkinson's disease and other extrapyramidal disorders amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt- Jakob disease, and
- Gerstmann-Straussler-Scheinker syndrome fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinalhemangioblastomatosis, encephalotiigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear pals
- a vector capable of expressing CADECM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CADECM including, but not limited to, those described above.
- a composition comprising a substantially purified CADECM in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CADECM including, but not limited to, those provided above.
- an agonist which modulates the activity of CADECM may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CADECM including, but not limited to, those listed above.
- an antagonist of CADECM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CADECM.
- disorders include, but are not limited to, those mimune system disorders, neurological disorders, developmental disorders, connective tissue disorders, and cell proliferative disorders, including cancer described above.
- an antibody which specifically binds CADECM may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express CADECM.
- a vector expressing the complement of the polynucleotide encoding CADECM maybe administered to a subject to treat or prevent a disorder associated with increased expression or activity of CADECM including, but not limited to, those described above.
- any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention maybe administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
- the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
- An antagonist of CADECM may be produced using methods which are generally known in the art.
- purified CADECM may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind CADECM.
- Antibodies to CADECM may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer fo ⁇ nation) are generally prefe ⁇ ed for therapeutic use. Single chain antibodies (e.g., from camels or llamas) maybe potent enzyme inhibitors and may have advantages in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
- various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with CADECM or with any fragment or oligopeptide thereof which has immunogenic properties.
- various adjuvants may be used to increase immunological response.
- adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
- BCG Bacilli Calmette-Guerin
- Corynebacterium parvum are especially preferable. It is prefe ⁇ ed that the oligopeptides, peptides, or fragments used to induce antibodies to
- CADECM have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of CADECM amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
- Monoclonal antibodies to CADECM maybe prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique.
- the hybridoma technique the human B-cell hybridoma technique
- EBV-hybridoma technique See, e.g., Kohler, G. et al. (1975) Natare 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)
- chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity.
- techniques developed for the production of “chimeric antibodies” such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used.
- techniques described for the production of single chain antibodies maybe adapted, using methods known in the art, to produce CADECM-specific single chain antibodies.
- Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial inimunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
- Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening inimunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
- Antibody fragments which contain specific binding sites for CADECM may also be generated.
- fragments include, but are not limited to, F(ab') 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
- Fab expression libraries maybe constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
- immunoassays may be used for screening to identify antibodies having the desired specificity.
- Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.
- Such immunoassays typically involve the measurement of complex formation between CADECM and its specific antibody.
- a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering CADECM epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
- Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques maybe used to assess the affinity of antibodies for CADECM.
- K a is defined as the molar concentration of CADECM-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions.
- the K7. determined for a preparation of monoclonal antibodies, which are monospecific for a particular CADECM epitope, represents a true measure of affinity.
- Hgh-affinity antibody preparations with K a ranging from about 10 9 to 10 12 L/mole are prefe ⁇ ed for use in immunoassays in which the CADECM-antibody complex must withstand rigorous manipulations.
- Low-affinity antibody preparations with K a ranging from about 10 6 to 10 7 L/mole are prefe ⁇ ed for use in immunopurification and similar procedures which ultimately require dissociation of CADECM, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies. John Wiley & Sons, New York NY).
- polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
- a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of CADECM-antibody complexes.
- Procedures for evaluating antibody specificity, liter, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
- the polynucleotides encoding CADECM may be used for therapeutic purposes.
- modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding CADECM.
- complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
- antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding CADECM. (See, e.g. Agrawal. S.. ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)
- Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein.
- Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors.
- polynucleotides encoding CADECM may be used for somatic or germline gene therapy.
- Gene therapy may be performed to (i) co ⁇ ect a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCDD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene
- CADECM hepatitis B or C virus
- fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
- protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi.
- CADECM hepatitis B or C virus
- fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
- protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi
- CADECM are treated by constructing mammalian expression vectors encoding CADECM and introducing these vectors by mechanical means into CADECM-deficient cells.
- Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA tiansposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Cu ⁇ . Opin. Biotechnol. 9:445-450).
- Expression vectors that may be effective for the expression of CADECM include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH PERV (Stiatagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
- CADECM maybe expressed using (i) a constitatively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., the tetiacycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.N. and H.M. Blau (1998) Cu ⁇ . Opin.
- a constitatively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
- Biotechnol. 9:451-456 commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PNGRXR and PI ⁇ D; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.MN. and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding CADECM from a normal individual.
- liposome transformation kits e.g., the PERFECT LIPDD TRANSFECTION KIT, available from Invitrogen
- PERFECT LIPDD TRANSFECTION KIT available from Invitrogen
- transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845).
- the introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
- diseases or disorders caused by genetic defects with respect to CADECM expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding CADECM under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev- responsive element (RRE) along with additional retrovirus czs-acting RNA sequences and coding sequences required for efficient vector propagation.
- Retrovirus vectors e.g., PFB and PFBNEO
- the vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J.
- VPCL vector producing cell line
- U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g. , CD4 + T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al.
- an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding CADECM to cells which have one or more genetic abnormalities with respect to the expression of CADECM.
- the construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art.
- Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268).
- Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference.
- Adenovirus vectors for gene therapy For adenoviral vectors, see also Antinozzi, P. A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Natare 18:389:239-242, both incorporated by reference herein.
- a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding CADECM to target cells which have one or more genetic abnormahties with respect to the expression of CADECM.
- the use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing CADECM to cells of the central nervous system, for which HSV has a tropism.
- the construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art.
- a replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res.
- HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
- U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transfe ⁇ ed to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
- HSV vectors see also Goins, W.F. et al.
- an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding CADECM to target cells.
- SFV Semliki Forest Virus
- This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
- enzymatic activity e.g., protease and polymerase.
- inserting the coding sequence for CADECM into the alphavirus genome in place of the capsid-coding region results in the production of a large number of CADECM-coding RNAs and the synthesis of high levels of CADECM in vector transduced cells.
- alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
- the wide host range of alphaviruses will allow the introduction of CADECM into a variety of cell types.
- the specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
- the methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
- Oligonucleotides derived from the transcription initiation site may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Can, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of RNA by preventing the transcript from binding to ribosomes.
- Ribozymes enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA.
- the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
- engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding CADECM.
- ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, co ⁇ esponding to the region of the target gene containing the cleavage site, maybe evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
- RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding CADECM. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitatively or induc ⁇ bly, can be introduced into cell lines, cells, or tissues.
- RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3 ' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, .
- An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding CADECM.
- Compounds which maybe effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple hehx-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences.
- Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
- a compound which specifically inhibits expression of the polynucleotide encoding CADECM may be therapeutically useful, and in the treatment of disorders associated with decreased CADECM expression or activity, a compound which specifically promotes expression of the polynucleotide encoding CADECM maybe therapeutically useful.
- test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
- a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
- a sample comprising a polynucleotide encoding CADECM is exposed to at least one test compound thus obtained.
- the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
- Alterations in the expression of a polynucleotide encoding CADECM are assayed by any method commonly known in the art.
- the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding CADECM.
- the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
- a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, GM. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun.
- a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
- oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
- vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, CK. et al. (1997) Nat. Biotechnol. 15:462-466.) Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
- An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
- Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
- Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
- Such compositions may consist of CADECM, antibodies to CADECM, and mimetics, agonists, antagonists, or inhibitors of CADECM.
- compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, mtramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, iCADECMasal, enteral, topical, sublingual, or rectal means.
- routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, mtramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, iCADECMasal, enteral, topical, sublingual, or rectal means.
- compositions for pulmonary a ⁇ notenistration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient.
- small molecules e.g. traditional low molecular weight organic drugs
- aerosol delivery of fast- acting formulations is well-known in the art.
- macromolecules e.g. larger peptides and proteins
- Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
- compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
- the determination of an effective dose is well within the capability of those skilled in the art.
- compositions maybe prepared for direct intracellular delivery of macromolecules comprising CADECM or fragments thereof.
- liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule.
- CADECM or a fragment thereof may be joined to a short cationic N- terminal portion from the HIV Tat--1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
- the therapeutically effective dose can be estimated initially either in cell cultare assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- a therapeutically effective dose refers to that amount of active ingredient, for example CADECM or fragments thereof, antibodies of CADECM, and agonists, antagonists or inhibitors of CADECM, which ameliorates the symptoms or condition.
- Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
- the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 ED 50 ratio.
- Compositions which exhibit large therapeutic indices are prefe ⁇ ed.
- the data obtained from cell cultare assays and animal studies are used to formulate a range of dosage for human use.
- the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration
- Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combinations), reaction sensitivities, and response to therapy. Long-acting compositions maybe administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
- Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
- Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
- antibodies which specifically bind CADECM may be used for the diagnosis of disorders characterized by expression of CADECM, or in assays to monitor patients being treated with CADECM or agonists, antagonists, or inhibitors of CADECM.
- Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for CADECM include methods which utilize the antibody and a label to detect
- CADECM in human body fluids or in extracts of cells or tissues.
- the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
- reporter molecules A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
- a variety of protocols for measuring CADECM including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of CADECM expression.
- Normal or standard values for CADECM expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to CADECM under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means.
- the polynucleotides encoding CADECM maybe used for diagnostic purposes.
- the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
- the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of CADECM maybe co ⁇ elated with disease.
- the diagnostic assay may be used to determine absence, presence, and excess expression of CADECM, and to monitor regulation of CADECM levels during therapeutic intervention.
- hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding CADECM or closely related molecules maybe used to identify nucleic acid sequences which encode CADECM.
- the specificity of the probe whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occu ⁇ ing sequences encoding CADECM, allelic variants, or related sequences.
- Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the CADECM encoding sequences.
- the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ DD NO: 12-22 or from genomic sequences including promoters, enhancers, and introns of the CADECM gene.
- Means for producing specific hybridization probes for DNAs encoding CADECM include the cloning of polynucleotide sequences encoding CADECM or CADECM derivatives into vectors for the production of mRNA probes.
- Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
- Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 33 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
- Polynucleotide sequences encoding CADECM may be used for the diagnosis of disorders associated with expression of CADECM.
- disorders include, but are not limited to, an immune system disorder, such as acquired immunodeficiency syndrome (ADDS), X-linked agammaglobinemia of Bruton, common variable immunodeficiency (CVL), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCDD), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing's disease, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia,
- the polynucleotide sequences encoding CADECM may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microa ⁇ ays utilizing fluids or tissues from patients to detect altered CADECM expression. Such qualitative or quantitative methods are well known in the art.
- the nucleotide sequences encoding CADECM maybe useful in assays that detect the presence of associated disorders, particularly those mentioned above.
- the nucleotide sequences encoding CADECM may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels ofnucleoti.de sequences encoding CADECM in the sample indicates the presence of the associated disorder.
- Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient. In order to provide a basis for the diagnosis of a disorder associated with expression of
- CADECM a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding CADECM, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
- hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
- the results obtained from successive assays maybe used to show the efficacy of treatment over a period ranging from several days to months.
- the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
- a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer. Additional diagnostic uses for oligonucleotides designed from the sequences encoding
- CADECM may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding CADECM, or a fragment of a polynucleotide complementary to the polynucleotide encoding CADECM, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
- oligonucleotide primers derived from the polynucleotide sequences encoding CADECM may be used to detect single nucleotide polymorphisms (SNPs).
- SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.
- Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
- SSCP single-stranded conformation polymorphism
- fSSCP fluorescent SSCP
- oligonucleotide primers derived from the polynucleotide sequences encoding CADECM are used to amplify DNA using the polymerase chain reaction (PCR).
- the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
- SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
- the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines.
- sequence database analysis methods termed in silico SNP (isSNP) are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
- SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
- SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitas. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle cell anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be co ⁇ elated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as Hfe-threatening toxicity.
- N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-taberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in di ⁇ rinished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway.
- Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as well as for tracing the origins of populations and their migrations.
- CADECM CADECM
- Methods which may also be used to quantify the expression of CADECM include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves.
- radiolabeling or biotinylating nucleotides See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem.
- oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microa ⁇ ay.
- the microa ⁇ ay can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
- the microa ⁇ ay may also be used to identify genetic variants, mutations, and polymorphisms.
- This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
- this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
- CADECM, fragments of CADECM, or antibodies specific for CADECM may be used as elements on a microa ⁇ ay.
- the microa ⁇ ay may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
- a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type.
- a transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No.
- a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type.
- the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microa ⁇ ay.
- the resultant transcript image would provide a profile of gene activity.
- Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples.
- the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
- Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatares, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and NX. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
- the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound.
- Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels co ⁇ esponding to the polynucleotides of the present invention may be quantified.
- the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
- proteome refers to the global pattern of protein expression in a particular tissue or cell type.
- proteome expression patterns, or profiles are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time.
- a profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type.
- the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
- the proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
- the optical density of each protein spot is generally proportional to the level of the protein in the sample.
- the optical densities of equivalently positioned protein spots from different samples for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment.
- the proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry.
- the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
- a proteomic profile may also be generated using antibodies specific for CADECM to quantify the levels of CADECM expression.
- the antibodies are used as elements on a microa ⁇ ay, and protein expression levels are quantified by exposing the microa ⁇ ay to the sample and detecting the levels of protein bound to each a ⁇ ay element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788).
- Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each a ⁇ ay element.
- Toxicant signatares at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatares at the transcript level. There is a poor co ⁇ elation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatares maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
- the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the co ⁇ esponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
- the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
- Microarrays may be prepared, used, and analyzed using methods known in the art.
- methods known in the art See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT apphcation WO95/251116; Shalon, D. et al. (1995) PCT apphcation WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, MJ. et al.
- nucleic acid sequences encoding CADECM may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
- sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries.
- HACs human artificial chromosomes
- YACs yeast artificial chromosomes
- BACs bacterial artificial chromosomes
- PI constructions or single chromosome cDNA libraries.
- the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which co ⁇ elate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
- RFLP restriction fragment length polymorphism
- FISH Fluorescent in situ hybridization
- In situ hybridization of chromosomal preparations and physical mapping techniques such as linkage analysis using established chromosomal markers, maybe used for extending genetic maps.
- placement of a gene on the chromosome of another mammalian species, such as mouse may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques.
- Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to llq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
- nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
- CADECM its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques.
- the fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between CADECM and the agent being tested may be measured.
- Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
- This method large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with CADECM, or fragments thereof, and washed. Bound CADECM is then detected by methods well known in the art. Purified CADECM can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
- nucleotide sequences which encode CADECM may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are cu ⁇ ently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
- poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
- RNA was provided with RNA and constructed the co ⁇ esponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the
- UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
- the cDNA was size-selected (300- 1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis.
- cDNAs were ligated into compatible restriction enzyme sites of the polylihker of a suitable plasmid, e.g.
- PBLUESCR ⁇ plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (incyte Genomics, Palo Alto CA), pRARE (Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof.
- Recombinant plasmids were transformed into competent E. coli cells including XLl-Blue, XLl-BluelVTRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Life Technologies.
- Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNJZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN.
- a Magic or WIZARD Minipreps DNA purification system Promega
- an AGTC Miniprep purification kit Edge Biosystems, Gaithersburg MD
- plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of ampHfied plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN D fluorescence scanner (Labsystems Oy, Helsinki, Finland).
- PICOGREEN dye Molecular Probes, Eugene OR
- FLUOROSKAN D fluorescence scanner Labsystems Oy, Helsinki, Finland.
- Incyte cDNA recovered in plasmids as described in Example D were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the
- cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VDI.
- the polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
- the Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattas norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H.
- HMM hidden Markov model
- HMM-based protein domain databases such as SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letanic, I. et al. (2002) Nucleic Acids Res. 30:242-244).
- HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Cu ⁇ . Opin. Struct. Biol. 6:361-365.
- the queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
- the Incyte cDNA sequences were assembled to produce full length polynucleotide sequences.
- GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the co ⁇ esponding full length polypeptide sequences.
- a polypeptide of the invention may begin at any of the metMonine residues of the full length translated polypeptide.
- Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HMM-based protein domain databases such as SMART.
- Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).
- Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence ahgnment program (DNASTAR), which also calculates the percent identity between aligned sequences.
- Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters.
- the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
- Genscan is a general-purpose gene identification program wliich analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Cu ⁇ . Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
- Genscan is a FASTA database of polynucleotide and polypeptide sequences.
- the maximum range of sequence for Genscan to analyze at once was set to 30 kb.
- the encoded polypeptides were analyzed by querying against PFAM models for cell adhesion and extracellular matrix proteins. Potential cell adhesion and extracellular matrix proteins were also identified by homology to Incyte cDNA sequences that had been annotated as cell adhesion and extracellular matrix proteins. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri pubhc databases.
- Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to co ⁇ ect e ⁇ ors in the sequence predicted by Genscan, such as extra or omitted exons.
- BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to co ⁇ ect or confirm the Genscan predicted sequence.
- Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example DJ. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences. V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences
- Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example ID were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity.
- Inco ⁇ ect exons predicted by Genscan were co ⁇ ected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary. "Stretched" Sequences
- Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis.
- the nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example TV.
- a chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
- HSPs high-scoring segment pairs
- GenBank protein homolog the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubhc human genome databases. Partial DNA sequences were therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to dete ⁇ riine whether it contained a complete gene. VI. Chromosomal Mapping of CADECM Encoding Polynucleotides
- sequences which were used to assemble SEQ DD NO: 12-22 were compared with sequences from the Incyte LLFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ DD NO: 12-22 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from pubhc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped.
- pubhc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped.
- Map locations are represented by ranges, or intervals, of human chromosomes.
- the map position of an interval, in cent-Morgans, is measured relative to the terminus of the chromosome's p- arm.
- centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers.
- cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
- the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
- Human genome maps and other resources available to the pubhc such as the NCBI "GeneMap'99" World Wide Web site (b.ttp://www.ncbi.nlm.nih.gov/genemap/), can be employed to dete ⁇ nine if previously identified disease genes map within or in proximity to the intervals indicated above.
- Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)
- the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
- the product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
- the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
- the product score represents a balance between fractional overlap and quality in a BLAST ahgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
- polynucleotide sequences encoding CADECM are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example DI). Each cDNA sequence is derived from a cDNA library constructed from a human tissue.
- Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract.
- the number of libraries in each category is counted and divided by the total number of libraries across all categories.
- each human tissue is classified into one of the foUowing disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across ah categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding CADECM.
- cDNA sequences and cDNA library/tissue information are found in the LD7ESEQ GOLD database (Incyte Genomics, Palo Alto CA). VIII. Extension of CADECM Encoding Polynucleotides
- Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment.
- One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3 ' extension of the known fragment.
- the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
- Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
- the concentration of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent.
- the plate was scanned in a Fluoroskan D (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
- a 5 l to 10 ⁇ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
- the extended nucleotides were desalted and concentrated, transfe ⁇ ed to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech).
- CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
- sonicated or sheared prior to religation into pUC 18 vector
- the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
- Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultared overnight at 37 °C in 384- well plates in LB/2x carb liquid media.
- the cells were lysed, and DNA was ampHfied by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the foUowing parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampHfied using the same conditions as described above.
- SNPs single nucleotide polymorphisms
- LIFESEQ database Incyte Genomics
- Sequences from the same gene were clustered together and assembled as described in Example DI, aUowing the identification of aU sequence variants in the gene.
- An algorithm consisting of a series of filters was used to distinguish SNPs from other sequence variants. Preliminary filters removed the majority of basecaU e ⁇ ors by requiring a minimum Phred quaHty score of 15, and removed sequence aHgnment e ⁇ ors and errors resulting from improper trimming of vector sequences, chimeras, and splice variants.
- Certain SNPs were selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze aUele frequencies at the SNP sites in four different human populations.
- the Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three deciualan, and two Amish individuals.
- the African population comprised 194 individuals (97 male, 97 female), aU African Americans.
- the Hispanic population comprised 324 individuals (162 male, 162 female), aU Mexican Hispanic.
- the Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian.
- AUele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no aUeHc variance in this population were not further tested in the other three populations.
- Hybridization probes derived from SEQ DD NO: 12-22 are employed to screen cDNAs, genomic DNAs, or mRNAs.
- ohgonucleotides consisting of about 20 base pairs, is SpecificaUy described, essentiaUy the same procedure is used with larger nucleotide fragments.
- Ohgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each ohgomer, 250 ⁇ Ci of [ ⁇ - 32 pj denosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
- the labeled oHgonucleotides are substantiaUy purified using a
- SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aHquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the foUowing endonucleases: Ase I, Bgl D, Eco RI, Pst I, Xba I, or Pvu D (DuPont NEN). The DNA from each digest is fractionated on a 0.7% agarose gel and transfe ⁇ ed to nylon membranes (Nytran Plus, Schleicher & SchueU, Durham NH). Hybridization is carried out for 16 hours at 40 °C.
- blots are sequentiaUy washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate.
- Hybridization patterns are visuahzed using autoradiography or an alternative imaging means and compared.
- the linkage or synthesis of a ⁇ ay elements upon a microa ⁇ ay can be achieved utilizing photoHthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical n ⁇ crospotting technologies, and derivatives thereof.
- the substrate in each of the aforementioned technologies should be uniform and sohd with a non-porous surface (Schena (1999), supra).
- Suggested substrates include sihcon, siHca, glass shdes, glass chips, and sihcon wafers.
- a procedure analogous to a dot or slot blot may also be used to a ⁇ ange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
- a typical array may be produced using available methods and machines weU known to those of ordinary skiU in the art and may contain any appropriate number of elements.
- FuU length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oHgomers thereof may comprise the elements of the microa ⁇ ay.
- Fragments or oHgomers suitable for hybridization can be selected using software weU known in the art such as LASERGENE software (DNASTAR).
- the a ⁇ ay elements are hybridized with polynucleotides in a biological sample.
- the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
- a fluorescence scanner is used to detect hybridization at each array element.
- laser desorbtion and mass spectrometry may be used for detection of hybridization.
- the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microa ⁇ ay may be assessed.
- microa ⁇ ay preparation and usage is described in detail below.
- Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the ohgo-(dT) ceUulose method.
- Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l ohgo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech).
- the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
- Specific control poly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPLN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
- a ⁇ ay elements are ampHfied in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g.
- AmpHfied array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech). Purified a ⁇ ay elements are immobilized on polymer-coated glass shdes. Glass microscope sHdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distiUed water washes between and after treatments. Glass shdes are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distiUed water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated sHdes are cured in a 110°C oven.
- a ⁇ ay elements are apphed to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference.
- 1 ⁇ l of the a ⁇ ay element DNA is loaded into the open capiUary printing element by a high-speed robotic apparatus.
- the apparatus then deposits about 5 nl of a ⁇ ay element sample per sHde.
- Microarrays are UV-crossHnked using a STRATALINKER UV-crosslinker (Stratagene).
- Microa ⁇ ays are washed at room temperature once in 0.2% SDS and three times in distiUed water. Non-specific binding sites are blocked by incubation of microa ⁇ ays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C foUowedby washes in 0.2% SDS and distiUed water as before.
- PBS phosphate buffered saline
- Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
- the sample mixture is heated to 65° C for 5 rninutes and is aHquoted onto the microa ⁇ ay surface and covered with an 1.8 cm 2 coversHp.
- the a ⁇ ays are transfe ⁇ ed to a waterproof chamber having a cavity just shghtly larger than a microscope sHde.
- the chamber is kept at 100% humidity internaUy by the addition of 140 ⁇ l of 5X SSC in a corner of the chamber.
- the chamber containing the a ⁇ ays is incubated for about 6.5 hours at 60° C
- the a ⁇ ays are washed for 10 min at 45° C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 rninutes each at 45° C in a second wash buffer (0. IX SSC), and dried. Detection
- Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral Hnes at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
- the excitation laser Hght is focused on the a ⁇ ay using a 20X microscope objective (Nikon, Inc., MelviUe NY).
- the sHde containing the array is placed on a computer-controUed X-Y stage on the microscope and raster- scanned past the objective.
- the 1.8 cm x 1.8 cm a ⁇ ay used in the present example is scanned with a resolution of 20 micrometers.
- a mixed gas multiline laser excites the two fluorophores sequentiaUy. Emitted Hght is spht, based on wavelength, into two photomultipher tube detectors (PMT R1477,
- a specific location on the a ⁇ ay contains a complementary DNA sequence, aUowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
- the caHbration is done by labeling samples of the caHbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
- the output of the photomultipher tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) instaUed in an IBM-compatible PC computer.
- the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
- the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first co ⁇ ected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
- a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
- the fluorescence signal within each element is then integrated to obtain a numerical value co ⁇ esponding to the average intensity of the signal.
- the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).
- SEQ DD NO:17 and SEQ DD NO:18 showed differential expression in colon tissues from patients with colon cancer compared to matched microscopicaUy normal tissues from the same donors as determined by microa ⁇ ay analysis. Therefore, SEQ DD NO:17 and SEQ DD NO:18 are useful in diagnostic assays for ceU prohferative diseases, particularly colon cancer.
- SEQ DD NO: 19 showed differential expression in mammary epithehal ceUs versus various breast carcinoma lines as determined by microarray analysis.
- the expression of SEQ DD NO: 19 was decreased by at least two fold in the breast carcinoma Hnes relative to normal mammary epithehal ceUs. Therefore, SEQ DD NO: 19 is useful in diagnostic assays for detection of breast cancer.
- SEQ DD NO: 19 showed differential expression in inflammatory responses as determined by microa ⁇ ay analysis.
- the expression of SEQ DD NO:19 was decreased by at least two fold in an acute T ceU leukemia ceU line treated with PMA (a broad activator of protein kinase C- dependent pathways) and with ionomycin (a calcium ionophore that causes a rapid rise in cytosoHc Ca 2+ due to both a release of cytosoHc Ca 2+ stores and Ca 2+ influx) compared to untreated ceUs from the same ceU Hne. Therefore, SEQ DD NO: 19 is useful in diagnostic assays for inflammatory responses.
- SEQ DD NO:20 showed differential expression in inflammatory responses as determined by microa ⁇ ay analysis.
- the expression of SEQ DD NO:20 was increased by at least two fold in human umbiHcal vein endothehal ceUs treated with tamor necrosis factor-alpha (TNF- ) relative to untreated umbiHcal vein endothehal ceUs.
- TNF- is a pleiotropic cytokine that plays a central role in mediation of the inflammatory response through activation of multiple signal transduction pathways.
- TNF-o is produced by activated lymphocytes, macrophages, and other white blood ceUs, and is known to activate endothehal ceUs. Therefore, SEQ DD NO:20 is useful in diagnostic assays for inflammatory responses.
- XII Complementary Polynucleotides
- Sequences complementary to the CADECM-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of nataraUy occu ⁇ ing CADECM.
- ohgonucleotides comprising from about 15 to 30 base pairs is described, essentiaUy the same procedure is used with smaUer or with larger sequence fragments.
- Appropriate ohgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of CADECM.
- a complementary ohgonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
- a complementary ohgonucleotide is designed to prevent ribosomal binding to the CADECM-encoding transcript.
- CADECM expression and purification of CADECM is achieved using bacterial or virus-based expression systems.
- cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
- promoters include, but are not limited to, the trp-lac (tad) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
- Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
- Antibiotic resistant bacteria express CADECM upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
- CADECM in eukaryotic ceUs is achieved by infecting insect or mammahan ceU Hnes with recombinant Autographica caHfornica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus.
- AcMNPV Autographica caHfornica nuclear polyhedrosis virus
- the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding CADECM by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
- Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect ceUs in most cases, or human hepatocytes, in some cases.
- CADECM is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude ceU lysates.
- GST glutathione S-transferase
- FLAG peptide epitope tag
- GST a 26-kilodalton enzyme from Schistosoma iaponicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). FoUowing purification, the GST moiety can be proteolyticaUy cleaved from CADECM at SpecificaUy engineered sites.
- FLAG an 8-amino acid peptide, enables immunoaffinity purification using commerciaUy available monoclonal and polyclonal anti-ELAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN).
- CADECM function is assessed by expressing the sequences encoding CADECM at physiologicaUy elevated levels in mammahan ceU cultare systems.
- cDNA is subcloned into a mammahan expression vector containing a strong promoter that drives high levels of cDNA expression.
- Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter.
- recombinant vector 5-10 ⁇ g of recombinant vector are transiently transfected into a human ceU line, for example, an endothehal or hematopoietic ceU Hne, using either Hposome formulations or electroporation.
- 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
- Expression of a marker protein provides a means to distinguish transfected ceUs from noCADECMsfected ceUs and is a reHable predictor of cDNA expression from the recombinant vector.
- Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein.
- FCM Flow cytometry
- CADECM The influence of CADECM on gene expression can be assessed using highly purified populations of ceUs transfected with sequences encoding CADECM and either CD64 or CD64-GFP.
- CD64 and CD64-GFP are expressed on the surface of transfected ceUs and bind to conserved regions of human immunoglobulin G (IgG).
- Transfected ceUs are efficiently separated from noCADECMsfected ceUs using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
- mRNA can be purified from the ceUs using methods weU known by those of skiU in the art. Expression of mRNA encoding CADECM and other genes of interest can be analyzed by northern analysis or microarray techniques. XV. Production of CADECM Specific Antibodies
- PAGE polyacrylamide gel electrophoresis
- the CADECM amino acid sequence is analyzed using LASERGENE software
- oligopeptides of about 15 residues in length are synthesized using an ABI 43 IA peptide synthesizer (AppHed Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St.
- An immunoaffinity column is constructed by covalently coupling anti-CADECM antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
- Media containing CADECM are passed over the immunoaffinity column, and the column is washed under conditions that aUow the preferential absorbance of CADECM (e.g., high ionic strength buffers in the presence of detergent).
- the column is eluted under conditions that disrupt antibody/CADECM binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and CADECM is coUected.
- molecules interacting with CADECM are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Natare 340:245-246, or using commerciaUy available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
- CADECM may also be used in the PATHCALLLNG process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
- PATHCALLLNG process CuraGen Corp., New Haven CT
- yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large libraries of genes
- An assay for CADECM activity measures the expression of CADECM on the ceU surface.
- cDNA encoding CADECM is transfected into a non-leukocytic ceU Hne.
- CeU surface proteins are labeled withbiotin (de la Fuente, M.A. et al. (1997) Blood 90:2398-2405).
- Immunoprecipitations are performed using CADECM-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of CADECM expressed on the ceU surface.
- an assay for CADECM activity measures the amount of ceU aggregation induced by overexpression of CADECM.
- cultared ceUs such as NT7H3T3 are transfected with cDNA encoding CADECM contained within a suitable mammahan expression vector under control of a strong promoter.
- Cotransfection with cDNA encoding a fluorescent marker protein, such as Green Fluorescent Protein (CLONTECH) is useful for identifying stable transfectants.
- the amount of ceU agglutination, or clumping, associated with transfected ceUs is compared with that associated with uCADECMsfected ceUs.
- the amount of ceU agglutination is a direct measure of CADECM activity.
- an assay for CADECM activity measures the disruption of cytoskeletal filament networks upon overexpression of CADECM in cultared ceU Hnes (Rezniczek, G. A. et al. (1998) J. CeU Biol. 141:209-225).
- cDNA encoding CADECM is subcloned into a mammaHan expression vector that drives high levels of cDNA expression. This construct is transfected into cultured ceUs, such as rat kangaroo PtK2 or rat bladder carcinoma 804G ceUs. Actin filaments and intermediate filaments such as keratin and vimentin are visuahzed by immunofluorescence microscopy using antibodies and techniques weU known in the art.
- the configuration and abundance of cyoskeletal filaments can be assessed and quantified using confocal imaging techniques.
- the bundling and coUapse of cytoskeletal filament networks is indicative of CADECM activity.
- ceU adhesion activity in CADECM is measured in a 96-weU plate in which weUs are first coated with CADECM by adding solutions of CADECM of varying concentrations to the weUs. Excess CADECM is washed off with saline, and the weUs incubated with a solution of 1% bovine serum albumin to block non-specific ceU binding.
- AHquots of a ceU suspension of a suitable ceU type are then added to the weUs and incubated for a period of time at 37 °C
- Non-adherent ceUs are washed off with saline and the ceUs stained with a suitable ceU stain such as Coomassie blue.
- the intensity of staining is measured using a variable wavelength multi-weU plate reader and compared to a standard curve to determine the number of ceUs adhering to the CADECM coated plates.
- the degree of ceU staining is proportional to the ceU adhesion activity of CADECM in the sample.
- measures of CADECM activity include tracer fluxes and electrophysiological approaches.
- Tracer fluxes are demonstrated by measuring uptake of labeled substrates into Xenopus laevis oocytes.
- Oocytes at stages V and VI are injected with CADECM mRNA (10 ng per oocyte) and incubated for three days at 18 °C in OR2 medium (82.5mM NaCl, 2.5 mM KC1, ImM CaCl 2 , ImM MgCl 2 , ImM NaJiPQ j , 5 mM Hepes, 3.8 M NaOH , 50 ⁇ g/ml gentamycin, pH 7.8) to aUow expression of CADECM protein.
- Oocytes are then transfe ⁇ ed to standard uptake medium (lOOmM NaCl, 2 mM KC1, ImM CaCl ⁇ , ImM MgClj, 10 mM Hepes/Tris pH 7.5).
- uptake of various neurotransmitters is initiated by adding a 3 H substrate to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times in Na + -free medium, measuring the incorporated 3 H, and comparing with controls.
- CADECM activity is proportional to the level of internahzed 3 H substrate.
- CADECM activity can be demonstrated using an electrophysiological assay for ion conductance.
- Capped CADECM mRNA transcribed with T7 polymerase is injected into defoUiculated stage V Xenopus oocytes, similar to the previously described method.
- Two to seven days later, transport is measured by two-electrode voltage clamp recording.
- Two-electrode voltage clamp recordings are performed at a holding potential of 50 mV.
- the data are filtered at 10 Hz and recorded with the MacLab digital-to-analog converter and software for data acquisition and analysis (AD Instruments, Castle HiU, AustraHa).
- sodium can be replaced by choHne or N-methyl-D-glucamine and chloride by gluconate, NO 3 , or SO 4 (Kavanaugh, M.P. et al. (1992) J. Biol. Chem. 267:22007-22009).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Cell Biology (AREA)
- Engineering & Computer Science (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28829001P | 2001-05-02 | 2001-05-02 | |
US288290P | 2001-05-02 | ||
US29246801P | 2001-05-21 | 2001-05-21 | |
US292468P | 2001-05-21 | ||
US29861601P | 2001-06-15 | 2001-06-15 | |
US298616P | 2001-06-15 | ||
US30167201P | 2001-06-28 | 2001-06-28 | |
US301672P | 2001-06-28 | ||
US34500802P | 2002-01-04 | 2002-01-04 | |
US345008P | 2002-01-04 | ||
PCT/US2002/013874 WO2002088322A2 (en) | 2001-05-02 | 2002-05-01 | Cell adhesion and extracellular matrix proteins |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1497319A2 true EP1497319A2 (de) | 2005-01-19 |
Family
ID=27540711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02766901A Ceased EP1497319A2 (de) | 2001-05-02 | 2002-05-01 | Proteine der zelladhäsion und extrazellulären matrix |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1497319A2 (de) |
JP (1) | JP2005503130A (de) |
AU (1) | AU2002308567A1 (de) |
CA (1) | CA2446023A1 (de) |
WO (1) | WO2002088322A2 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7615224B2 (en) * | 2004-12-02 | 2009-11-10 | Women's And Children's Hospital | Multiplex-bead complex for determination of lysosomal storage disorders |
WO2009086591A1 (en) * | 2008-01-04 | 2009-07-16 | Medvet Science Pty Ltd | Diagnostic and therapeutic methods for efmr (epilepsy and mental retardation limited to females) |
JP2010271078A (ja) | 2009-05-19 | 2010-12-02 | Mcbi:Kk | 認知機能障害疾患を含む精神疾患のバイオマーカーおよび該バイオマーカーを用いた認知機能障害疾患を含む精神疾患の検出方法 |
US8611277B2 (en) | 2009-06-22 | 2013-12-17 | Motorola Mobility Llc | Reselection in a wireless communication system |
-
2002
- 2002-05-01 AU AU2002308567A patent/AU2002308567A1/en not_active Abandoned
- 2002-05-01 CA CA002446023A patent/CA2446023A1/en not_active Abandoned
- 2002-05-01 WO PCT/US2002/013874 patent/WO2002088322A2/en not_active Application Discontinuation
- 2002-05-01 JP JP2002585605A patent/JP2005503130A/ja active Pending
- 2002-05-01 EP EP02766901A patent/EP1497319A2/de not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO02088322A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP2005503130A (ja) | 2005-02-03 |
CA2446023A1 (en) | 2002-11-07 |
AU2002308567A1 (en) | 2002-11-11 |
WO2002088322A2 (en) | 2002-11-07 |
WO2002088322A3 (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1383892A2 (de) | Humane extrazelluläre matrix- und zelladhäsions-polypeptide | |
WO2001012662A2 (en) | Membrane associated proteins | |
EP1341812A2 (de) | Sekretierte proteine | |
WO2001098354A2 (en) | Human receptors | |
JP2004500870A (ja) | 分泌タンパク質 | |
EP1266001A2 (de) | Menschliche transciptionsfaktoren | |
WO2001079291A2 (en) | Secreted proteins | |
WO2000078954A2 (en) | Human transcriptional regulator proteins | |
JP2004528006A (ja) | 分泌タンパク質 | |
WO2004048529A2 (en) | Cell adhesion and extracellular matrix proteins | |
US20070276126A1 (en) | Cell adhesion and extracellular matrix proteins | |
US6962799B2 (en) | Microtubule-associated proteins and tubulins | |
WO2002088322A2 (en) | Cell adhesion and extracellular matrix proteins | |
WO2001046256A2 (en) | Vesicle trafficking proteins | |
WO2003094843A2 (en) | Cell adhesion and extracellular matrix proteins | |
WO2002048362A2 (en) | Embryogenesis associated proteins | |
WO2003027230A2 (en) | Cell adhesion and extracellular matrix proteins | |
WO2004094623A2 (en) | Cell adhesion and extracellular matrix proteins | |
US20040115687A1 (en) | Cell adhesion and extracellular matrix proteins | |
EP1578899A2 (de) | Sezernierte proteine | |
JP2004537273A (ja) | 分泌タンパク質 | |
JP2004533227A (ja) | 細胞骨格結合タンパク質 | |
EP1385955A2 (de) | Zelladhäsionsproteine | |
WO2002074913A2 (en) | Nucleic acid-associated proteins | |
EP1305340A2 (de) | Sequenzen für alpha-8 integrine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031028 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20050827 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FORSYTHE, IAN J. Inventor name: ARVIZU, CHANDRA S. Inventor name: RAMKUMAR, JAYALAXMI Inventor name: ELLIOTT, VICKI S. Inventor name: CHINN, ANNA M. Inventor name: GRIFFIN, JENNIFER A. Inventor name: CHAWLA, NARINDER K. Inventor name: KHAN, FARRAH A. Inventor name: GANDHI, AMEENA, R. Inventor name: NGUYEN, DANNIEL, B. Inventor name: YAO, MONIQUE, G. Inventor name: HAFALIA, APRIL, J.A. Inventor name: THORNTON, MICHAEL Inventor name: LAL, PREETI, G. Inventor name: TRAN, UYEN, K. Inventor name: XU, YUMING Inventor name: WARREN, BRIDGET, A. Inventor name: LEE, SALLY Inventor name: KALLICK, DEBORAH, A. Inventor name: BAUGHN, MARIAH, R. Inventor name: JACKSON, JENNIFER, L. Inventor name: DING, LI Inventor name: HONCHELL, CYNTHIA, D. Inventor name: THANGAVELU, KAVITHA Inventor name: DUGGAN, BRENDAN, M. Inventor name: LEE, ERNESTINE, A. Inventor name: YUE, HENRY |