EP1496111A2 - Variants of 3-Phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes encoding the same - Google Patents

Variants of 3-Phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes encoding the same Download PDF

Info

Publication number
EP1496111A2
EP1496111A2 EP04015524A EP04015524A EP1496111A2 EP 1496111 A2 EP1496111 A2 EP 1496111A2 EP 04015524 A EP04015524 A EP 04015524A EP 04015524 A EP04015524 A EP 04015524A EP 1496111 A2 EP1496111 A2 EP 1496111A2
Authority
EP
European Patent Office
Prior art keywords
pgd
amino acid
sera
amino acids
codon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04015524A
Other languages
German (de)
French (fr)
Other versions
EP1496111B1 (en
EP1496111A3 (en
Inventor
Thomas Dr. Maier
Renate Flinspach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Consortium fuer Elektrochemische Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium fuer Elektrochemische Industrie GmbH filed Critical Consortium fuer Elektrochemische Industrie GmbH
Priority to EP08152747A priority Critical patent/EP1950287B1/en
Priority to EP07102448A priority patent/EP1813669B1/en
Publication of EP1496111A2 publication Critical patent/EP1496111A2/en
Publication of EP1496111A3 publication Critical patent/EP1496111A3/en
Application granted granted Critical
Publication of EP1496111B1 publication Critical patent/EP1496111B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)

Definitions

  • the invention relates to variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and coding for it Genes.
  • biosynthetic pathways are subject to wild-type strains a strict control that ensures that the amino acids be made only for personal use of the cell.
  • important control mechanism in many biosyntheses the phenomenon of feedback inhibition (or end product inhibition).
  • the enzyme of a biosynthetic pathway this is the preliminary enzymatic reaction of this Biosynthesis pathways catalyzed by the end product of Biosyntheseweges inhibited.
  • the inhibition usually takes place through an allosteric Binding of the final product to the enzyme instead of and causes a conformational change to an inactive state. This ensures that when an accumulation of the final product in the cell further synthesis by inhibition of introductory step is prevented.
  • the phosphoglycerate family of amino acids is defined by that they are amino acids involved in their biosynthesis derived from the 3-phosphoglyceric acid. Of the natural path of metabolism leads to it over the intermediates 3-Phospohydroxypyruvat and 3-phospho-Lserin to L-serine. L-serine can continue to glycine or over O-acetyl-serine be converted to L-cysteine. Also L-tryptophan is to be counted to this group, since it is also in derived from the biosynthesis of L-serine. Likewise, unnatural Amino acids described in US 2002/0039767 A1 Process to be assigned to the phosphoglycerate family.
  • the initial step in the biosynthesis of amino acids of the phosphoglycerate family is the oxidation of D-3-phosphoglyceric acid to 3-phosphohydroxypyruvate and is catalyzed by the enzyme 3-phosphoglycerate dehydrogenase (PGD) [EC 1.1.1.95].
  • PGD 3-phosphoglycerate dehydrogenase
  • NAD + which is converted into NADH / H + , serves as the acceptor for the reduction equivalents formed during the reaction.
  • PGD enzymes are known from a variety of organisms (e.g. Rattus norvegicus, Arabidopsis thaliana, Escherichia coli, Bacillus subtilis). The better characterized microbial representatives of feedback inhibition by L-serine.
  • amino acid 1-340 of the E. coli sequence amino acid 1-340 of the E. coli sequence
  • C-terminal portion has little similarity.
  • the C-terminal Part is localized to the regulatory domain, the is responsible for serine inhibition (Peters-Wendisch et al., 2002, Appl. Microbiol. Biotechnol. 60: 437-441).
  • PGD The best characterized PGD is that of Escherichia coli.
  • the enzyme has been extensively biochemically studied (Dubrow & Pizer, 1977, J. Biol. Chem. 252, 1527-1538) and is subject to allosteric feedback inhibition by L-serine with an inhibitor constant K i of 5 ⁇ M.
  • linker mutagenesis are usually problematic because by the incorporation or deletion of several residues the Structure of the protein is very much changed and so the overall activity or stability of the protein adversely affected becomes. In fact, most of them are described in EP0620853A Mutants a barely detectable activity.
  • Object of the present invention was to variants of PGD of Escherichia coli which have an im Compared to Escherichia coli wild-type PGD decreased sensitivity against inhibition by serine.
  • a PGD having an amino acid sequence which is characterized by being different from the Amino acid sequence of Escherichia coli wild-type PGD (SEQ ID NO: 2) with a methionine as position 1 differs thereby that at position 349 an amino acid except glycine or at position 372 an amino acid except threonine located.
  • a PGD according to the invention may also have mutations in both Have positions of SEQ ID NO: 1.
  • the invention further relates to a DNA sequence coding for a PGD according to the invention.
  • This serA allele is different different from the gene of Escherichia coli PGD (serA gene, SEQ ID NO: 1) in that the codon 349 is a natural amino acid Exception of glycine or codon 372 for a natural amino acid coded with the exception of threonine.
  • a serA allele according to the invention may also have a mutation have two codons mentioned.
  • inventive serA alleles include such genes that are analyzed with the algorithm GAP (GCG Wisconsin Package, Genetics Computer Group (GCG) Madison, Wisconsin) a sequence identity greater than 30% if they have any of the above mutations exhibit. Particularly preferred is a sequence identity greater than 70%.
  • proteins with a sequence identity greater than 40 % determined with the algorithm GAP in the sense of the present To conceive of the invention as proteins derived from E. coli PGD, provided they have a PGD activity and one of the above Have amino acid substitutions. Particularly preferred is a Sequence identity greater than 70%.
  • genes according to the invention are allelic variants of the serA gene to be understood by deletion, insertion or Substitution of nucleotides from that shown in SEQ ID NO: 1 Derive sequence, with the enzymatic activity of the gene product more than 10% of the activity of the wild-type gene product and a mutation of codon 349 for the Amino acid glycine or codon 372 for the amino acid threonine, or a combination of the two mutations.
  • PGD variants that have an amino acid substitution at position 349 or at position 372 or a combination thereof, can be generated using standard techniques of molecular biology become. For this purpose, mutations are made in the corresponding codons introduced the serA gene encoding the PGD. Appropriate Methods for introducing mutations at specific positions within a DNA fragment are known.
  • the starting material for the mutagenesis is preferably the DNA of the E. coli serA gene.
  • the serA gene to be mutated can chromosomally or extrachromosomally encoded. It is preferred However, the serA gene amplified by polymerase chain reaction and cloned into a vector.
  • the DNA sequence is altered so that the encoded PGD undergoes an amino acid exchange at position 349 or 372, wherein position 1 is the starting methionine of SEQ ID NO: 1.
  • any method can be used which allows to determine the activity of the enzyme in the presence of L-serine.
  • the determination of PGD activity can be based on the method described by McKrickick and Pizer (1980, J. Bacteriol 141: 235-245).
  • the enzyme activity is measured by the reverse reaction in an approach containing phosphohydroxypyruvate and NADH / H + .
  • the reaction is started by enzyme addition and monitored by the decrease in absorbance at 340 nm, which is caused by oxidation of NADH / H + in a spectrophotometer.
  • the inhibition of PGD activity is tested in the presence of various concentrations of L-serine in the reaction mixture.
  • the catalytic activity of the various PGD variants is determined in the presence and absence of L-serine and used to determine the inhibitor constant K i .
  • the K i describes that inhibitor concentration in which the activity is only 50% of the activity determined in the absence of the inhibitor.
  • PGD enzymes according to the invention can, due to their feedback resistance for the production of amino acids of the phosphoglycerate family or of compounds resulting from the C1 metabolism derive, be used.
  • inventive serA alleles expressed in a host strain are used.
  • a serA allele according to the invention can be described under Control of the own promoter localized in front of the serA gene or by using other suitable promoter systems, which are known in the art, take place. This can be the corresponding allele, for example, under the control of a such promoter in either one or more copies located on the chromosome of the host organism.
  • the strategies for the integration of genes into the chromosome are state of the art Technology.
  • the serA allele to be expressed is preferred cloned into a vector, preferably a plasmid.
  • the invention therefore also relates to a vector, characterized that he under a serA allelic according to the invention functional control of a promoter.
  • vectors which already contain genetic elements (e.g. constitutive or regulatable promoters, terminators), either an ongoing or a controlled, allow inducible expression of the gene coding for the PGD. They are also located on an expression vector preferably other regulatory elements such as ribosomal Binding sites and termination sequences as well as sequences that code for selective markers and / or reporter genes.
  • the expression Such selection marker facilitates identification of transformants. Suitable as selection markers Genes that are resistant to z. B. ampicillin, Tetracycline, chloramphenicol, kanamycin or other antibiotics encode.
  • the plasmid vector should preferably contain an origin point of replication.
  • plasmid vectors such as the E. coli vectors pACYC184, pUC18, pQE-70, pBR322, pSC101 and their derivatives.
  • Suitable inducible promoters are, for example the lac, tac, trc, lambda PL, ara or tet promoter or sequences derived therefrom.
  • Such vectors allow the direct production of inventive Microorganism strains with high production capacity from any microorganism strain, as such Plasmid also the lifting of other restrictions of the Metabolic pathway in a microorganism causes.
  • a common transformation method e.g., electroporation
  • the serA allele-containing plasmids according to the invention incorporated in microorganisms and, for example, by antibiotic resistance selected for plasmid-carrying clones.
  • the invention thus also relates to processes for the preparation a microorganism strain according to the invention, characterized that in a microorganism strain an inventive Vector is introduced.
  • a host organism for vectors of the invention all organisms suitable for the biosynthetic pathway for amino acids the phosphoglycerate family, recombinant Process are accessible and cultivable by fermentation are.
  • Such microorganisms can be fungi, yeasts or bacteria be. Preference is given to bacteria of the phylogenetic group Eubacteria are used. Particularly preferred are microorganisms the family Enterobacteriaceae and in particular the Species Escherichia coli.
  • the invention thus further relates to a microorganism strain, for the fermentative production of amino acids of Phosphoglycerate family or their derivatives or compounds, which derive from the C1 metabolism suitable is, characterized in that it is a PGD according to the invention has.
  • Another object of the invention is the production of Amino acids of the phosphoglycerate family or of compounds, which derive from the C1 metabolism, by cultivation a microorganism strain according to the invention.
  • the microorganism strain according to the invention for example cultured in a fermenter in a nutrient medium, the a suitable carbon, and a suitable source of energy, and other additives.
  • the substances formed during the fermentation such as L-phosphoserine, L-serine, O-acetyl-L-serine, L-cysteine, Glycine, L-tryptophan, 1,2,4-triazol-2-yl-L-alanine, L-methionine or pantothenic acid can subsequently be purified become.
  • the serA gene from Escherichia coli strain W3110 was amplified by the polymerase chain reaction.
  • the oligonucleotides were used as specific primers and
  • the resulting DNA fragment was digested with the restriction enzymes NdeI and HindIII digested and the 5 'overhangs with Klenow enzyme refilled. Subsequently, the DNA fragment was using purified by agarose gel electrophoresis and using the GeneClean method isolated (GeneClean Kit BI0101 P.O.Box 2284 La Jolla, California, 92038-2284). The cloning of the thus obtained serA fragment was inserted into the expression vector pQE-70 (Qiagen, Hilden, D). For this, the vector was first with SphI and BamHI cut and the 3 'overhang with Klenow enzyme or the 5 'overhang filled with Klenow enzyme.
  • the vector fragment was purified and washed with ligated to the serA fragment.
  • the resulting vector carries the Designation pFL209.
  • the bacterial strain Escherichia coli JM109 / pFL209 was used in the DSMZ (German Collection for microorganisms and cell cultures GmbH, D-38142 Braunschweig) under the number DSM 15628 according to the Budapest Treaty deposited.
  • Site-directed mutagenesis at codons 349 and 372 of the serA gene was performed by an inverse polymerase chain reaction.
  • the template used was the vector pFL209 described in Example 1.
  • the primers were and used.
  • 100 ml LB medium (10 g / l tryptone, 5 g / l yeast extract, 10 g / l NaCl), which additionally contained 100 mg / l ampicillin , inoculated with a 2 ml overnight culture of the strains with the plasmid-coded serA alleles and incubated at 30 ° C and 150 rpm in a shaker.
  • serA expression was induced by the addition of 0.4 mM isopropyl- ⁇ -thiogalactoside, and the culture was incubated for a further 3 hours.
  • the cells were then harvested by centrifugation, washed and resuspended in 2 ml of buffer (100 mM K-phosphate pH 7.0, 10 mM MgCl 2 , 1 mM dithiothreitol). Cell disruption was performed using a French Press (Spectronic Instruments, Inc., Rochester, NY, USA) at a pressure of 18,000 psi. The crude extracts were clarified by centrifugation at 30,000 g and PGD activity was determined by the test of McKrickick and Pizer (1980, J. Bacteriol 141: 235-245). The following tables show the PGD activity of different mutants, as well as the corresponding inhibitor constants K i .
  • a combination of codons 349 and 372 mutations should show whether the exchanges have a synergistic effect on feedback resistance.
  • a unique HindII restriction site between the two mutation sites was used.
  • HindIII-HindIII restriction of the serA20 allele vector isolated a 183 bp fragment corresponding to the 3 'end of the serA gene and containing the mutation at codon 372. This fragment was cloned into a similarly Hindllam-BamHI digested vector with the serA40 allele to give a clone which is a double mutant.
  • the following table shows the associated enzyme data. Mutations at codons 349 and 372 allele mutation Activity [units / mg] Ki [mM] serA wildtype 0.05 ⁇ 0.1 serA2040 G349D, T372I 0.05 120

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A 3-phosphoglyceraldehyde dehydrogenase (I) that, compared with the wild-type enzyme of Escherichia coli, has lower sensitivity to serine, is new, where it differs from the wild-type sequence (410 amino acids, given in the specification) by having 349Gly and/or 372Thr replaced by other amino acids. Independent claims are also included for the following: (1) the serA allele (II) that encodes (I), differing from the wild-type serA (1233 base pair (bp) sequence, given in the specification) by having codons for 349Gly and/or 372Thr replaced by codons for other amino acids; (2) a vector that contains (II) under control of a promoter; (3) method for preparing a microbial strain by introducing a vector of (2); (4) microbial strain, suitable for fermentative production of amino acids of the phosphoglycerate family, their derivatives or compounds, or of compounds derived from C1 metabolism, that contains (I); and (5) producing amino acids of the phosphoglycerate family, their derivatives or compounds, or compounds derived from C1 metabolism by culturing strains of (4).

Description

Die Erfindung betrifft Varianten der 3-Phospoglyceratdehydrogenase mit reduzierter Hemmung durch L-Serin und dafür codierende Gene.The invention relates to variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and coding for it Genes.

Die Herstellung der zwanzig natürlichen, proteinogenen Aminosäuren wird heutzutage vorwiegend durch Fermentation von Mikroorganismen bewerkstelligt. Dabei wird ausgenützt, dass Mikroorganismen über entsprechende Biosynthesewege zur Synthese der natürlichen Aminosäuren verfügen.The production of the twenty natural, proteinogenic amino acids Nowadays, it is predominantly fermented by microorganisms accomplished. It exploits that microorganisms via appropriate biosynthetic pathways for synthesis of natural amino acids.

Solche Biosynthesewege unterliegen jedoch in Wildtyp-Stämmen einer strengen Kontrolle, die gewährleistet, dass die Aminosäuren nur zum Eigenbedarf der Zelle hergestellt werden. Ein wichtiger Kontrollmechanismus in vielen Biosynthesen ist beispielsweise das Phänomen der Feedback-Hemmung (oder Endprodukt-Hemmung). Dabei wird meist dasjenige Enzym eines Biosyntheseweges, das die einleitende enzymatische Reaktion dieses Biosynthesewegs katalysiert, durch das Endprodukt des Biosyntheseweges gehemmt. Die Hemmung findet meist durch eine allosterische Bindung des Endproduktes an das Enzym statt und bewirkt eine Konformationsänderung in einen inaktiven Zustand. So wird sichergestellt, dass bei einer Anhäufung des Endproduktes in der Zelle die weitere Synthese durch Hemmung des einleitenden Schrittes unterbunden wird.However, such biosynthetic pathways are subject to wild-type strains a strict control that ensures that the amino acids be made only for personal use of the cell. One For example, important control mechanism in many biosyntheses the phenomenon of feedback inhibition (or end product inhibition). Usually the enzyme of a biosynthetic pathway, this is the preliminary enzymatic reaction of this Biosynthesis pathways catalyzed by the end product of Biosyntheseweges inhibited. The inhibition usually takes place through an allosteric Binding of the final product to the enzyme instead of and causes a conformational change to an inactive state. This ensures that when an accumulation of the final product in the cell further synthesis by inhibition of introductory step is prevented.

Eine effiziente industrielle Produktion von Stoffwechselprodukten (wie z.B. Aminosäuren) ist deshalb nur möglich, wenn die Restriktionen durch Feedbackhemmung eines Stoffwechselweges aufgehoben werden können und damit Mikroorganismen verfügbar gemacht werden, die im Gegensatz zu Wildtyp-Organismen eine drastisch gesteigerte Produktionsleistung für die Herstellung des gewünschten Stoffwechselprodukts aufweisen.An efficient industrial production of metabolic products (such as amino acids) is therefore only possible if the restrictions by feedback inhibition of a metabolic pathway can be repealed and thus microorganisms available which, in contrast to wild-type organisms, a drastically increased production capacity for production have the desired metabolite.

Die Phosphoglycerat-Familie von Aminosäuren ist dadurch definiert, dass es sich um Aminosäuren handelt, die in ihrer Biosynthese von der 3-Phosphoglycerinsäure abgeleitet werden. Der natürliche Pfad des Stoffwechsels führt dabei zunächst über die Zwischenstufen 3-Phospohydroxypyruvat und 3-Phospho-Lserin zu L-Serin. L-Serin kann weiterhin zu Glycin bzw. über O-Acetyl-Serin zu L-Cystein umgesetzt werden. Auch L-Tryptophan ist zu dieser Gruppe zu zählen, da es sich ebenfalls in der Biosynthese von L-Serin ableitet. Ebenso sind unnatürliche Aminosäuren, die nach dem in US 2002/0039767 A1 beschrieben Verfahren hergestellt werden, der Phosphoglycerat-Familie zuzuordnen.The phosphoglycerate family of amino acids is defined by that they are amino acids involved in their biosynthesis derived from the 3-phosphoglyceric acid. Of the natural path of metabolism leads to it over the intermediates 3-Phospohydroxypyruvat and 3-phospho-Lserin to L-serine. L-serine can continue to glycine or over O-acetyl-serine be converted to L-cysteine. Also L-tryptophan is to be counted to this group, since it is also in derived from the biosynthesis of L-serine. Likewise, unnatural Amino acids described in US 2002/0039767 A1 Process to be assigned to the phosphoglycerate family.

Verbindungen, die sich aus dem C1-Stoffwechsel ableiten, zeigen ebenfalls eine Abhängigkeit von der Biosynthese der Aminosäuren der Phosphoglycerat-Familie. Dies beruht auf der Tatsache, dass bei der Konversion von L-Serin zu Glycin Tetrahydrofolat als C1-Gruppenakzeptor fungiert und das beladende Tetrahydrofolat als zentraler Methylgruppendonor im C1-Stoffwechsel an vielen Biosynthesen (z.B. L-Methionin, Nukleotide, Pantothensäure, etc.) beteiligt ist. Erfindungsgemäß sind Verbindungen, die sich aus dem C1-Stoffwechsel ableiten somit vorzugsweise Verbindungen, die in ihrer Biosynthese von einer C1-Gruppenübertragung über Tetrahydrofolsäure abhängen.Compounds derived from the C1 metabolism show also a dependence on the biosynthesis of the amino acids the phosphoglycerate family. This is based on the fact that in the conversion of L-serine to glycine tetrahydrofolate acts as a C1 group acceptor and the loading tetrahydrofolate as a central methyl group donor in C1 metabolism in many biosyntheses (e.g., L-methionine, nucleotides, pantothenic acid, etc.). According to the invention, compounds derive from the C1 metabolism thus preferably Compounds that in their biosynthesis of a C1 group transfer depend on tetrahydrofolic acid.

Der einleitende Schritt der Biosynthese von Aminosäuren der Phosphoglycerat-Familie ist die Oxidation der D-3-Phosphoglycerinsäure zu 3-Phosphohydroxypyruvat und wird durch das Enzym 3-Phosphoglyceratdehydrogenase (PGD) [EC 1.1.1.95] katalysiert. Als Akzeptor für die bei der Reaktion entstehenden Reduktionsäquivalente dient NAD+, das zu NADH/H+ umgesetzt wird.The initial step in the biosynthesis of amino acids of the phosphoglycerate family is the oxidation of D-3-phosphoglyceric acid to 3-phosphohydroxypyruvate and is catalyzed by the enzyme 3-phosphoglycerate dehydrogenase (PGD) [EC 1.1.1.95]. NAD + , which is converted into NADH / H + , serves as the acceptor for the reduction equivalents formed during the reaction.

PGD-Enzyme sind aus verschiedensten Organismen bekannt (z.B. Rattus norvegicus, Arabidopsis thaliana, Escherichia coli, Bacillus subtilis). Dabei unterliegen die besser charakterisierten mikrobiellen Vertreter einer Feedback-Hemmung durch L-Serin. PGD enzymes are known from a variety of organisms (e.g. Rattus norvegicus, Arabidopsis thaliana, Escherichia coli, Bacillus subtilis). The better characterized microbial representatives of feedback inhibition by L-serine.

Auf der Ebene der Aminosäuresequenz sind die mikrobiellen PGD-Enzyme im N-terminalen Teil (Aminosäure 1-340 der E. coli Sequenz) untereinander sehr ähnlich, wogegen der C-terminale Anteil nur geringe Ähnlichkeiten aufweist. Gerade in diesem C-terminalen Teil ist die regulatorische Domäne lokalisiert, die für die Serin-Hemmung verantwortlich ist (Peters-Wendisch et al., 2002, Appl. Microbiol. Biotechnol. 60:437-441).At the level of the amino acid sequence are the microbial PGD enzymes in the N-terminal part (amino acid 1-340 of the E. coli sequence) very similar to each other, whereas the C-terminal portion has little similarity. Especially in this C-terminal Part is localized to the regulatory domain, the is responsible for serine inhibition (Peters-Wendisch et al., 2002, Appl. Microbiol. Biotechnol. 60: 437-441).

Die am besten charakterisierte PGD ist diejenige aus Escherichia coli. Das Enzym wurde eingehend biochemisch untersucht (Dubrow & Pizer, 1977, J. Biol. Chem. 252, 1527-1538) und unterliegt einer allosterischen Feedback-Hemmung durch L-Serin mit einer Inhibitorkonstante Ki von 5 µM.The best characterized PGD is that of Escherichia coli. The enzyme has been extensively biochemically studied (Dubrow & Pizer, 1977, J. Biol. Chem. 252, 1527-1538) and is subject to allosteric feedback inhibition by L-serine with an inhibitor constant K i of 5 μM.

Diese Feedback-Hemmung steht einer effizienten Produktion von Aminosäuren der Phosphoglycerat-Familie im Wege und war deshalb bereits Ziel molekularbiologischer Ansätze.This feedback inhibition stands for an efficient production of Amino acids of the phosphoglycerate family in the way and was therefore already the goal of molecular biological approaches.

So wurden in der Schrift EP0620853A Varianten der Escherichia coli PGD mit verringerter Empfindlichkeit gegen Hemmung durch Serin beschrieben, die eine Modifikation in den C-terminalen 25% der Wildtyp-PGD, (d.h. Aminosäuren 307-410), bevorzugt eine Modifikation im Bereich der letzten 50 Reste (d.h. Aminosäuren 361-410) aufweisen. Die beschriebenen Mutanten wurden durch Linker-Mutagenese, d.h. durch einfache Nutzung von vorhandenen Restriktionsschnittstellen im E. coli serA-Gen und anschließendes Einsetzen von Oligonukleotid-Linkern einer Länge von 8-14 Basenpaaren erhalten.Thus, in the document EP0620853A variants of Escherichia coli PGD with reduced sensitivity to inhibition by Serine described a modification in the C-terminal 25% of the wild-type PGD (i.e., amino acids 307-410), preferably one Modification in the region of the last 50 residues (i.e., amino acids 361-410). The described mutants were by linker mutagenesis, i. by easy use of existing ones Restriction interfaces in the E. coli serA gene and subsequent insertion of oligonucleotide linkers of a length of 8-14 base pairs.

Solche Linker-Mutagenesen sind jedoch meist problematisch, da durch den Einbau bzw. die Deletion von mehreren Resten die Struktur des Proteins sehr stark verändert wird und so die Gesamtaktivität oder Stabilität des Proteins negativ beeinflusst wird. Tatsächlich zeigen die meisten in EP0620853A beschriebenen Mutanten eine kaum nachweisbare Aktivität. However, such linker mutagenesis are usually problematic because by the incorporation or deletion of several residues the Structure of the protein is very much changed and so the overall activity or stability of the protein adversely affected becomes. In fact, most of them are described in EP0620853A Mutants a barely detectable activity.

Auch in coryneformen Mikroorganismen wurden Mutagenesen am serA-Gen vorgenommen, die das Ziel einer Verringerung der Empfindlichkeit der PGD gegen Hemmung durch Serin erfüllen:

  • Peters-Wendisch et al. (2002, Appl. Microbiol. Biotechnol. 60:437-441) beschreiben C-terminale Deletionen der PGD von Corynebacterium glutamicum. Auch hier führen die Deletionen zu teilweise starken Einbußen an Enzymaktivität.
  • Die Anmeldung EP0943687A2 beschreibt einen Austausch des Glutaminsäure-Restes an Position 325 der PGD von Brevibacterium flavum. Dieser Rest liegt im Bezug zur Escherichia coli PGD in einem Alignment mit dem Algorithmus GAP des Programms GCG (GCG Wisconsin Package, Genetics Computer Group (GCG) Madison, Wisconsin) bereits in dem variablen C-terminalen Teil des Proteins und korreliert mit dem Asparaginrest 364 des Escherichia coli Proteins. Da diese Modifikation in dem variablen C-terminalen Teil der PGD liegen, sind keine Rückschlüsse auf das Escherichia coli Protein möglich.
Also in coryneform microorganisms, mutageneses have been made on the serA gene that fulfill the goal of reducing the sensitivity of PGD to inhibition by serine:
  • Peters-Wendisch et al. (2002, Appl.Microbiol.Biotechnol 60: 437-441) describe C-terminal deletions of PGD of Corynebacterium glutamicum. Again, the deletions lead to some strong losses of enzyme activity.
  • The application EP0943687A2 describes an exchange of the glutamic acid residue at position 325 of the PGD of Brevibacterium flavum. This residue is already in the variable C-terminal part of the protein and correlates with the asparagine residue 364 in an alignment with the GAP algorithm of the GCG program (GCG Wisconsin Package, Genetics Computer Group (GCG) Madison, Wisconsin) in relation to Escherichia coli PGD of the Escherichia coli protein. Since these modifications are in the variable C-terminal part of the PGD, no conclusions are possible on the Escherichia coli protein.

Aufgabe der vorliegenden Erfindung war es, Varianten der PGD von Escherichia coli zur Verfügung zu stellen, die eine im Vergleich zur Escherichia coli-Wildtyp-PGD verringerte Empfindlichkeit gegen eine Hemmung durch Serin aufweisen.Object of the present invention was to variants of PGD of Escherichia coli which have an im Compared to Escherichia coli wild-type PGD decreased sensitivity against inhibition by serine.

Die Aufgabe wird gelöst durch eine PGD mit einer Aminosäuresequenz, die dadurch gekennzeichnet ist, dass sie sich von der Aminosäuresequenz der Escherichia coli Wildtyp PGD (SEQ ID NO: 2) mit einem Methionin als Position 1 dadurch unterscheidet, dass an Position 349 eine Aminosäure mit Ausnahme von Glycin oder an Position 372 eine Aminosäure mit Ausnahme von Threonin befindet.The object is achieved by a PGD having an amino acid sequence, which is characterized by being different from the Amino acid sequence of Escherichia coli wild-type PGD (SEQ ID NO: 2) with a methionine as position 1 differs thereby that at position 349 an amino acid except glycine or at position 372 an amino acid except threonine located.

Eine erfindungsgemäße PGD kann auch Mutationen an beiden genannten Positionen von SEQ ID NO: 1 aufweisen.A PGD according to the invention may also have mutations in both Have positions of SEQ ID NO: 1.

Die Erfindung betrifft ferner eine DNS-Sequenz codierend für eine erfindungsgemäße PGD. Dieses serA-Allel unterscheidet sich vom Gen der Escherichia coli PGD (serA-Gen, SEQ ID NO: 1) dadurch, dass das Codon 349 für eine natürliche Aminosäure mit Ausnahme von Glycin oder das Codon 372 für eine natürliche Aminosäure mit Ausnahme von Threonin codiert.The invention further relates to a DNA sequence coding for a PGD according to the invention. This serA allele is different different from the gene of Escherichia coli PGD (serA gene, SEQ ID NO: 1) in that the codon 349 is a natural amino acid Exception of glycine or codon 372 for a natural amino acid coded with the exception of threonine.

Ein erfindungsgemäßes serA-Allel kann auch eine Mutation an beiden genannten Codons aufweisen.A serA allele according to the invention may also have a mutation have two codons mentioned.

Im Rahmen der vorliegenden Erfindung sind als erfindungsgemäße serA-Allele auch solche Gene aufzufassen, die bei einer Analyse mit dem Algorithmus GAP (GCG Wisconsin Package, Genetics Computer Group (GCG) Madison, Wisconsin) eine Sequenzidentität von größer 30 % aufweisen, sofern sie eine der genannten Mutationen aufweisen. Besonders bevorzugt ist eine Sequenzidentität von größer 70 %.In the context of the present invention are as inventive serA alleles include such genes that are analyzed with the algorithm GAP (GCG Wisconsin Package, Genetics Computer Group (GCG) Madison, Wisconsin) a sequence identity greater than 30% if they have any of the above mutations exhibit. Particularly preferred is a sequence identity greater than 70%.

Ebenso sind Proteine mit einer Sequenzidentität von größer 40 % ermittelt mit dem Algorithmus GAP, im Sinne der vorliegenden Erfindung als von der E. coli PGD abgeleitete Proteine aufzufassen, sofern sie eine PGD Aktivität und einen der genannten Aminosäureaustausche aufweisen. Besonders bevorzugt ist eine Sequenzidentität von größer 70 %.Likewise, proteins with a sequence identity greater than 40 % determined with the algorithm GAP, in the sense of the present To conceive of the invention as proteins derived from E. coli PGD, provided they have a PGD activity and one of the above Have amino acid substitutions. Particularly preferred is a Sequence identity greater than 70%.

Ferner sind als erfindungsgemäße Gene Allelvarianten des serA-Gens zu verstehen, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus der in SEQ ID NO: 1 dargestellten Sequenz ableiten, wobei die enzymatische Aktivität des Genprodukts mehr als 10 % der Aktivität des Wildtyp Genprodukts entspricht und eine Mutation des Codons 349 für die Aminosäure Glycin bzw. des Codons 372 für die Aminosäure Threonin, oder eine Kombination der beiden Mutationen vorliegt.Furthermore, genes according to the invention are allelic variants of the serA gene to be understood by deletion, insertion or Substitution of nucleotides from that shown in SEQ ID NO: 1 Derive sequence, with the enzymatic activity of the gene product more than 10% of the activity of the wild-type gene product and a mutation of codon 349 for the Amino acid glycine or codon 372 for the amino acid threonine, or a combination of the two mutations.

PGD-Varianten, die einen Aminosäureaustausch an Position 349 oder an Position 372 oder eine Kombination davon besitzen, können mit Standardtechniken der Molekularbiologie erzeugt werden. Dazu werden an den entsprechenden Codons Mutationen in das für die PGD codierende serA-Gen eingebracht. Entsprechende Methoden zur Einführung von Mutationen an spezifischen Positionen innerhalb eines DNS-Fragmentes sind bekannt. PGD variants that have an amino acid substitution at position 349 or at position 372 or a combination thereof, can be generated using standard techniques of molecular biology become. For this purpose, mutations are made in the corresponding codons introduced the serA gene encoding the PGD. Appropriate Methods for introducing mutations at specific positions within a DNA fragment are known.

Als Ausgangsmaterial für die Mutagenese dient vorzugsweise die DNS des E. coli serA-Gens. Das zu mutierende serA-Gen kann chromosomal oder extrachromosomal codiert sein. Bevorzugt wird das serA-Gen jedoch durch Polymerase-Ketten-Reaktion amplifiziert und in einen Vektor kloniert. Durch Anwendung der vorgenannten Mutagenese-Methoden werden ein oder mehrere Nukleotide der DNS-Sequenz so verändert, dass die codierte PGD einen Aminosäureaustausch an Position 349 oder 372 aufweist, wobei Position 1 das Startmethionin aus SEQ ID NO: 1 ist.The starting material for the mutagenesis is preferably the DNA of the E. coli serA gene. The serA gene to be mutated can chromosomally or extrachromosomally encoded. It is preferred However, the serA gene amplified by polymerase chain reaction and cloned into a vector. By applying the aforementioned Mutagenesis methods are one or more nucleotides the DNA sequence is altered so that the encoded PGD undergoes an amino acid exchange at position 349 or 372, wherein position 1 is the starting methionine of SEQ ID NO: 1.

Diese Mutationen bewirken, dass die codierte PGD eine verminderte Empfindlichkeit gegen Hemmung durch L-Serin (=Feedback-Resistenz) besitzt. Dabei ist besonders vorteilhaft, dass die erfindungsgemäßen PGD-Varianten in Abwesenheit von L-Serin im Vergleich zur Wildtyp-PGD eine Aktivität von mehr als 10 %, vorzugsweise eine unveränderte Aktivität, aufweist.These mutations cause the encoded PGD to diminish one Sensitivity to inhibition by L-serine (= feedback resistance) has. It is particularly advantageous that the PGD variants according to the invention in the absence of L-serine in An activity of more than 10% compared to wild-type PGD, preferably an unchanged activity.

Zur Bestimmung des Ausmaßes der Feedback-Resistenz einer erfindungsgemäßen PGD-Variante kann jede Methode benützt werden, die es erlaubt, die Aktivität des Enzyms in Anwesenheit von L-Serin zu bestimmen. Beispielsweise kann die Bestimmung der PGD-Aktivität in Anlehnung an die von McKitrick und Pizer (1980, J.Bacteriol. 141:235-245) beschriebene Methode erfolgen. Die Enzymaktivität wird anhand der Rückreaktion in einem Ansatz, der Phosphohydroxypyruvat und NADH/H+ enthält, gemessen. Die Reaktion wird durch Enzymzugabe gestartet und über die Abnahme der Extinktion bei 340 nm, die durch Oxidation des NADH/H+ hervorgerufen wird, in einem Spektralphotometer verfolgt. Die Hemmung der PGD-Aktivität wird in Anwesenheit verschiedener Konzentrationen von L-Serin im Reaktionsansatz getestet. Die katalytische Aktivität der verschiedenen PGD-Varianten wird in An- und Abwesenheit von L-Serin bestimmt und daraus die Inhibitorkonstante Ki ermittelt. Der Ki beschreibt diejenige Inhibitorkonzentration, bei welcher die Aktivität nur noch 50 % der Aktivität beträgt, die in Abwesenheit des Inhibitors bestimmt wurde. To determine the extent of feedback resistance of a PGD variant according to the invention, any method can be used which allows to determine the activity of the enzyme in the presence of L-serine. For example, the determination of PGD activity can be based on the method described by McKrickick and Pizer (1980, J. Bacteriol 141: 235-245). The enzyme activity is measured by the reverse reaction in an approach containing phosphohydroxypyruvate and NADH / H + . The reaction is started by enzyme addition and monitored by the decrease in absorbance at 340 nm, which is caused by oxidation of NADH / H + in a spectrophotometer. The inhibition of PGD activity is tested in the presence of various concentrations of L-serine in the reaction mixture. The catalytic activity of the various PGD variants is determined in the presence and absence of L-serine and used to determine the inhibitor constant K i . The K i describes that inhibitor concentration in which the activity is only 50% of the activity determined in the absence of the inhibitor.

Erfindungsgemäße PGD-Enzyme können aufgrund ihrer Feedback-Resistenz zur Herstellung von Aminosäuren der Phosphoglycerat-Familie oder von Verbindungen, die sich aus dem C1-Stoffwechsel ableiten, verwendet werden. Hierfür werden die erfindungsgemäßen serA-Allele in einem Wirtsstamm exprimiert.PGD enzymes according to the invention can, due to their feedback resistance for the production of amino acids of the phosphoglycerate family or of compounds resulting from the C1 metabolism derive, be used. For this purpose, the inventive serA alleles expressed in a host strain.

Die Expression eines erfindungsgemäßen serA-Allels kann unter Kontrolle des eigenen, vor dem serA-Gen lokalisierten Promotors oder durch Verwendung anderer geeigneter Promotorsysteme, die dem Fachmann bekannt sind, erfolgen. Dabei kann sich das entsprechende Allel beispielsweise unter der Kontrolle eines solchen Promotors entweder in einer oder in mehreren Kopien auf dem Chromosom des Wirtsorganismus befinden. Die Strategien zur Integration von Genen in das Chromosom sind Stand der Technik. Bevorzugt wird das zu exprimierende serA-Allel jedoch in einen Vektor kloniert, vorzugsweise ein Plasmid.The expression of a serA allele according to the invention can be described under Control of the own promoter localized in front of the serA gene or by using other suitable promoter systems, which are known in the art, take place. This can be the corresponding allele, for example, under the control of a such promoter in either one or more copies located on the chromosome of the host organism. The strategies for the integration of genes into the chromosome are state of the art Technology. However, the serA allele to be expressed is preferred cloned into a vector, preferably a plasmid.

Die Erfindung betrifft daher auch einen Vektor, dadurch gekennzeichnet, dass er ein erfindungsgemäßes serA-Allel unter funktioneller Kontrolle eines Promotors enthält.The invention therefore also relates to a vector, characterized that he under a serA allelic according to the invention functional control of a promoter.

Zur Klonierung der erfindungsgemäßen serA-Allele können Vektoren verwendet werden, die bereits genetische Elemente (z.B. konstitutive oder regulierbare Promotoren, Terminatoren) enthalten, die entweder eine andauernde oder eine kontrollierte, induzierbare Expression des für die PGD codierenden Gens ermöglichen. Außerdem befinden sich auf einem Expressionsvektor vorzugsweise andere regulatorische Elemente wie ribosomale Bindungsstellen und Terminationssequenzen sowie Sequenzen, die für selektive Marker und/oder Reporter-Gene codieren. Die Expression derartiger Selektionsmarker erleichtert die Identifizierung von Transformanten. Als Selektionsmarker geeignet sind Gene, die für eine Resistenz gegenüber z. B. Ampicillin, Tetracyclin, Chloramphenicol, Kanamycin oder anderen Antibiotika codieren. Wenn das erfindungsgemäße serA-Allel extrachromosomal repliziert werden soll, sollte der Plasmidvektor vorzugsweise einen Ursprungspunkt der Replikation enthalten. Besonders bevorzugt sind Plasmidvektoren wie beispielsweise die E. coli-Vektoren pACYC184, pUC18, pQE-70, pBR322, pSC101 und ihre Derivate. Als induzierbare Promotoren eignen sich beispielsweise der lac-, tac-, trc-, lambda PL, ara- oder tet-Promotor oder davon abgeleitete Sequenzen.For cloning the serA alleles according to the invention, vectors which already contain genetic elements (e.g. constitutive or regulatable promoters, terminators), either an ongoing or a controlled, allow inducible expression of the gene coding for the PGD. They are also located on an expression vector preferably other regulatory elements such as ribosomal Binding sites and termination sequences as well as sequences that code for selective markers and / or reporter genes. The expression Such selection marker facilitates identification of transformants. Suitable as selection markers Genes that are resistant to z. B. ampicillin, Tetracycline, chloramphenicol, kanamycin or other antibiotics encode. When the serA allele according to the invention is extrachromosomal should be replicated, the plasmid vector should preferably contain an origin point of replication. Especially preferred are plasmid vectors such as the E. coli vectors pACYC184, pUC18, pQE-70, pBR322, pSC101 and their derivatives. Suitable inducible promoters are, for example the lac, tac, trc, lambda PL, ara or tet promoter or sequences derived therefrom.

Des weiteren sind Plasmidvektoren besonders bevorzugt, die bereits ein Gen/Allel enthalten, dessen Einsatz ebenfalls zu einer Überproduktion von Aminosäuren der Phosphoglycerat-Familie bzw. von Verbindungen, die sich aus dem C1-Stoffwechsel ableiten, führt, wie beispielsweise für die Produktion von:

  • L-Serin (z.B. serB-, serC-, Exportcarrier-Gen wie beschreiben in DE10044831A1)
  • N-Acetyl-Serin, O-Acetyl-Serin, Cystin, Cystein oder Cysteinderivaten (z.B. cysE-Allele wie beschrieben in WO97/15673, Efflux-Gene wie beschrieben in EP0885962A1, cysB-Gen wie beschrieben in DE19949579C1, yfiK-Gen wie beschrieben in DE 10232930A)
  • L-Tryptophan (z.B. trpE-Allele wie beschrieben in EP0662143A)
  • Pantothensäure (z.B. wie beschrieben in WO02061108)
Furthermore, particular preference is given to plasmid vectors which already contain a gene / allele whose use also leads to an overproduction of amino acids of the phosphoglycerate family or of compounds which derive from the C1 metabolism, for example for the production of:
  • L-serine (eg serB, serC, export carrier gene as described in DE10044831A1)
  • N-acetyl-serine, O-acetyl-serine, cystine, cysteine or cysteine derivatives (eg cysE alleles as described in WO97 / 15673, efflux genes as described in EP0885962A1, cysB gene as described in DE19949579C1, yfiK gene as described in DE 10232930A)
  • L-tryptophan (eg trpE alleles as described in EP0662143A)
  • Pantothenic acid (eg as described in WO02061108)

Solche Vektoren ermöglichen die direkte Herstellung von erfindungsgemäßen Mikroorganismenstämmen mit hoher Produktionsleistung aus einem beliebigen Mikroorganismenstamm, da ein solches Plasmid auch die Aufhebung von anderen Restriktionen des Stoffwechselweges in einem Mikroorganismus bewirkt.Such vectors allow the direct production of inventive Microorganism strains with high production capacity from any microorganism strain, as such Plasmid also the lifting of other restrictions of the Metabolic pathway in a microorganism causes.

Durch eine gängige Transformationsmethode (z.B. Elektroporation) werden die erfindungsgemäßen serA-Allel-haltigen Plasmide in Mikroorganismen eingebracht und beispielsweise mittels Antibiotika-Resistenz auf plasmid-tragende Klone selektiert.By a common transformation method (e.g., electroporation) become the serA allele-containing plasmids according to the invention incorporated in microorganisms and, for example, by antibiotic resistance selected for plasmid-carrying clones.

Die Erfindung betrifft somit auch Verfahren zur Herstellung eines erfindungsgemäßen Mikroorganismenstammes, dadurch gekennzeichnet, dass in einen Mikroorganismenstamm ein erfindungsgemäßer Vektor eingebracht wird. The invention thus also relates to processes for the preparation a microorganism strain according to the invention, characterized that in a microorganism strain an inventive Vector is introduced.

Es ist auch möglich Vektoren mit einem erfindungsgemäßen serA-Allel in Mikroorganismen einzubringen, die beispielsweise einzelne oder mehrere der oben genannten Gene/Allele bereits chromosomal exprimieren und bereits eine Überproduktion eines Stoffwechselprodukts aufweisen. In solchen Fällen kann durch das Einbringen eines erfindungsgemäßen serA-Allels die Produktionsleistung nochmals gesteigert werden.It is also possible vectors with a serA allele according to the invention in microorganisms, for example, single or more of the above genes / alleles already chromosomally express and already an overproduction of a Have metabolite. In such cases can through the introduction of a serA allele according to the invention the production output be increased again.

Generell sind als Wirtsorganismus für erfindungsgemäße Vektoren alle Organismen geeignet, die den Biosyntheseweg für Aminosäuren der Phosphoglycerat-Familie aufweisen, rekombinanten Verfahren zugänglich sind und durch Fermentation kultivierbar sind. Solche Mikroorganismen können Pilze, Hefen oder Bakterien sein. Bevorzugt kommen Bakterien der phylogenetischen Gruppe der Eubacteria zum Einsatz. Besonders bevorzugt sind Mikroorganismen der Familie Enterobacteriaceae und insbesondere der Art Escherichia coli.Generally, as a host organism for vectors of the invention all organisms suitable for the biosynthetic pathway for amino acids the phosphoglycerate family, recombinant Process are accessible and cultivable by fermentation are. Such microorganisms can be fungi, yeasts or bacteria be. Preference is given to bacteria of the phylogenetic group Eubacteria are used. Particularly preferred are microorganisms the family Enterobacteriaceae and in particular the Species Escherichia coli.

Die Erfindung betrifft somit ferner einen Mikroorganismenstamm, der zur fermentativen Herstellung von Aminosäuren der Phosphoglycerat-Familie oder deren Derivaten bzw. von Verbindungen, die sich aus dem C1 Stoffwechsel ableiten, geeignet ist, dadurch gekennzeichnet, dass er eine erfindungsgemäße PGD besitzt.The invention thus further relates to a microorganism strain, for the fermentative production of amino acids of Phosphoglycerate family or their derivatives or compounds, which derive from the C1 metabolism suitable is, characterized in that it is a PGD according to the invention has.

Ein weiterer Gegenstand der Erfindung ist die Herstellung von Aminosäuren der Phosphoglycerat-Familie bzw. von Verbindungen, die sich aus dem C1-Stoffwechsel ableiten, durch Kultivierung eines erfindungsgemäßen Mikroorganismenstammes.Another object of the invention is the production of Amino acids of the phosphoglycerate family or of compounds, which derive from the C1 metabolism, by cultivation a microorganism strain according to the invention.

Dazu wird der erfindungsgemäße Mikroorganismenstamm beispielsweise in einem Fermenter in einem Nährmedium kultiviert, das eine geeignete Kohlenstoff-, und eine geeignete Energiequelle, sowie andere Zusatzstoffe enthält.For this purpose, the microorganism strain according to the invention, for example cultured in a fermenter in a nutrient medium, the a suitable carbon, and a suitable source of energy, and other additives.

Die während der Fermentation gebildeten Substanzen wie beispielsweise L-Phosphoserin, L-Serin, O-Acetyl-L-Serin, L-Cystein, Glycin, L-Tryptophan, 1,2,4-Triazol-2-yl-L-alanin, L-Methionin oder Pantothensäure können anschließend aufgereinigt werden.The substances formed during the fermentation such as L-phosphoserine, L-serine, O-acetyl-L-serine, L-cysteine, Glycine, L-tryptophan, 1,2,4-triazol-2-yl-L-alanine, L-methionine or pantothenic acid can subsequently be purified become.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung. Sämtliche eingesetzten molekularbiologischen Verfahren, wie Polymerase-Kettenreaktion, Isolierung und Reinigung von DNS, Modifikation von DNS durch Restriktionsenzyme, Klenow-Fragment und Ligase, Transformation etc. wurden in der dem Fachmann bekannten, in der Literatur beschriebenen oder von den jeweiligen Herstellern empfohlenen Art und Weise durchgeführt.The following examples serve to further explain the Invention. All molecular biological procedures used, like polymerase chain reaction, isolation and purification DNA, modification of DNA by restriction enzymes, Klenow fragment and ligase, transformation, etc. were in the known in the art, described in the literature or recommended by the respective manufacturers way carried out.

Beispiel 1: Klonierung des serA-GensExample 1: Cloning of the serA gene

Das serA-Gen aus Escherichia coli Stamm W3110 (American Type Culture Collection, ATCC27325) wurde mit Hilfe der Polymerase-Ketten-Reaktion amplifiziert. Als spezifische Primer dienten die Oligonukleotide

Figure 00100001
und
Figure 00100002
The serA gene from Escherichia coli strain W3110 (American Type Culture Collection, ATCC27325) was amplified by the polymerase chain reaction. The oligonucleotides were used as specific primers
Figure 00100001
and
Figure 00100002

Das resultierende DNS-Fragment wurde mit den Restriktionsenzymen NdeI und HindIII verdaut und die 5'-Überhänge mit Klenow-Enzym aufgefüllt. Anschließend wurde das DNS-Fragment mit Hilfe einer Agarose-Gelelektrophorese gereinigt und mit der GeneClean-Methode isoliert (GeneClean Kit BI0101 P.O.Box 2284 La Jolla, California, 92038-2284). Die Klonierung des so erhaltenen serA-Fragments erfolgte in den Expressionsvektor pQE-70 (Qiagen, Hilden, D). Hierfür wurde der Vektor zunächst mit SphI und BamHI geschnitten und der 3'-Überhang mit Klenow-Enzym abgedaut bzw. der 5'-Überhang mit Klenow-Enzym aufgefüllt. Anschließend wurde das Vektorfragment gereinigt und mit dem serA-Fragment ligiert. Der resultierende Vektor trägt die Bezeichnung pFL209. Nach der Verifizierung des Konstrukts durch Sequenzierung wurde der Escherichia coli Stamm JM109 (Stratagene, Amsterdam, NL) transformiert und entsprechende Transformanten mit Ampicillin selektiert. Der Bakterienstamm Escherichia coli JM109 / pFL209 wurde bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, D-38142 Braunschweig) unter der Nummer DSM 15628 gemäß Budapester Vertrag hinterlegt.The resulting DNA fragment was digested with the restriction enzymes NdeI and HindIII digested and the 5 'overhangs with Klenow enzyme refilled. Subsequently, the DNA fragment was using purified by agarose gel electrophoresis and using the GeneClean method isolated (GeneClean Kit BI0101 P.O.Box 2284 La Jolla, California, 92038-2284). The cloning of the thus obtained serA fragment was inserted into the expression vector pQE-70 (Qiagen, Hilden, D). For this, the vector was first with SphI and BamHI cut and the 3 'overhang with Klenow enzyme or the 5 'overhang filled with Klenow enzyme. Subsequently, the vector fragment was purified and washed with ligated to the serA fragment. The resulting vector carries the Designation pFL209. After verification of the construct by sequencing the Escherichia coli strain JM109 (Stratagene, Amsterdam, NL) and corresponding Transformants selected with ampicillin. The bacterial strain Escherichia coli JM109 / pFL209 was used in the DSMZ (German Collection for microorganisms and cell cultures GmbH, D-38142 Braunschweig) under the number DSM 15628 according to the Budapest Treaty deposited.

Beispiel 2: Ortsgerichtete Mutagenese des serA-GensExample 2: Site-directed mutagenesis of the serA gene

Die ortsspezifische Mutagenese an den Codons 349 und 372 des serA-Gens wurde mittels einer inversen Polymerase-Ketten-Reaktion durchgeführt. Als Matrize diente der in Beispiel 1 beschriebene Vektor pFL209. Für die Mutagenese des Codons 349 wurden die Primer

Figure 00110001
und
Figure 00110002
verwendet.Site-directed mutagenesis at codons 349 and 372 of the serA gene was performed by an inverse polymerase chain reaction. The template used was the vector pFL209 described in Example 1. For the mutagenesis of codon 349, the primers were
Figure 00110001
and
Figure 00110002
used.

Das erhaltene PCR-Produkt wurde durch Ligation zirkularisiert und in den E. coli-Stamm JM109 transformiert. Durch Sequenzierung wurde schließlich die Mutation an Codon 349 bestimmt und die Korrektheit der übrigen Sequenz überprüft.
Für die Mutagenese des Codons 372 wurde prinzipiell gleich verfahren, jedoch wurden die Primer

Figure 00110003
und
Figure 00110004
verwendet.The resulting PCR product was circularized by ligation and transformed into E. coli strain JM109. Sequencing finally determined the mutation at codon 349 and checked the correctness of the remaining sequence.
In principle the same procedure was followed for the mutagenesis of codon 372, but the primers became
Figure 00110003
and
Figure 00110004
used.

Beispiel 3: Bestimmung der PGD-Aktivität und der Inhibitorkonstante Ki Example 3: Determination of PGD Activity and Inhibitor Constant K i

Zur Bestimmung von PGD-Enzymaktivitäten und des Einflusses von L-Serin auf die Aktivität wurden 100 ml LB-Medium (10 g/l Trypton, 5 g/l Hefeextrakt, 10 g/l NaCl), das zusätzlich 100 mg/l Ampicillin enthielt, mit einer 2 ml Übernachtkultur der Stämme mit den plasmidcodierten serA-Allelen beimpft und bei 30 °C und 150 rpm in einem Schüttler inkubiert. Bei einer optischen Dichte von 1,0 wurde die serA-Expression durch Zugabe von 0,4 mM Isopropyl-β-thiogalaktosid induziert und die Kultur für weitere 3 Stunden inkubiert. Die Zellen wurden anschließend durch Zentrifugation geerntet, gewaschen und in 2 ml Puffer (100 mM K-Phosphat pH 7,0; 10 mM MgCl2; 1 mM Dithiothreitol) resuspendiert. Der Zellaufschluss erfolgte mittels einer French Press (Spectronic Instruments, Inc., Rochester, NY, USA) bei einem Druck von 18 000 psi. Die Rohextrakte wurden durch Zentrifugation bei 30 000 g geklärt und die PGD-Aktivität mit dem Test von McKitrick und Pizer (1980, J.Bacteriol. 141:235-245) bestimmt.
Die folgenden Tabellen zeigen die PGD-Aktivität verschiedener Mutanten, sowie die entsprechenden Inhibitorkonstanten Ki. Mutationen an Codon 349 Allel Mutation Aktivität [units/mg] Ki [mM] serA Wildtyp 0,05 < 0,1 serA40 G349D 0,05 25 serA45 G349I 0,05 5 serA46 G349M 0,05 1 serA47 G349E 0,05 20 serA49 G349P 0,05 6 serA410 G349S 0,04 2 serA411 G349T 0,04 3 serA412 G349V 0,05 5 serA413 G349L 0,05 5 serA414 G349A 0,05 1 serA415 G349K 0,03 15 serA416 G349R 0,04 15 serA417 G349W 0,02 8 serA418 G349Y 0,05 6 serA419 G349F 0,05 10 serA420 G349H 0,05 10 serA421 G349N 0,05 15 serA422 G349Q 0,05 15 serA45 G349C 0,04 5 Mutationen an Codon 372 Allel Mutation Aktivität [units/mg] Ki [mM] serA Wildtyp 0,05 < 0,1 serA20 T372I 0,05 40 serA21 T372D 0,05 120 serA211 T372Y 0,05 35 serA219 T372G 0,05 8 serA220 T372S 0,05 1 serA223 T372E 0,05 150 serA229 T372R 0,05 120 serA234 T372K 0,05 110 serA206 T372P 0,05 120 serA208 T372H 0,05 80 serA210 T372W 0,04 60 serA212 T372F 0,05 60 serA214 T372A 0,04 10 serA218 T372N 0,05 100 serA221 T372Q 0,05 100 serA222 T372V 0,05 40 serA226 T372L 0,04 40 serA228 T372M 0,03 60 serA231 T372C 0,02 3
For the determination of PGD enzyme activities and the influence of L-serine on the activity, 100 ml LB medium (10 g / l tryptone, 5 g / l yeast extract, 10 g / l NaCl), which additionally contained 100 mg / l ampicillin , inoculated with a 2 ml overnight culture of the strains with the plasmid-coded serA alleles and incubated at 30 ° C and 150 rpm in a shaker. At 1.0 optical density, serA expression was induced by the addition of 0.4 mM isopropyl-β-thiogalactoside, and the culture was incubated for a further 3 hours. The cells were then harvested by centrifugation, washed and resuspended in 2 ml of buffer (100 mM K-phosphate pH 7.0, 10 mM MgCl 2 , 1 mM dithiothreitol). Cell disruption was performed using a French Press (Spectronic Instruments, Inc., Rochester, NY, USA) at a pressure of 18,000 psi. The crude extracts were clarified by centrifugation at 30,000 g and PGD activity was determined by the test of McKrickick and Pizer (1980, J. Bacteriol 141: 235-245).
The following tables show the PGD activity of different mutants, as well as the corresponding inhibitor constants K i . Mutations at codon 349 allele mutation Activity [units / mg] Ki [mM] serA wildtype 0.05 <0.1 serA40 G349D 0.05 25 serA45 G349I 0.05 5 serA46 G349M 0.05 1 serA47 G349E 0.05 20 serA49 G349P 0.05 6 serA410 G349S 0.04 2 serA411 G349T 0.04 3 serA412 G349V 0.05 5 serA413 G349L 0.05 5 serA414 G349A 0.05 1 serA415 G349K 0.03 15 serA416 G349R 0.04 15 serA417 G349W 0.02 8th serA418 G349Y 0.05 6 serA419 G349F 0.05 10 serA420 G349H 0.05 10 serA421 G349N 0.05 15 serA422 G349Q 0.05 15 serA45 G349C 0.04 5 Mutations at codon 372 allele mutation Activity [units / mg] Ki [mM] serA wildtype 0.05 <0.1 serA20 T372I 0.05 40 Ser A21 T372D 0.05 120 serA211 T372Y 0.05 35 serA219 T372G 0.05 8th serA220 T372S 0.05 1 serA223 T372E 0.05 150 serA229 T372R 0.05 120 serA234 T372K 0.05 110 serA206 T372P 0.05 120 serA208 T372H 0.05 80 serA210 T372W 0.04 60 serA212 T372F 0.05 60 serA214 T372A 0.04 10 serA218 T372N 0.05 100 serA221 T372Q 0.05 100 serA222 T372V 0.05 40 serA226 T372L 0.04 40 serA228 T372M 0.03 60 serA231 T372C 0.02 3

Beispiel 4: Kombination der Mutationen der Allele serA20 und serA40Example 4: Combination of mutations of serA20 and alleles serA40

Eine Kombination von Mutationen des Codons 349 bzw. 372 sollte zeigen, ob die Austausche einen synergistischen Effekt auf die Feedback-Resistenz haben. Hierfür wurde eine singuläre HindII Restriktionsschnittstelle zwischen den beiden Mutationsorten benützt. So wurde durch HindII-HindIII-Restriktion des Vektors mit dem serA20-Allel ein 183 bp-Fragment isoliert das dem 3'-Ende des serA-Gens entspricht und die Mutation an Codon 372 beinhaltet. Dieses Fragment wurde in einen ebenfalls HindII-BamHI-verdauten Vektor mit dem serA40-Allel kloniert und so ein Klon erhalten der eine Doppelmutante darstellt. Die folgende Tabelle zeigt die zugehörigen Enzymdaten. Mutationen an Codon 349 und 372 Allel Mutation Aktivität [units/mg] Ki [mM] serA Wildtyp 0,05 < 0,1 serA2040 G349D, T372I 0,05 120

Figure 00160001
Figure 00170001
Figure 00180001
Figure 00190001
Figure 00200001
Figure 00210001
Figure 00220001
Figure 00230001
Figure 00240001
Figure 00250001
A combination of codons 349 and 372 mutations should show whether the exchanges have a synergistic effect on feedback resistance. For this purpose, a unique HindII restriction site between the two mutation sites was used. Thus, HindIII-HindIII restriction of the serA20 allele vector isolated a 183 bp fragment corresponding to the 3 'end of the serA gene and containing the mutation at codon 372. This fragment was cloned into a similarly Hindllam-BamHI digested vector with the serA40 allele to give a clone which is a double mutant. The following table shows the associated enzyme data. Mutations at codons 349 and 372 allele mutation Activity [units / mg] Ki [mM] serA wildtype 0.05 <0.1 serA2040 G349D, T372I 0.05 120
Figure 00160001
Figure 00170001
Figure 00180001
Figure 00190001
Figure 00200001
Figure 00210001
Figure 00220001
Figure 00230001
Figure 00240001
Figure 00250001

Claims (10)

3-Phospoglyceratdehydrogenase (PGD) aufweisend eine im Vergleich zu einer Escherichia coli-Wildtyp-PGD verringerte Empfindlichkeit gegen eine Hemmung durch Serin mit einer Aminosäuresequenz, die dadurch gekennzeichnet ist, dass sie sich von der Aminosäuresequenz der Escherichia coli-Wildtyp-PGD (SEQ ID NO: 2) dadurch unterscheidet, dass sich an Position 349 eine Aminosäure mit Ausnahme von Glycin oder an Position 372 eine Aminosäure mit Ausnahme von Threonin befindet.3-Phosphoglycerate dehydrogenase (PGD) having a reduced susceptibility to serine inhibition with respect to Escherichia coli wild-type PGD having an amino acid sequence characterized by being different from the amino acid sequence of Escherichia coli wild-type PGD (SEQ. ID NO: 2) differs in that at position 349 there is an amino acid with the exception of glycine or at position 372 an amino acid with the exception of threonine. 3-Phospoglyceratdehydrogenase gemäß Anspruch 1, dadurch gekennzeichnet, dass sich an Position 349 eine Aminosäure mit Ausnahme von Glycin und an Position 372 eine Aminosäure mit Ausnahme von Threonin befindet.A 3-phosphoglycerate dehydrogenase according to claim 1, characterized in that at position 349 there is an amino acid with the exception of glycine and at position 372 an amino acid with the exception of threonine. serA-Allel codierend für eine PGD gemäß Anspruch 1 dadurch gekennzeichnet, dass sie sich vom Gen der Escherichia coli PGD (serA-Gen, SEQ ID NO: 1) dadurch unterscheidet, dass das Codon 349 für eine natürliche Aminosäure mit Ausnahme von Glycin oder das Codon 372 für eine natürliche Aminosäure mit Ausnahme von Threonin codiert.A serA allele encoding a PGD according to claim 1, characterized in that it differs from the gene of Escherichia coli PGD (serA gene, SEQ ID NO: 1) in that the codon 349 for a natural amino acid with the exception of glycine or the Codon 372 encoded for a natural amino acid except threonine. serA-Allel codierend für eine PGD gemäß Anspruch 2 dadurch gekennzeichnet, dass sie sich vom Gen der Escherichia coli PGD (serA-Gen, SEQ ID NO: 1) dadurch unterscheidet, dass das Codon 349 für eine natürliche Aminosäure mit Ausnahme von Glycin und das Codon 372 für eine natürliche Aminosäure mit Ausnahme von Threonin codiert.A serA allele coding for a PGD according to claim 2, characterized in that it differs from the gene of Escherichia coli PGD (serA gene, SEQ ID NO: 1) in that the codon 349 for a natural amino acid with the exception of glycine and the Codon 372 encoded for a natural amino acid except threonine. serA-Allel gemäß Anspruch 3 oder 4 dadurch gekennzeichnet, dass die enzymatische Aktivität des Genprodukts soweit erhalten bleibt, dass sie mehr als 10 % der Aktivität des Wildtyp Genprodukts entspricht und eine Mutation des Codons 349 für die Aminosäure Glycin bzw. des Codons 372 für die Aminosäure Threonin, oder eine Kombination der beiden Mutationen vorliegt. The serA allele according to claim 3 or 4, characterized in that the enzymatic activity of the gene product is maintained so that it corresponds to more than 10% of the activity of the wild-type gene product and a mutation of the codon 349 for the amino acid glycine and the codon 372 for the Amino acid threonine, or a combination of the two mutations is present. Vektor, dadurch gekennzeichnet, dass er ein serA-Allel gemäß Anspruch 3, 4 oder 5 unter funktioneller Kontrolle eines Promotors enthält.Vector, characterized in that it contains a serA allele according to claim 3, 4 or 5 under the functional control of a promoter. Verfahren zur Herstellung eines Mikroorganismenstammes, dadurch gekennzeichnet, dass in einen Mikroorganismenstamm ein Vektor gemäß Anspruch 6 eingebracht wird.Process for the preparation of a microorganism strain, characterized in that a vector according to claim 6 is introduced into a microorganism strain. Mikroorganismenstamm, der zur fermentativen Herstellung von Aminosäuren der Phosphoglycerat-Familie oder deren Derivaten bzw. von Verbindungen, die sich aus dem C1 Stoffwechsel ableiten, geeignet ist, dadurch gekennzeichnet, dass er eine PGD gemäß Anspruch 1 oder 2 besitzt.Microorganism strain which is suitable for the fermentative production of amino acids of the phosphoglycerate family or their derivatives or of compounds deriving from the C1 metabolism, characterized in that it has a PGD according to claim 1 or 2. Verfahren zur Herstellung von Aminosäuren der Phosphoglycerat-Familie bzw. von Verbindungen, die sich aus dem C1 Stoffwechsel ableiten, durch Kultivierung eines Mikroorganismenstammes gemäß Anspruch 8.Process for the preparation of amino acids of the phosphoglycerate family or of compounds which result from the C1 Derive metabolism by cultivating a microorganism strain according to claim 8. verwendung einer PGD gemäß Anspruch 1 oder 2 zur Herstellung von Aminosäuren der Phosphoglycerat-Familie oder von Verbindungen, die sich aus dem C1-Stoffwechsel ableiten.Use of a PGD according to claim 1 or 2 for the preparation of amino acids of the phosphoglycerate family or of Compounds derived from C1 metabolism.
EP04015524A 2003-07-10 2004-07-01 Variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes encoding the same. Expired - Lifetime EP1496111B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08152747A EP1950287B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them
EP07102448A EP1813669B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10331291 2003-07-10
DE10331291A DE10331291A1 (en) 2003-07-10 2003-07-10 Variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes coding for it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07102448A Division EP1813669B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them

Publications (3)

Publication Number Publication Date
EP1496111A2 true EP1496111A2 (en) 2005-01-12
EP1496111A3 EP1496111A3 (en) 2005-03-09
EP1496111B1 EP1496111B1 (en) 2007-05-02

Family

ID=33441709

Family Applications (3)

Application Number Title Priority Date Filing Date
EP07102448A Expired - Lifetime EP1813669B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them
EP04015524A Expired - Lifetime EP1496111B1 (en) 2003-07-10 2004-07-01 Variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes encoding the same.
EP08152747A Expired - Lifetime EP1950287B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07102448A Expired - Lifetime EP1813669B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08152747A Expired - Lifetime EP1950287B1 (en) 2003-07-10 2004-07-01 3-Phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them

Country Status (7)

Country Link
US (1) US7582460B2 (en)
EP (3) EP1813669B1 (en)
JP (1) JP4695855B2 (en)
CN (1) CN100526457C (en)
AT (3) ATE440946T1 (en)
DE (4) DE10331291A1 (en)
ES (2) ES2283906T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135188A2 (en) 2006-05-24 2007-11-29 Evonik Degussa Gmbh Process for the preparation of l-methionine
WO2010076324A1 (en) * 2008-12-31 2010-07-08 Metabolic Explorer Method for the preparation of diols
WO2012152664A1 (en) * 2011-05-11 2012-11-15 Wacker Chemie Ag Method for producing l-cystine by fermentation under controlled oxygen saturation
WO2013171098A3 (en) * 2012-05-18 2014-01-09 Wacker Chemie Ag Method for producing l-cysteine using a benzoic acid-containing culture medium

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332237B2 (en) * 2008-03-06 2013-11-06 味の素株式会社 L-cysteine producing bacterium and method for producing L-cysteine
US8383372B2 (en) * 2008-03-06 2013-02-26 Ajinomoto Co., Inc. L-cysteine producing bacterium and a method for producing L-cysteine
WO2011065469A1 (en) 2009-11-30 2011-06-03 味の素株式会社 L-cysteine-producing bacterium, and process for production of l-cysteine
EP2617808B1 (en) 2010-09-14 2016-06-15 Ajinomoto Co., Inc. Sulfur-containing amino acid-producing bacterium and method for producing sulfur-containing amino acids
JP2014087259A (en) 2011-02-22 2014-05-15 Ajinomoto Co Inc L-cysteine-producing bacterium, and production method of l-cysteine
US9234223B2 (en) 2011-04-01 2016-01-12 Ajinomoto Co., Inc. Method for producing L-cysteine
WO2012137689A1 (en) 2011-04-01 2012-10-11 味の素株式会社 Method for producing l-cysteine
JP2014131487A (en) 2011-04-18 2014-07-17 Ajinomoto Co Inc Method for producing l-cysteine
DE102011078481A1 (en) 2011-06-30 2013-01-03 Wacker Chemie Ag Process for the fermentative production of natural L-cysteine
CN102433312A (en) * 2011-11-30 2012-05-02 天津科技大学 D-3-phosphoglycerate-dehydrogenase as well as coding gene and construction method thereof
DE102012216527A1 (en) 2012-09-17 2014-03-20 Wacker Chemie Ag Process for the fermentative production of L-cysteine and derivatives of this amino acid
DE102013209274A1 (en) 2013-05-17 2014-11-20 Wacker Chemie Ag Microorganism and method for fermentative overproduction of gamma-glutamylcysteine and derivatives of this dipeptide
CN103436504A (en) * 2013-09-02 2013-12-11 江南大学 Construction method and application of corynebacterium glutamicum SYPS-062 resistant to feedback inhibition on L-serine
KR20230025010A (en) 2020-06-26 2023-02-21 와커 헤미 아게 Improved Cysteine Producing Strains
JP2023547024A (en) 2021-07-05 2023-11-09 ワッカー ケミー アクチエンゲゼルシャフト Method for enzymatic oxidation of sulfinic acid to sulfonic acid
CN118742558A (en) 2022-03-01 2024-10-01 瓦克化学股份公司 Improved cysteine producing strains

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012235A1 (en) * 1991-12-12 1993-06-24 Wacker-Chemie Gmbh Materials and methods for biosynthesis of serine and serine-related products
WO1994008031A1 (en) * 1992-09-28 1994-04-14 Consortium für elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539952A1 (en) 1995-10-26 1997-04-30 Consortium Elektrochem Ind Process for the preparation of O-acetylserine, L-cysteine and L-cysteine-related products
DE19726083A1 (en) 1997-06-19 1998-12-24 Consortium Elektrochem Ind Microorganisms and processes for the fermentative production of L-cysteine, L-cystine, N-acetyl-serine or thiazolidine derivatives
JP4066543B2 (en) * 1998-01-12 2008-03-26 味の素株式会社 Method for producing L-serine by fermentation
JP3997631B2 (en) 1998-01-12 2007-10-24 味の素株式会社 Method for producing L-serine by fermentation
DE19949579C1 (en) 1999-10-14 2000-11-16 Consortium Elektrochem Ind Microorganism with deregulated cysteine metabolism, useful for high-level production of cysteine and its derivatives, has increased activity of the CysB transcription regulator
DE10044831A1 (en) 2000-03-01 2002-04-04 Forschungszentrum Juelich Gmbh Improved process for the microbial production of L-serine and a suitable genetically modified microorganism
DE10046934A1 (en) 2000-09-21 2002-04-18 Consortium Elektrochem Ind Process for the fermentative production of non-proteinogenic L-amino acids
AU2002243526A (en) 2001-01-19 2002-08-12 Basf Ag Microorganisms and processes for enhanced production of pantothenate
DE10232930A1 (en) 2002-07-19 2004-02-05 Consortium für elektrochemische Industrie GmbH Process for the fermentative production of amino acids and amino acid derivatives of the phosphoglycerate family

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012235A1 (en) * 1991-12-12 1993-06-24 Wacker-Chemie Gmbh Materials and methods for biosynthesis of serine and serine-related products
WO1994008031A1 (en) * 1992-09-28 1994-04-14 Consortium für elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AL-RABIEE REGINA ET AL: "The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase: Cross-linking adjacent regulatory domains with engineered disulfides mimics effector binding" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 271, Nr. 22, 1996, Seiten 13013-13017, XP002295412 ISSN: 0021-9258 *
GRANT GREGORY A ET AL: "Probing the regulatory domain interface of D-3-phosphoglycerate dehydrogenase with engineered tryptophan residues" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 273, Nr. 35, 28. August 1998 (1998-08-28), Seiten 22389-22394, XP002295411 ISSN: 0021-9258 *
GRANT GREGORY A ET AL: "Role of an interdomain Gly-Gly sequence at the regulatory-substrate domain interface in the regulation of Escherichia coli. D-3-phosphoglycerate dehydrogenase" BIOCHEMISTRY, Bd. 39, Nr. 24, 20. Juni 2000 (2000-06-20), Seiten 7316-7319, XP002312560 ISSN: 0006-2960 *
GRANT GREGORY A ET AL: "Specific interactions at the regulatory domain-substrate binding domain interface influence the cooperativity of inhibition and effector binding in Escherichia coli D-3-phosphoglycerate dehydrogenase" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 276, Nr. 2, 12. Januar 2001 (2001-01-12), Seiten 1078-1083, XP002295413 ISSN: 0021-9258 *
SCHULLER D J ET AL: "THE ALLOSTERIC LIGAND SITE IN THE VMAX-TYPE COOPERATIVE ENZYME PHOSPHOGLYCERATE DEHYDROGENASE" NATURE STRUCTURAL BIOLOGY, NEW YORK, NY, US, Bd. 2, Nr. 1, 1. Januar 1995 (1995-01-01), Seiten 69-76, XP009036197 ISSN: 1072-8368 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135188A2 (en) 2006-05-24 2007-11-29 Evonik Degussa Gmbh Process for the preparation of l-methionine
WO2007135188A3 (en) * 2006-05-24 2008-03-06 Basf Ag Process for the preparation of l-methionine
WO2010076324A1 (en) * 2008-12-31 2010-07-08 Metabolic Explorer Method for the preparation of diols
US9121041B2 (en) 2008-12-31 2015-09-01 Metabolic Explorer Method for the preparation of diols
WO2012152664A1 (en) * 2011-05-11 2012-11-15 Wacker Chemie Ag Method for producing l-cystine by fermentation under controlled oxygen saturation
CN103517989A (en) * 2011-05-11 2014-01-15 瓦克化学股份公司 Method for producing l-cystine by fermentation under controlled oxygen saturation
US9074230B2 (en) 2011-05-11 2015-07-07 Wacker Chemie Ag Method for producing L-cystine by fermentation under controlled oxygen saturation
CN103517989B (en) * 2011-05-11 2015-11-25 瓦克化学股份公司 By the method for fermentative production CYSTINE under in check oxygen saturation
WO2013171098A3 (en) * 2012-05-18 2014-01-09 Wacker Chemie Ag Method for producing l-cysteine using a benzoic acid-containing culture medium

Also Published As

Publication number Publication date
US20050009162A1 (en) 2005-01-13
EP1813669A1 (en) 2007-08-01
DE502004009513D1 (en) 2009-07-02
EP1950287A2 (en) 2008-07-30
DE502004003661D1 (en) 2007-06-14
ES2283906T3 (en) 2007-11-01
EP1813669B1 (en) 2009-05-20
DE502004009985D1 (en) 2009-10-08
ATE440946T1 (en) 2009-09-15
EP1496111B1 (en) 2007-05-02
JP4695855B2 (en) 2011-06-08
EP1950287B1 (en) 2009-08-26
CN1609208A (en) 2005-04-27
ES2325603T3 (en) 2009-09-09
EP1496111A3 (en) 2005-03-09
CN100526457C (en) 2009-08-12
JP2005040134A (en) 2005-02-17
ATE431847T1 (en) 2009-06-15
EP1950287A3 (en) 2008-08-13
US7582460B2 (en) 2009-09-01
ATE361361T1 (en) 2007-05-15
DE10331291A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1496111B1 (en) Variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes encoding the same.
EP1382684B1 (en) Process for fermentative production of amino acids and amino acid derivatives of the phosphoglycerate family
EP0387527B1 (en) Process for the fermentative production of L-lysine
DE102004001674B4 (en) Process for the preparation of L-lysine using methanol-utilizing bacteria
EP0858510B1 (en) Process for preparing o-acetylserine, l-cysteine and l-cysteine-related products
DE60207685T2 (en) PROCESS FOR THE PREPARATION OF L-THREONINE
EP1155139B2 (en) Method for microbially producing l-valine
EP1220940A1 (en) Method for production of l-cysteine or l-cysteine derivatives by fermentation
DE19855312A1 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
CA2262813A1 (en) Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
WO1995019442A1 (en) Production of l-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase
EP1445310B1 (en) Process for the fermentative production of L-methionine
DE19846499A1 (en) Production of microorganisms that overproduce pantothenic acid, useful as vitamin in e.g. foods or medicines, by overexpressing sequences that encode ketopantothenate reductase
EP1570066B1 (en) Feedback-resistant homoserine transsuccinylases with a modified c-terminal
EP1924694B1 (en) Method for producing amino acids using micro-organisms
WO2015132213A1 (en) Process for preparing terminal amino carboxylic acids and amino aldehydes by means of a recombinant microorganism
EP1549754A2 (en) Feedback-resistant homoserine transsuccinylases
KR101755349B1 (en) Microorganism producing L-threonine and process for producing L-threonine using the same
DE102005049527B4 (en) Process for the preparation of L-serine, gene sequence, vectors and microorganism
DE10220234B4 (en) Processes and microorganisms for the microbial production of pyruvate from carbohydrates and alcohols
WO2004007705A1 (en) Nucleotide sequences that encode deregulated phosphoglycerate dehydrogenases of coryneform bacteria and method for producing l-serine
KR20160029964A (en) A microorganism having enhanced L-lysine productivity and a method of producing L-lysine using the same
DE10101501A1 (en) Process for the fermentative production of pantothenic acid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040701

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RTI1 Title (correction)

Free format text: VARIANTS OF 3-PHOSPHOGLYCERATE DEHYDROGENASE WITH REDUCED INHIBITION BY L-SERINE AND GENES ENCODING THE SAME

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17Q First examination report despatched

Effective date: 20050221

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: VARIANTS OF 3-PHOSPHOGLYCERATE DEHYDROGENASE WITH REDUCED INHIBITION BY L-SERINE AND GENES ENCODING THE SAME.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WACKER CHEMIE AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004003661

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: WACKER CHEMIE AG

Effective date: 20070516

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070802

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2283906

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: CONSORTIUM FUR ELEKTROCHEMISCHE INDUSTRIE G.M.B.H.

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070802

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071002

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070803

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071103

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20140630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140721

Year of fee payment: 11

Ref country code: CH

Payment date: 20140721

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140728

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140724

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 3015

Country of ref document: SK

Effective date: 20150701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190722

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 361361

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 20

Ref country code: DE

Payment date: 20230719

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004003661

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240630

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004003661

Country of ref document: DE

Owner name: WACKER CHEMIE AG, DE

Free format text: FORMER OWNER: WACKER CHEMIE AG, 81737 MUENCHEN, DE