EP1155139B2 - Method for microbially producing l-valine - Google Patents

Method for microbially producing l-valine Download PDF

Info

Publication number
EP1155139B2
EP1155139B2 EP00906363A EP00906363A EP1155139B2 EP 1155139 B2 EP1155139 B2 EP 1155139B2 EP 00906363 A EP00906363 A EP 00906363A EP 00906363 A EP00906363 A EP 00906363A EP 1155139 B2 EP1155139 B2 EP 1155139B2
Authority
EP
European Patent Office
Prior art keywords
gene
activity
ilvd
microorganism
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00906363A
Other languages
German (de)
French (fr)
Other versions
EP1155139A1 (en
EP1155139B1 (en
Inventor
Lothar Eggeling
Hermann Sahm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7898429&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1155139(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1155139A1 publication Critical patent/EP1155139A1/en
Application granted granted Critical
Publication of EP1155139B1 publication Critical patent/EP1155139B1/en
Publication of EP1155139B2 publication Critical patent/EP1155139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1014Hydroxymethyl-, formyl-transferases (2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine

Definitions

  • the present invention relates to a method for the microbial production of L-valine according to claim 1 to 11 and to be used in the method, transformed microorganisms according to claim 12 to 15.
  • the amino acid L-valine is a commercially important product used in animal nutrition, human nutrition and medicine. There is therefore a general interest in providing improved processes for the production of L-valine.
  • Valine can be prepared by chemical synthesis or biotechnologically by fermentation of suitable microorganisms in suitable nutrient solutions.
  • the advantage of biotechnological production by microorganisms lies in the formation of the correct stereoisomeric form, namely the L-form of valine free of D-valine.
  • Different types of bacteria such as Escherichia coli, Serratia marcescens, Corynebacterium glutamicum, Brevibacterium flavum or Brevibacterium lactofermentum can produce L-valine in a nutrient solution containing glucose.
  • US 5,658,766 shows that in Escherichia coli by mutation in the aminoacyl-tRNA synthetase increased formation can be achieved by L-valine.
  • WO 96,06926 further shows that lipoic acid auxotrophy can increase L-valine formation with Escherichia coli.
  • EP 0 694 614 A1 describes strains of Escherichia coli carrying resistance to ⁇ -ketobutyric acid and producing L-valine, L-isoleucine or L-leucine in a nutrient solution containing glucose.
  • EP-A-872 547 discloses that in Escherichia microorganisms, the production of L-valine can be increased by a modification of the H + ATP gene.
  • the gene may also include the IlvA gene.
  • acetohydroxy acid synthase and isomeroreductase are catalysts for sequential reactions in the path to, inter alia, valine in Co rynebacterium glutamicum .
  • Acetohydroxy acid synthase is encoded by two genes, ilvB and ilvN.
  • Nucleic Acids Research, 1987, Vol. 15, No. 5, pp. 2137-2155 discloses the sequencing of the ilvGMEDA operon of E. coli containing 5 genes which encode for 4 of the 5 enzymes necessary for the biosynthesis of L-valine.
  • the Japanese font Tokkai Hei 8-89249 discloses a coryneform bacterial DNA encoding dihydroxy acid dehydratase which can be used for the production of L-valine.
  • Japanese Tokkai Hei 5-344 893 shows that the production of L-valine can be enhanced by the use of plasmids carrying the gene of acetohydroxy acid synthase.
  • the EP 1006 189 A2 discloses a process for the production of D-pantothenic acid in which the genes panB and panC are amplified individually or in combination with each other, in particular overexpressed.
  • a defect mutation of ilvA can be performed or an amplification or overexpression of the genes ilvBN, ilvD or ilvC can be performed.
  • This object is achieved according to the invention in that the dihydroxy acid dehydratase (ilvD) activity and / or ilvD gene expression in a microorganism is enhanced, the activity of one or more enzymes specifically involved in the synthesis of D-pantothenate being attenuated or eliminated ,
  • acetohydroxy acid synthase (ilvBN) and isomeroreductase (ilvC) activity and / or ilvBNC gene expression in a microorganism is enhanced.
  • microorganisms in which the activity of at least one enzyme involved in a metabolic pathway which decreases L-valine formation is attenuated or eliminated may be used for the methods of the present invention.
  • microorganisms having a defect mutation in the threonine dehydratase (ilvA) gene and / or having a defect mutation in one or more genes of the pantothenate synthesis are preferably used in the process according to the invention.
  • valine or "L-valine” in the sense of the claimed invention, not only the free acid, but also the salt thereof, such as.
  • the term "enhancement” describes the enhancement of the intracellular activity of said enzymes ilvD, ilvB, ilvN and ilvC.
  • increase the enzyme activity in particular the endogenous activity in the microorganism is increased.
  • An increase in the enzyme activity can be achieved, for example, in which, by changing the catalytic center, an increased substrate conversion takes place or in which the action of enzyme inhibitors will be annulled.
  • increased enzyme activity can be achieved by increasing enzyme synthesis, for example by gene amplification or by elimination of factors that repress enzyme synthesis.
  • the endogenous enzyme activity is preferably increased according to the invention by mutation of the corresponding endogenous gene. Such mutations can be generated either undirected by conventional methods, such as UV irradiation or mutagenic chemicals, or targeted by genetic engineering methods, such as deletion (s), insertion (s) and / or nucleotide exchange (s).
  • the enhancement of gene expression according to the invention is preferably carried out by increasing the gene copy number.
  • the gene or genes are incorporated into a gene construct or into a vector which preferably contains gene sequences associated regulatory gene sequences, in particular those that enhance gene expression.
  • a microorganism preferably Corynebacterium glutamicum, is transformed with the corresponding gene constructs.
  • valine biosynthetic gene ilvD from Corynebacterium glutamicum, which codes for the enzyme dihydroxy acid dehydratase, produces L-valine in an improved manner.
  • the enhanced expression of the ilvBN genes, which code for the enzyme acetohydroxy acid synthase, and of the ilvC gene, which codes for the enzyme isomeroreductase, in Corynebacterium glutamicum bring about improved L-valine formation. Further enhancement of L-valine formation is achieved by overexpression of all the genes mentioned in Corynebacterium glutamicum.
  • the genes or gene constructs may be present in the host organism either in different copy number plasmids or integrated and amplified in the chromosome.
  • Further increase in gene expression may be effected, alternatively or in combination with an increase in gene copy number, by enhancing regulatory factors that positively affect gene expression.
  • enhancement of regulatory elements at the transcriptional level can be achieved, in particular by using amplified transcription signals.
  • the promoter and regulatory region located upstream of the structural gene can be mutated.
  • expression cassettes act, which are installed upstream of the structural gene.
  • inducible promoters it is additionally possible to increase expression in the course of fermentative L-valine formation.
  • an enhancement of the translation is possible, for example by the stability of the m-RNA is improved.
  • genes can be used which code for the corresponding enzyme with a high activity.
  • overexpression of the genes in question can be achieved by changing the composition of the medium and culture.
  • the expert finds among others Martin et al. (Bio / Technology 5, 137-146 (1987) ), at Guerrero et al. (Gene 138, 35-41 (1994) ) Tsuchiya and Morinaga (Bio / Technology 6, 428-430 (1988) ), at Eikmanns et al. (Gene 102, 93-98 (1991) ), in the European Patent EP 0 472 869 , in the U.S. Patent 4,601,893 , at Schwarzer and Pühler (Bio / Technology 9, 84-87 (1991) , at Reinscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994) ), at LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993) ) and in the patent application WO 96/15246 ,
  • Microorganisms which can be used in the process according to the invention can produce L-valine from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. It may be Gram-positive bacteria z.
  • B. the genus Bacillus or coryneform bacteria of the already mentioned genus Corynebacterium or Arthrobacter act. In the genus Corynebacterium, in particular, the species Corynebacterium glutamicum has already been mentioned, which is known in the art for its ability to form amino acids. To this species are wild-type strains, such. B.
  • a gene bank is first created.
  • the creation of gene banks is written down in well-known textbooks and manuals. As an example, the textbook of Winnacker: Genes and Clones, An Introduction to Genetic Engineering (Verlag Chemie, Weinheim, Germany, 1990 ) or the manual of Sambrook et al .: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989 ) called.
  • a known gene bank is that of the E. coli K-12 strain W3110, which is from Kohara et al. (Cell 50, 495-508 (1987) ) which was created in ⁇ vectors. Bathe et al.
  • plasmids such as pBR322 ( Bolivar, Life Sciences, 25, 807-818 (1979) ) or pUC19 ( Norrander et al., 1983, Gene, 26: 101-106 ) be used.
  • plasmids such as pJC1 ( Cremer et al., Mol. Gen. Genet. (1990) 220: 3221-3229 ) or pECM2 ( Jäger et al., J. Bacteriol. (1992) 174: 5462-5465 ) be used.
  • Hosts which are particularly suitable are those bacterial strains which are deficient in restriction and recombination.
  • An example of this is the strain Escherichia coli DH5 ⁇ mcr , which is from Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649 ), or the strain Corynebacterium glutamicum R127, of Liebl et al. was isolated (FEMS Lett (1989) 65: 299-304 ).
  • the gene bank is then transformed into an indicator strain by transformation ( Hanahan, Journal of Molecular Biology 166, 557-580, 1983 ) or electroporation ( Tauch et al., 1994, FEMS Microbiological Letters, 123: 343-347 ) built-in.
  • the indicator strain is characterized by having a mutation in the gene of interest that elicits a detectable phenotype, eg, an auxotrophy.
  • the indicator strains or mutants are available from published sources or Stammsamrnloder or may need to be self-produced.
  • the Corynebacterium glutamicum mutant R127 / 7 has been isolated, which is defective in the ilvD gene coding for the dihydroxy acid dehydratase.
  • the indicator strain such as ilvD mutant R127 / 7
  • the indicator strain becomes the corresponding characteristic, such as L-valine Neediness, prototrophic.
  • the thus isolated gene or DNA fragment can be determined by determining the sequence, such as Sanger et al. (Proceedings of the United States of America of the United States of America, 74: 5463-5467, 1977 ) are characterized. Subsequently, the degree of identity to known genes found in databases such as GenBank ( Benson et al., 1998, Nuleic Acids Research, 26: 1-7 ) are analyzed with published methods ( Altschul et al., 1990, Journal of Molecular Biology 215: 403-410 ).
  • the DNA sequence coding for the gene ilvD was obtained from Corynebacterium glutamicum, which is part of the present invention as SEQ ID NO 1. Furthermore, the amino acid sequences of the corresponding enzymes were derived from the present DNA sequence with the methods described above. SEQ ID NO 2 shows the resulting amino acid sequence of the ilvD gene product, namely dihydroxy acid dehydratase.
  • the thus characterized gene can then be expressed individually or in combination with others in a suitable microorganism for expression.
  • One known method of expressing or overexpressing genes is to amplify them by means of plasmid vectors, which may also be equipped with expression signals.
  • Suitable plasmid vectors are those which can replicate in the corresponding microorganisms.
  • the vectors pEKEx1 Eikmanns et al., Gene 102: 93-98 (1991)
  • pZ8-1 European Patent 0 375 889
  • pEKEx2 Eikmanns et al. Microbiology 140: 1817-1828 (1994) or pECM2 ( Jäger et al.
  • plasmids examples include pJC1ilvD, pECM3ilvBNCD, and pJC1ilvBNCD.
  • plasmids are Escherichia coli / Corynebacterium glutamicum shuttle vector carrying the gene ilvD or the gene ilvD together with the genes ilvB, ilvN, and ilvC.
  • the inventors have further found that the amplification of the gene, individually or in combination with the genes ilvB, ilvN and ilvC, has an advantageous effect in microorganisms which have a reduced synthesis of the amino acid L-isoleucine.
  • This reduced synthesis can be achieved by deletion of the ilvA gene, which codes for the specific for L-isoleucine synthesis enzyme threonine dehydratase.
  • the deletion may be by directed recombinant DNA techniques. With the help of these methods, for example, the ilvA gene coding for the threonine dehydratase can be deleted in the chromosome. Suitable methods are included Shufer et al. (Gene (1994) 145: 69-73 ) or too Link et al. (Journal of Bacteriology (1998) 179: 6228-6237 ). Also, only parts of the gene can be deleted, or mutated fragments of the Threonindehydratasegens be replaced. By deletion, a loss of Threonindehydratasemedimaschine is achieved. An example of such a mutant is the Corynebacterium glutamicum strain ATCC13032 ⁇ ilvA, which carries a deletion in the ilvA gene.
  • the inventors have furthermore found that the amplification of the genes ilvD, ilvB, ilvN and ilvC in a further combination with the reduced synthesis of D-pantothenate, preferably in combination with further deletion of the ilvA gene, in microorganisms advantageously has an effect on the L- Valine formation affects, for example, by deletions in the panB and panC gene.
  • the reduced D-pantothenate synthesis can be achieved by attenuation or elimination of the corresponding biosynthetic enzymes or their activities.
  • ketopantoate hydroxymethyltransferase EC 2.1.2.11
  • ketopantoate reductase EC 6.3.2.1
  • pantothenate ligase EC 6.3.2.1
  • aspartate decarboxylase EC 4.1.1.11
  • this includes directed recombinant DNA techniques.
  • Suitable methods are included Schfer et al. (Gene (1994) 145: 69-73 ) or too Link et al. (Journal of Bacteriology (1998) 179: 6228-6237 ).
  • ketopantoate hydroxymethyltransferase pantothenate ligase
  • ketopantoic acid reductase and aspartate decarboxylase
  • deletion or replacement a loss or a reduction of the respective enzyme activity is achieved.
  • An example of such a mutant is the Corynebacterium glutamicum strain ATCC13032 ⁇ panBC, which carries a deletion in the panBC operon.
  • microorganisms produced according to the invention can be cultured continuously or batchwise in the batch process (batch culturing) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of L-valine production.
  • batch culturing or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of L-valine production.
  • feed process or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of L-valine production.
  • Storhas bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994 )).
  • the culture medium to be used must suitably satisfy the requirements of the respective microorganisms. Descriptions of culture media of various microorganisms are included in the Manual of Methods for General Bacteriology of the American Society for Bacteriology (Washington D.C., USA, 1981).
  • sugars and carbohydrates such as e.g. Glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as.
  • soybean oil sunflower oil, peanut oil and coconut oil
  • fatty acids such.
  • palmitic acid, stearic acid and linoleic acid alcohols such.
  • glycerol and ethanol and organic acids such.
  • acetic acid can be used.
  • nitrogen source organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate may be used.
  • the nitrogen sources can be used singly or as a mixture.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used.
  • the culture medium must further contain salts of metals, e.g. Magnesium sulfate or iron sulfate necessary for growth.
  • essential growth substances such as amino acids and vitamins, can be used in addition to the above-mentioned substances.
  • the said feedstocks may be added to the culture in the form of a one-time batch or fed in a suitable manner during the cultivation.
  • basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acidic compounds such as phosphoric acid or sulfuric acid are suitably used.
  • antifoams such as e.g. Fatty acid polyglycol esters.
  • suitable selective substances e.g. Antibiotics
  • oxygen or oxygen containing gas mixtures e.g. Air, registered in the culture.
  • the temperature of the culture is usually 20 ° C to 50 ° C, and preferably 25 ° C to 45 ° C.
  • the culture is continued until a maximum of L-valine has formed. This goal is usually reached within 10 hours to 160 hours.
  • the concentration of L-valine formed can be determined by known methods ( Jones and Gilligan (1983) Journal of Chromatography 266: 471-482 ).
  • the enzyme activity of dihydroxy acid dehydratase was determined in the crude extract of these mutants.
  • the clones were cultured in 60 ml of LB medium and centrifuged off in the exponential growth phase.
  • the cell pellet was washed once with 0.05 M potassium phosphate buffer and resuspended in the same buffer.
  • the cell disruption was carried out by means of ultrasound treatment for 10 minutes (Branson Sonifier W-250, Branson Sonic Power Co, Danbury, USA).
  • the cell debris was then separated by centrifugation at 13,000 rpm and 4 ° C. for 30 minutes, and the supernatant was used as the crude extract in the enzyme assay.
  • the reaction batch of the enzyme test contained 0.2 ml of 0.25 M Tris / HCl, pH 8, 0.05 ml crude extract, and 0.15 ml of 65 mM alpha, beta-dihydroxy-beta-methylvalerate.
  • the test mixtures were incubated at 30 ° C., after 10, 20 and 30 minutes 200 ⁇ l samples were taken and their ketomethylvalerate concentration was determined by HPLC analysis ( Hara et al. 1985, Analytica Chimica Acta 172: 167-173 ).
  • strain R127 / 7 has no dihydroxy-acid dehydratase activity, whereas the isomeroreductase and acetohydroxy acid synthase activities are still present as further branched-chain amino acid branching enzymes.
  • Table 1 Specific activities ( ⁇ mol / min and mg protein) of valine biosynthetic enzymes in Corynebacterium glutamicum strains tribe Dihydroxyacid dehydratase Isomero reductase Acetohydroxy acid synthase R127 0,003 0.05 0.07 R127 / 7 0,000 0.06 0.09
  • pRV Restriction analyzes of the plasmid DNA revealed that the same plasmid, referred to below as pRV, was present in all 8 clones.
  • the plasmid carries a 4.3 kb insert and was retransformed for its ability to complement the ilvD mutant R127 / 7.
  • the region responsible for the complementation of the mutant R127 / 7 was limited to a 2.9 ScaI / XhoI fragment ( FIG. 2 ).
  • the nucleic acid sequence of the 2.9 kb ScaI / XhoI fragment was prepared by the dideoxy chain termination method of Sanger et al. (Proceedings of the National of Sciences of the United States of America USA (1977) 74: 5463-5467 ).
  • the Auto-Read sequencing kit was used (Amersham Pharmacia Biotech, Uppsala, Sweden).
  • the gel electrophoretic analysis was carried out with the automatic laser fluorescence sequencer (ALF) from Amersham Pharmacia Biotech (Uppsala, Sweden).
  • the obtained nucleotide sequence was analyzed with the program package HUSAR (Release 4.0, EMBL, Cambridge, UK).
  • the nucleotide sequence is shown as ID SEQ NO 1.
  • the analysis revealed an open reading frame of 1836 base pairs, identified as the ilvD gene, encoding a polypeptide of 612 amino acids, represented as SEQ ID NO 2.
  • the plasmid pRV was digested with the restriction enzymes ScaI and XhoI, according to the instructions of the manufacturer of the restriction enzymes (Roche, Boehringer Mannheim). Subsequently, the 2.9 kb ilvD fragment was isolated by Ioneninger Acidchen (Quiagen, Hilden). The overhanging end of the XhoI cut of the isolated fragment was filled in with Klenow polymerase.
  • the vector pJC1 Cremer et al., Mol. Gen. Genet (1990) 220: 478-480 ) was Pst I cut, also treated with Klenow polymerase, and then ligated fragment and vector. With the ligation mixture, the E.
  • Corynebacterium glutamicum ATCC13032 pJC1 and Corynebacterium glutamicum ATCC13032 pJClilvD were then used to determine ilvD-encoded dihydroxy-acid dehydratase activity.
  • the clones were cultured in 60 ml of LB medium and centrifuged off in the exponential growth phase. The cell pellet was washed once with 0.05 M potassium phosphate buffer and resuspended in the same buffer. The cell disruption was carried out by means of ultrasound treatment for 10 minutes (Branson Sonifier W-250, Branson Sonic Power Co, Danbury, USA). The cell debris was then separated by centrifugation at 13,000 rpm and 4 ° C.
  • the reaction assay of the enzyme assay contained 0.2 ml of 0.25 M Tris / HCl, pH 8, 0.05 ml crude extract, and 0.15 ml of 65 mM alpha, beta-dihydroxy-beta-methylvalerate.
  • the test mixtures were incubated at 30 ° C., after 10, 20 and 30 minutes 200 ⁇ l samples were taken and their ketomethylvalerate concentration was determined by HPLC analysis ( Hara et al. 1985, Analytica Chimica Acta 172: 167-173 ).
  • strain Corynebacterium glutamicum ATCC13032 pJC1ilvD has increased dihydroxy acid dehydratase activity over the control strain.
  • Example 2 Construction of an ilvA deletion mutant of Corynebacterium glutamicum
  • the vector was cut with BglII and, after separation of the ilvA internal BglII fragment by means of agarose gel electrophoresis, religated. Subsequently, the incomplete gene was isolated from the vector as an EcoRI fragment and inserted into the EcoRI linearized vector pK19mobsacB (FIG. Shufer 1994, Gene 145: 69-73 ) ligated.
  • the resulting inactivation vector pK19mobsacB ⁇ ilvA was introduced by transformation into the E. coli strain S 17-1 ( Hanahan 1983, Journal of Molecular Biology 166: 557-580 ) and conjugated to Corynebacterium glutamicum ATCC13032 ( Schfer et al.
  • Kanamycin-resistant clones of Corynebacterium glutamicum were obtained in which the inactivation vector was integrated in the genome.
  • kanamycin resistant clones were seeded on sucrose-containing LB medium ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbor Laboratory Press ) with 15 g / l agar, 2% glucose / 10% sucrose and obtained colonies which have lost the vector by a second recombination event ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ).
  • Chromosomal DNA from C. glutamicum ATCC13032 was isolated and cut with the restriction endonuclease Sau3A. After gel electrophoretic separation, DNA fragments in the size range from 3 to 7 or from 9 to 20 kb were extracted and subsequently ligated into the singular BamHI site of the vector pBR322. Insert-bearing colonies were isolated by tetracycline sensitivity after inoculation on LB plates with 10 ⁇ g / ml tetracycline.
  • Plasmid preparations (Sambrook et al., Molecular cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press) of pooled clones gave 8 plasmid pools, each containing 400 plasmids with an insert size of 9 to 20 kb and 9 plasmid pools, each containing 500 plasmids with an insert size of 3 to 7 kb, isolated.
  • the E. coli panB mutant SJ2 Cronan et al. 1982, J. Bacteriol. 149: 916-922 ) was isolated with this gene bank by electroporation ( Wehrmann et al. 1994, Microbiology 140: 3349-3356 ). The transformation approaches were directly transferred to CGXII medium ( J. Bacteriol.
  • a 2.2 kb fragment of the insert of pUR1 was prepared by the dideoxy chain termination method of Sanger et al. sequenced ( Proc. Natl. Acad. Sci. USA (1977) 74: 5463-5467 ).
  • the gel electrophoretic analysis was carried out with the automatic laser fluorescence sequencer (ALF) from Amersham Pharmacia Biotech (Uppsala, Sweden).
  • the obtained nucleotide sequence was analyzed with the program package HUSAR (Release 4.0, EMBL, Cambridge, UK).
  • the nucleotide sequence is shown as SEQ ID NO. 3 reproduced.
  • the analysis revealed the identification of two open reading frames.
  • An open reading frame comprises 813 base pairs and has high homologies to previously known panB genes from other organisms.
  • the C. glutamicum panB gene encodes a polypeptide of 271 amino acids (see SEQ ID No. 4).
  • the second open reading frame comprises 837 base pairs and has high homologies to already known panC genes from other organisms.
  • the C. glutamicum panC gene encodes a polypeptide of 279 amino acids (see SEQ ID No. 5).
  • Example 4 Construction of a panBC deletion mutant of Corynebacterium glutamicum
  • the genomic panBC fragment of Corynebacterium glutamicum ATCC13032 and Corynebacterium glutamicum ATCC13032 ⁇ ilvA was used with the Shufer et al. (Gene 145: 69-73 (1994) ) performed gene exchange system.
  • the 3.95 kb SspI / SalI fragment was first ligated with panBC with pUC18, which had previously been cut into SmaI / SalI. Subsequently, a 1293 bp EcoRV / NruI fragment was removed from the overlapping region of the panBC genes by restriction digestion and religation.
  • the 2 primers 5'-GAGAACTTAATCGAGCAACACCCCTG, 5'-GCGCCACGCCTAGCCTTGGCCCTCAA and the polymerase chain reaction (PCR) were used to amplify the deleted panBC region in pUC18 to obtain a 0.5 kb ⁇ panBC fragment at the ends a SaII, BEZW. EcoRI interface carries.
  • the PCR was performed according to Sambrook et al. (Molecular cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press) with an annealing temperature of 55 ° C.
  • the resulting fragment was ligated with the vector pK19mobsac previously cut EcoRI / SalI and treated with alkaline phosphatase.
  • the resulting inactivation vector pK19mobsacB ⁇ panBC was introduced by transformation into the Escherichia coli strain S 17-1 ( Hanahan (1983) J. Mol. Biol. 166: 557-580 ) and conjugated to Corynebacterium glutamicum ATCC13032 ( Schfer et al. (1990) J. Bacteriol. 172: 1663-1666 ). Kanamycin-resistant clones of Corynebacterium glutamicum were obtained in which the inactivation vector was integrated in the genome.
  • kanamycin-resistant clones were seeded on sucrose-containing LB medium (Sambrook et al., Molecular cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press) with 15 g / l agar, 2 % Glucose / 10% sucrose and obtained colonies which have lost the vector by a second recombination event ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ).
  • Example 5 Expression of the genes ilvD, ilvBN, and ilvC in Corynebacterium glutamicum
  • acetohydroxy acid synthase (ilvBN) and isomeroreductase (ilvC) ( Cordes et al. 1992, Gene 112: 113-116 and Keilhauer et al. 1993, Journal of Bacteriology 175: 5595-5603 ) and dihydroxy acid dehydratase (ilvD) (Example 1) were cloned into the vector pECM3 for expression.
  • the vector pECM3 is a derivative of pECM2 ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ) resulting from deletion of the approximately 1 kbp BamHI / BglII DNA fragment carrying the kanamycin resistance gene.
  • the plasmid pECM3ilvBNCD was introduced into the strain ATCC13032 ⁇ ilvA and the strain ATCC13032 ⁇ ilvA / pECM3ilvBNCD was obtained.
  • the strains indicated in Table 4 were pre-cultured in 60 ml of Brain Heart infusion medium (Difco Laboratories, Detroit, USA) for 14 h at 30 ° C. Subsequently, the cells were washed once with 0.9% NaCl solution (w / v) and 60 ml of CgXII medium were inoculated with this suspension so that the OD600 was 0.5.
  • the medium was identical to that at Keilhauer et al., (Journal of Bacteriology (1993) 175: 5595-5603 ) described medium.
  • the medium additionally contained 250 mg / l L-isoleucine. It is shown in Table 3.
  • Table 3 Composition of the medium CGXII component concentration (NH 4 ) 2 SO 4 20 g / L urea 5 g / L KH 2 PO 4 1 g / L K 2 HPO 4 1 g / L Mg 2 O 4 * 7H 2 O 0.25 g / L 3-morpholino propane 42 g / L CaCl 2 10 mg / L FeSO 4 * 7H 2 O 10 mg / L MnSO 4 * H 2 O 10 mg / L ZnSO 4 .7H 2 O 1 mg / L CuSO 4 0.2 mg / L NiCl 2 .6H 2 O 0.02 mg / L Biotin (pH7) 0.2 mg / L glucose 40 g / L protocatechuic 0.03 mg / L

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fodder In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a process for the microbial production of L-valine in which the dihydroxy acid-synthase (ilvD) activity and/or the ilvD gene expression is intensified in a microorganism. As an alternative or in combination with this, the acetohydroxy acid-synthase (ilvBN) activity and isomeroreductase (ilvC) activity and/or the ilvBNC gene expression are intensified in a microorganism. The process according to the invention preferably makes use of microorganisms in which the activity of at least one enzyme that is involved in a metabolic pathway that reduces the formation of L-valine is weakened or eliminated. Thus, for instance, the process according to the invention preferably makes use of microorganisms having a defect mutation in the threonine dehydratase (ilvA) gene and/or a defect mutation in one or more genes of the pantothenate synthesis.

Description

Die vorliegende Erfindung bezieht sich auf ein Verfahren zur mikrobiellen Herstellung von L-Valin nach Anspruch 1 bis 11 sowie auf im Verfahren einsetzbare, transformierte Mikroorganismen nach Anspruch 12 bis 15.The present invention relates to a method for the microbial production of L-valine according to claim 1 to 11 and to be used in the method, transformed microorganisms according to claim 12 to 15.

Die Aminosäure L-Valin stellt ein kommerziell bedeutendes Produkt dar, das in der Tierernährung, der Humanernährung und der Medizin Anwendung findet. Es besteht daher ein allgemeines Interesse daran, verbesserte Verfahren zur Herstellung von L-Valin bereitzustellen.The amino acid L-valine is a commercially important product used in animal nutrition, human nutrition and medicine. There is therefore a general interest in providing improved processes for the production of L-valine.

Valin kann durch chemische Synthese oder biotechnologisch durch Fermentation geeigneter Mikroorganismen in geeigneten Nährlösungen hergestellt werden. Der Vorteil der biotechnologischen Herstellung durch Mikroorganismen liegt in der Bildung der korrekten stereo-isomeren Form, nämlich der L-Form von Valin frei von D-Valin.Valine can be prepared by chemical synthesis or biotechnologically by fermentation of suitable microorganisms in suitable nutrient solutions. The advantage of biotechnological production by microorganisms lies in the formation of the correct stereoisomeric form, namely the L-form of valine free of D-valine.

Verschiedene Arten von Bakterien, wie z. B. Escherichia coli, Serratia marcescens, Corynebacterium glutamicum, Brevibacterium flavum oder Brevibacterium lactofermentum können in einer Nährlösung, die Glucose enthält, L-Valin produzieren. US 5 658 766 zeigt, daß bei Escherichia coli durch Mutation in derAminoacyl-tRNA-Synthetase eine gesteigerte Bildung von L-Valin erreicht werden kann. WO 96 06926 zeigt weiterhin, dass durch eine Liponsäure-Auxotrophie eine Steigerung der L-Valinbildung mit Escherichia coli erreicht werden kann. EP 0 694 614 A1 beschreibt Stämme von Escherichia coli, die Resistenzen gegenüber α-Ketobuttersäure tragen und in einer Nährlösung, die Glucose enthält, L-Valin, L-Isoleucin oder L-Leucin produzieren.Different types of bacteria, such as Escherichia coli, Serratia marcescens, Corynebacterium glutamicum, Brevibacterium flavum or Brevibacterium lactofermentum can produce L-valine in a nutrient solution containing glucose. US 5,658,766 shows that in Escherichia coli by mutation in the aminoacyl-tRNA synthetase increased formation can be achieved by L-valine. WO 96,06926 further shows that lipoic acid auxotrophy can increase L-valine formation with Escherichia coli. EP 0 694 614 A1 describes strains of Escherichia coli carrying resistance to α-ketobutyric acid and producing L-valine, L-isoleucine or L-leucine in a nutrient solution containing glucose.

In EP 0 477 000 wird gezeigt, dass durch Mutagenese von Corynebacterium oder Brevibacterium und Selektion auf Valin-Resistenz die L-Valinbildung verbessert werden kann. In derselben EP-Schrift wird auch gezeigt, dass durch Selektion von Corynebacterium oder Brevibacterium auf Resistenz gegenüber verschiedenen Pyruvat-Analoga, wie β-Fluoropyruvat, β-Chloropyruvat, β-Mercaptopyruvat oder Trimethylpyruvat eine verbesserte L-Valinbildung erreicht werden kann. Durch Nakayama et al. (Nakayama et al., 1961, J. Gen. Appl. Microbiol. Jpn ) ist bekannt, dass durch ungerichtete Mutationen eingeführte Auxotrophien zu verbesserter L-Valinakkumulation führen können.In EP 0 477 000 it is shown that by mutagenesis of Corynebacterium or Brevibacterium and selection for valine resistance, L-valine formation can be improved. The same EP document also shows that by selecting Corynebacterium or Brevibacterium for resistance to various pyruvate analogs, such as β-fluoropyruvate, β-chloropyruvate, β-mercaptopyruvate or trimethylpyruvate, improved L-valine formation can be achieved. By Nakayama et al. (Nakayama et al., 1961, J. Gen. Appl. Microbiol. Jpn ), it is known that auxotrophies introduced by undirected mutations can lead to improved L-valine accumulation.

In EP 0 356 739 A1 wird darüber hinaus gezeigt, dass bei Amplifikation des für die Acetohydroxysäuresynthase (ilvBN, siehe auch Figur 1) kodierenden DNA-Bereichs mittels des Plasmids pAJ220V3 die Bildung von L-Valin verbessert wird.In EP 0 356 739 A1 In addition, it is shown that in amplification of the acetohydroxy acid synthase (ilvBN, see also FIG. 1 ) encoding DNA region by means of the plasmid pAJ220V3 the formation of L-valine is improved.

EP-A-872547 offenbart, dass bei Escherichia Mikroorganismen, die Produktion von L-Valin durch eine Modifikation des H+ATP-Gens erhöht werden kann. Das Gen kann auch das IlvA-Gen einschließen. EP-A-872 547 discloses that in Escherichia microorganisms, the production of L-valine can be increased by a modification of the H + ATP gene. The gene may also include the IlvA gene.

Journal of Bacteriology, 1993, Band 175, Nr. 17, Seiten 5595-5603 offenbart, dass Acetohydroxysäuresynthase und Isomeroreductase (ilvC) Katalysatoren sind für nacheinander folgende Reaktionen im Weg zu u. a. Valin in Corynebacterium glutamicum. Acetohydroxysäuresynthase wird durch zwei Gene kodiert, ilvB und ilvN. Journal of Bacteriology, 1993, Vol. 175, No. 17, pp. 5595-5603 discloses that acetohydroxy acid synthase and isomeroreductase (ilvC) are catalysts for sequential reactions in the path to, inter alia, valine in Co rynebacterium glutamicum . Acetohydroxy acid synthase is encoded by two genes, ilvB and ilvN.

Nucleic Acids Research, 1987, Band 15, Nr. 5, Seiten 2137-2155 offenbart die Sequenzierung des IlvGMEDA Operons von E.coli, das 5 Gene enthält, die für 4 von den 5 Enzymen kodieren, die für die Biosynthese von L-Valin notwendig sind. Nucleic Acids Research, 1987, Vol. 15, No. 5, pp. 2137-2155 discloses the sequencing of the ilvGMEDA operon of E. coli containing 5 genes which encode for 4 of the 5 enzymes necessary for the biosynthesis of L-valine.

Gene, 1993, Band 137, Seiten 179-185 offenbart die Sequenzierung vom ilv3-Gen in Saccharomyces cerevisiae, das für Dihydroxysäurehydratase-Biosynthese notwendig ist. Gene, 1993, Volume 137, pages 179-185 discloses sequencing of the ilv3 gene in Saccharomyces cerevisiae , which is necessary for dihydroxy acid hydratase biosynthesis.

Die japanische Schrift Tokkai Hei 8-89249 offenbart eine aus coryneformen Bakterien stammende DNS, die für Dihydroxysäure-Dehydratase kodiert und die für die Produktion von L-Valin verwendet werden kann.The Japanese font Tokkai Hei 8-89249 discloses a coryneform bacterial DNA encoding dihydroxy acid dehydratase which can be used for the production of L-valine.

Die japanische Schrift Tokkai Hei 5-344 893 zeigt, dass die Produktion von L-Valin durch die Verwendung von Plasmiden, welche das Gen von AcetohydroxysäureSynthase tragen gesteigert werden kann.Japanese Tokkai Hei 5-344 893 shows that the production of L-valine can be enhanced by the use of plasmids carrying the gene of acetohydroxy acid synthase.

Die Veröffentlichung "Isoleucine Synthesis in Corynebacterium glutamicum: Molecular Analysis of ilvB - ilvN - ilvC Operon" von C. Keilhauer et al., Journal of Bacteriology, Sept. 1993, p. 5595-5603 offenbart Strukturanalysen des ilvBNC Operons.The publication "Isoleucine Synthesis in Corynebacterium glutamicum : Molecular Analysis of ilvB - ilvN - ilvC Operon" by Keilhauer et al., Journal of Bacteriology, Sept. 1993, p. 5595-5603 reveals structural analyzes of the ilvBNC operon.

Die EP 1006 189 A2 offenbart ein Verfahren zur Herstellung von D-Pantothensäure bei dem die Gene panB und panC einzeln oder kombiniert miteinander verstärkt, insbesondere überexprimiert werden. Fakultativ kann eine Defektmutation von ilvA vorgenommen oder eine Verstärkung bzw. Überexpression der Gene ilvBN, ilvD oder ilvC vorgenommen werden.The EP 1006 189 A2 discloses a process for the production of D-pantothenic acid in which the genes panB and panC are amplified individually or in combination with each other, in particular overexpressed. Optionally, a defect mutation of ilvA can be performed or an amplification or overexpression of the genes ilvBN, ilvD or ilvC can be performed.

Es ist Aufgabe der vorliegenden Erfindung, neue Grundlagen zur mikrobiellen Herstellung von L-Valin, insbesondere mit Hilfe coryneformer Bakterien, bereitzustellen.It is an object of the present invention to provide new bases for the microbial production of L-valine, in particular with the aid of coryneform bacteria.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Dihydroxysäuredehydratase- (ilvD-) Aktivität und/oder die ilvD-Genexpression in einem Mikroorganismus verstärkt wird, wobei die Aktivität eines oder mehrerer, an der Synthese von D-Pantothenat spezifisch beteiligter Enzyme abgeschwächt oder ausgeschaltet ist. In Kombination damit wird die Acetohydroxysäuresynthase- (ilvBN-) und Isomeroreduktase-(ilvC-) Aktivität und/oder die ilvBNC-Genexpression in einem Mikroorganismus verstärkt. Für die erfindungsgemäßen Verfahren können zusätzlich Mikroorganismen zum Einsatz kommen, in denen die Aktivität zumindest eines Enzyms, das an einem Stoffwechselweg beteiligt ist, der die L-Valinbildung herabsetzt, abgeschwächt oder ausgeschaltet ist. So werden in den erfindungsgemäßen Verfahren vorzugsweise Mikroorganismen mit einer Defektmutation im Threonindehydratase- (ilvA-) Gen und/oder mit einer Defektmutation in einem oder mehreren Genen der Pantothenatsynthese eingesetzt.This object is achieved according to the invention in that the dihydroxy acid dehydratase (ilvD) activity and / or ilvD gene expression in a microorganism is enhanced, the activity of one or more enzymes specifically involved in the synthesis of D-pantothenate being attenuated or eliminated , In combination, acetohydroxy acid synthase (ilvBN) and isomeroreductase (ilvC) activity and / or ilvBNC gene expression in a microorganism is enhanced. In addition, microorganisms in which the activity of at least one enzyme involved in a metabolic pathway which decreases L-valine formation is attenuated or eliminated may be used for the methods of the present invention. For example, microorganisms having a defect mutation in the threonine dehydratase (ilvA) gene and / or having a defect mutation in one or more genes of the pantothenate synthesis are preferably used in the process according to the invention.

Mit den Begriffen "Valin" oder "L-Valin" ist im Sinne der beanspruchten Erfindung nicht nur die Freie Säure, sondern auch das Salz davon, wie z. B. das Calcium-, Natrium-, Ammonium- oder Kaliumsalz, gemeint.With the terms "valine" or "L-valine" in the sense of the claimed invention, not only the free acid, but also the salt thereof, such as. The calcium, sodium, ammonium or potassium salt.

Der Begriff "Verstärkung" beschreibt die Erhöhung der intrazellulären Aktivität der genannten Enzyme ilvD, ilvB, ilvN und ilvC. Zur Erhöhung der Enzymaktivität wird insbesondere die endogene Aktivität im Mikroorganismus erhöht. Eine Erhöhung der Enzymaktivität kann beispielsweise erreicht werden, in dem durch Veränderung des katalytischen Zentrums ein erhöhter Substratumsatz erfolgt oder in dem die Wirkung von Enzyminhibitoren aufgehoben wird. Auch kann eine erhöhte Enzymaktivität durch Erhöhung der Enzymsynthese, beispielsweise durch Genamplifikation oder durch Ausschaltung von Faktoren, die die Enzymbiosynthese reprimieren, hervorgerufen werden. Die endogene Enzymaktivität wird erfindungsgemäß vorzugsweise durch Mutation des entsprechenden endogenen Gens erhöht. Derartige Mutationen können entweder nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise UV-Bestrahlung oder mutationsauslösenden Chemikalien, oder gezielt mittels gentechnologischer Methoden, wie Deletion(en), Insertion(en) und/oder Nukleotidaustausch(e).The term "enhancement" describes the enhancement of the intracellular activity of said enzymes ilvD, ilvB, ilvN and ilvC. To increase the enzyme activity, in particular the endogenous activity in the microorganism is increased. An increase in the enzyme activity can be achieved, for example, in which, by changing the catalytic center, an increased substrate conversion takes place or in which the action of enzyme inhibitors will be annulled. Also, increased enzyme activity can be achieved by increasing enzyme synthesis, for example by gene amplification or by elimination of factors that repress enzyme synthesis. The endogenous enzyme activity is preferably increased according to the invention by mutation of the corresponding endogenous gene. Such mutations can be generated either undirected by conventional methods, such as UV irradiation or mutagenic chemicals, or targeted by genetic engineering methods, such as deletion (s), insertion (s) and / or nucleotide exchange (s).

Die Verstärkung der Genexpression erfolgt erfindungsgemäß vorzugsweise durch Erhöhung der Genkopienzahl. Dazu wird das Gen bzw. werden die Gene in ein Genkonstrukt bzw. in einen Vektor eingebaut, der vorzugsweise den Genen zugeordnete regulatorische Gensequenzen enthält, insbesondere solche, die die Genexpression verstärken. Anschließend wird ein Mikroorganismus, vorzugsweise Corynebacterium glutamicum, mit den entsprechenden Genkonstrukten transformiert.The enhancement of gene expression according to the invention is preferably carried out by increasing the gene copy number. For this purpose, the gene or genes are incorporated into a gene construct or into a vector which preferably contains gene sequences associated regulatory gene sequences, in particular those that enhance gene expression. Subsequently, a microorganism, preferably Corynebacterium glutamicum, is transformed with the corresponding gene constructs.

Es wurde festgestellt, daß durch verstärkte Expression des Valinbiosynthesegens ilvD aus Corynebacterium glutamicum, welches für das Enzym Dihydroxysäuredehydratase kodiert, in verbesserter Weise L-Valin produziert wird. Erfindungsgemäss bewirken neben der verstärkten Expression dieses Gens auch die verstärkte Expression der ilvBN-Gene, die für das Enzym Acetohydroxysäuresynthase kodieren, und des ilvC-Gens, das für das Enzym Isomeroreduktase kodiert, in Corynebacterium glutamicum eine verbesserte L-Valinbildung. Eine weitere Verbesserung der L-Valinbildung wird durch Überexpression aller genannten Gene in Corynebacterium glutamicum erreicht. Die Gene oder Genkonstrukte können im Wirtsorganismus entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein.It has been found that enhanced expression of the valine biosynthetic gene ilvD from Corynebacterium glutamicum, which codes for the enzyme dihydroxy acid dehydratase, produces L-valine in an improved manner. According to the invention, in addition to the increased expression of this gene, the enhanced expression of the ilvBN genes, which code for the enzyme acetohydroxy acid synthase, and of the ilvC gene, which codes for the enzyme isomeroreductase, in Corynebacterium glutamicum bring about improved L-valine formation. Further enhancement of L-valine formation is achieved by overexpression of all the genes mentioned in Corynebacterium glutamicum. The genes or gene constructs may be present in the host organism either in different copy number plasmids or integrated and amplified in the chromosome.

Eine weitere Erhöhung der Genexpression kann - alternativ oder kombiniert mit einer Erhöhung der Genkopienzahl - durch Verstärkung regulatorischer Faktoren, die die Genexpression positiv beeinflussen, bewirkt werden. So kann eine Verstärkung regulatorischer Elemente auf Transkriptionsebene erfolgen, indem insbesondere verstärkte Transkriptionssignale verwendet werden. Auch kann die Promotor- und Regulationsregion, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich die Expression im Verlaufe der fermentativen L-Valinbildung zu steigern. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der m-RNA verbessert wird. Desweiteren können Gene verwendet werden, die für das entsprechende Enzym mit einer hohen Aktivität kodieren. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden. Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987) ), bei Guerrero et al. (Gene 138, 35-41 (1994) ), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988) ), bei Eikmanns et al. (Gene 102, 93-98 (1991) ), in der Europäischen Patentschrift EP 0 472 869 , im US Patent 4,601,893 , bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991) , bei Reinscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994) ), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993) ) und in der Patentanmeldung WO 96/15246 .Further increase in gene expression may be effected, alternatively or in combination with an increase in gene copy number, by enhancing regulatory factors that positively affect gene expression. Thus, enhancement of regulatory elements at the transcriptional level can be achieved, in particular by using amplified transcription signals. Also, the promoter and regulatory region located upstream of the structural gene can be mutated. In the same way, expression cassettes act, which are installed upstream of the structural gene. By inducible promoters it is additionally possible to increase expression in the course of fermentative L-valine formation. In addition, however, an enhancement of the translation is possible, for example by the stability of the m-RNA is improved. Furthermore, genes can be used which code for the corresponding enzyme with a high activity. Alternatively, overexpression of the genes in question can be achieved by changing the composition of the medium and culture. Instructions for this, the expert finds among others Martin et al. (Bio / Technology 5, 137-146 (1987) ), at Guerrero et al. (Gene 138, 35-41 (1994) ) Tsuchiya and Morinaga (Bio / Technology 6, 428-430 (1988) ), at Eikmanns et al. (Gene 102, 93-98 (1991) ), in the European Patent EP 0 472 869 , in the U.S. Patent 4,601,893 , at Schwarzer and Pühler (Bio / Technology 9, 84-87 (1991) , at Reinscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994) ), at LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993) ) and in the patent application WO 96/15246 ,

Für eine Verstärkung der Genexpression sind ebenso alle denkbaren Kombinationen der oben genannten Maßnahmen möglich.For amplification of gene expression, all possible combinations of the above measures are also possible.

Mikroorganismen, die im erfindungsgemäßen Verfahren einsetzbar sind, können L-Valin aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Gram-positive Bakterien z. B. der Gattung Bacillus oder um coryneforme Bakterien der bereits erwähnten Gattung Corynebacterium oder auch um Arthrobacter handeln. Bei der Gattung Corynebacterium wurde insbesondere bereits die Art Corynebacterium glutamicum genannt, die in der Fachwelt für ihre Fähigkeit bekannt ist Aminosäuren zu bilden. Zu dieser Art gehören Wildtypstämme, wie z. B. Corynebacterium glutamicum ATCC13032, Brevibacterium flavum ATCC14067, Brevibacterium lactofermentum ATCC13869, Brevibacterium thiogenitalis ATCC19240, Corynebacterium melassecola ATCC17965 und andere.Microorganisms which can be used in the process according to the invention can produce L-valine from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. It may be Gram-positive bacteria z. B. the genus Bacillus or coryneform bacteria of the already mentioned genus Corynebacterium or Arthrobacter act. In the genus Corynebacterium, in particular, the species Corynebacterium glutamicum has already been mentioned, which is known in the art for its ability to form amino acids. To this species are wild-type strains, such. B. Corynebacterium glutamicum ATCC13032, Brevibacterium flavum ATCC14067, Brevibacterium lactofermentum ATCC13869, Brevibacterium thiogenitalis ATCC19240, Corynebacterium molassecola ATCC17965 and others.

Zur Isolierung des Gens ilvD von Corynebacterium glutamicum oder anderer Gene wird zunächst eine Genbank angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990 ) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989 ) genannt. Eine bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495 - 508 (1987) ) die in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996 ) beschreiben eine Genbank von Corynebacterium glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I ( Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164 ) im E.coli K-12 NM554 ( Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575 ) angelegt wurde. Zur Herstellung einer Genbank von Corynebacterium glutamicum in Escherichia coli können auch Plasmide wie pBR322 ( Bolivar, Life Sciences, 25, 807-818 (1979) ) oder pUC19 ( Norrander et al., 1983, Gene, 26: 101-106 ) verwendet werden. Zur Herstellung einer Genbank von Corynebacterium glutamicum in Corynebacterium glutamicum können Plasmide wie pJC1 ( Cremer et al., Mol. Gen. Genet. (1990) 220: 3221-3229 ) oder pECM2 ( Jäger et al., J. Bacteriol. (1992) 174: 5462-5465 ) verwendet werden. Als Wirte eignen sich besonders solche Bakterien-Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm Escherichia coli DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649 ) beschrieben wurde, oder der Stamm Corynebacterium glutamicum R127, der von Liebl et al. isoliert wurde (FEMS Lett (1989) 65: 299-304 ).To isolate the gene ilvD of Corynebacterium glutamicum or other genes, a gene bank is first created. The creation of gene banks is written down in well-known textbooks and manuals. As an example, the textbook of Winnacker: Genes and Clones, An Introduction to Genetic Engineering (Verlag Chemie, Weinheim, Germany, 1990 ) or the manual of Sambrook et al .: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989 ) called. A known gene bank is that of the E. coli K-12 strain W3110, which is from Kohara et al. (Cell 50, 495-508 (1987) ) which was created in λ vectors. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996 ) describe a gene bank of Corynebacterium glutamicum ATCC13032, which with the aid of the cosmid vector SuperCos I ( Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164 ) in E. coli K-12 NM554 ( Raleigh et al., 1988, Nucleic Acids Research 16: 1563-1575 ) was created. For the production of a gene bank of Corynebacterium glutamicum in Escherichia coli, plasmids such as pBR322 ( Bolivar, Life Sciences, 25, 807-818 (1979) ) or pUC19 ( Norrander et al., 1983, Gene, 26: 101-106 ) be used. For the preparation of a gene bank of Corynebacterium glutamicum in Corynebacterium glutamicum, plasmids such as pJC1 ( Cremer et al., Mol. Gen. Genet. (1990) 220: 3221-3229 ) or pECM2 ( Jäger et al., J. Bacteriol. (1992) 174: 5462-5465 ) be used. Hosts which are particularly suitable are those bacterial strains which are deficient in restriction and recombination. An example of this is the strain Escherichia coli DH5α mcr , which is from Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649 ), or the strain Corynebacterium glutamicum R127, of Liebl et al. was isolated (FEMS Lett (1989) 65: 299-304 ).

Die Genbank wird anschließend in einen Indikatorstamm durch Transformation ( Hanahan, Journal of Molecular Biology 166, 557-580, 1983 ) oder Elektroporation ( Tauch et.al., 1994, FEMS Microbiological Letters, 123: 343-347 ) eingebaut. Der Indikatorstamm zeichnet sich dadurch aus, dass er eine Mutation in dem interessierenden Gen besitzt, die einen detektierbaren Phänotyp, z.B. eine Auxotrophie, hervorruft. Die Indikatorstämme bzw. Mutanten sind aus publizierten Quellen oder Stammsamrnlungen erhältlich oder müssen gegebenfalls selbst hergestellt werden. Im Rahmen der vorliegenden Erfindung ist die Corynebacterium glutamicum Mutante R127/7 isoliert worden, die in dem für die Dihydroxysäuredehydratase kodierendem ilvD-Gen defekt ist. Nach Transformation des Indikatorstammes, wie z.B. der ilvD-Mutante R127/7, mit einem rekombinanten Plasmid, welches das interessierende Gen, wie z.B. das ilvD-Gen trägt und Expression desselben, wird der Indikatorstamm bezüglich der entsprechenden Eigenschaft, wie z.B. der L-Valin-Bedürftigkeit, prototroph.The gene bank is then transformed into an indicator strain by transformation ( Hanahan, Journal of Molecular Biology 166, 557-580, 1983 ) or electroporation ( Tauch et al., 1994, FEMS Microbiological Letters, 123: 343-347 ) built-in. The indicator strain is characterized by having a mutation in the gene of interest that elicits a detectable phenotype, eg, an auxotrophy. The indicator strains or mutants are available from published sources or Stammsamrnlungen or may need to be self-produced. In the context of the present invention, the Corynebacterium glutamicum mutant R127 / 7 has been isolated, which is defective in the ilvD gene coding for the dihydroxy acid dehydratase. After transformation of the indicator strain, such as ilvD mutant R127 / 7, with a recombinant plasmid carrying the gene of interest, such as the ilvD gene, and expression thereof, the indicator strain becomes the corresponding characteristic, such as L-valine Neediness, prototrophic.

Das dergestalt isolierte Gen bzw. DNA-Fragment kann durch Bestimmung der Sequenz, wie z.B. bei Sanger et al. (Proceedings of the National of Sciences of the United States of America USA, 74:5463-5467, 1977 ) beschrieben, charakterisiert werden. Anschließend kann der Grad an Identität zu bekannten Genen, die in Datenbanken wie z.B. der GenBank ( Benson et el., 1998, Nuleic Acids Research, 26:1-7 ) enthalten sind, mit publizierten Methoden analysiert werden ( Altschul et al., 1990, Journal of Molecular Biology 215:403-410 ).The thus isolated gene or DNA fragment can be determined by determining the sequence, such as Sanger et al. (Proceedings of the United States of America of the United States of America, 74: 5463-5467, 1977 ) are characterized. Subsequently, the degree of identity to known genes found in databases such as GenBank ( Benson et al., 1998, Nuleic Acids Research, 26: 1-7 ) are analyzed with published methods ( Altschul et al., 1990, Journal of Molecular Biology 215: 403-410 ).

Auf diese Weise wurde die für das Gen ilvD kodierende DNA-Sequenz von Corynebacterium glutamicum erhalten, die als SEQ ID NO 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurden aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenzen der entsprechenden Enzyme abgeleitet. In SEQ ID NO 2 ist die sich ergebende Aminosäuresequenz des ilvD-Genproduktes, nämlich der Dihydroxysäuredehydratase, dargestellt.In this way, the DNA sequence coding for the gene ilvD was obtained from Corynebacterium glutamicum, which is part of the present invention as SEQ ID NO 1. Furthermore, the amino acid sequences of the corresponding enzymes were derived from the present DNA sequence with the methods described above. SEQ ID NO 2 shows the resulting amino acid sequence of the ilvD gene product, namely dihydroxy acid dehydratase.

Das dergestalt charakterisierte Gen kann anschließend einzeln oder in Kombination mit anderen in einem geeigneten Mikroorganismus zur Expression gebracht werden. Eine bekannte Methode, Gene zu exprimieren bzw. überzuexprimieren, besteht darin, diese mit Hilfe von Plasmidvektoren zu amplifizieren, die überdies mit Expressionssignalen ausgestattet sein können. Als Plasmidvektoren kommen solche in Frage, die in den entsprechenden Mikroorganismen replizieren können. Für Corynebacterium glutamicum kommen z.B. die Vektoren pEKEx1 ( Eikmanns et al., Gene 102:93-98 (1991) ) oder pZ8-1 ( Europäische Patentschrift 0 375 889 ) oder pEKEx2 ( Eikmanns et al. Microbiology 140: 1817-1828 (1994) oder pECM2 ( Jäger et al. Journal of Bacteriology 174(16): 5462-5465 (1992) ) in Frage. Beispiele für derartige Plasmide sind pJC1ilvD, pECM3ilvBNCD, und pJC1ilvBNCD. Diese Plasmide sind Escherichia coli/Corynebacterium glutamicum Pendelvektor die das Gen ilvD bzw. das Gen ilvD zusammen mit den Genen ilvB, ilvN, und ilvC tragen.The thus characterized gene can then be expressed individually or in combination with others in a suitable microorganism for expression. One known method of expressing or overexpressing genes is to amplify them by means of plasmid vectors, which may also be equipped with expression signals. Suitable plasmid vectors are those which can replicate in the corresponding microorganisms. For Corynebacterium glutamicum, for example, the vectors pEKEx1 ( Eikmanns et al., Gene 102: 93-98 (1991) ) or pZ8-1 ( European Patent 0 375 889 ) or pEKEx2 ( Eikmanns et al. Microbiology 140: 1817-1828 (1994) or pECM2 ( Jäger et al. Journal of Bacteriology 174 (16): 5462-5465 (1992) ) in question. Examples of such plasmids are pJC1ilvD, pECM3ilvBNCD, and pJC1ilvBNCD. These plasmids are Escherichia coli / Corynebacterium glutamicum shuttle vector carrying the gene ilvD or the gene ilvD together with the genes ilvB, ilvN, and ilvC.

Die Erfinder haben weiterhin gefunden, dass sich die Verstärkung des Gens einzeln oder in Kombination mit den Genen ilvB, ilvN und ilvC in solchen Mikroorganismen vorteilhaft auswirkt, die eine reduzierte Synthese der Aminosäure L-Isoleucin aufweisen. Diese reduzierte Synthese kann durch Deletion des ilvA-Gens erreicht werden, das für das für die L-Isoleucinsynthese spezifische Enzym Threonindehydratase kodiert.The inventors have further found that the amplification of the gene, individually or in combination with the genes ilvB, ilvN and ilvC, has an advantageous effect in microorganisms which have a reduced synthesis of the amino acid L-isoleucine. This reduced synthesis can be achieved by deletion of the ilvA gene, which codes for the specific for L-isoleucine synthesis enzyme threonine dehydratase.

Die Deletion kann durch gerichtete rekombinante DNA-Techniken erfolgen. Mit Hilfe dieser Methoden kann zum Beispiel das für die Threonindehydratase kodierende ilvA-Gen im Chromosom deletiert werden. Geeignete Methoden dazu sind bei Schäfer et al. (Gene (1994) 145: 69-73 ) oder auch Link et al. (Journal of Bacteriology (1998) 179: 6228-6237 ) beschrieben. Auch können nur Teile des Gens deletiert werden, oder auch mutierte Fragmente des Threonindehydratasegens ausgetauscht werden. Durch Deletion wird so ein Verlust der Threonindehydrataseaktivität erreicht. Ein Beispiel für eine derartige Mutante ist der Corynebacterium glutamicum Stamm ATCC13032ΔilvA, der eine Deletion im ilvA-Gen trägt.The deletion may be by directed recombinant DNA techniques. With the help of these methods, for example, the ilvA gene coding for the threonine dehydratase can be deleted in the chromosome. Suitable methods are included Schäfer et al. (Gene (1994) 145: 69-73 ) or too Link et al. (Journal of Bacteriology (1998) 179: 6228-6237 ). Also, only parts of the gene can be deleted, or mutated fragments of the Threonindehydratasegens be replaced. By deletion, a loss of Threonindehydrataseaktivität is achieved. An example of such a mutant is the Corynebacterium glutamicum strain ATCC13032ΔilvA, which carries a deletion in the ilvA gene.

Die Erfinder haben weiterhin gefunden, dass sich die Verstärkung der Gene ilvD, ilvB, ilvN und ilvC in einer weiteren Kombination mit der reduzierten Synthese von D-Pantothenat, vorzugsweise in Kombination mit weiterer Deletion des ilvA-Gens, in Mikroorganismen vorteilhaft auf die L-Valinbildung auswirkt, so zum Beispiel durch Deletionen im panB- und panC-Gen. Die reduzierte D-Pantothenatsynthese kann durch Abschwächung oder Ausschaltung der entsprechenden Biosyntheseenzyme bzw. Ihrer Aktivitäten erreicht werden. Hierfür kommen zum Beispiel die Enzyme Ketopantoathydroxymethyltransferase (EC 2.1.2.11), Ketopantoatreduktase, Pantothenatligase (EC 6.3.2.1) und die Aspartatdecarboxylase (EC 4.1.1.11) in Frage. Eine Möglichkeit, Enzyme und deren Aktivitäten auszuschalten oder abzuschwächen, sind Mutageneseverfahren.The inventors have furthermore found that the amplification of the genes ilvD, ilvB, ilvN and ilvC in a further combination with the reduced synthesis of D-pantothenate, preferably in combination with further deletion of the ilvA gene, in microorganisms advantageously has an effect on the L- Valine formation affects, for example, by deletions in the panB and panC gene. The reduced D-pantothenate synthesis can be achieved by attenuation or elimination of the corresponding biosynthetic enzymes or their activities. For example, the enzymes ketopantoate hydroxymethyltransferase (EC 2.1.2.11), ketopantoate reductase, pantothenate ligase (EC 6.3.2.1) and aspartate decarboxylase (EC 4.1.1.11) are suitable for this purpose. One way to eliminate or mitigate enzymes and their activities is through mutagenesis.

Hierzu gehören ungerichtete Verfahren, die chemische Reagenzien, wie z.B. N-methyl-N-nitro-N-nitrosoguanidin, oder auch UV-Bestrahlung zur Mutagenese benutzen, mit anschließender Suche der gewünschten Mikroorganismen auf Bedürftigkeit für D-Pantothenat. Verfahren zur Mutationsauslösung und Mutantensuche sind allgemein bekannt und können unter anderem bei Miller (A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992 )) oder im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) nachgelesen werden.These include undirected methods using chemical reagents, such as N-methyl-N-nitro-N-nitrosoguanidine, or UV irradiation for mutagenesis, followed by a search of the desired microorganisms for D-pantothenate need. Methods for mutation induction and mutant searches are well known and can be used, inter alia, in Miller (A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992 ) or in the Manual of Methods for General Bacteriology of the American Society for Bacteriology (Washington DC, USA, 1981).

Weiterhin gehören hierzu gerichtete rekombinante DNA-Techniken. Mit Hilfe dieser Methoden können zum Beispiel die für die Ketopantoathydroxymethyltransferase, Pantothenatligase, Ketopantoinsäurereduktase oder Aspartatdecarboxylase kodierenden Gene panB, panC, panE und panD einzeln oder auch gemeinsam im Chromosom deletiert werden. Geeignete Methoden dazu sind bei Schäfer et al. (Gene (1994) 145: 69-73 ) oder auch Link et al. (Journal of Bacteriology (1998) 179: 6228-6237 ) beschrieben. Auch können nur Teile der Gene deletiert werden oder auch mutierte Fragmente der Ketopantoathydroxymethyltransferase, Pantothenatligase, Ketopantoinsäurereduktase und der Aspartatdecarboxylase ausgetauscht werden. Durch Deletion oder Austausch wird so ein Verlust oder eine Reduktion der jeweiligen Enzymaktivität erreicht. Ein Beispiel für eine derartige Mutante ist der Corynebacterium glutamicum Stamm ATCC13032ΔpanBC, der eine Deletion im panBC Operon trägt.Furthermore, this includes directed recombinant DNA techniques. With the aid of these methods, it is possible, for example, to delete the genes panB, panC, panE and panD coding for ketopantoate hydroxymethyltransferase, pantothenate ligase, ketopantoic acid reductase or aspartate decarboxylase individually or else together in the chromosome. Suitable methods are included Schäfer et al. (Gene (1994) 145: 69-73 ) or too Link et al. (Journal of Bacteriology (1998) 179: 6228-6237 ). Also, only parts of the genes can be deleted or mutated fragments of ketopantoate hydroxymethyltransferase, pantothenate ligase, ketopantoic acid reductase and aspartate decarboxylase can be exchanged. By deletion or replacement, a loss or a reduction of the respective enzyme activity is achieved. An example of such a mutant is the Corynebacterium glutamicum strain ATCC13032ΔpanBC, which carries a deletion in the panBC operon.

Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der L-Valin-Produktion kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991 )) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994 )) beschrieben.The microorganisms produced according to the invention can be cultured continuously or batchwise in the batch process (batch culturing) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of L-valine production. A summary of known cultivation methods are in the textbook of Chmiel (Bioprocessing Technology 1. Introduction to Bioprocess Engineering (Gustav Fischer Verlag, Stuttgart, 1991 )) or in the textbook of Storhas (bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994 )).

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Mikroorganismen genügen. Beschreibungen von Kulturmedien verschiedenener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten, wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe, wie Aminosäuren und Vitamine, zusätzlich zu den oben genannten Stoffen eingesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.The culture medium to be used must suitably satisfy the requirements of the respective microorganisms. Descriptions of culture media of various microorganisms are included in the Manual of Methods for General Bacteriology of the American Society for Bacteriology (Washington D.C., USA, 1981). As the carbon source, sugars and carbohydrates such as e.g. Glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as. As soybean oil, sunflower oil, peanut oil and coconut oil, fatty acids such. As palmitic acid, stearic acid and linoleic acid, alcohols such. As glycerol and ethanol and organic acids such. As acetic acid can be used. These substances can be used individually or as a mixture. As the nitrogen source, organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate may be used. The nitrogen sources can be used singly or as a mixture. As the phosphorus source, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used. The culture medium must further contain salts of metals, e.g. Magnesium sulfate or iron sulfate necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be used in addition to the above-mentioned substances. The said feedstocks may be added to the culture in the form of a one-time batch or fed in a suitable manner during the cultivation.

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel, wie z.B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, z.B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten werden Sauerstoff oder Sauerstoff-haltige Gasmischungen, wie z.B. Luft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 50°C und vorzugsweise bei 25°C bis 45°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum an L-Valin gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.For pH control of the culture, basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acidic compounds such as phosphoric acid or sulfuric acid are suitably used. To control foaming, antifoams, such as e.g. Fatty acid polyglycol esters. In order to maintain the stability of plasmids, suitable selective substances, e.g. Antibiotics, to be added. In order to maintain aerobic conditions, oxygen or oxygen containing gas mixtures, e.g. Air, registered in the culture. The temperature of the culture is usually 20 ° C to 50 ° C, and preferably 25 ° C to 45 ° C. The culture is continued until a maximum of L-valine has formed. This goal is usually reached within 10 hours to 160 hours.

Die Konzentration an gebildetem L-Valin kann mit bekannten Verfahren ( Jones und Gilligan (1983) Journal of Chromatography 266: 471-482 ) bestimmt werden.The concentration of L-valine formed can be determined by known methods ( Jones and Gilligan (1983) Journal of Chromatography 266: 471-482 ).

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:The invention will be explained in more detail with reference to the following exemplary embodiments:

Beispiel 1: Klonierung, Sequenzierung und Expression des für die Dihydroxysäuredehydratase kodierenden ilvD-Gens aus Corynebacterium glutamicumExample 1 Cloning, Sequencing and Expression of the Dihydroxy acid dehydratase-encoding ilvD gene from Corynebacterium glutamicum 1. Isolierung einer ilvD Mutante von Corynebacterium glutamicum1. Isolation of an ilvD mutant of Corynebacterium glutamicum

Der Stamm Corynebacterium glutamicum R127 ( Haynes 1989, FEMS Microbiology Letters 61: 329-334 ) wurde mit N-methyl-N-nitro-N-nitrosoguanidin mutagenisiert (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press). Dazu wurden 5 ml einer über Nacht angezogenen Corynebacterium glutamicum Kultur mit 250 µl N-methyl-N-nitro-N-nitrosoguanidin (5 mg /ml Dimethylformamid) versetzt und 30 Minuten bei 30 °C und 200 Upm inkubiert ( Adelberg 1958, Journal of Bacteriology 76: 326 ). Die Zellen wurden anschließend zweimal mit steriler NaCl-Lösung (0,9 %) gewaschen. Durch Replikaplattierung auf Minimalmediumplatten CGXII mit 15 g/l Agar ( Keilhauer et al., Journal of Bacteriology 175: 5595-5603 ) wurden Mutanten isoliert, die nur bei Zugabe von L-Valin, L-Isoleucin und L-Leucin (je 0,1 g/l) wuchsen.The strain Corynebacterium glutamicum R127 ( Haynes 1989, FEMS Microbiology Letters 61: 329-334 ) was mutagenized with N-methyl-N-nitro-N-nitrosoguanidine (Sambrook et al., Molecular Cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press). For this purpose, 5 ml of an overnight culture of Corynebacterium glutamicum were admixed with 250 μl of N-methyl-N-nitro-N-nitrosoguanidine (5 mg / ml dimethylformamide) and incubated for 30 minutes at 30 ° C. and 200 rpm ( Adelberg 1958, Journal of Bacteriology 76: 326 ). The cells were then washed twice with sterile NaCl solution (0.9%). By replica plating on minimal medium plates CGXII with 15 g / l agar ( Keilhauer et al., Journal of Bacteriology 175: 5595-5603 ) mutants were isolated, which grew only with the addition of L-valine, L-isoleucine and L-leucine (0.1 g / l each).

Die Enzymaktivität der Dihydroxysäuredehydratase wurde im Rohextrakt dieser Mutanten bestimmt. Dazu wurden die Klone in 60 ml LB-Medium kultiviert und in der exponentiellen Wachstumsphase abzentrifugiert. Das Zellpellet wurde einmal mit 0,05 M Kaliumphosphatpuffer gewaschen und im selben Puffer resuspensiert. Der Zellaufschluß erfolgte mittels 10 minütiger Ultraschallbehandlung (Branson-Sonifier W-250, Branson Sonic Power Co, Danbury, USA). Anschließend wurden die Zelltrümmer durch eine 30 minütige Zentrifugation bei 13000 rpm und 4 °C abgetrennt und der Überstand als Rohextrakt in den Enzymtest eingesetzt. Der Reaktionsansatz des Enzymtests enthielt 0,2 ml 0,25 M Tris/HCl, pH 8, 0,05 ml Rohextrakt, und 0,15 ml 65 mM alpha,β-Dihydroxy-β-methylvalerat. Die Testansätze wurden bei 30 °C inkubiert, nach 10, 20 und 30 Minuten wurde je 200 µl Proben genommen und deren Ketomethylvaleratkonzentration mittels HPLC-Analytik bestimmt ( Hara et al. 1985, Analytica Chimica Acta 172: 167-173 ). Wie Tabelle 1 zeigt, weist der Stamm R127/7 keine Dihydroxysäuredehydrataseaktivität auf, wogegen die Isomeroreduktaseund Acetohydroxysäuresynthaseaktivitäten als weitere Enzyme der Synthese der verzweigtkettigen Aminosäuren noch vorhanden sind. Tabelle 1 Spezifische Aktivitäten (µmol/min und mg Protein) von Valinbiosyntheseenzymen in Corynebacterium glutamicum Stämmen Stamm Dihydroxysäure dehydratase Isomero reduktase Acetohydroxysäure synthase R127 0,003 0,05 0,07 R127/7 0,000 0,06 0,09 The enzyme activity of dihydroxy acid dehydratase was determined in the crude extract of these mutants. For this, the clones were cultured in 60 ml of LB medium and centrifuged off in the exponential growth phase. The cell pellet was washed once with 0.05 M potassium phosphate buffer and resuspended in the same buffer. The cell disruption was carried out by means of ultrasound treatment for 10 minutes (Branson Sonifier W-250, Branson Sonic Power Co, Danbury, USA). The cell debris was then separated by centrifugation at 13,000 rpm and 4 ° C. for 30 minutes, and the supernatant was used as the crude extract in the enzyme assay. The reaction batch of the enzyme test contained 0.2 ml of 0.25 M Tris / HCl, pH 8, 0.05 ml crude extract, and 0.15 ml of 65 mM alpha, beta-dihydroxy-beta-methylvalerate. The test mixtures were incubated at 30 ° C., after 10, 20 and 30 minutes 200 μl samples were taken and their ketomethylvalerate concentration was determined by HPLC analysis ( Hara et al. 1985, Analytica Chimica Acta 172: 167-173 ). As Table 1 shows, strain R127 / 7 has no dihydroxy-acid dehydratase activity, whereas the isomeroreductase and acetohydroxy acid synthase activities are still present as further branched-chain amino acid branching enzymes. Table 1 Specific activities (μmol / min and mg protein) of valine biosynthetic enzymes in Corynebacterium glutamicum strains tribe Dihydroxyacid dehydratase Isomero reductase Acetohydroxy acid synthase R127 0,003 0.05 0.07 R127 / 7 0,000 0.06 0.09

2. Klonierung des ilvD-Gens von Corynebacterium glutamicum2. Cloning of the ilvD gene of Corynebacterium glutamicum

Chromosomale DNA aus Corynebacterium glutamicum R127 wurde, wie bei Schwarzer und Pühler (Bio/Technology 9 (1990) 84-87 ) beschrieben, isoliert.Chromosomal DNA from Corynebacterium glutamicum R127 was as in Schwarzer and Pühler (Bio / Technology 9 (1990) 84-87 ), isolated.

Diese wurde mit dem Restriktionsenzym Sau3A (Boehringer Mannheim) gespalten und durch Saccharose-Dichte-Gradienten-Zentrifugation ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press ) aufgetrennt. Die Fraktion mit dem Fragmentgrößenbereich von etwa 6-10 kb wurde zur Ligation mit dem Vektor pJC1 ( Cremer et al., Molecular and General Genetics 220 (1990) 478-480 ) eingesetzt. Der Vektor pJC1 wurde hierzu mit BamHI linearisiert und dephosphoryliert. Fünf ng davon wurden mit 20 ng der genannten Fraktion der chromosomalen DNA ligiert und damit die Mutante R127/7 durch Elektroporation ( Haynes und Britz, FEMS Microbiology Letters 61 (1989) 329-334 ) transformiert. Die Transformanten wurden auf die Fähigkeit getestet, auf CGXII Agarplatten ohne Zugabe der verzweigtkettigen Aminosäuren wachsen zu können. Von über 5000 getesteten Transformanden wuchsen nach Replicaplattierung und zweitägiger Inkubation bei 30°C 8 Klone auf Minmalmediumplatten. Von diesen Klonen wurden Plasmidpräparationen, wie bei Schwarzer et al. (Bio/Technology (1990) 9: 84-87 ) beschrieben durchgeführt. Restriktionsanalysen der Plasmid-DNA ergaben, daß in allen 8 Klonen dasselbe Plasmid, im Folgendem pRV genannt, enthalten war. Das Plasmid trägt ein Insert von 4,3 kb und wurde durch Retransformation auf seine Fähigkeit die ilvD-Mutante R127/7 zu komplementieren getestet. Durch Subklonierung wurde der für die Komplementation der Mutante R127/7 verantwortliche Bereich auf ein 2,9 ScaI/XhoI-Fragment eingegrenzt (Figur 2).This was cleaved with the restriction enzyme Sau3A (Boehringer Mannheim) and purified by sucrose density gradient centrifugation ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbor Laboratory Press ) separated. The fraction with the fragment size range of about 6-10 kb was used for ligation with the vector pJC1 (FIG. Cremer et al., Molecular and General Genetics 220 (1990) 478-480 ) used. The vector pJC1 was linearized for this purpose with BamHI and dephosphorylated. Five ng of these were ligated with 20 ng of said fraction of the chromosomal DNA and thus the mutant R127 / 7 by electroporation ( Haynes and Britz, FEMS Microbiology Letters 61 (1989) 329-334 ). The transformants were tested for the ability to grow on CGXII agar plates without addition of the branched-chain amino acids. Of more than 5,000 transformants tested, eight clones grew on minimal medium plates after replica plating and two days incubation at 30 ° C. Of these clones, plasmid preparations were made as in Schwarzer et al. (Bio / Technology (1990) 9: 84-87 ). Restriction analyzes of the plasmid DNA revealed that the same plasmid, referred to below as pRV, was present in all 8 clones. The plasmid carries a 4.3 kb insert and was retransformed for its ability to complement the ilvD mutant R127 / 7. By subcloning, the region responsible for the complementation of the mutant R127 / 7 was limited to a 2.9 ScaI / XhoI fragment ( FIG. 2 ).

3. Sequenzierung des ilvD-Gens3. Sequencing of the ilvD gene

Die Nukleinsäuresequenz des 2,9 kb ScaI/XhoI-Fragments wurde nach der Dideoxy-Kettenabbruchmethode von Sanger et al. durchgeführt (Proceedings of the National of Sciences of the United States of America USA (1977) 74: 5463-5467 ). Dabei wurde der Auto-Read Sequencing kit verwendet (Amersham Pharmacia Biotech, Uppsala, Schweden). Die gelelektrophoretische Analyse erfolgte mit dem automatischem Laser-Fluoreszenz Sequenziergerät (A.L.F.) von Amersham Pharmacia Biotech (Uppsala, Schweden). Die erhaltene Nukleotidsequenz wurde mit dem Programmpaket HUSAR (Release 4.0, EMBL, Cambridge, GB) analysiert. Die Nukleotidsequenz ist als ID SEQ NO 1 wiedergegeben. Die Analyse ergab ein offenes Leseraster von 1836 Basenpaaren, das als ilvD-Gen identifiziert wurde und für ein Polypeptid von 612 Aminosäuren kodiert, das als SEQ ID NO 2 wiedergegeben ist.The nucleic acid sequence of the 2.9 kb ScaI / XhoI fragment was prepared by the dideoxy chain termination method of Sanger et al. (Proceedings of the National of Sciences of the United States of America USA (1977) 74: 5463-5467 ). The Auto-Read sequencing kit was used (Amersham Pharmacia Biotech, Uppsala, Sweden). The gel electrophoretic analysis was carried out with the automatic laser fluorescence sequencer (ALF) from Amersham Pharmacia Biotech (Uppsala, Sweden). The obtained nucleotide sequence was analyzed with the program package HUSAR (Release 4.0, EMBL, Cambridge, UK). The nucleotide sequence is shown as ID SEQ NO 1. The analysis revealed an open reading frame of 1836 base pairs, identified as the ilvD gene, encoding a polypeptide of 612 amino acids, represented as SEQ ID NO 2.

4. Expression des ilvD-Gens4. Expression of the ilvD gene

Das Plasmid pRV wurde mit den Restriktionsenzymen ScaI und XhoI, entsprechend den Angaben des Herstellers der Restriktionsenzyme, verdaut (Roche, Boehringer Mannheim). Anschließend wurde das 2,9 kb ilvD Fragment mittels Ionenaustauschersäulchen isoliert (Quiagen, Hilden). Das überhängende Ende des Xhol Schnitts des isolierten Fragmentes wurde mit Klenow Polymerase aufgefüllt. Der Vektor pJC1 ( Cremer et al., Mol. Gen. Genet (1990)220:478-480 ) wurde PstI-geschnitten, ebenfalls mit Klenow Polymerase behandelt, und anschließend Fragment und Vektor ligiert. Mit dem Ligationsansatz wurde der E. coli Stamm DH5αmcr ( Grant et al., Proceedings of the National of Sciences of the United States of America USA, 87 (1990) 4645-4649 ) transformiert ( Hanahan, Journal of Molecular Biology 166 (1983) 557-580 ). Durch Plasmidpräparationen ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press ) von Klonen wurde ein Klon identifiziert, der das rekombinante Plasmid pJC1ilvD enthielt. Mit diesem Plasmid wurde Corvnebacterium glutamicum ATCC13032 mittels Elektroporation transformiert, wie bei Haynes et al. (1989, FEMS Microbiol. Lett. 61: 329-334 ) beschrieben. Von Corynebacterium glutamicum ATCC13032 pJC1 und Corynebacterium glutamicum ATCC13032 pJClilvD wurde anschließend die durch ilvD kodierte Dihydroxysäuredehydrataseaktivität bestimmt. Dazu wurden die Klone in 60 ml LB-Medium kultiviert und in der exponentiellen Wachstumsphase abzentrifugiert. Das Zellpellet wurde einmal mit 0,05 M Kaliumphosphatpuffer gewaschen und im selben Puffer resuspensiert. Der Zellaufschluß erfolgte mittels 10 minütiger Ultraschallbehandlung (Branson-Sonifier W-250, Branson Sonic Power Co, Danbury, USA). Anschließend wurden die Zelltrümmer durch eine 30 minütige Zentrifugation bei 13000 rpm und 4 °C abgetrennt und der Überstand als Rohextrakt in den Enzymtest eingesetzt. Der Reaktionsansatz des Enzymtests enthielt 0,2 ml 0,25 M Tris/HCl, pH 8, 0,05 ml Rohextrakt, und 0,15 ml 65 mM alpha,β-Dihydroxy-β-methylvalerat. Die Testansätze wurden bei 30 °C inkubiert, nach 10, 20 und 30 Minuten wurde je 200 µl Proben genommen und deren Ketomethylvaleratkonzentration mittels HPLC-Analytik bestimmt ( Hara et al. 1985, Analytica Chimica Acta 172: 167-173 ). Wie Tabelle 2 zeigt, weist der Stamm Corynebacterium glutamicum ATCC13032 pJC1ilvD eine gesteigerte Dihydroxysäuredehydrataseaktivität gegenüber dem Kontrollstamm auf. Tabelle 2 Spezifische Aktivität (µmol/min und mg Protein) der Dihydroxysäuredehydratase in Corynebacterium glutamicum ATCC13032 Plasmid Dihydroxysäure dehydratase pJC1 0,008 pJC1ilvD 0,050 The plasmid pRV was digested with the restriction enzymes ScaI and XhoI, according to the instructions of the manufacturer of the restriction enzymes (Roche, Boehringer Mannheim). Subsequently, the 2.9 kb ilvD fragment was isolated by Ionenaustauschersäulchen (Quiagen, Hilden). The overhanging end of the XhoI cut of the isolated fragment was filled in with Klenow polymerase. The vector pJC1 ( Cremer et al., Mol. Gen. Genet (1990) 220: 478-480 ) was Pst I cut, also treated with Klenow polymerase, and then ligated fragment and vector. With the ligation mixture, the E. coli strain DH5αmcr ( Grant et al., Proceedings of the National of Sciences of the United States of America, USA, 87 (1990) 4645-4649 ) ( Hanahan, Journal of Molecular Biology 166 (1983) 557-580 ). By plasmid preparations ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbor Laboratory Press ) of clones, a clone containing the recombinant plasmid pJC1ilvD was identified. With this plasmid, Corvnebacterium glutamicum ATCC13032 was electroporated transformed, as in Haynes et al. (1989, FEMS Microbiol. Lett. 61: 329-334 ). Corynebacterium glutamicum ATCC13032 pJC1 and Corynebacterium glutamicum ATCC13032 pJClilvD were then used to determine ilvD-encoded dihydroxy-acid dehydratase activity. For this, the clones were cultured in 60 ml of LB medium and centrifuged off in the exponential growth phase. The cell pellet was washed once with 0.05 M potassium phosphate buffer and resuspended in the same buffer. The cell disruption was carried out by means of ultrasound treatment for 10 minutes (Branson Sonifier W-250, Branson Sonic Power Co, Danbury, USA). The cell debris was then separated by centrifugation at 13,000 rpm and 4 ° C. for 30 minutes, and the supernatant was used as the crude extract in the enzyme assay. The reaction assay of the enzyme assay contained 0.2 ml of 0.25 M Tris / HCl, pH 8, 0.05 ml crude extract, and 0.15 ml of 65 mM alpha, beta-dihydroxy-beta-methylvalerate. The test mixtures were incubated at 30 ° C., after 10, 20 and 30 minutes 200 μl samples were taken and their ketomethylvalerate concentration was determined by HPLC analysis ( Hara et al. 1985, Analytica Chimica Acta 172: 167-173 ). As shown in Table 2, strain Corynebacterium glutamicum ATCC13032 pJC1ilvD has increased dihydroxy acid dehydratase activity over the control strain. Table 2 Specific activity (μmol / min and mg protein) of dihydroxy acid dehydratase in Corynebacterium glutamicum ATCC13032 plasmid Dihydroxyacid dehydratase pJC1 0,008 pJC1ilvD 0,050

Beispiel 2: Konstruktion einer ilvA Deletionsmutante von Corynebacterium glutamicumExample 2: Construction of an ilvA deletion mutant of Corynebacterium glutamicum

Die interne Deletion des ilvA-Gens von Corynebacterium glutamicum ATCC13032 wurde mit dem bei Schäfer et al. (Gene 145: 69-73 (1994) ) beschriebenen System zum Genaustausch durchgeführt. Zur Konstruktion des Inaktivierungsvektors pK19mobsacBΔilvA wurde zunächst aus dem auf einem EcoRI-Fragment im Vektor pBM21 ( Möckel et al. 1994, Molecular Microbiology 13: 833-842 ) vorliegenden ilvA-Gen ein internes 241 bp BglII-Fragment entfernt. Hierzu wurde der Vektor mit BglII geschnitten und, nach Abtrennung des ilvA internen BglII-Fragmentes mittels Agarosegelelektrophorese, religiert. Anschließend wurde aus dem Vektor das unvollständige Gen als EcoRI-Fragment isoliert und in den mit EcoRI linearisierten Vektor pK19mobsacB ( Schäfer 1994, Gene 145: 69-73 ) ligiert. Der erhaltene Inaktivierungsvektor pK19mobsacBΔilvA wurde durch Transformation in den E. coli Stamm S 17-1 eingebracht ( Hanahan 1983, Journal of Molecular Biology 166: 557-580 ) und per Konjugation nach Corynebacterium glutamicum ATCC13032 transferiert ( Schäfer et al. 1990, Journal of Bacteriology 172: 1663-1666 ). Es wurden Kanamycin-resistente Klone von Corynebacterium glutamicum erhalten, bei denen der Inaktivierungsvektor im Genom integriert vorlag. Um auf die Excision des Vektors zu selektionieren, wurden Kanamycin-resistente Klone auf Saccharose-haltigem LB-Medium ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press ) mit 15 g/l Agar, 2% Glucose/ 10% Saccharose ausplattiert und Kolonien erhalten, welche den Vektor durch ein zweites Rekombinationsereignis wieder verloren haben ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ). Durch Überimpfen auf Minimalmediumplatten (Medium CGXII mit 15 g/l Agar ( Keilhauer et al., Journal of Bacteriology 175 (1993) 5595-5603 ) mit und ohne 2 mM L-Isoleucin bzw. mit und ohne 50 µg/ml Kanamycin wurden 36 Klone isoliert, welche durch die Excision des Vektors Kanamycin sensitiv und Isoleucin auxotroph waren und bei denen nun das unvollständige ilvA Gen (ΔilvA-Allel) im Genom vorlag. Ein Stamm wurde als ATCC13032ΔilvA bezeichnet und weiter verwendet.The internal deletion of the ilvA gene of Corynebacterium glutamicum ATCC13032 was with the Schäfer et al. (Gene 145: 69-73 (1994) ) performed gene exchange system. For the construction of the inactivation vector pK19mobsacBΔilvA, first of all the expression on an EcoRI fragment in the vector pBM21 (FIG. Möckel et al. 1994, Molecular Microbiology 13: 833-842 ) present ilvA gene removes an internal 241 bp BglII fragment. For this purpose, the vector was cut with BglII and, after separation of the ilvA internal BglII fragment by means of agarose gel electrophoresis, religated. Subsequently, the incomplete gene was isolated from the vector as an EcoRI fragment and inserted into the EcoRI linearized vector pK19mobsacB (FIG. Schäfer 1994, Gene 145: 69-73 ) ligated. The resulting inactivation vector pK19mobsacBΔilvA was introduced by transformation into the E. coli strain S 17-1 ( Hanahan 1983, Journal of Molecular Biology 166: 557-580 ) and conjugated to Corynebacterium glutamicum ATCC13032 ( Schäfer et al. 1990, Journal of Bacteriology 172: 1663-1666 ). Kanamycin-resistant clones of Corynebacterium glutamicum were obtained in which the inactivation vector was integrated in the genome. To select for excision of the vector, kanamycin resistant clones were seeded on sucrose-containing LB medium ( Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbor Laboratory Press ) with 15 g / l agar, 2% glucose / 10% sucrose and obtained colonies which have lost the vector by a second recombination event ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ). By inoculating on minimal medium plates (medium CGXII with 15 g / l agar ( Keilhauer et al., Journal of Bacteriology 175 (1993) 5595-5603 ) with and without 2 mM L-isoleucine or with and without 50 μg / ml kanamycin, 36 clones were isolated which were auxotrophic due to the excision of the vector kanamycin sensitive and isoleucine and in which the incomplete ilvA gene (ΔilvA allele) in the Genome was present. One strain was designated ATCC13032ΔilvA and was used further.

Beispiel 3: Klonierung der Gene der Pantothenatbiosynthese panB und panC aus C. glutamicumExample 3 Cloning of the Pantothenate Biosynthesis Genes panB and panC from C. glutamicum Klonierung des OperonsCloning of the operon

Chromosomale DNA von C. glutamicum ATCC13032 wurde isoliert und mit der Restriktionsendonuklease Sau3A geschnitten. Nach gelektrophoretischer Auftrennung wurden DNA-Fragmente in einem Größenbereich von 3 bis 7 bzw. von 9 bis 20 kb extrahiert und nachfolgend in die singuläre BamHI Schnittstelle des Vektors pBR322 ligiert. Inserttragende Kolonien wurden anhand ihrer Tetracyclinsensitivität nach Überimpfen auf LB-Platten mit 10 µg/ml Tetracyclin isoliert. Durch Plasmidpräparationen (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press) von gepoolten Klonen wurden 8 Plasmidpools, welche je 400 Plasmide mit einer Insertgröße von 9 bis 20 kb und 9 Plasmidpools, welche je 500 Plasmide mit einer Insertgröße von 3 bis 7 kb enthielten, isoliert. Die E. coli panB Mutante SJ2 ( Cronan et al. 1982, J. Bacteriol. 149: 916-922 ) wurde mit dieser Genbank mittels Elektroporation ( Wehrmann et al. 1994, Microbiology 140: 3349-3356 ) transformiert. Die Transformationsansätze wurden direkt auf CGXII-Medium ( J. Bacteriol. (1993) 175: 5595-5603 ) ausplattiert. Von Klonen, welche in der Lage waren ohne Pantothenatsupplementation zu wachsen, wurde Plasmid-DNA isoliert (Sambrook et al. 1989) und durch Retransformation wurden 8 Klone erhalten, deren D-Pantothenatbedürftigkeit bestätigt wurde. Mit den 8 Plasmiden wurde eine Restriktionskartierung durchgeführt. Einer der untersuchten Vektoren, im Folgendem pUR1 genannt enthielt ein Insert von 9,3 kb (Figur 3). Die Transformation der E. coli panC_Mutante DV39 ( Vallari et al. 1985, J. Bacteriol. 164: 136-142 ) ergab, daß der Vektor pUR1 ebenfalls in der Lage war, den panC Defekt dieser Mutante zu komplementieren. Ein 2,2 kb großes Fragment des Inserts von pUR1 wurde nach der Dideoxy-Kettenabbruchmethode von Sanger et al. sequenziert ( Proc. Natl. Acad. Sci. USA (1977) 74: 5463-5467 ). Die gelelektrophoretische Analyse erfolgte mit dem automatischem Laser-Fluoreszenz Sequenziergerät (A.L.F.) von Amersham Pharmacia Biotech (Uppsala, Schweden). Die erhaltene Nukleotidsequenz wurde mit dem Programmpaket HUSAR (Release 4.0, EMBL, Cambridge, GB) analysiert. Die Nukleotidsequenz ist als SEQ ID No. 3 wiedergegeben. Die Analyse ergab die Identizierung von zwei offenen Leserastern. Ein offenes Leseraster umfaßt 813 Basenpaare und weist hohe Homologien zu bereits bekannten panB-Genen aus anderen Organismen aufweist. Das panB-Gen aus C. glutamicum kodiert für ein Polypeptid von 271 Aminosäuren (siehe SEQ ID No. 4). Das zweite offene Leseraster umfaßt 837 Basenpaare und weist hohe Homologien zu bereits bekannten panC-Genen aus anderen Organismen aufweist. Das panC-Gen aus C. glutamicum kodiert für ein Polypeptid von 279 Aminosäuren (siehe SEQ ID No. 5).Chromosomal DNA from C. glutamicum ATCC13032 was isolated and cut with the restriction endonuclease Sau3A. After gel electrophoretic separation, DNA fragments in the size range from 3 to 7 or from 9 to 20 kb were extracted and subsequently ligated into the singular BamHI site of the vector pBR322. Insert-bearing colonies were isolated by tetracycline sensitivity after inoculation on LB plates with 10 μg / ml tetracycline. Plasmid preparations (Sambrook et al., Molecular cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press) of pooled clones gave 8 plasmid pools, each containing 400 plasmids with an insert size of 9 to 20 kb and 9 plasmid pools, each containing 500 plasmids with an insert size of 3 to 7 kb, isolated. The E. coli panB mutant SJ2 ( Cronan et al. 1982, J. Bacteriol. 149: 916-922 ) was isolated with this gene bank by electroporation ( Wehrmann et al. 1994, Microbiology 140: 3349-3356 ). The transformation approaches were directly transferred to CGXII medium ( J. Bacteriol. (1993) 175: 5595-5603 ) plated. From clones capable of growth without pantothenate supplementation, plasmid DNA was isolated (Sambrook et al., 1989), and by retransformation, 8 clones were obtained whose D-pantothenate requirement was confirmed. Restriction mapping was performed on the 8 plasmids. One of the vectors studied, hereinafter called pUR1, contained an insert of 9.3 kb ( FIG. 3 ). The transformation of E. coli panC_Mutante DV39 ( Vallari et al. 1985, J. Bacteriol. 164: 136-142 ) revealed that the vector pUR1 was also able to complement the panC defect of this mutant. A 2.2 kb fragment of the insert of pUR1 was prepared by the dideoxy chain termination method of Sanger et al. sequenced ( Proc. Natl. Acad. Sci. USA (1977) 74: 5463-5467 ). The gel electrophoretic analysis was carried out with the automatic laser fluorescence sequencer (ALF) from Amersham Pharmacia Biotech (Uppsala, Sweden). The obtained nucleotide sequence was analyzed with the program package HUSAR (Release 4.0, EMBL, Cambridge, UK). The nucleotide sequence is shown as SEQ ID NO. 3 reproduced. The analysis revealed the identification of two open reading frames. An open reading frame comprises 813 base pairs and has high homologies to previously known panB genes from other organisms. The C. glutamicum panB gene encodes a polypeptide of 271 amino acids (see SEQ ID No. 4). The second open reading frame comprises 837 base pairs and has high homologies to already known panC genes from other organisms. The C. glutamicum panC gene encodes a polypeptide of 279 amino acids (see SEQ ID No. 5).

Beispiel 4: Konstruktion einer panBC Deletionsmutante von Corynebacterium glutamicumExample 4: Construction of a panBC deletion mutant of Corynebacterium glutamicum

Das genomische panBC-Fragment von Corynebacterium glutamicum ATCC13032 sowie Corynebacterium glutamicum ATCC13032ΔilvA wurde mit dem bei Schäfer et al. (Gene 145: 69-73 (1994) ) beschriebenen System zum Genaustausch durchgeführt. Zur Konstruktion des Deletionsvektors pK19mobsacBΔpanBC wurde zunächst das 3.95 kb große SspI/SaII Fragment mit panBC mit pUC18 ligiert, der zuvor SmaI/SalI geschnitten worden war. Anschließend wurde ein 1293 bp großes EcoRV/NruI Fragment aus dem überlappenden Bereich der panBC Gene durch Restriktionsverdau und Religation entfernt. Um die Umklonierung in pK19mobsacB zu ermöglichen, wurde mit den 2 Primern 5'-GAGAACTTAATCGAGCAACACCCCTG, 5'-GCGCCACGCCTAGCCTTGGCCCTCAA und der Polymerasekettenreaktion (PCR) der deletierte panBC-Bereich in pUC18 amplifiziert, um so ein 0,5 kb ΔpanBC Fragment zu erhalten, das an den Enden eine SaII, bezw. EcoRI Schnittstelle trägt. Die PCR wurde nach Sambrook et al. (Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press) mit einer Annealingtemperatur von 55 °C durchgeführt. Das erhaltene Fragment wurde mit dem Vektor pK19mobsac ligiert, der zuvor EcoRI/SalI geschnitten und mit alkalischer Phosphatase behandelt worden war. Der erhaltene Inaktivierungsvektor pK19mobsacBΔpanBC wurde durch Transformation in den Escherichia coli Stamm S 17-1 eingebracht ( Hanahan (1983) J. Mol. Biol. 166: 557-580 ) und per Konjugation nach Corynebacterium glutamicum ATCC13032 transferiert ( Schäfer et al. (1990) J. Bacteriol. 172: 1663-1666 ). Es wurden Kanamycin-resistente Klone von Corynebacterium glutamicum erhalten, bei denen der Inaktivierungsvektor im Genom integriert vorlag. Um auf die Excision des Vektors zu selektionieren, wurden Kanamycin-resistente Klone auf Saccharose-haltigem LB-Medium (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press) mit 15 g/l Agar, 2% Glucose/ 10% Saccharose ausplattiert und Kolonien erhalten, welche den Vektor durch ein zweites Rekombinationsereignis wieder verloren haben ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ). Durch Überimpfen auf Minimalmediumplatten (Medium CGXII mit 15 g/l Agar ( Keilhauer et al., Journal of Bacteriology 175 (1993) 5595-5603 ) mit und ohne 2 mM L-Isoleucin bzw. mit und ohne 50 Hg/ml Kanamycin wurden 36 Klone isoliert, welche durch die Excision des Vektors Kanamycin sensitiv und Isoleucin auxotroph waren und bei denen nun die Sequenz der unvollständigen pan Gene (ΔpanBC-Allele) im Genom vorlag. Ein Stamm wurde als ATCC13032ΔpanBC bezeichnet. Auf die gleiche Weise wie in diesem Beispiel detailliert beschrieben wurde auch die panBC Deletion in ATCC13032ΔilvA eingeführt, um den Stamm ATCC13032ΔilvAΔpanBC zu erhalten.The genomic panBC fragment of Corynebacterium glutamicum ATCC13032 and Corynebacterium glutamicum ATCC13032ΔilvA was used with the Schäfer et al. (Gene 145: 69-73 (1994) ) performed gene exchange system. To construct the deletion vector pK19mobsacBΔpanBC, the 3.95 kb SspI / SalI fragment was first ligated with panBC with pUC18, which had previously been cut into SmaI / SalI. Subsequently, a 1293 bp EcoRV / NruI fragment was removed from the overlapping region of the panBC genes by restriction digestion and religation. To allow for cloning in pK19mobsacB, the 2 primers 5'-GAGAACTTAATCGAGCAACACCCCTG, 5'-GCGCCACGCCTAGCCTTGGCCCTCAA and the polymerase chain reaction (PCR) were used to amplify the deleted panBC region in pUC18 to obtain a 0.5 kb ΔpanBC fragment at the ends a SaII, BEZW. EcoRI interface carries. The PCR was performed according to Sambrook et al. (Molecular cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press) with an annealing temperature of 55 ° C. The resulting fragment was ligated with the vector pK19mobsac previously cut EcoRI / SalI and treated with alkaline phosphatase. The resulting inactivation vector pK19mobsacBΔpanBC was introduced by transformation into the Escherichia coli strain S 17-1 ( Hanahan (1983) J. Mol. Biol. 166: 557-580 ) and conjugated to Corynebacterium glutamicum ATCC13032 ( Schäfer et al. (1990) J. Bacteriol. 172: 1663-1666 ). Kanamycin-resistant clones of Corynebacterium glutamicum were obtained in which the inactivation vector was integrated in the genome. To select for excision of the vector, kanamycin-resistant clones were seeded on sucrose-containing LB medium (Sambrook et al., Molecular cloning, A laboratory manual (1989) Cold Spring Harbor Laboratory Press) with 15 g / l agar, 2 % Glucose / 10% sucrose and obtained colonies which have lost the vector by a second recombination event ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ). By inoculating on minimal medium plates (medium CGXII with 15 g / l agar ( Keilhauer et al., Journal of Bacteriology 175 (1993) 5595-5603 ) with and without 2 mM L-isoleucine or with and without 50 μg / ml kanamycin, 36 clones were isolated which were auxotrophic due to excision of the vector kanamycin sensitive and isoleucine and which now contain the sequence of incomplete pan genes (ΔpanBC alleles ) was present in the genome. One strain was designated ATCC13032ΔpanBC. In the same manner as detailed in this example, the panBC deletion was also introduced into ATCC13032ΔilvA to obtain strain ATCC13032ΔilvAΔpanBC.

Beispiel 5: Expression der Gene ilvD, ilvBN, und ilvC in Corynèbacterium glutamicumExample 5: Expression of the genes ilvD, ilvBN, and ilvC in Corynebacterium glutamicum

Die Gene der Acetohydroxysäuresynthase (ilvBN) und der Isomeroreduktase (ilvC) ( Cordes et al. 1992, Gene 112: 113-116 und Keilhauer et al. 1993, Journal of Bacteriology 175: 5595-5603 ) und der Dihydroxysäuredehydratase (ilvD) (Beispiel 1) wurden zur Expression in den Vektor pECM3 kloniert. Der Vektor pECM3 ist ein Derivat von pECM2 ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ), das durch Deletion des ca. 1 kbp langen BamHI/BglII DNA-Fragmentes entstand, welches das Kanamycinresistenzgen trägt.The genes of acetohydroxy acid synthase (ilvBN) and isomeroreductase (ilvC) ( Cordes et al. 1992, Gene 112: 113-116 and Keilhauer et al. 1993, Journal of Bacteriology 175: 5595-5603 ) and dihydroxy acid dehydratase (ilvD) (Example 1) were cloned into the vector pECM3 for expression. The vector pECM3 is a derivative of pECM2 ( Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465 ) resulting from deletion of the approximately 1 kbp BamHI / BglII DNA fragment carrying the kanamycin resistance gene.

In dem Vektor pKK5 ( Cordes et al. 1992, Gene 112:113-116 ) lagen die Gene ilvBNC bereits im Vektor pJC1 ( Cremer et al. 1990, Molecular and General Genetics 220: 478-480 ) kloniert vor. Aus diesem wurde ein 5,7 kb XbaIilvBNC-Fragment isoliert und zusammen mit einem, das ilvD-Gen enthaltende, 3,1 kb-XbaI Fragment des Vektors pRV in den mit XbaI linearisierten Vektor pECM3 eingebracht. Der Ligationsansatz wurde hierbei in den E. coli Stamm DH5αmcr transformiert. Aus einem Klon wurde das Plasmid pECM3ilvBNCD erhalten.In the vector pKK5 ( Cordes et al. 1992, Gene 112: 113-116 ) genes ilvBNC were already in the vector pJC1 ( Cremer et al. 1990, Molecular and General Genetics 220: 478-480 ) cloned before. From this, a 5.7 kb XbaIilvBNC fragment was isolated and introduced together with a, containing the ilvD gene, 3.1 kb XbaI fragment of the vector pRV in the XbaI linearized vector pECM3. The ligation mixture was transformed into the E. coli strain DH5αmcr. From one clone, the plasmid pECM3ilvBNCD was obtained.

Mittels Elektroporation ( Haynes 1989, FEMS Microbiology Letters 61: 329-334 ) und Selektion auf Chloramphenicolresistenz (3 µg/ml) wurde das Plasmid pECM3ilvBNCD in den Stamm ATCC13032ΔilvA eingebracht und der Stamm ATCC13032ΔilvA/pECM3ilvBNCD erhalten.By electroporation ( Haynes 1989, FEMS Microbiology Letters 61: 329-334 ) and selection for chloramphenicol resistance (3 μg / ml), the plasmid pECM3ilvBNCD was introduced into the strain ATCC13032ΔilvA and the strain ATCC13032ΔilvA / pECM3ilvBNCD was obtained.

Beispiel 6: Produktion von L-VaIin mit verschiedenen Corynebacterium glutamicum StämmenExample 6: Production of L-valine with various strains of Corynebacterium glutamicum

Zur Untersuchung ihrer Valinbildung wurden die in Tabelle 4 angegebenen Stämme in 60 ml Brain Heart Infusion-Medium (Difco Laboratories, Detroit, USA) für 14 h bei 30 °C vorkultiviert. Anschließend wurden die Zellen einmal mit 0,9% NaCl-Lösung (w/v) gewaschen und mit dieser Suspension je 60 ml CgXII-Medium so angeimpft, daß die OD600 0,5 betrug. Das Medium war identisch mit dem bei Keilhauer et al., (Journal of Bacteriology (1993) 175: 5595-5603 ) beschriebenen Medium. Für die Kultivierung der ΔilvA Stämme enthielt das Medium aber zusätzlich 250 mg/l L-Isoleucin. Es ist in Tabelle 3 dargestellt. Tabelle 3 Zusammensetzung des Mediums CGXII Komponente Konzentration (NH4)2SO4 20 g/L Harnstoff 5 g/L KH2PO4 1 g/L K2HPO4 1 g/L Mg2O4*7 H2O 0,25 g/L 3-Morpholinopropansulfonsäure 42 g/L CaCl2 10 mg/L FeSO4*7 H2O 10 mg/L MnSO4* H2O 10 mg/L ZnSO4*7 H2O 1 mg/L CuSO4 0,2 mg/L NiCl2*6 H2O 0,02 mg/L Biotin (pH7) 0,2 mg/L Glukose 40 g/L Protokatechusäure 0,03 mg/L To study their valinogenesis, the strains indicated in Table 4 were pre-cultured in 60 ml of Brain Heart infusion medium (Difco Laboratories, Detroit, USA) for 14 h at 30 ° C. Subsequently, the cells were washed once with 0.9% NaCl solution (w / v) and 60 ml of CgXII medium were inoculated with this suspension so that the OD600 was 0.5. The medium was identical to that at Keilhauer et al., (Journal of Bacteriology (1993) 175: 5595-5603 ) described medium. For the cultivation of the ΔilvA strains, however, the medium additionally contained 250 mg / l L-isoleucine. It is shown in Table 3. Table 3 Composition of the medium CGXII component concentration (NH 4 ) 2 SO 4 20 g / L urea 5 g / L KH 2 PO 4 1 g / L K 2 HPO 4 1 g / L Mg 2 O 4 * 7H 2 O 0.25 g / L 3-morpholino propane 42 g / L CaCl 2 10 mg / L FeSO 4 * 7H 2 O 10 mg / L MnSO 4 * H 2 O 10 mg / L ZnSO 4 .7H 2 O 1 mg / L CuSO 4 0.2 mg / L NiCl 2 .6H 2 O 0.02 mg / L Biotin (pH7) 0.2 mg / L glucose 40 g / L protocatechuic 0.03 mg / L

Nach 48 stündiger Kultivierung wurden Proben genommen, die Zellen abzentrifugiert und der Überstand sterilfiltriert. Die L-Valinkonzentration des Überstands wurde mit Hilfe der Hochdruckflüssigchromatografie mit integrierter Vorsäulenderivatisierung der Aminosäure mit o-Phthdialdehyd wie bei Jones und Gilligan (J. Chromatogr. 266 (1983) 471-482 ) bestimmt. Die Ergebnisse sind in Tabelle 4 dargestellt. Tabelle 4 L-Valinproduktion mit verschiedenen Corynebacterium glutamicum Stämmen C. glutamicum L-Valin (mM) ATCC 13032 0,5 ATCC 13032 pJClilvD 2,2 ATCC 13032 pJC1ilvBNC 20,0 ATCC 13032 pJClilvBNCD 26,2 ATCC 13032 ΔilvA 2,7 ATCC 13032 ΔilvA pJClilvD 7,0 ATCC 13032 ΔilvA pJC1ilvBNCD 28,5 ATCC 13032 ΔpanBC 8,2 ATCC 13032 ΔilvAΔpanBC 31,1 ATCC 13032 ΔilvAΔpanBC pJC1ilvBNCD 72,7 After 48 hours of culture, samples were taken, the cells centrifuged off and the supernatant sterile filtered. The L-valine concentration of the supernatant was determined by high pressure liquid chromatography with integrated pre-column derivatization of the amino acid with o-phthdialdehyde as in Jones and Gilligan (J. Chromatogr. 266 (1983) 471-482 ) certainly. The results are shown in Table 4. Table 4 L-valine production with various Corynebacterium glutamicum strains C. glutamicum L-valine (mM) ATCC 13032 0.5 ATCC 13032 pJClilvD 2.2 ATCC 13032 pJC1ilvBNC 20.0 ATCC 13032 pJClilvBNCD 26.2 ATCC 13032 ΔilvA 2.7 ATCC 13032 ΔilvA pJClilvD 7.0 ATCC 13032 ΔilvA pJC1ilvBNCD 28.5 ATCC 13032 ΔpanBC 8.2 ATCC 13032 ΔilvΔΔpanBC 31.1 ATCC 13032 ΔilvAΔpanBC pJC1ilvBNCD 72.7

SEQUENZPROTOKOLLSEQUENCE LISTING

  • (1) ALLGEMEINE ANGABEN:
    • (i) ANMELDER:
      1. (A) NAME: Forschungszentrum Juelich GmbH
      2. (B) STRASSE: Postfach 1913
      3. (C) ORT: Juelich
      4. (E) LAND: Deutschland
      5. (F) POSTLEITZAHL: 52425
      6. (G) TELEFON: 02461/614480
      7. (H) TELEFAX: 02461/612860
    • (ii) BEZEICHNUNG DER ERFINDUNG: Valinherstellung
    • (iii) ANZAHL DER SEQUENZEN: 5
    • (iv) COMPUTER-LESBARE FASSUNG:
      1. (A) DATENTRéGER: Floppy disk
      2. (B) COMPUTER: IBM PC compatible
      3. (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
      4. (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
    (1. GENERAL INFORMATION:
    • (i) REGISTERS:
      1. (A) NAME: Forschungszentrum Juelich GmbH
      2. (B) ROAD: PO Box 1913
      3. (C) LOCATION: Juelich
      4. (E) COUNTRY: Germany
      5. (F) POSTCODE: 52425
      6. (G) TELEPHONE: 02461/614480
      7. (H) TELEFAX: 02461/612860
    • (ii) TITLE OF THE INVENTION: Valine production
    • (iii) NUMBER OF SEQUENCES: 5
    • (iv) COMPUTER READABLE VERSION:
      1. (A) DATENTRéGER: Floppy disk
      2. (B) COMPUTER: IBM PC compatible
      3. (C) OPERATING SYSTEM: PC-DOS / MS-DOS
      4. (D) SOFTWARE: PatentIn Release # 1.0, Version # 1.30 (EPA)
  • (2) ANGABEN ZU SEQ ID NO: 1:
    • (i) SEQUENZKENNZEICHEN:
      1. (A) LéNGE: 2952 Basenpaare
      2. (B) ART: Nucleotid
      3. (C) STRANGFORM: Einzelstrang
      4. (D) TOPOLOGIE: linear
    • (ii) ART DES MOLEKöLS: Genom-DNA
    • (iii) HYPOTHETISCH: NEIN
    • (iv) ANTISENSE: NEIN
    • (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
      Figure imgb0001
      Figure imgb0002
      Figure imgb0003
    (2) PARTICULARS TO SEQ ID NO: 1:
    • (i) SEQUENCE MARKINGS:
      1. (A) LENGE: 2952 base pairs
      2. (B) ART: nucleotide
      3. (C) STRING FORM: single strand
      4. (D) TOPOLOGY: linear
    • (ii) ART OF MOLECOLE: Genomic DNA
    • (iii) HYPOTHETIC: NO
    • (iv) ANTISENSE: NO
    • (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
      Figure imgb0001
      Figure imgb0002
      Figure imgb0003
  • (2) ANGABEN ZU SEQ ID NO: 2:
    • (i) SEQUENZKENNZEICHEN:
      1. (A) LéNGE: 612 AminosÑuren
      2. (B) ART: AminosÑure
      3. (C) STRANGFORM: Einzelstrang
      4. (D) TOPOLOGIE: linear
    • (ii) ART DES MOLEKöLS: Protein
    • (iii) HYPOTHETISCH: NEIN
    • (iv) ANTISENSE: NEIN
    • (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
      Figure imgb0004
      Figure imgb0005
      Figure imgb0006
    (2) PARTICULARS TO SEQ ID NO: 2:
    • (i) SEQUENCE MARKINGS:
      1. (A) LENGE: 612 amino acids
      2. (B) TYPE: Amino acid
      3. (C) STRING FORM: single strand
      4. (D) TOPOLOGY: linear
    • (ii) ART OF MOLECULAR: Protein
    • (iii) HYPOTHETIC: NO
    • (iv) ANTISENSE: NO
    • (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
      Figure imgb0004
      Figure imgb0005
      Figure imgb0006
  • (2) ANGABEN ZU SEQ ID NO: 3:
    • (i) SEQUENZKENNZEICHEN:
      1. (A) LéNGE: 2164 Basenpaare
      2. (B) ART: Nucleotid
      3. (C) STRANGFORM: Einzelstrang
      4. (D) TOPOLOGIE: linear
    • (ii) ART DES MOLEKöLS: Genom-DNA
    • (iii) HYPOTHETISCH: NEIN
    • (iv) ANTISENSE: NEIN
    • (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:
      Figure imgb0007
      Figure imgb0008
      Figure imgb0009
    (2) PARTICULARS TO SEQ ID NO: 3:
    • (i) SEQUENCE MARKINGS:
      1. (A) LENGE: 2164 base pairs
      2. (B) ART: nucleotide
      3. (C) STRING FORM: single strand
      4. (D) TOPOLOGY: linear
    • (ii) ART OF MOLECOLE: Genomic DNA
    • (iii) HYPOTHETIC: NO
    • (iv) ANTISENSE: NO
    • (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
      Figure imgb0007
      Figure imgb0008
      Figure imgb0009
  • (2) ANGABEN ZU SEQ ID NO: 4:
    • (i) SEQUENZKENNZEICHEN:
      1. (A) LéNGE: 271 AminosÑuren
      2. (B) ART: AminosÑure
      3. (C) STRANGFORM: Einzelstrang
      4. (D) TOPOLOGIE: linear
    • (ii) ART DES MOLEKöLS: Protein
    • (iii) HYPOTHETISCH: NEIN
    • (iv) ANTISENSE: NEIN
    • (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:
      Figure imgb0010
      Figure imgb0011
    (2) PARTICULARS TO SEQ ID NO: 4:
    • (i) SEQUENCE MARKINGS:
      1. (A) LéNGE: 271 amino acids
      2. (B) TYPE: Amino acid
      3. (C) STRING FORM: single strand
      4. (D) TOPOLOGY: linear
    • (ii) ART OF MOLECULAR: Protein
    • (iii) HYPOTHETIC: NO
    • (iv) ANTISENSE: NO
    • (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
      Figure imgb0010
      Figure imgb0011
  • (2) ANGABEN ZU SEQ ID NO: 5:
    • (i) SEQUENZKENNZEICHEN:
      1. (A) LéNGE: 279 AminosÑuren
      2. (B) ART: AminosÑure
      3. (C) STRANGFORM: Einzelstrang
      4. (D) TOPOLOGIE: linear
    • (ii) ART DES MOLEKöLS: Protein
    • (iii) HYPOTHETISCH: NEIN
    • (iv) ANTISENSE: NEIN
    • (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:
      Figure imgb0012
      Figure imgb0013
    (2) PARTICULARS TO SEQ ID NO: 5:
    • (i) SEQUENCE MARKINGS:
      1. (A) LéNGE: 279 amino acids
      2. (B) TYPE: Amino acid
      3. (C) STRING FORM: single strand
      4. (D) TOPOLOGY: linear
    • (ii) ART OF MOLECULAR: Protein
    • (iii) HYPOTHETIC: NO
    • (iv) ANTISENSE: NO
    • (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
      Figure imgb0012
      Figure imgb0013

Claims (15)

  1. Process for the microbial production of L-valine, in which the dihydroxy acid dehydratase (ilvD) activity and/or the ilvD gene expression in a microorganism is intensified, characterised in that the activity of one or more enzymes specifically involved in the synthesis of D-pantothenate is attenuated or turned off.
  2. Process according to claim 1, wherein in addition the acetohydroxy acid synthase (ilvBN) activity and isomeroreductase (ilvC) activity and/or ilvBNC gene expression in the microorganism is intensified.
  3. Process according to claim 1 or 2, characterised in that the endogenous ilvD or ilvBNCD activity in the microorganism is increased.
  4. Process according to claim 3, characterised in that by mutation of the endogenous ilvD gene or ilvBNCD genes corresponding enzymes with higher activity are created.
  5. Process according to one or more of the foregoing claims, characterised in that the ilvD or ilvBNCD gene expression is intensified by increasing the gene copy number.
  6. Process according to claim 5, characterised in that, to increase the gene copy number, the ilvD gene or the ilvBNCD genes is/are incorporated into a gene construct.
  7. Process according to claim 6, characterised in that a microorganism is transformed with the gene construct containing the ilvD gene or ilvBNCD genes.
  8. Process according to claim 7, characterised in that Corynebacterium glutamicum is used as the microorganism.
  9. Process according to one or more of the foregoing claims, characterised in that a microorganism is used in which the activity of at least one enzyme which is involved in a metabolic path which decreases L-valine formation is attenuated or turned off.
  10. Process according to claim 9, characterised in that the activity of the enzyme threonine dehydratase (ilvA) involved in the synthesis of L-isoleucine is attenuated or turned off.
  11. Process according to one of claims 1 - 10, characterised in that the activity of the enzyme ketopantoate hydroxymethyl transferase (pan B) and/or the enzyme pantothenate ligase (pan C) is attenuated or turned off.
  12. Microorganism transformed with a gene construct containing the ilvD gene or the ilvBNCD genes, wherein the activity of one or more enzymes specifically involved in the synthesis of D-pantothenate is attenuated or turned off.
  13. Transformed microorganism according to claim 12, wherein the activity of the enzyme ketopantoate hydroxymethyl transferase (pan B) and/or the enzyme pantothenate ligase (pan C) is attenuated or turned off.
  14. Transformed microorganism according to claim 12 or 13, wherein the activity of the enzyme threonine dehydratase (ilvA) involved in the synthesis of L-isoleucine is attenuated or turned off.
  15. Transformed microorganism according to one or more of claims 12 to 14, characterised by Corynebacterium glutamicum.
EP00906363A 1999-02-22 2000-02-21 Method for microbially producing l-valine Expired - Lifetime EP1155139B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19907567A DE19907567B4 (en) 1999-02-22 1999-02-22 Process for the microbial production of L-valine
DE19907567 1999-02-22
PCT/EP2000/001405 WO2000050624A1 (en) 1999-02-22 2000-02-21 Method for microbially producing l-valine

Publications (3)

Publication Number Publication Date
EP1155139A1 EP1155139A1 (en) 2001-11-21
EP1155139B1 EP1155139B1 (en) 2003-04-09
EP1155139B2 true EP1155139B2 (en) 2009-02-25

Family

ID=7898429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00906363A Expired - Lifetime EP1155139B2 (en) 1999-02-22 2000-02-21 Method for microbially producing l-valine

Country Status (12)

Country Link
US (1) US7632663B1 (en)
EP (1) EP1155139B2 (en)
JP (1) JP4638048B2 (en)
KR (1) KR100614029B1 (en)
AT (1) ATE236991T1 (en)
CZ (1) CZ20013037A3 (en)
DE (2) DE19907567B4 (en)
DK (1) DK1155139T4 (en)
ES (1) ES2197076T5 (en)
PT (1) PT1155139E (en)
SK (1) SK285870B6 (en)
WO (1) WO2000050624A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855312A1 (en) * 1998-12-01 2000-06-08 Degussa Process for the fermentative production of D-pantothenic acid using coryneform bacteria
EP1377662A2 (en) * 2001-01-19 2004-01-07 Basf Aktiengesellschaft Methods and microorganisms for the production of 3-(2-hydroxy-3-methyl-butyrylamino)-propionic acid (hmbpa)
KR100442768B1 (en) * 2001-05-21 2004-08-04 주식회사 한국표지화합물연구소 A process for preparing L-valine as radioabled compound
KR100451299B1 (en) * 2002-03-21 2004-10-06 씨제이 주식회사 Process for producing L-threonine
GB2417586B (en) * 2002-07-19 2007-03-28 Picochip Designs Ltd Processor array
DE102004046933A1 (en) * 2004-09-28 2006-03-30 Forschungszentrum Jülich GmbH Process for the fermentative production of L-valine and microorganism suitable therefor
DE102005019967A1 (en) * 2005-04-29 2006-11-02 Forschungszentrum Jülich GmbH Microbial production of L-amino acids, useful, e.g. as animal feed additives, using strains in which alanine-transaminase activity, or alanine production, is reduced or switched off
EP1948814B1 (en) 2005-10-26 2018-11-21 Butamax (TM) Advanced Biofuels LLC Fermentive production of four carbon alcohols
US9303225B2 (en) 2005-10-26 2016-04-05 Butamax Advanced Biofuels Llc Method for the production of isobutanol by recombinant yeast
US8273558B2 (en) 2005-10-26 2012-09-25 Butamax(Tm) Advanced Biofuels Llc Fermentive production of four carbon alcohols
EP1860193A1 (en) * 2006-05-22 2007-11-28 Evonik Degussa GmbH Promoter-activity modulation for branched-chain amino acid production
JP2010017082A (en) 2006-10-10 2010-01-28 Ajinomoto Co Inc Method for producing l-amino acid
KR100832740B1 (en) * 2007-01-17 2008-05-27 한국과학기술원 Mutant microorganism with improved productivity of branched amino acid and method for preparing it using the same
MY147186A (en) 2007-02-09 2012-11-14 Univ California Biofuel production by recombinant microorganisms
JP2011067095A (en) 2008-01-10 2011-04-07 Ajinomoto Co Inc Method for producing target substance by fermentation process
BRPI0906795A2 (en) 2008-01-23 2015-08-18 Ajinomoto Kk Method to Produce an L-Amino Acid
EP2395096B1 (en) * 2009-02-09 2014-04-09 Kyowa Hakko Bio Co., Ltd. Process for producing L-amino acids
CN102459621B (en) 2009-06-05 2015-01-28 赢创德固赛有限公司 A method for the preparation of 2-keto carboxylic acid
EP2460883A4 (en) 2009-07-29 2013-01-16 Ajinomoto Kk Method for producing l-amino acid
JP2012223091A (en) 2009-08-25 2012-11-15 Ajinomoto Co Inc Method for producing l-amino acid
KR101251540B1 (en) 2010-10-08 2013-04-08 한국과학기술원 Mutant Escherichia coli W with Improved Productivity of L-valine and Method for Preparing It Using the Same
KR101117022B1 (en) 2011-08-16 2012-03-16 씨제이제일제당 (주) A microorganism having enhanced l-valine production and process for preparing l-valine using the same
EP2749638A4 (en) 2011-08-22 2015-04-22 Res Inst Innovative Tech Earth Transformant of coryneform bacterium and method for producing valine by using same
KR101773755B1 (en) 2013-05-13 2017-09-01 아지노모토 가부시키가이샤 Method for producing l-amino acid
JP2016165225A (en) 2013-07-09 2016-09-15 味の素株式会社 Method for producing useful substance
BR112016008830B1 (en) 2013-10-23 2023-02-23 Ajinomoto Co., Inc METHOD FOR PRODUCING A TARGET SUBSTANCE
JP7066977B2 (en) 2017-04-03 2022-05-16 味の素株式会社 Manufacturing method of L-amino acid
JP7124338B2 (en) 2018-02-27 2022-08-24 味の素株式会社 Method for producing mutant glutathione synthase and γ-glutamylvalylglycine
EP3861109A1 (en) 2018-10-05 2021-08-11 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
KR102344689B1 (en) 2020-09-01 2021-12-29 씨제이제일제당 주식회사 A microorganism producing L-valine and a method for producing L-valine using the same
KR20240128697A (en) * 2021-12-22 2024-08-26 시에이치알. 한센 에이/에스 Reduced pantothenic acid levels in fermentative production of oligosaccharides
WO2024096123A1 (en) * 2022-11-04 2024-05-10 株式会社バイオパレット Genetically modified microorganism and method for producing same
CN116731933B (en) * 2023-08-03 2023-10-03 欧铭庄生物科技(天津)有限公司滨海新区分公司 Corynebacterium glutamicum and application thereof in valine production

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU875663A1 (en) 1978-06-30 1982-09-15 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strains e. coli vniigenetika voltage 334 ru no.6 and vniigenetika voltage 334 no.7 producersof l-treonite and method for preparing them
EP0336452B1 (en) * 1983-02-17 1993-10-13 Kyowa Hakko Kogyo Co., Ltd. Process for preparing l-phenylalanine
JPH0746994B2 (en) * 1984-10-04 1995-05-24 味の素株式会社 Method for producing L-amino acid by fermentation method
JP2748418B2 (en) * 1988-08-03 1998-05-06 味の素株式会社 Recombinant DNA, microorganism having the recombinant DNA
DE3942947A1 (en) * 1989-12-23 1991-06-27 Forschungszentrum Juelich Gmbh METHOD FOR PRODUCING L-ISOLEUCIN AND DAFUER-SUITABLE MICRO-ORGANISMS AND RECOMBINANT DNA
US5534421A (en) * 1991-05-30 1996-07-09 Ajinomoto Co., Inc. Production of isoleucine by escherichia coli having isoleucine auxotrophy and no negative feedback inhibition of isoleucine production
JPH05344893A (en) * 1992-06-12 1993-12-27 Mitsubishi Petrochem Co Ltd Gene capable of coding acetohydroxy acid synthase and its utilization
JPH06277067A (en) * 1993-03-26 1994-10-04 Mitsubishi Petrochem Co Ltd Gene dna coding acetohydroxy acid isomeroreductase
DE4400926C1 (en) * 1994-01-14 1995-06-01 Forschungszentrum Juelich Gmbh Production of L-isoleucine using recombinant microorganisms with deregulated threonine dehydratase
US5998178A (en) * 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
CN1124340C (en) * 1994-08-30 2003-10-15 味之素株式会社 Process for producing L-valine and L-leucine
JPH0889249A (en) * 1994-09-29 1996-04-09 Mitsubishi Chem Corp Dna fragment containing gene coding dihydroxy acid dehydratase
DE19855312A1 (en) * 1998-12-01 2000-06-08 Degussa Process for the fermentative production of D-pantothenic acid using coryneform bacteria

Also Published As

Publication number Publication date
SK285870B6 (en) 2007-10-04
DK1155139T4 (en) 2009-04-20
PT1155139E (en) 2003-08-29
ES2197076T5 (en) 2009-05-20
JP4638048B2 (en) 2011-02-23
ES2197076T3 (en) 2004-01-01
DK1155139T3 (en) 2003-07-28
US7632663B1 (en) 2009-12-15
EP1155139A1 (en) 2001-11-21
ATE236991T1 (en) 2003-04-15
DE19907567A1 (en) 2000-08-24
JP2002537771A (en) 2002-11-12
EP1155139B1 (en) 2003-04-09
KR100614029B1 (en) 2006-08-23
WO2000050624A1 (en) 2000-08-31
KR20010108172A (en) 2001-12-07
CZ20013037A3 (en) 2002-01-16
DE50001708D1 (en) 2003-05-15
DE19907567B4 (en) 2007-08-09
SK12052001A3 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
EP1155139B2 (en) Method for microbially producing l-valine
EP1067192B1 (en) L-lysine producing coryneform bacteria and methods for the production of L-lysine
EP1006192B1 (en) Method for the fermentative production of D- pantothenic acid by amplification of the panD gene of microorganisms
EP1094111B1 (en) Coryneform Bacteria with a deletion of Phosphoenolpyruvate-carboxykinase and their use
DE19855312A1 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
EP1619252B1 (en) L-lysine producing coryneform bacteria and methods for the production of L-lysine
DE10031999A1 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
EP1096013A2 (en) Nucleotide sequence encoding corynebacterium poxb-gene and its use in the preparation of l-lysine
WO2006116962A2 (en) Method for the fermentative production of l-valine, l-isoleucine or l-lysine using coryneform bacteria with reduced or eliminated alanine aminotransferase activity
DE19947791A1 (en) New nucleotide sequences coding for the eno gene
EP1812553B1 (en) Process for the fermentative production of l-valine employing coryneforme bacteria having an enhanced transaminase c activity
DE19912384A1 (en) Process for the fermentative production of L-amino acids using coryneform bacteria
EP1055725B1 (en) Method for the fermentative preparation of L-amino acids and nucleotide sequences coding for the accDA gene
DE19924364A1 (en) Process for the fermentative production of L-amino acids using coryneform bacteria
EP1083225A1 (en) Method for the fermentative production of D-pantothenic acid using coryneform bacteria
WO2002055711A2 (en) Method for the production of pantothenic acid by fermentation
DE10026758A1 (en) Process for the fermentative production of D-pantothenic acid using corymeform bacteria
DE10030702A1 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
DE60105182T2 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
DE10047142A1 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
DE10037612A1 (en) New phosphopentose isomerase gene from Coryneform bacteria, useful for transforming cells for improved fermentative production of L-amino acids, especially lysine
MXPA99010768A (en) Procedure for the preparation by fermentation of d-pantothenic acid using corinefor bacteria

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2197076

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

26 Opposition filed

Opponent name: DEGUSSA AG

Effective date: 20030108

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEGUSSA AG

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM *JULICH G.M.B.H.

Effective date: 20040228

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20080220

Year of fee payment: 9

Ref country code: PT

Payment date: 20080211

Year of fee payment: 9

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090225

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

NLR2 Nl: decision of opposition

Effective date: 20090225

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090324

Kind code of ref document: T5

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100219

Year of fee payment: 11

Ref country code: CH

Payment date: 20100222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100226

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100215

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130315

Year of fee payment: 14

Ref country code: DE

Payment date: 20130110

Year of fee payment: 14

Ref country code: DK

Payment date: 20130221

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001708

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001708

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228