EP1489262B1 - Turbine - Google Patents

Turbine Download PDF

Info

Publication number
EP1489262B1
EP1489262B1 EP03744077A EP03744077A EP1489262B1 EP 1489262 B1 EP1489262 B1 EP 1489262B1 EP 03744077 A EP03744077 A EP 03744077A EP 03744077 A EP03744077 A EP 03744077A EP 1489262 B1 EP1489262 B1 EP 1489262B1
Authority
EP
European Patent Office
Prior art keywords
rotor
sheath
struts
scottish
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03744077A
Other languages
German (de)
English (en)
Other versions
EP1489262A4 (fr
EP1489262A1 (fr
Inventor
Radislav Nikolaevich Vorobiev
Anatoly Mikhailovich Zelinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obschestvo s Ogranichennoi Otvetstvennostyu Midera-k
Original Assignee
Obschestvo s Ogranichennoi Otvetstvennostyu Midera-k
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obschestvo s Ogranichennoi Otvetstvennostyu Midera-k filed Critical Obschestvo s Ogranichennoi Otvetstvennostyu Midera-k
Publication of EP1489262A1 publication Critical patent/EP1489262A1/fr
Publication of EP1489262A4 publication Critical patent/EP1489262A4/fr
Application granted granted Critical
Publication of EP1489262B1 publication Critical patent/EP1489262B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/32Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines

Definitions

  • the invention relates to the field of mechanical engineering, namely to a hydraulic or pneumatic turbine or a steam turbine for the drive of electric generators, compressors of cooling systems, heat pumps, etc.
  • a disadvantage of this method is that it is not possible to extract the mechanical energy from the rotor of the turbine, because the moment that arises at the rotor as the working fluid flows out of the rotor channels (according to the law of the conservation of kinetic energy) counteracted a counter-torque, which is worn when braking Working fluid is generated in the rotor on the inner surface of the shell; the useful torque is generated only when the working fluid flows out of the openings of the shell under the pressure that has remained in the rotor channels after the expansion of the working fluid, resulting in significant energy losses (about 50%).
  • a disadvantage of this known method is the insufficient amount of mechanical energy gained, because the working fluid flows out through four channels of the rotor and when it is introduced into the space formed by the shell in the form of the blade turbine around the rotor and in the outflow is expelled through the openings in the shell between the blades of the turbine at the time of contact with the streams from the rotor channels, accelerating to the velocity of the stream coming out of the rotor channels; for that a part of the energy of the stream is used up.
  • the working fluid flows out at a speed which differs significantly from the speed of rotation of the shell, resulting in energy losses.
  • a disadvantage of this known turbine is the fixed connection of the shell and the working wheel, which are installed on a shaft, and the rotation of the working wheel and the shell in one direction, whereby the generation of mechanical energy is ensured only on a shell.
  • the nozzles of the working wheel are only elements of the turbine, which only throttle the pressure of the supply of the working fluid, these elements lead to useless energy losses and thus to a low efficiency.
  • the low strength of the long cylindrical shell with many openings on its surface limits the peripheral speed of the shell and further reduces the efficiency of the turbine.
  • a disadvantage of this known turbine is that the blades in the shell, which is designed as a turbine blade, is attached to the edge of a disc, whereby the centrifugal force load of the blade is increased by an additional moment, because the node point of attachment of the blades is not able to carry a high load, so that a reduction of the rotational speed of the blade turbine is necessary and thus the efficiency of the turbine blade is reduced.
  • the flow of working fluid from the rotor nozzles to the vanes must be directed at a certain angle determined by the shape of the vanes and the shape of the flow from the nozzles.
  • the flow of working fluid from the nozzles to the blades passes at different angles, whereby in cross-section enlarged angles, which are common in the turbines with a separate nozzle apparatus, and a reduction of the efficiency are achieved.
  • the working fluid In the partial supply of the working fluid to the shell (paddle turbine) through the four nozzles of the rotor (the Norwegian hub), which itself in Turning counter-direction, the working fluid, which is located between the blades under low pressure, ejected at the time of contact with the currents from the rotor channels, accelerating to the speed of the current that comes from the rotor channels; for that a part of the energy of the stream is used up.
  • the working fluid flows out at a speed that differs significantly from the speed of the casing rotation, resulting in energy losses.
  • This known turbine has a complicated construction as well as a complicated manufacturing technology, because a shovel turbine is used as the shell.
  • US 4,332,520 is a device for generating energy from expansion of a fluid from a biphasic saturated or unsaturated gas-vapor mixture.
  • the device consists of two concentrically arranged rotors, an inner rotor and a surrounding outer rotor, which are driven by a hot, saturated or unsaturated gas-vapor mixture.
  • the gas-vapor mixture flows from the inner rotor to the outer rotor through a concentric to the rotors arranged flow channel constant cross-section, in which the gas-vapor mixture is reduced to its saturation pressure.
  • the designed as a turbine outer rotor drives the pump in the form of a flow pump Engineered inner rotor.
  • a process for the production of energy takes place, in which first the working fluid formed by the gas-vapor mixture is sucked into the channels of the inner rotor by rotation of the inner rotor and, when flowing out of the channels in the direction of the radius of the rotor, to the periphery the rotor is perpendicular, accelerated and introduced from the channels of the rotor in a closed space formed by the outer rotor in the form of a shell around the inner rotor.
  • the gas-vapor mixture then exits through openings in the shell, being accelerated in one direction while rotating the shell.
  • the shell is mechanically coupled to the inner rotor and drives the inner rotor through part of its rotational energy experienced in accelerating the gas-vapor mixture as it exits the shell.
  • the space formed by the shell is closed and runs in the vicinity of that circumference whose radius is formed by the distance of the outlet opening of a rotor channel of the rotor axis.
  • the working fluid flowing out through the openings in the sheath is accelerated along the circumference perpendicular to the hull radius in a direction rectified by the outflow of the working fluid from the inner rotor.
  • the working means for the dormant observer flows out of the inner rotor in the direction in which it is driven due to the friction.
  • a heat engine is known by the recoil principle. This includes a filled with water or alcohol, easily rotatably supported metal ball. Heat generated by heating escapes through at right angles to the axis of rotation arranged approaches and puts the ball in rapid turns.
  • the method for obtaining mechanical energy in the turbine includes supplying the working fluid into the rotor channels and accelerating the working fluid as it flows out of the channels in a direction of the circumference perpendicular to the rotor radius, thereby ensuring the rotor Rotor rotation on; according to this method, the working fluid is introduced from the rotor channels in the closed space formed by the shell around the rotor, cooperating by friction with the shell; the working fluid flows out through openings in the shell, being accelerated in one direction while ensuring shell rotation.
  • the space formed by the shell is closed and extends in the vicinity of that radius whose radius is formed by the distance of the outlet opening of a rotor channel of the rotor axis; Further, the working fluid flowing out through the openings in the sheath is accelerated along the circumference perpendicular to the hull radius in a direction opposite to the outflow of the working fluid from the rotor.
  • the working fluid flows out through the openings in the casing at a speed close to the peripheral speed of the casing in the opposite direction, so that the absolute velocity of the working fluid flow is close to zero, thereby reducing the losses of mechanical energy.
  • the load for the rotor and the shell can be chosen so that the same rotational speeds are achieved at the outer diameter circles of the rotor and the inner diameter of the shell.
  • the proposed turbine solves the problem of increasing the mechanical energy gained in the turbine by increasing the efficiency due to the minimal energy losses as the working fluid flows out of the casing and by simplifying the design.
  • the envelope is formed as a cylindrical drum provided with a cylindrical strap which adjoins the bent ends of the sockets of the Scottish turnstile with a gap and on which at least one pair of opposed sockets with open ends are fixed, which in relation bent on their axes in opposite directions. These directions are opposite to the directions of the sockets of the Scottish hub, with the axes of the bent, open ends the drum stubs are perpendicular to the surface which extends over the axes of the nozzle pair and the axis of the pipe; on the wall of the belt openings are provided according to the neck.
  • the working fluid flows out of the open ends of the cylindrical drum at a speed close to the rotational speed of the cylindrical drum in the opposite direction, so that the absolute velocity of the working fluid flow is close to zero, thereby increasing the efficiency of the turbine.
  • the sockets of the Scottish turnstile can be formed drop-shaped.
  • the formation of the nozzles in streamlined form, i. with the outer contours, which ensure a minimum resistance of the countercurrent of the working fluid during movement, for example a cross-sectional teardrop shape, allows the reduction of aerodynamic friction losses as the Scottish turnstile rotates in the working fluid filled drum, thereby reducing the mechanical energy won in the drum, can be increased.
  • the streamline shape of the tail of the Scottish turnstile may form in cross-section a wing-like profile in the ratio L / b ⁇ 5, where L is the chord of the wing and b is the maximum thickness of the wing.
  • the drum stub can be formed drop-shaped.
  • the streamlined shape of the drum stubs can be made in cross-section as a wing-like profile in the ratio L / b ⁇ 5, where L is the chord of the wing and b is the maximum thickness of the wing.
  • the turbine contains a Norwegian turnstile, which is designed as a tube 1 with a closed end.
  • the tube 1 is coaxially coupled to a shaft 2 and can rotate together with it.
  • On the pipe 1, at least one pair of radially opposed nozzles 3 is fixed with bent in opposite directions, open ends 4.
  • the axes of the bent, open ends 4 of the nozzle 3 are perpendicular to that surface which extends over the axes of the nozzle pair 3 and the axis of the tube 1.
  • openings 13 are provided corresponding to the nozzle 3.
  • the open ends 4 may be formed as nozzles.
  • a coaxial with a shaft 6 coupled, rotatable cylindrical drum 5 is mounted coaxially with the tube 1 and includes the Scottish hub.
  • a cylindrical belt 7 of the cylindrical drum 5 adjoins the bent ends 4 of the sockets 3 of the Scottish turnstile with a gap.
  • On the cylindrical belt 7 of the cylindrical drum 5 at least a pair of nozzles 8 is fixed with open ends 9, which are bent in opposite directions to their axis. Radially from the opposite directions of these directions, the directions of the nozzle 3 of the Scottish hub are arranged opposite.
  • the axes of the bent, open ends 9 of the nozzle 8 of the cylindrical drum 5 are perpendicular to the surface which extends over the axes of the nozzle pair 8 of the cylindrical drum 5 and the axis of the tube 1.
  • a housing 11 comprises the Scottish hub and the cylindrical drum 5 with the openings for housing the tube 1 of the Scottish hub and the shafts 6 and 2 of the cylindrical drum 5 and the Scottish hub and with nozzle 12 for the outlet of the working medium.
  • the housing 11 is connected to an inlet connection 14 of the supply line of the working medium.
  • the pipe 1 of the Scottish turnstile has at its output part numerous through holes 15, where it forms together with the inlet nozzle 14 labyrinth seals, which ensure a minimal outflow of the working fluid, which is introduced into the turbine.
  • the sockets 3 of the Scottish turnstile may be formed in streamline form, e.g. in cross-section as a teardrop-shaped profile.
  • the streamlined shape of the sockets 3 of the Scottish turnstile can be formed in cross-section as a wing-like profile in the ratio L / b ⁇ 5, where L is the chord of the wing and b is the maximum thickness of the wing.
  • the nozzle 8 of the cylindrical drum 5 may be formed in streamlined form, for example in cross-section as a teardrop-shaped profile.
  • the streamlined shape of the nozzles 8 of the cylindrical drum can be formed in cross-section as a wing-like profile in the ratio L / b ⁇ 5, where L is the chord of the wing and b is the maximum thickness of the wing.
  • the turbine operates as follows: The working fluid is introduced into the inlet port 14 and the pipe 1 of the Scottish hub. Thereafter, it is forwarded into the channels of each pair of nozzles. The working fluid flows at a high speed out of the opposite, open ends 4 of the sockets 3, being accelerated in the direction of the circumference perpendicular to the radius of the Scottish hub while ensuring its rotation by the generation of a recoil force moment.
  • the working fluid continues to enter the housing 11 and flows through the nozzle 12 for the outlet of the working fluid.
  • the working fluid is introduced into the rotor channels of the turbine and accelerated, ie its speed is when flowing out of the channels in the direction of the circumference with the rotor radius while ensuring the rotor rotation and the extraction of mechanical energy increases. It rotates next to the rotor and its shaft, from which the useful energy is removed.
  • the working fluid passes from the rotor channels into the closed space around the rotor and frictionally cooperates with the shell, which forms a closed space and which runs along the circumference of the outlet openings of the rotor channels.
  • the formation of the sheath according to the radius of the circumference along the exit openings of the rotor channels allows the sheath to rotate about the rotor; the interaction of the friction of the working fluid with the shell causes the rotation of the shell, creating a centrifugal pressure within the shell.
  • the shell can be performed for example as a drum.
  • the working fluid flows out by the action of the centrifugal pressure through the openings in the shell (which may be, for example, the openings 10 in the cylindrical drum 5 and the openings in the nozzle 8);
  • the working fluid is accelerated in the direction of the circumference, which is perpendicular to the radius of the shell, and in the opposite direction of the outflow from the rotor while ensuring the rotation of the shell and the recovery of mechanical energy.
  • the outflow with acceleration (increase in speed) from the openings of the shell in the direction of the circumference, which is perpendicular to the radius of the shell, allows rotation of the shell.
  • the braking of the working fluid which flows from the rotor channels in the shell allows the strengthening of the rotational effect by the forces of friction of the working fluid with the shell and by the recoil forces.
  • the shaft also turns its shaft, from which the additional useful energy is removed.
  • the loading of the rotor and the shell may be selected to achieve equal rotational speeds of rotation of the outer diameter of the rotor and the inner diameter of the shell. This is realized by the connection of energy consumers, for example of generators to the shafts of the rotor and the shaft, as well as by the setting of those modes in which the rotational speeds of rotation the outer diameter of the rotor and the inner diameter of the shell are the same. In this case, a maximum efficiency of the turbine can be achieved.
  • a liquid, a gas or steam can be used as a working fluid in the turbine.
  • the turbine works with water vapor.
  • a rotor of the type of Scottish turnstile with two channels is used. The water vapor is let into the two rotor channels. The water vapor stream is accelerated as it flows out of the channels in the direction of the circumference, which is perpendicular to the rotor radius, up to a speed of 790 m / s.
  • the water vapor passes from the rotor channels into the closed space around the rotor and frictionally cooperates with the shell, which forms a closed space and is provided with outlet openings according to the radius of the circumference of the rotor channels. Via the openings in the shell, the water vapor flows out, up to the speed of 251 m / s in the direction of the circumference, which is perpendicular to the radius of the shell, and in the direction opposite to the direction of the outflow of the working fluid from the rotor is accelerated while ensuring the rotation of the shell.
  • the radius of the shell insignificantly exceeds the radius of the rotor and is 0,4805m.
  • the shell turns, and its shaft absorbs the extra mechanical energy.
  • the waves of the rotor and the shell are loaded by individual generators.
  • Such modes of operation of the generators are set that the rotational speeds of rotation of the outer diameter of the rotor and the inner diameter of the casing are 251 m / s.
  • the invention can be used as a hydraulic, pneumatic or steam turbine for the drive of electric generators, compressors of refrigerators and heat pumps, etc.

Abstract

Le procédé de production d'énergie mécanique par une turbine selon l'invention consiste à transférer un milieu agissant dans les canaux d'un rotor et à accélérer ce milieu agissant pendant son écoulement des canaux dans une direction le long d'un cercle, cette direction étant perpendiculaire par rapport au rayon du rotor, ce que fait tourner le rotor. Le milieu agissant est amené des canaux du rotor vers un espace autour lui formé par une enveloppe et interagit avec cette enveloppe par friction. L'enveloppe forme un espace fermé et est réalisée radialement par rapport d'un cercle et le long des orifices de sortie des canaux du rotor. Le milieu agissant s'écoule par les trous dans l'enveloppe en s'accélérant le long d'un cercle dans une direction perpendiculaire par rapport au rayon de l'enveloppe et opposée au sens de rotation du rotor. La turbine selon l'invention comporte une roue de Segner se présentant sous forme d'un tuyau (1) qui est installée de façon à ce qu'elle puisse tourner. Au moins une paire de tubulures (3) ayant des bouts ouverts coudés (4) dans les directions opposées est radialement fixée sur le tuyau sur ses deux cotés opposées. Un tambour cylindrique (5) est coaxialement fixé à un arbre rotatif et entoure la roue de Segner. La ceinture cylindrique du tambour (5) se raccorde aux bouts coudés (4) avec un espace libre. Au moins une paire de tubulures (8) ayant des bouts ouverts (9) coudés dans les directions opposées est radialement fixée sur les cotés opposés de cette ceinture. Les tubulures (3) et (8) de la roue de Segner et du tambour (5) respectivement peuvent être réalisées sous une forme laminaire, par exemple sous forme d'un profile aérodynamique.

Claims (7)

  1. Procédé de production d'énergie mécanique, dans lequel le fluide de travail est introduit dans des canaux d'un rotor et est admis, à partir desdits canaux du rotor, dans un espace clos constitué d'une enveloppe et entourant ledit rotor, et dans lequel ledit fluide de travail sort en empruntant des orifices pratiqués dans ladite enveloppe, en étant accéléré dans une direction sous l'effet d'une rotation de ladite enveloppe, sachant que l'espace formé par l'enveloppe est de réalisation close, et s'étend à proximité de la circonférence dont le rayon est matérialisé par la distance comprise entre l'axe de rotation et l'orifice de sortie d'un canal rotorique,
    sachant que :
    - le fluide de travail est accéléré, lors de l'écoulement hors des canaux du rotor, dans la direction de la circonférence perpendiculaire au rayon dudit rotor, la rotation dudit rotor étant garantie par la génération d'un moment de force de réaction,
    - ledit fluide de travail coopère avec l'enveloppe par frottement, et
    - ledit fluide de travail sortant en empruntant les orifices pratiqués dans l'enveloppe est accéléré, le long de la circonférence perpendiculaire au rayon de ladite enveloppe, dans une direction orientée à l'opposé de l'écoulement dudit fluide de travail hors du rotor.
  2. Procédé selon la revendication 1, dans lequel
    le rotor et l'enveloppe sont actionnés en vue de l'obtention de vitesses de révolution identiques dans les zones du diamètre extérieur dudit rotor et du diamètre intérieur de ladite enveloppe.
  3. Turbine dédiée à la mise en oeuvre du procédé conforme à la revendication 1 ou 2, comprenant
    - un tourniquet réalisé sous la forme d'un tube rotatif (1) à extrémité fermée, ledit tube étant couplé coaxialement à un arbre (2) de la turbine, et au moins une paire de manchons (3) radialement opposés étant fixée audit tube (1), lesquels manchons présentent des extrémités ouvertes (4) coudées dans des directions opposées à partir de leur axe, les axes desdites extrémités ouvertes coudées (4) desdits manchons étant perpendiculaires à la surface s'étendant par les axes de la paire de manchons (3) et par l'axe du tube (1), et des orifices (13) étant pratiqués dans la paroi dudit tube, en correspondance avec lesdits manchons (3),
    - une enveloppe rotative, couplée coaxialement à l'arbre (2) et incluant le tourniquet,
    - un carter (11) incluant le tourniquet et l'enveloppe, percé d'orifices dévolus à l'installation du tube (1) dudit tourniquet, de l'arbre dudit tourniquet et de l'enveloppe, et pourvu d'une tubulure (12) destinée à l'écoulement du fluide de travail,
    sachant que :
    - l'enveloppe est réalisée sous la forme d'un tambour cylindrique (5),
    - une membrure cylindrique (7) dudit tambour (5) s'achève au niveau des extrémités coudées (4) des manchons (3) du tourniquet, en réservant un interstice,
    - au moins une paire d'embouts (8) radialement opposés est fixée sur ladite membrure cylindrique (7) du tambour (5), lesquels embouts présentent des extrémités ouvertes (9) coudées dans différentes directions vis-à-vis de leur axe, ces directions pointant à l'opposé par rapport aux directions des manchons (3) du tourniquet, et les axes desdites extrémités ouvertes coudées (9) desdits embouts (8) du tambour (5) étant perpendiculaires à la surface s'étendant par les axes de la paire de manchons (3) et par l'axe du tube (1), et
    - des orifices (10) sont pratiqués dans la paroi de ladite membrure (7), en correspondance avec lesdits embouts (8).
  4. Turbine selon la revendication 3,
    caractérisée par le fait
    que les manchons (3) du tourniquet sont réalisés en forme de gouttes.
  5. Turbine selon la revendication 4,
    caractérisée par le fait
    que la forme aérodynamique des manchons (3) du tourniquet se présente, en coupe transversale, comme un profil du type aile obéissant au rapport L/b ≥ 5, L étant la corde de l'aile, et b étant l'épaisseur maximale de ladite aile.
  6. Turbine selon l'une des revendications 3 à 5,
    caractérisée par le fait
    que les embouts (8) du tambour (5) sont réalisés en forme de gouttes.
  7. Turbine selon la revendication 6,
    caractérisée par le fait
    que la forme aérodynamique des embouts (8) du tambour se présente, en coupe transversale, comme un profil du type aile obéissant au rapport L/b≥5, L étant la corde de l'aile, et b étant l'épaisseur maximale de ladite aile.
EP03744077A 2002-03-11 2003-03-07 Turbine Expired - Lifetime EP1489262B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2002105974 2002-03-11
RU2002105974/06A RU2200848C1 (ru) 2002-03-11 2002-03-11 Способ получения механической энергии в турбине и турбина для его реализации
PCT/RU2003/000083 WO2003076767A1 (fr) 2002-03-11 2003-03-07 Turbine amelioree

Publications (3)

Publication Number Publication Date
EP1489262A1 EP1489262A1 (fr) 2004-12-22
EP1489262A4 EP1489262A4 (fr) 2010-07-21
EP1489262B1 true EP1489262B1 (fr) 2012-06-27

Family

ID=20255387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03744077A Expired - Lifetime EP1489262B1 (fr) 2002-03-11 2003-03-07 Turbine

Country Status (7)

Country Link
US (1) US20050147493A1 (fr)
EP (1) EP1489262B1 (fr)
AU (1) AU2003235542A1 (fr)
EA (1) EA005904B1 (fr)
RU (1) RU2200848C1 (fr)
UA (1) UA74302C2 (fr)
WO (1) WO2003076767A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832496B1 (ja) * 2005-05-25 2006-10-11 いすゞ自動車株式会社 噴流式蒸気エンジン
DE102008009669A1 (de) * 2008-01-23 2009-07-30 Siemens Aktiengesellschaft Anlage zum Transportieren einer Erzpulpe in einem entlang einer Gefällstrecke angeordneten Leitungssystem sowie Komponenten einer solchen Anlage
US20110107774A1 (en) * 2009-11-12 2011-05-12 Linde Aktiengesellschaft Self-Powered Refrigeration Apparatus
RU2467188C2 (ru) * 2011-02-01 2012-11-20 Михаил Вениаминович Малиованов Силовая установка реактивного типа
GB2502943B (en) * 2011-12-07 2016-03-16 Solaris Holdings Ltd Method for producing mechanical work
RU2605994C2 (ru) * 2012-12-14 2017-01-10 Николай Фомич Архипов Двигатель внутреннего сгорания
RU2673431C2 (ru) 2013-08-05 2018-11-26 Сергей Константинович Исаев Способ получения механической энергии, однопоточная и двухпоточная реактивные турбины и турбореактивная установка для его реализации
DE202014100531U1 (de) 2014-02-06 2014-02-13 Dmitiri Georgievich Gita Ein- und zweiflutige Überdruckturbine und Turbinenluftstrahlanlage dafür
RU2632737C2 (ru) * 2016-03-23 2017-10-09 Анатолий Дмитриевич Щербатюк Роторная машина
RU2635750C1 (ru) * 2016-12-07 2017-11-15 Владимир Сергеевич Соколов Мини-электростанция
RU2729308C1 (ru) * 2019-11-26 2020-08-05 Анатолий Дмитриевич Щербатюк Роторный инерционный двигатель
RU2771106C1 (ru) * 2021-09-28 2022-04-26 Владимир Викторович Михайлов Турбина

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US494991A (en) * 1893-04-04 Centrifugal blower
DE172795C (fr) *
US999776A (en) * 1908-03-07 1911-08-08 Edwin R Gill Reaction-engine.
SU9803A1 (ru) * 1927-04-20 1929-05-31 В.М. Шувалов Реактивна парова турбина
US3282650A (en) * 1963-02-11 1966-11-01 Philips Corp Ion indicating device
US3200588A (en) * 1963-02-26 1965-08-17 Friedrich C Math Jet reaction motor
US3282560A (en) * 1965-06-15 1966-11-01 Loyal W Kleckner Jet reaction turbine
US3828553A (en) * 1973-02-08 1974-08-13 M Eskeli Turbine having powered inner rotor for imparting additional velocity to entering fluid
US3930744A (en) * 1973-10-10 1976-01-06 Hollymatic Corporation Pressure gas engine
US4332520A (en) 1979-11-29 1982-06-01 The United States Of America As Represented By The United States Department Of Energy Velocity pump reaction turbine
US4430042A (en) * 1979-11-29 1984-02-07 The United States Of America As Represented By The United States Department Of Energy Velocity pump reaction turbine
YU46140B (sh) * 1984-03-07 1993-05-28 Stojčić, Tode Turbina sa suprotno obrtnimm rotorima
US4674950A (en) * 1985-11-12 1987-06-23 Dresser Industries, Inc. Pitot tube for pitot type centrifugal pump
US6354800B1 (en) * 2000-03-31 2002-03-12 Lance G. Hays Dual pressure Euler turbine

Also Published As

Publication number Publication date
US20050147493A1 (en) 2005-07-07
EP1489262A4 (fr) 2010-07-21
RU2200848C1 (ru) 2003-03-20
EP1489262A1 (fr) 2004-12-22
UA74302C2 (uk) 2005-11-15
WO2003076767A1 (fr) 2003-09-18
EA005904B1 (ru) 2005-06-30
EA200401149A1 (ru) 2005-02-24
AU2003235542A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
DE3530769C2 (de) Schaufel für ein Gasturbinentriebwerk
EP1489262B1 (fr) Turbine
DE2851406B2 (de) Windturbine
DE2423385A1 (de) Ueberschallfliehkraftverdichter
DE2406303A1 (de) Turbogeblaesetriebwerk mit gegenlaeufigen verdichter- und turbinenelementen und neuartiger geblaeseanordnung
DE3334880A1 (de) Mehrstufiger radialverdichter, radialrad und verfahren zum verdichten eines fluids
EP1002949A2 (fr) Eolienne à axe vertical
DE1526862A1 (de) Triebwerksanlage
CH659851A5 (de) Turbine.
DE102014009735A1 (de) Schaufel und Laufrad einer Strömungsmaschine, sowie Herstellverfahren dafür
EP2395232A1 (fr) Turbine orthogonale basse pression
WO2019076514A1 (fr) Installation à énergie d'écoulement, notamment turbine éolienne à enveloppe
DE1913028B1 (de) Strahltriebwerk fuer hohe UEberschallanstroemung
AT515217B1 (de) Vorrichtung und Verfahren zum Umwandeln thermischer Energie
DE221422C (fr)
DE2113514A1 (de) UEberschall-Axialkompressor
EP0097924B1 (fr) Turbine-pompe
AT512653B1 (de) Läufer und radial durchströmbare Turbine
DE102014017372A1 (de) Pumpturbine sowie Pumpspeicherkraftwerk mit einer solchen Pumpturbine
DE2847352A1 (de) Stauluftturbine zum antrieb eines elektrischen generators einer rakete, lenkwaffe o.dgl.
DE3707723C2 (fr)
DE202012013307U1 (de) Windkraftanlage und Turbinenlaufrad hierfür
DE202014100531U1 (de) Ein- und zweiflutige Überdruckturbine und Turbinenluftstrahlanlage dafür
DE102004038639A1 (de) Francis Turbine
DE102005059438B3 (de) Turbostrahlantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

A4 Supplementary search report drawn up and despatched

Effective date: 20100617

17Q First examination report despatched

Effective date: 20110726

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: TURBINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 564368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314392

Country of ref document: DE

Effective date: 20120830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314392

Country of ref document: DE

Effective date: 20130328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120927

BERE Be: lapsed

Owner name: OBSCHESTVO S OGRANICHENNOI OTVETSTVENNOSTYU MIDER

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314392

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 564368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20030307