EP1488021B1 - Method for the thermal treatment of a foundry piece made from an alloy based on aluminium and foundry piece - Google Patents

Method for the thermal treatment of a foundry piece made from an alloy based on aluminium and foundry piece Download PDF

Info

Publication number
EP1488021B1
EP1488021B1 EP03730296.5A EP03730296A EP1488021B1 EP 1488021 B1 EP1488021 B1 EP 1488021B1 EP 03730296 A EP03730296 A EP 03730296A EP 1488021 B1 EP1488021 B1 EP 1488021B1
Authority
EP
European Patent Office
Prior art keywords
range
temperature
casting
duration
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03730296.5A
Other languages
German (de)
French (fr)
Other versions
EP1488021A2 (en
Inventor
Philippe Meyer
Denis Massinon
Virginie Jacquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montupet SA
Original Assignee
Montupet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montupet SA filed Critical Montupet SA
Publication of EP1488021A2 publication Critical patent/EP1488021A2/en
Application granted granted Critical
Publication of EP1488021B1 publication Critical patent/EP1488021B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention generally relates to the heat treatment of aluminum-based and silicon-containing casting alloys, as well as the resulting molded parts.
  • Aluminum-based casting alloys have different families of compositions, most of which are capable of structural hardening by heat treatment.
  • All these alloys are widely used for the mass production of automotive components, for example cylinder heads subjected to very high loads in service. In order to maximize the mechanical properties of these alloys, it is customary at least for the most severe stress cases, to perform a heat treatment having a dissolution and quenching, followed by a structural hardening income.
  • a disadvantage of this type of treatment is that it can make the alloy extremely difficult to machine, and in particular in the case of alloys with structural hardening having no or little copper (typically at levels less than or equal to 1 %).
  • machining of very thin threads eg cylinder head injector threads for diesel engines
  • long, small diameter holes or deburring of machined surfaces can be problematic (non-fragmentable burrs difficult to remove). by brushing for example).
  • the present invention aims to overcome these drawbacks and to make it possible to obtain foundry pieces having a good compromise between the intrinsic performances which are required of them, in particular as regards resistance to different types of stresses, and their aptitude for machining and deburring after machining.
  • the present invention provides an aluminum-based alloy casting according to claim 7.
  • a heat treatment according to the invention is carried out by a two-stage solution solution.
  • a first step is performed in a range of high temperatures, that is to say in the usual temperature range of dissolution of the alloys considered that the skilled person will define according to well known references.
  • this first temperature is between about 510 ° C and 550 ° C, preferably between about 520 ° C and 540 ° C, and more particularly around 530 ° C .
  • this temperature will be lower, for example between about 475 ° C and 515 ° C, and preferably around 495 ° C for copper contents of 2 to 3% by weight.
  • this first step is limited to durations of the order of 1h to 4h, preferably 1h to 2h, knowing that an extension of this plateau does not lead to significant improvements in the final properties of the material.
  • This first stage is followed by a second level of dissolution in a second lower temperature range.
  • this second temperature range is between about 455 ° C. and 485 ° C., preferably between about 460 ° C. and 480 ° C., and more preferentially around 465 ° C. C (it being specified that for an alloy with a copper content of 2 to 3% by weight, this second temperature range will advantageously be between 425 ° C. and 455 ° C., and more preferably around 450 ° C.).
  • the second temperature range is about 8 to 14% lower than the first temperature range.
  • the duration of this second step is of the order of 1h to 5h, preferably 1h to 3h. Indeed, it appears that extending the residence time at this second level does not bring significant changes to the final properties, and so again it is economically more interesting to reduce this time.
  • the cooling between the two dissolution stages is carried out so as to progressively move from the highest temperature to the lowest temperature in a time of between 30 minutes and 3 hours 30 minutes.
  • this time is between 1 hour and 2 hours 30 minutes.
  • quenching is applied according to the usual conditions, for example quenching with water.
  • an income is made to develop the hardening precipitation of the alloy.
  • This income can be chosen in the usual ranges of temperature and duration; Depending on the desired properties, it may be a sub-income, an income at the peak of resistance or an over-income.
  • the temperature of the second dissolution stage makes it possible to ensure that the tensile properties of the alloy thus treated decrease by about 10 to 40%, and preferably by approximately 15 to 35%, with respect to the properties that would be obtained with a single dissolution at the first temperature and for a duration equal to the cumulative durations of the two stages (includes the cooling phase of the first stage to the second stage), and keeping the same conditions of quenching and income.
  • this two-stage solution dissolution very significantly reduces the residual stresses present in the part after the end of the heat treatment. This can have advantages significant on the holding of parts, including cylinder heads of combustion engines, very heavily solicited.
  • a heat treatment is now carried out on an identical cylinder head, instead of the known heat treatment, comprising dissolving at a first temperature level of 530 ° C. for 2 hours and then at a second stage of 465 ° C. for 2 hours. , leaving 1 hour to the load to go from the first temperature to the second, then quenching with water at 90 ° C and a 5 hour income at 200 ° C.
  • the mechanical characteristics of the material become the following: Tear resistant 231 MPa (-32%) Yield strength at 0.2% deformation 207 MPa (-30 %) Plastic stretching 4.64% (+114%) Brinell hardness 90 (-20%) Quality index 331 MPa (-15%)
  • the breaking strength, the yield strength and the hardness, with the treatment according to the invention decrease from 20 to 32%. This decrease is in favor of a very strong increase in plastic elongation (that is to say elongation at break) (+ 114%).
  • the heat treatment according to the present invention reveals the presence of silicon globulized by high temperature dissolution, as illustrated by FIG. figure 2 drawings, while obtaining the reduction of resistances or hardness compared to the setting in conventional solution.
  • the dissolution at 530 ° C was carried out for 2 hours, and the dissolution at 450 or 400 ° C as the case required was for 3 hours, with a duration of 90 or 120 minutes to reach the second temperature.
  • the two-stage solution heat treatment according to the invention was carried out, as well as a solution with a single bearing at the temperature of 465 ° C. ° C.
  • the stay at high temperature causes the silicon to globulate, as shown by the figure 3
  • there is no globulization as shown in figure 4 .
  • the mechanical characteristics are also affected by the type of dissolution performed, being better after a two-stage solution dissolution.
  • the continuous line trajectory T1 shows the evolution of the torque (breaking strength, elongation) as a function of the second temperature of a two-stage solution solution
  • the T2 line shows the evolution of the same characteristics as a function of the temperature of a single-stage solution solution
  • the dotted line trajectory T3 for its part shows the evolution of the torque (elastic limit, elongation) as a function of the second temperature of a two-stage solution solution
  • the dotted line trajectory T4 shows the evolution of the same characteristics as a function of the temperature of a single-stage solution solution.
  • FIG 5 shows, by the relative positions of the curves T1 and T3 with respect to the curves T2 and T4, respectively, that a treatment of dissolution in solution with two stages has a compromise resistance / elongation with rupture superior to the same material subjected to a heat treatment at a single level, regardless of the temperature level of this single stage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

La présente invention concerne d'une façon générale le traitement thermique des alliages de moulage à base d'aluminium et contenant du silicium, ainsi que les pièces moulées résultantes.The present invention generally relates to the heat treatment of aluminum-based and silicon-containing casting alloys, as well as the resulting molded parts.

Les alliages de moulage à base d'aluminium comportent différentes familles de composition dont la plupart sont aptes au durcissement structural par traitement thermique. En particulier, on peut citer la famille Aluminium/Silicium/Magnésium représentée typiquement par les alliages de type AlSi7%Mg0.3%, AlSi7Mg0.6% ou AlSi10%Mg0.3%, et la famille Aluminium/Silicium/Cuivre/Magnésium représentée typiquement par les alliages de type AlSi (5 à 10%) Cu (2 à 3.5%) Mg (0.2 à 0.3%).Aluminum-based casting alloys have different families of compositions, most of which are capable of structural hardening by heat treatment. In particular, mention may be made of the aluminum / silicon / magnesium family typically represented by alloys of the AlSi7% Mg0.3%, AlSi7Mg0.6% or AlSi10% Mg0.3% type, and the aluminum / silicon / copper / magnesium family represented typically AlSi (5 to 10%) Cu (2 to 3.5%) Mg (0.2 to 0.3%) alloys.

Tous ces alliages sont largement utilisés pour la fabrication en grande série de composants automobiles, par exemple des culasses soumises à de très fortes sollicitations en service. Afin de maximiser les propriétés mécaniques de ces alliages, il est d'usage du moins pour les cas de sollicitations les plus sévères, de réaliser un traitement thermique présentant une mise en solution et une trempe, suivies d'un revenu de durcissement structural.All these alloys are widely used for the mass production of automotive components, for example cylinder heads subjected to very high loads in service. In order to maximize the mechanical properties of these alloys, it is customary at least for the most severe stress cases, to perform a heat treatment having a dissolution and quenching, followed by a structural hardening income.

Un tel traitement thermique est divulgué dans WO01/16387 .Such a heat treatment is disclosed in WO01 / 16387 .

Un inconvénient de ce type de traitement est qu'il peut rendre l'alliage extrêmement difficile à usiner, et ce notamment dans le cas d'alliages à durcissement structural ne comportant pas ou peu de cuivre (typiquement à des teneurs inférieures ou égales à 1 %).A disadvantage of this type of treatment is that it can make the alloy extremely difficult to machine, and in particular in the case of alloys with structural hardening having no or little copper (typically at levels less than or equal to 1 %).

En particulier, l'usinage de filets très fins (par exemple des filets de fixation d'injecteurs de culasses pour moteurs diesel), les perçages longs de faible diamètre ou l'ébavurage des surfaces usinées peuvent être problématiques (bavures non fragmentables difficiles à éliminer par brossage par exemple).In particular, the machining of very thin threads (eg cylinder head injector threads for diesel engines), long, small diameter holes or deburring of machined surfaces can be problematic (non-fragmentable burrs difficult to remove). by brushing for example).

On connaît par le document EP-A-1 065 292 un procédé visant à réaliser, à la suite d'une mise en solution d'une pièce réalisée en alliage léger, ce qui peut s'assimiler à une trempe étagée, par immersion dans un bain de sel de façon à amener rapidement la température de la pièce à une valeur comprise entre 350 et 450°C. Un tel procédé connu a pour effet d'accroître la résistance à la traction du matériau de la pièce à température élevée, mais ne résout nullement les problèmes d'aptitude à l'usinage. En outre, ce procédé conduit à des pertes de caractéristiques mécaniques à température ambiante qui sont inacceptables pour des applications de type culasse de moteur à combustion.We know from the document EP-A-1,065,292 a process for producing, as a result of the dissolution of a piece made of light alloy, which can be assimilated to a steep quench, by immersion in a salt bath so as to rapidly bring the temperature of the coin has a value between 350 and 450 ° C. Such a known method has the effect of increasing the tensile strength of the workpiece material at high temperature, but does not solve the machiningability problems. In addition, this process leads to losses of mechanical characteristics at room temperature which are unacceptable for combustion engine cylinder type applications.

Ainsi il n'existe aujourd'hui aucune solution pour permettre de faciliter l'usinage des pièces en alliage du type à durcissement structural ou analogues.Thus, there is currently no solution for facilitating the machining of alloy parts of the structural hardening type or the like.

La présente invention vise à pallier ces inconvénients et à permettre d'obtenir des pièces de fonderie présentant un bon compromis entre les performances intrinsèques qui leur sont demandées, notamment en matière de résistance à différents types de sollicitations, et leur aptitude à l'usinage et à l'ébavurage après usinage.The present invention aims to overcome these drawbacks and to make it possible to obtain foundry pieces having a good compromise between the intrinsic performances which are required of them, in particular as regards resistance to different types of stresses, and their aptitude for machining and deburring after machining.

Elle propose à cet effet, selon un premier aspect, un procédé de traitement thermique d'une pièce de fonderie réalisée en alliage d'aluminium, selon la revendication 1.To this end, it proposes, according to a first aspect, a method of heat treatment of a casting part made of aluminum alloy, according to claim 1.

Certains aspects préférés, mais non limitatifs de ce procédé sont les suivants :

  • la deuxième gamme de températures est choisie de manière à ce que l'alliage traité présente une résistance à la traction diminuée d'environ 10% à 40%, et de préférence d'environ 15% à 35%, par rapport à la résistance à la traction qui serait obtenue avec une mise en solution unique dans la première gamme de températures et pendant une durée égale aux première et deuxième durées cumulées.
  • la deuxième gamme de températures est inférieure à la première gamme de températures d'environ 8 à 14 %.
  • la première durée est alors comprise entre environ 1h et 4h, et de préférence entre environ 1h et 2h.
  • la deuxième durée est alors comprise entre environ 1h et 5h, et de préférence entre environ 1h et 3h.
  • la durée de l'étape (b) est alors comprise entre environ 0h30 et 3h30, et de préférence entre environ 1h et 2h30.
Some preferred but non-limiting aspects of this method are the following:
  • the second temperature range is chosen so that the treated alloy has a tensile strength decreased from about 10% to 40%, and preferably from about 15% to 35%, with respect to the traction that would be obtained with a single dissolution in the first temperature range and for a duration equal to the first and second cumulative times.
  • the second temperature range is lower than the first temperature range of about 8 to 14%.
  • the first duration is then between about 1h and 4h, and preferably between about 1h and 2h.
  • the second duration is then between about 1h and 5h, and preferably between about 1h and 3h.
  • the duration of step (b) is then between about 0:30 and 3:30, and preferably between about 1:00 and 2:30.

Selon un deuxième aspect, la présente invention propose une pièce de fonderie en alliage à base d'aluminium selon la revendication 7.According to a second aspect, the present invention provides an aluminum-based alloy casting according to claim 7.

D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante d'une forme de réalisation préférée de celle-ci, donnée à titre d'exemple non limitatif et faite en référence aux dessins annexés, sur lesquels :

  • la figure1 illustre la microstructure d'un premier type d'alliage traité selon l'art antérieur,
  • la figure 2 illustre la microstructure de ce même type d'alliage traité selon la présente invention,
  • la figure 3 illustre la microstructure d'un deuxième type d'alliage traité selon la présente invention,
  • la figure 4 illustre la microstructure de ce même type d'alliage traité d'une façon différente de la présente invention, et
  • la figure 5 est un diagramme de propriétés mécaniques résistance/allongement illustrant les propriétés pouvant être obtenues selon l'invention.
Other aspects, objects and advantages of the present invention will appear better on reading the following detailed description of a preferred embodiment thereof, given by way of nonlimiting example and with reference to the appended drawings. on which ones :
  • the figure 1 illustrates the microstructure of a first type of alloy treated according to the prior art,
  • the figure 2 illustrates the microstructure of this same type of alloy treated according to the present invention,
  • the figure 3 illustrates the microstructure of a second type of alloy treated according to the present invention,
  • the figure 4 illustrates the microstructure of this same type of alloy treated in a different way from the present invention, and
  • the figure 5 is a resistance / elongation mechanical properties diagram illustrating the properties obtainable according to the invention.

On va maintenant décrire l'invention en détail.The invention will now be described in detail.

Un traitement thermique selon l'invention est réalisé par une mise en solution à deux paliers de température. Un premier palier est réalisé dans une gamme de hautes températures, c'est-à-dire dans la gamme de températures usuelle de mise en solution des alliages considérés que l'homme de l'art définira selon des références bien connues. Typiquement, pour des alliages contenant moins de 1% en poids de cuivre, cette première température est comprise entre environ 510°C et 550°C, de préférence entre environ 520°C et 540°C, et plus particulièrement autour de 530°C. Pour des alliages ayant une teneur en cuivre plus élevée, cette température sera plus basse, par exemple comprise entre environ 475°C et 515°C, et préférentiellement autour de 495°C pour des teneurs en cuivre de 2 à 3% en poids. Pour des raisons notamment économiques, on limite ce premier palier à des durées de l'ordre de 1h à 4h, de préférence 1h à 2h, sachant qu'un prolongement de ce palier ne conduit pas à des améliorations significatives des propriétés finales du matériau.A heat treatment according to the invention is carried out by a two-stage solution solution. A first step is performed in a range of high temperatures, that is to say in the usual temperature range of dissolution of the alloys considered that the skilled person will define according to well known references. Typically, for alloys containing less than 1% by weight of copper, this first temperature is between about 510 ° C and 550 ° C, preferably between about 520 ° C and 540 ° C, and more particularly around 530 ° C . For alloys having a higher copper content, this temperature will be lower, for example between about 475 ° C and 515 ° C, and preferably around 495 ° C for copper contents of 2 to 3% by weight. For reasons including economic, this first step is limited to durations of the order of 1h to 4h, preferably 1h to 2h, knowing that an extension of this plateau does not lead to significant improvements in the final properties of the material.

Ce premier palier est suivi par un deuxième palier de mise en solution dans une deuxième gamme de températures plus basse. Toujours pour un alliage contenant au plus 1% en poids de cuivre, cette deuxième gamme de températures est comprise entre environ 455°C et 485°C, de préférence entre environ 460°C et 480°C, et plus préférentiellement autour de 465°C (étant précisé que pour un alliage à teneur en cuivre de 2 à 3 % en poids, cette deuxième gamme de température se situera avantageusement entre 425°C et 455°C, et plus préférentiellement autour de 450°C).This first stage is followed by a second level of dissolution in a second lower temperature range. Still for an alloy containing at most 1% by weight of copper, this second temperature range is between about 455 ° C. and 485 ° C., preferably between about 460 ° C. and 480 ° C., and more preferentially around 465 ° C. C (it being specified that for an alloy with a copper content of 2 to 3% by weight, this second temperature range will advantageously be between 425 ° C. and 455 ° C., and more preferably around 450 ° C.).

Plus généralement, la deuxième gamme de températures est inférieure d'environ 8 à 14 % à la première gamme de températures.More generally, the second temperature range is about 8 to 14% lower than the first temperature range.

La durée de cette deuxième étape est de l'ordre de 1h à 5h, de préférence 1h à 3h. En effet, il apparaît qu'allonger le temps de séjour à ce deuxième palier n'apporte pas de modifications significatives aux propriétés finales, et donc là encore il est économiquement plus intéressant de réduire ce temps.The duration of this second step is of the order of 1h to 5h, preferably 1h to 3h. Indeed, it appears that extending the residence time at this second level does not bring significant changes to the final properties, and so again it is economically more interesting to reduce this time.

Le refroidissement entre les deux paliers de mise en solution est réalisé de façon à passer progressivement de la température la plus élevée à la température la plus basse en une durée compris entre 30 minutes et 3 heures 30 minutes. De préférence, et ici encore pour des raisons principalement économiques, cette durée est comprise entre 1 heure et 2 heures 30 minutes.The cooling between the two dissolution stages is carried out so as to progressively move from the highest temperature to the lowest temperature in a time of between 30 minutes and 3 hours 30 minutes. Preferably, and again for mainly economic reasons, this time is between 1 hour and 2 hours 30 minutes.

Après ce deuxième palier de mise en solution à plus basse température, on applique une trempe selon les conditions habituelles, par exemple une trempe à l'eau.After this second lower temperature dissolution stage, quenching is applied according to the usual conditions, for example quenching with water.

On réalise enfin un revenu destiné à développer la précipitation durcissante de l'alliage. Ce revenu peut être choisi dans les gammes habituelles de température et de durée ; selon les propriétés recherchées il peut s'agir d'un sous-revenu, d'un revenu au pic de résistance ou d'un sur-revenu.Finally, an income is made to develop the hardening precipitation of the alloy. This income can be chosen in the usual ranges of temperature and duration; Depending on the desired properties, it may be a sub-income, an income at the peak of resistance or an over-income.

La température du deuxième palier de mise en solution, choisie comme déterminé plus haut, permet d'aboutir à ce que les propriétés de résistance à la traction de l'alliage ainsi traité diminuent d'environ 10 à 40%, et de préférence d'environ 15 à 35%, par rapport aux propriétés qui seraient obtenues avec une mise en solution unique à la première température et pendant une durée égale aux durées cumulées des deux paliers (incluse la phase de refroidissement du premier palier vers le deuxième palier), et en gardant les mêmes conditions de trempe et de revenu.The temperature of the second dissolution stage, chosen as determined above, makes it possible to ensure that the tensile properties of the alloy thus treated decrease by about 10 to 40%, and preferably by approximately 15 to 35%, with respect to the properties that would be obtained with a single dissolution at the first temperature and for a duration equal to the cumulative durations of the two stages (includes the cooling phase of the first stage to the second stage), and keeping the same conditions of quenching and income.

En pratique, on vise à réaliser, par rapport à un traitement thermique classique mono-palier, un compromis amélioré entre les propriétés de résistance à la traction, d'allongement et d'indice de qualité. Plus particulièrement, on a constaté qu'il était préférable de se placer dans la zone de réduction de propriétés de 15 à 35% si l'on souhaitait optimiser le compromis résistance/allongement tout en bénéficiant d'une aptitude à l'usinage améliorée.In practice, it is intended to achieve, compared to a conventional single-stage heat treatment, an improved compromise between the properties of tensile strength, elongation and quality index. More particularly, it has been found that it is preferable to place in the 15 to 35% reduction zone of properties if one wishes to optimize the resistance / elongation compromise while benefiting from an improved machinability.

Par ailleurs, on a également constaté que cette mise en solution à deux paliers réduisait très significativement les contraintes résiduelles présentes dans la pièce après la fin du traitement thermique. Ceci peut présenter des avantages significatifs sur la tenue des pièces, notamment des culasses de moteurs à combustion, très fortement sollicitées.Moreover, it has also been found that this two-stage solution dissolution very significantly reduces the residual stresses present in the part after the end of the heat treatment. This can have advantages significant on the holding of parts, including cylinder heads of combustion engines, very heavily solicited.

On va maintenant illustrer l'invention par les exemples suivants :The invention will now be illustrated by the following examples:

1) Comparaison entre l'invention et l'art antérieur quant à l'impact sur le compromis résistance/allongement et sur la microstructure 1) Comparison between the invention and the prior art as regards the impact on the resistance / elongation compromise and on the microstructure

Une culasse en AlSi7%Mg0.4% de deuxième fusion coulée en basse pression, dont le poids est de 18kg environ, et qui subit un traitement thermique de l'art antérieur (mise en solution à la température maximale, trempe et revenu) présente des difficultés à l'usinage : les copeaux de forage de taille importante tendent à s'enrouler autour des outils de coupe (ou encore restent dans les circuits d'huile par exemple). Leur évacuation s'avère donc difficile. Ces difficultés d'usinage sont liées aux caractéristiques de l'alliage obtenues après ce traitement thermique connu.A cylinder head made of AlSi7% Mg0.4% secondary melting low pressure casting, whose weight is about 18kg, and which undergoes heat treatment of the prior art (dissolution at maximum temperature, tempering and tempering) present Difficulty in machining: large-sized drill chips tend to wrap around cutting tools (or remain in oil circuits, for example). Their evacuation is therefore difficult. These machining difficulties are related to the characteristics of the alloy obtained after this known heat treatment.

Plus précisément, après une mise en solution traditionnelle de 5 heures à 530°C suivie d'une trempe à l'eau de 90°C et d'un revenu de 5 heures à 200°C, les caractéristiques mécaniques obtenues sur la culasse sur sa face de culbuterie sont les suivantes : Résistance à la rupture 341 MPa Limite d'élasticité à 0.2% de déformation 298 MPa Allongement plastique 2,17 % Dureté Brinell 112 Indice de qualité 391 MPa More precisely, after a traditional solution dissolution of 5 hours at 530 ° C. followed by quenching with water of 90 ° C. and a 5 hour tempering at 200 ° C., the mechanical characteristics obtained on the cylinder head on its tumbler face are as follows: Tear resistant 341 MPa Yield strength at 0.2% deformation 298 MPa Plastic stretching 2.17% Brinell hardness 112 Quality index 391 MPa

La microstructure typique après le traitement thermique habituel révèle :

  • un silicium globulisé par le séjour à haute température, comme le montre la figure 1 des dessins, et
  • une mise en solution optimale, c'est-à-dire qu'aucun composé Mg2Si n'est observé hors solution.
The typical microstructure after the usual heat treatment reveals:
  • a silicon globulized by the stay at high temperature, as shown by figure 1 drawings, and
  • optimal dissolution, that is to say that no compound Mg2Si is observed out of solution.

On réalise maintenant sur une culasse identique, en lieu et place du traitement thermique connu, un traitement thermique comprenant une mise en solution à un premier palier de température de 530°C pendant 2 heures puis à un deuxième palier de 465°C pendant 2 heures, en laissant 1 heure à la charge pour passer de la première température à la deuxième, puis d'une trempe à l'eau à 90°C et d'un revenu de 5 heures à 200°C.A heat treatment is now carried out on an identical cylinder head, instead of the known heat treatment, comprising dissolving at a first temperature level of 530 ° C. for 2 hours and then at a second stage of 465 ° C. for 2 hours. , leaving 1 hour to the load to go from the first temperature to the second, then quenching with water at 90 ° C and a 5 hour income at 200 ° C.

Les caractéristiques mécaniques du matériau deviennent les suivantes : Résistance à la rupture 231 MPa (-32 %) Limite d'élasticité à 0.2% de déformation 207 MPa (-30 %) Allongement plastique 4.64 % (+114 %) Dureté Brinell 90 (-20 %) Indice de qualité 331 MPa (-15%) The mechanical characteristics of the material become the following: Tear resistant 231 MPa (-32%) Yield strength at 0.2% deformation 207 MPa (-30 %) Plastic stretching 4.64% (+114%) Brinell hardness 90 (-20%) Quality index 331 MPa (-15%)

La résistance à la rupture, la limite d'élasticité et la dureté, avec le traitement selon l'invention, diminuent de 20 à 32%. Cette diminution se fait au profit d'une augmentation très forte de l'allongement plastique (c'est-à-dire allongement à la rupture) (+114%).The breaking strength, the yield strength and the hardness, with the treatment according to the invention, decrease from 20 to 32%. This decrease is in favor of a very strong increase in plastic elongation (that is to say elongation at break) (+ 114%).

Sur le plan de la microstructure, le traitement thermique selon la présente invention révèle la présence de silicium globulisé par la mise en solution à haute température, comme l'illustre la figure 2 des dessins, tout en obtenant l'abattement de résistances ou de dureté par rapport à la mise en solution classique.In terms of microstructure, the heat treatment according to the present invention reveals the presence of silicon globulized by high temperature dissolution, as illustrated by FIG. figure 2 drawings, while obtaining the reduction of resistances or hardness compared to the setting in conventional solution.

2) Impact de la température du deuxième palier 2) Impact of the temperature of the second tier

Une mise en solution en deux paliers avec une deuxième température abaissée par rapport à l'exemple précédent, à savoir 450°C et 400°C respectivement, a été réalisée dans le cadre de la recherche d'une deuxième température optimale. Dans les deux cas, la mise en solution à 530°C s'effectuait pendant 2 heures, et la mise en solution à 450 ou 400°C selon le cas s'effectuait pendant 3 heures, avec une durée de 90 ou de 120 minutes pour atteindre la deuxième température.A dissolution in two stages with a second temperature lowered compared to the previous example, namely 450 ° C and 400 ° C respectively, was carried out in the context of the search for a second optimum temperature. In both cases, the dissolution at 530 ° C was carried out for 2 hours, and the dissolution at 450 or 400 ° C as the case required was for 3 hours, with a duration of 90 or 120 minutes to reach the second temperature.

Ici encore, la mise en solution a été suivie d'une trempe à l'eau à 90°C et d'un revenu de 5 heures à 200°C.Here again, the dissolution was followed by quenching with water at 90 ° C. and a 5 hour recovery at 200 ° C.

Mais de telles températures plus basses du deuxième palier se sont révélées causer une trop grande baisse des caractéristiques mécaniques, comme l'illustre le tableau ci-dessous : Mise en solution à deux paliers, 530°C puis 450°C 400°C Résistance à la rupture (MPa) 207 (-39%) 169 (-50%) Limite d'élasticité à 0.2% de déformation (MPa) 151 (-49%) 97 (-67%) Allongement plastique (%) 4.22 (+94%) 8.41 (+288%) Dureté Brinell 70 (-37%) 61 (-45%) But such lower temperatures at the second level have been shown to cause too great a decline in mechanical characteristics, as illustrated in the table below: Dissolution in two stages, 530 ° C then 450 ° C 400 ° C Resistance to fracture (MPa) 207 (-39%) 169 (-50%) 0.2% yield stress (MPa) 151 (-49%) 97 (-67%) Plastic elongation (%) 4.22 (+ 94%) 8.41 (+ 288%) Brinell hardness 70 (-37%) 61 (-45%)

3) Impact de la première étape à température élevée sur la microstructure 3) Impact of the first step at high temperature on the microstructure

En utilisant une pièce moulée avec un alliage du type précité, modifié au strontium, on a réalisé le traitement thermique de mise en solution à deux paliers selon l'invention, ainsi qu'une mise en solution avec un palier unique à la température de 465°C. Dans le premier cas, le séjour à haute température amène le silicium à se globuliser, comme le montre la figure 3, alors que dans le deuxième cas il n'y a pas de globulisation, comme le montre la figure 4.Using a casting molded with an alloy of the above-mentioned type, modified with strontium, the two-stage solution heat treatment according to the invention was carried out, as well as a solution with a single bearing at the temperature of 465 ° C. ° C. In the first case, the stay at high temperature causes the silicon to globulate, as shown by the figure 3 , whereas in the second case there is no globulization, as shown in figure 4 .

4) Impact de l'existence de deux paliers sur les caractéristiques mécaniques 4) Impact of the existence of two bearings on the mechanical characteristics

Les caractéristiques mécaniques sont également affectées par le type de mise en solution réalisé, en étant meilleures après une mise en solution à deux paliers.The mechanical characteristics are also affected by the type of dissolution performed, being better after a two-stage solution dissolution.

Ainsi le diagramme illustré sur la figure 5 des dessins représente les compromis entre les résistances mécaniques (résistance à la rupture Rm et limite d'élasticité Rp à 0,2% de déformation, en MPa) et l'allongement à rupture (en %) après traitement thermique à un seul ou à deux paliers, en fonction de la température du palier unique ou de celle du deuxième palier. Les carrés (cas de l'invention) et les triangles (cas d'un traitement thermique à un seul palier) correspondent à différentes températures, comme indiqué.So the diagram shown on the figure 5 the drawings represent the trade-offs between the mechanical strengths (Rm tensile strength and yield strength Rp at 0.2% deformation, in MPa) and the elongation at break (in%) after single or two bearings, depending on the temperature of the single bearing or the second bearing. Squares (case of the invention) and triangles (case of a single stage heat treatment) correspond to different temperatures, as indicated.

Sur la figure 5, la trajectoire en trait continu T1 montre l'évolution du couple (résistance à la rupture, allongement) en fonction de la deuxième température d'une mise en solution à deux paliers, tandis que la trajectoire en trait continu T2 montre l'évolution des mêmes caractéristiques en fonction de la température d'une mise en solution à un seul palier. La trajectoire en pointillés T3 montre quant à elle l'évolution du couple (limite d'élasticité, allongement) en fonction de la deuxième température d'une mise en solution à deux paliers, tandis que la trajectoire en pointillés T4 montre l'évolution des mêmes caractéristiques en fonction de la température d'une mise en solution à un seul palier.On the figure 5 , the continuous line trajectory T1 shows the evolution of the torque (breaking strength, elongation) as a function of the second temperature of a two-stage solution solution, while the T2 line shows the evolution of the same characteristics as a function of the temperature of a single-stage solution solution. The dotted line trajectory T3 for its part shows the evolution of the torque (elastic limit, elongation) as a function of the second temperature of a two-stage solution solution, whereas the dotted line trajectory T4 shows the evolution of the same characteristics as a function of the temperature of a single-stage solution solution.

On a également représenté sur la figure 5 en liaison avec les courbes T1 et T3 obtenues selon l'invention, les diminutions de 10% et 40% de la résistance correspondant à un domaine de l'invention, ainsi que les diminutions de 15% et 35% correspondant à un domaine particulièrement préféré (domaine hachuré) de l'invention.We also represented on the figure 5 in conjunction with the T1 and T3 curves obtained according to the invention, the decreases of 10% and 40% of the resistance corresponding to a field of the invention, as well as the decreases of 15% and 35% corresponding to a particularly preferred field (hatched domain) of the invention.

En outre, la figure 5 montre, de par les positions relatives des courbes T1 et T3 par rapport aux courbes T2 et T4, respectivement, qu'un traitement de mise en solution à deux paliers présente un compromis résistance/ allongement à rupture supérieur au même matériau soumis à un traitement thermique à un seul palier, et ceci quelque soit le niveau de la température de ce palier unique.In addition, the figure 5 shows, by the relative positions of the curves T1 and T3 with respect to the curves T2 and T4, respectively, that a treatment of dissolution in solution with two stages has a compromise resistance / elongation with rupture superior to the same material subjected to a heat treatment at a single level, regardless of the temperature level of this single stage.

5) Essais d'usinabilité 5) Machinability tests

Pour étudier l'impact de l'invention sur l'usinabilité, on a réalisé deux essais, l'un sur une culasse de référence réalisée selon l'art antérieur (traitement mono-palier à 530°C pendant 5 heures) comme décrit au point 1) plus haut, et avec le même alliage, et l'autre sur une culasse réalisée toujours avec le même alliage et traitée thermiquement avec deux paliers de température conformément à l'invention, à savoir pendant 2 h à 530°C et pendant 2 h à 465°C, avec un refroidissement intermédiaire pendant 1 h.To study the impact of the invention on machinability, two tests were carried out, one on a reference cylinder made according to the prior art (single-stage treatment at 530 ° C. for 5 hours) as described in FIG. 1) above, and with the same alloy, and the other on a cylinder head always made of the same alloy and heat-treated with two temperature levels according to the invention, namely for 2 hours at 530 ° C and during 2 h at 465 ° C, with intermediate cooling for 1 h.

Dans les deux cas, la mise en solution a été suivie d'une trempe à l'eau à 90°C puis d'un revenu de 5 heures à 190°C.In both cases, the dissolution in solution was followed by quenching with water at 90 ° C and then an income of 5 hours at 190 ° C.

On constate que l'usinabilité des culasses traitées selon l'invention est facilitée. A titre indicatif, on a caractérisé la plus grande facilité à usiner par une réduction de la longueur moyenne du copeau et d'une forte augmentation de la masse volumique moyenne - qui traduisent une meilleure aptitude à la fragmentation du copeau - selon le tableau ci-dessous : longueur moyenne des copeaux masse volumique moyenne Référence : 2.6 cm 0,11 g/cm3 Selon l'invention : 2 populations : 0,7 cm* et 2,2 cm (mesure sur population non triée)
0,64 g/cm3
* population majoritaire
It is found that the machinability of the cylinder heads treated according to the invention is facilitated. As an indication, the greater ease of machining has been characterized by a reduction in the average chip length and a large increase in the average density - which reflect a better ability to fragment the chip - according to the table below. below: average chip length average density Reference: 2.6 cm 0.11 g / cm 3 According to the invention: 2 populations: 0.7 cm * and 2.2 cm (measure on unsorted population)
0.64 g / cm 3
* majority population

Bien entendu, la présente invention n'est nullement limitée aux formes de réalisation décrites et représentées, mais l'homme du métier saura y apporter de nombreuses variantes et modifications.Of course, the present invention is not limited to the embodiments described and shown, but the skilled person will be able to make many variations and modifications.

En particulier, l'homme du métier saura faire varier le profil exact de l'évolution de la température au cours du traitement thermique de mise en solution, avec notamment plus de deux paliers, ou encore des paliers dans lesquels la température peut évoluer dans une certaine gamme.In particular, those skilled in the art will be able to vary the exact profile of the evolution of the temperature during the heat treatment of dissolution, with in particular more than two steps, or even steps in which the temperature can evolve in a certain range.

En outre, l'homme du métier saura adapter les différents paramètres en fonction principalement mais non exclusivement :

  • du type d'alliage utilisé,
  • du poids et/ou du volume de la pièce,
  • de l'application envisagée,
  • du type d'usinage à effectuer, etc.
In addition, those skilled in the art will be able to adapt the various parameters mainly but not exclusively:
  • the type of alloy used,
  • the weight and / or volume of the piece,
  • the intended application,
  • the type of machining to be performed, etc.

Claims (7)

  1. Method of heat-treating a casting made of an alloy of aluminium, silicon and magnesium, with a low copper content of no more than 1% by weight, characterised in that it comprises the following steps:
    (a) solution heat treatment the casting at a first temperature range lying between 510°C and 555°C, and preferably between approximately 520°C and 540°C, for a first duration;
    (b) gradually cooling the casting to a second temperature lying within a second temperature range lower than the first range;
    (c) continuing solution heat treatment of the casting by maintaining it at the second temperature range lying between 455°C and 485°C, and preferably between approximately 460°C and 480°C, for a second duration;
    (d) quenching the casting; and
    (e) tempering the casting.
  2. Method according to claim 1, characterised in that the second temperature range is selected in such a manner that the treated alloy has its tensile strength reduced by an amount in the range about 10% to about 40%, and preferably in the range about 15% to about 35%, relative to the tensile strength which would be obtained with single solution heat treatment at the first temperature range and for a duration equal to the sum of the first and second durations.
  3. Method according to claim 1 or 2, characterised in that the second temperature range is lower than the first temperature range by about 8% to 14%.
  4. Method according to one of claims 1 to 3, characterised in that the first duration lies in the range about 1 h to about 4 h, and preferably in the range about 1 h to about 2 h.
  5. Method according to one of claims 1 to 4, characterised in that the second duration lies in the range about 1 h to about 5 h, and preferably in the range about 1 h to 3 h.
  6. Method according to one of claims 1 to 5, characterised in that the duration of step (b) is greater than or equal to about 30 min, and preferably lies in the range about 1 h to 2 h and 30 min.
  7. Casting made of an alloy based on aluminium, silicon and magnesium, and optionally copper, with in particular a copper,content of no more than 1% by weight, and presenting improved machinability, characterised in that it presents:
    - a tensile strength lying in the range 220 MPa to 300 MPa;
    - a 0.2% elastic limit lying in the range 170 MPa to 270 MPa;
    - a Brinell hardness number lying in the range 75 to 110.
EP03730296.5A 2002-03-20 2003-03-20 Method for the thermal treatment of a foundry piece made from an alloy based on aluminium and foundry piece Expired - Lifetime EP1488021B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0203530 2002-03-20
FR0203530A FR2837501B1 (en) 2002-03-20 2002-03-20 METHOD OF THERMAL TREATMENT OF ALUMINUM-BASED ALLOY FOUNDRY PIECES, AND FOUNDRY PIECES WITH IMPROVED MECHANICAL PROPERTIES
PCT/FR2003/000887 WO2003078674A2 (en) 2002-03-20 2003-03-20 Method for the thermal treatment of foundry pieces made from an alloy based on aluminium and foundry pieces with improved mechanical properties

Publications (2)

Publication Number Publication Date
EP1488021A2 EP1488021A2 (en) 2004-12-22
EP1488021B1 true EP1488021B1 (en) 2014-01-15

Family

ID=27799142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03730296.5A Expired - Lifetime EP1488021B1 (en) 2002-03-20 2003-03-20 Method for the thermal treatment of a foundry piece made from an alloy based on aluminium and foundry piece

Country Status (5)

Country Link
US (1) US7776168B2 (en)
EP (1) EP1488021B1 (en)
AU (1) AU2003240929A1 (en)
FR (1) FR2837501B1 (en)
WO (1) WO2003078674A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176382A1 (en) * 2015-04-28 2016-11-03 Consolidated Engineering Company, Inc. System and method for heat treating aluminum alloy castings
CN112522647B (en) * 2020-11-16 2022-03-18 上海汽车变速器有限公司 High-vacuum die-casting high-elongation heat treatment method for rare earth-containing aluminum-silicon alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066476A (en) * 1976-08-11 1978-01-03 Swiss Aluminium Ltd. Duplex process for improving the hot workability of aluminum-magnesium alloys
US6074501A (en) * 1999-06-28 2000-06-13 General Motors Corporation Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures
JP2001316747A (en) * 1999-08-31 2001-11-16 Asahi Tec Corp NON-Cu CAST Al ALLOY AND HEAT TREATING METHOD THEREFOR

Also Published As

Publication number Publication date
AU2003240929A1 (en) 2003-09-29
US20050217771A1 (en) 2005-10-06
US7776168B2 (en) 2010-08-17
AU2003240929A8 (en) 2003-09-29
FR2837501B1 (en) 2005-01-28
EP1488021A2 (en) 2004-12-22
WO2003078674A2 (en) 2003-09-25
WO2003078674A3 (en) 2004-04-01
FR2837501A1 (en) 2003-09-26

Similar Documents

Publication Publication Date Title
EP1490526B1 (en) Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
EP2516687B1 (en) Casting made from copper containing aluminium alloy with high mechanical strength and hot creep
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
EP2164998B1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
EP0287486A1 (en) Process for making a titanium alloy component, and component obtained
FR2489846A1 (en) ALUMINUM ALLOYS OF HIGH MECHANICAL AND WEAR RESISTANCE AND METHOD OF MAKING THE SAME
FR2557148A1 (en) PROCESS FOR INCREASING THE FORGEABILITY OF A NICKEL-BASED SUPERALLIAGE ARTICLE
EP1840232A1 (en) Nickel-based alloy
EP1340832A1 (en) Thin products made of beta or quasi beta titanium alloys, manufacture by forging
FR2818288A1 (en) METHOD OF MANUFACTURING AN AL-Si ALLOY SAFETY PART
FR2968675A1 (en) 7XXX THICK-ALLOY PRODUCTS AND METHOD OF MANUFACTURE
EP1156126A1 (en) Process for manufacturing an Fe-Ni alloy strip
JP2001059124A (en) Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
WO2006056686A2 (en) Aluminium alloy for component with high hot process mechanical strength
EP2449137B1 (en) Method for producing martensitic steel with mixed hardening
EP1488021B1 (en) Method for the thermal treatment of a foundry piece made from an alloy based on aluminium and foundry piece
US20090159161A1 (en) METHOD FOR FABRICATING A THICK Ti64 ALLOY ARTICLE TO HAVE A HIGHER SURFACE YIELD AND TENSILE STRENGTHS AND A LOWER CENTERLINE YIELD AND TENSILE STRENGTHS
EP0792945A1 (en) Process for heat treatment of a nickel-base superalloy
FR2859484A1 (en) Cast aluminum alloy component with high flow resistance for use in turbo-charged petrol and diesel engines, e.g. pistons for internal combustion engines
US7481898B2 (en) Method for fabricating a thick Ti64 alloy article to have a higher surface yield and tensile strengths and a lower centerline yield and tensile strengths
FR2825376A1 (en) Fabrication of a wear resistant molded article from a molten hyper-eutectic aluminum-silicon alloy containing copper held at a predetermined temperature to regulate the metallurgical structure before casting
CH719204A2 (en) Watch component made of a cuproaluminium alloy.
FR3132306A1 (en) Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet
BE516044A (en)
FR2726833A1 (en) Heat treatment of nickel@-based alloy for aircraft engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041018

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20100826

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/043 20060101AFI20130711BHEP

Ipc: C22F 1/047 20060101ALI20130711BHEP

INTG Intention to grant announced

Effective date: 20130808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60345622

Country of ref document: DE

Effective date: 20140227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60345622

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60345622

Country of ref document: DE

Effective date: 20141016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220307

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60345622

Country of ref document: DE