EP1487052B1 - Antenna system in the aperture of an electrical conducting car body - Google Patents

Antenna system in the aperture of an electrical conducting car body Download PDF

Info

Publication number
EP1487052B1
EP1487052B1 EP03001676A EP03001676A EP1487052B1 EP 1487052 B1 EP1487052 B1 EP 1487052B1 EP 03001676 A EP03001676 A EP 03001676A EP 03001676 A EP03001676 A EP 03001676A EP 1487052 B1 EP1487052 B1 EP 1487052B1
Authority
EP
European Patent Office
Prior art keywords
aperture
capacitive
low
conductor
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03001676A
Other languages
German (de)
French (fr)
Other versions
EP1487052A1 (en
Inventor
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Priority to AT03001676T priority Critical patent/ATE467922T1/en
Priority to EP03001676A priority patent/EP1487052B1/en
Priority to DE50312708T priority patent/DE50312708D1/en
Publication of EP1487052A1 publication Critical patent/EP1487052A1/en
Application granted granted Critical
Publication of EP1487052B1 publication Critical patent/EP1487052B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/103Resonant slot antennas with variable reactance for tuning the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk

Definitions

  • the invention relates to an antenna arrangement in the substantially rectangular or. trapezoidal aperture 1 of an electrically conductive vehicle body in the meter wave range z. B. for FM reception.
  • the invention is based on an antenna system, such as in the DE 195 35 250 A1 in Figure 4a using the example of a roof segment for a small vehicle is described.
  • the antennas specified there (5.6) for frequencies up to the meter range are preferably formed as conductor structures of thin wire. Due to the limited space available in vehicle construction spaces for the segments described there are primarily roof segments or segments in the trunk lid in question wherein the aperture length L through the vehicle width and their aperture width B by other vehicle technical predetermined conditions, such as the sunroof, the rollover security, etc. is restricted. This leads, in particular in the range of meter waves, to the fact that the aperture length L is often smaller than half the operating wavelength and the aperture width B must be chosen smaller than 1/10 of the operating wavelength.
  • the object of the invention is therefore to avoid the disadvantage of given at low loss adaptation of the antenna narrow band in such aperture antennas.
  • the radiation associated with an antenna in an aperture of the predetermined type is determined at aperture lengths significantly below the half-wave resonance mainly by the currents at the aperture edge.
  • an antenna of this kind for example in the roof of a motor vehicle ( Fig. 1a ), therefore, for frequencies below the aperture resonance results in a horizontal radiation pattern, as shown in Figure 1b).
  • This directional diagram which applies to the horizontal polarization, is independent in form of any excitation of the aperture, provided the aperture does not exceed the aperture resonance.
  • Antenna structures, which are introduced into the aperture thus subject at these frequencies in terms of their own contribution to radiation of the given by the boundary of the aperture dominance of the edge currents. For this reason, it is necessary to design the antenna structures introduced into the aperture in such a way that excitation of the edge currents of the aperture which is as low-loss as possible and the possible bandwidth is reduced as little as possible.
  • An aperture of the type described has a high pass-like character with respect to its radiation properties, with different beam patterns and relatively large bandwidths with good efficiency can be achieved with relatively slim antenna conductors at frequencies above the aperture self-resonance especially with a larger width of the aperture with different antenna structures and positions. This has been demonstrated in the past by numerous forms of window pane antennas in automobiles.
  • the frequency dependence of the received voltage when irradiated in the main receiving direction as effective height h eff in Fig. 2a considered.
  • the maximum current allocation occurs at the natural resonant frequency f s of the aperture, which is expressed in a maximum value of the open circuit voltage measured at the coupling point, measured as the effective height.
  • the resonant frequency is given by the electrical equality, that is the reactive power caused by the electric fields in the aperture, which is the reactive power produced by the magnetic fields in the aperture.
  • the optimum relative bandwidth, which can be achieved in this measure for the resonance peaking of the aperture currents at f o is given by the ratio of the total magnetic reactive power P ma to the radiated power P in the transmission case.
  • b R opt P ma P
  • the capacitive tuning element 5 acts with its effective capacitance AC in Fig. 3a between the boundary points A and A ', wherein the guide value G A shown dashed at this point represents the effective radiation damping of the arrangement.
  • the effective capacitances are each represented by the series connection of an inductance L p or L pc and a capacitance C p or C pc .
  • An essential element of the present invention is to make the effective capacitance at the selected location in the aperture extremely low induction, that is, with the smallest possible inductive influence. If the influence of the series inductance is negligible, the bandwidth of the resonance peak of the electric and magnetic fields in the aperture is largely independent of the position d A for the attachment of the capacitive tuning element. In this case, at the frequency f o, the maximum relative bandwidth b ropt results .
  • Fig. 4a is the bandwidth reduction as a function of the influence of the occurring in L p undesired reactive magnetic power as a function of the frequency ratio f o / f s for different values of C p / ⁇ C and P mp / P ma shown.
  • Fig. 4b the influence of the unwanted reactive magnetic power on the ratio of the relative bandwidth b ro at the frequency f o to the relative aperture bandwidth b rs at natural resonant frequency f s , taking into account that at low frequencies the optimally achievable bandwidth for the current resonance with the cube of the Frequency gets smaller. It is therefore all the more important not to reduce the bandwidth of the antenna arrangement by further disadvantageous coupling to the aperture.
  • the capacitive tuning element in particular when tuned outside the aperture center, must be designed to be particularly non-inductive according to the invention. From the It is clear from the above that a thin antenna conductor inserted into the aperture is not suitable for supplying the reactive power AP e necessary for the tuning to the aperture 1, since this is impossible due to its self-inductance without the bandwidth-reducing reactive magnetic power P mp .
  • the invention will be explained further using the example of an aperture 1 in a vehicle body 2 with an aperture length L of 90 cm and an aperture width B of 20 cm.
  • the aim in this example is to create an antenna for an operating frequency range according to the VHF range in Europe or according to the FM frequency range in Japan.
  • the effective conductance G c ( Fig. 3b ) is without capacitive detuning in the case of the Apertureigenresonanz f s about 1 mS and is reduced with the considered detuning to the resonant frequency f 0 to about 0.54 mS. Together with the reactive power ratios changed at the lower frequency, the indicated detuning results in the relatively large reduction of the relative bandwidth b ro of the aperture resonance.
  • the conductance of 0.54 mS corresponding to a resistance of 1.86 k ⁇ is too high a value to realize a simple lossless matching circuit.
  • the low-inductance conductor 9 can be designed as a flat conductor with a sufficiently large conductor width 11.
  • concentrated capacitive components 12 can be used to bridge the point of interruption, it being advantageous to avoid undesired inductive effect to use a plurality of such capacitive components 12 distributed over the conductor width 11.
  • the capacitive tuning element 5 with the desired effective capacitance ⁇ C is the design of the interruption point 6 as a slot capacitance, which can be set by selecting a suitable conductor slot width 14.
  • FIG Fig. 5a Another advantageous possibility of designing the capacitive tuning element 5 is shown in FIG Fig. 5a shown.
  • the capacitive tuning element 5 is introduced into an appreciable distance d A in the aperture. 1
  • the influence of the inductance L p is considerably greater there than that of an inductance L pc of the same size when mounted centrally (see equation 11). Therefore, a flat configuration of the low-inductance conductor 9 is advantageous.
  • a suitable choice of the capacitive component 7 with introduction of concentrated capacitive components 12 at a given edge distance 10 or with a suitable choice of a conductor slot width 14 in the sufficiently large selected conductor width 11 can be in Fig. 5b Achieve shown impedance curve. All possibilities shown in the figures for tuning the aperture resonance are practically equivalent.
  • the capacitive tuning element 5 as a larger conductive surface 17 with a longitudinal dimension up to half an aperture length L as low-inductance conductor 9 in the aperture 1, as in Fig. 6a , brought in.
  • the desired overall capacitive effect is formed by the edge distance 10 between the boundary of this conductive surface 17 and the aperture edges 13 in conjunction with suitably distributed concentrated capacitive devices 12.
  • This trough can advantageously be designed as a conductive base 25 of microwave antennas 24 ( Fig. 6c ). To lead out the connection lines from the aperture 1, these are made high impedance for the meter wave frequency range by throttling.
  • the contribution of the area of the aperture bridged with the trough to the formation of the self-inductance contributes less and the capacitance has to be correspondingly increased; however, the basic properties of the tuned aperture are preserved.
  • the coupling element 3 similarly to the conductive surface 17, which is in the form of a conductive well, it is not necessary to attach the coupling element 3 in the plane of the vehicle body surrounding the aperture 1. Rather, it may also be placed in a recessed manner on a dielectric carrier material in the aperture 1.
  • Magnetically acting coupling elements 3 for decoupling the strong magnetic fields at the end of the aperture 1 are additionally in the FIGS. 2b, 2d and 3a, 3b shown.
  • the decoupling with an electrical monopoly goes out Fig. 8a out.
  • the associated impedance curve in Fig. 6a shows the broadbandness of this arrangement at the antenna junction 4, which advantageously the transformation into the desired impedance curve in Fig. 7b with the in Fig. 7a indicated simple low-loss reactive elements allows.
  • a particularly advantageous coupling to the aperture 1 is the above-mentioned capacitive coupling for the design of an equivalent resonant band filter with two circles, as described, for example, in US Pat FIG. 5a is shown.
  • a particularly advantageous variant of the embodiment of the coupling element 3 with regard to the design of combination antennas is in Fig. 8a shown.
  • the substantially elongated conductor 22 is galvanically connected at its one end to the aperture edge 13. In planar design of the elongated conductor 22, this can be advantageously used as a conductive base 25 of microwave antennas 24 in a combined antenna system. Due to the galvanic coupling, the lead-out of the connection lines of the microwave antennas 24 can take place without problems.
  • the capacitive tuning element 5 is combined with the coupling element 3 in that in the aperture 1 over a large part of the aperture length L, a conductive surface 17 is introduced as a low-inductance conductor 9.
  • the vote is made by suitable design of the edge distance 10 in conjunction with the distributed introduction of concentrated capacitive elements 12. Due to the increased concentration of magnetic fields in the immediate vicinity of the edge is not too small edge distance 10 hardly a disadvantageous decrease in the self-inductance connected as a magnetic energy storage of the aperture ,
  • the desired antenna impedance can be adjusted with suitable positioning of the antenna connection point 4.
  • This impedance is in Fig. 10b and shows a broadband loop in the frequency range of 80 to 110 MHz.
  • such a broadband impedance can be transformed into a desired impedance curve, for example for the VHF range.

Abstract

The arrangement has an aperture length (L) selected to be so small that the resonant frequency of the aperture (1) exceeds the center frequency of the working frequency range, a capacitive tuning element for tuning the aperture resonance to a resonant frequency close to the center frequency and a coupling element for coupling the antenna connection points to the electromagnetic fields in the aperture with minimal residual inductive effects of magnetic reactive power.

Description

Die Erfindung bezieht sich auf eine Antennenanordnung in der im wesentlichen rechteck-bzw. trapezförmigen Apertur 1 einer elektrisch leitenden Fahrzeugkarosserie im Meterwellenbereich z. B. für den UKW-Empfang.The invention relates to an antenna arrangement in the substantially rectangular or. trapezoidal aperture 1 of an electrically conductive vehicle body in the meter wave range z. B. for FM reception.

Die Erfindung geht aus von einem Antennensystem, wie sie z.B. in der DE 195 35 250 A1 in Bild 4a am Beispiel eines Dachsegments für ein kleines Fahrzeug beschrieben ist. Die dort angegebenen Antennen (5,6) für Frequenzen bis zum Meterbereich sind vorzugsweise als Leiterstrukturen aus dünnem Draht ausgebildet. Aufgrund der im Fahrzeugbau beschränkt verfügbaren Bauräume kommen für die dort beschriebenen Segmente in erster Linie Dachsegmente oder Segmente im leitenden Kofferraumdeckel in Frage wobei die Aperturlänge L durch die Fahrzeugbreite und ihre Aperturbreite B durch andere fahrzeugtechnisch vorgegebene Rahmenbedingungen, wie z.B. das Schiebedach, die Überrollsicherheit etc. eingeschränkt ist. Dies führt insbesondere im Bereich der Meterwellen dazu, dass die Aperturlänge L oft kleiner als die halbe Betriebswellenlänge ist und die Aperturbreite B kleiner als 1/10 der Betriebswellenlänge gewählt werden muß. In diesem Fall kann mit den in der DE 195 35 250 A1 in Bild 4a vorgeschlagenen Antennen (5,6) die Aufgabe einer verlustarmen Anpassung bei größtmöglicher Bandbreite nicht realisiert werden. Auch bei größeren Personenkraftfahrzeugen steht für die Aperturlänge L mehr als 90 cm kaum zur Verfügung. Dies bedeutet im UKW-Bereich bei einer Mittenfrequenz von fm = 97 MHz eine auf die Wellenlänge dieser Frequenz bezogene relative Aperturlänge L von L/λ, = 0,3 bei einer relativen Bandbreite des UKW-Bereichs von (fmax-fmin)/fm = 0,211. Für das FM-Band in Japan mit seiner Mittenfrequenz von fm = 83 MHz bedeutet dies eine auf die Wellenlänge dieser Frequenz bezogene relative Aperturlänge L von L/λ = 0,25 bei einer relativen Bandbreite des UKW-Bereichs von (fmax-fmin)/fm = 0,17. Die vorgeschlagenen Antennen haben bei Anpassung an die in der Antennentechnik üblichen Impedanzen den Nachteil der Schmalbandigkeit oder die Bandbreite der Anpassung kann nur über Verluste erzielt werden. Z.B. können die Betriebsfrequenzbereiche in Form der o.g. Frequenzbänder bei der vorgegebenen kleinen relativen Aperturlänge L von L/λ = 0,3 bzw von L/λ = 2,5 nicht hinreichend verlustarm abgedeckt werden; d.h. das Produkt aus Wirkungsgrad und Bandbreite ist zu kleinThe invention is based on an antenna system, such as in the DE 195 35 250 A1 in Figure 4a using the example of a roof segment for a small vehicle is described. The antennas specified there (5.6) for frequencies up to the meter range are preferably formed as conductor structures of thin wire. Due to the limited space available in vehicle construction spaces for the segments described there are primarily roof segments or segments in the trunk lid in question wherein the aperture length L through the vehicle width and their aperture width B by other vehicle technical predetermined conditions, such as the sunroof, the rollover security, etc. is restricted. This leads, in particular in the range of meter waves, to the fact that the aperture length L is often smaller than half the operating wavelength and the aperture width B must be chosen smaller than 1/10 of the operating wavelength. In this case, with the in the DE 195 35 250 A1 In Figure 4a proposed antennas (5,6) the task of a low-loss adaptation with the greatest possible bandwidth can not be realized. Even with larger passenger vehicles is for the aperture length L more than 90 cm hardly available. This means in the VHF range at a center frequency of f m = 97 MHz relative to the wavelength of this frequency relative aperture length L of L / λ, = 0.3 at a relative bandwidth of the VHF range of (f max -f min ) / f m = 0.211. For the FM band in Japan with its center frequency of f m = 83 MHz, this means a relative aperture length L of L / λ = 0.25 relative to the wavelength of this frequency for a relative bandwidth of the FM band of (f max -f min ) / f m = 0.17. The proposed antennas have the disadvantage of narrowband when adapted to the usual in the antenna technology impedances or the bandwidth of the adaptation can only be achieved through losses. For example, the operating frequency ranges in the form of the above-mentioned frequency bands at the predetermined small relative aperture length L of L / λ = 0.3 and L / λ = 2.5 can not be covered sufficiently low loss; ie the product of efficiency and bandwidth is too small

Eine Antennenanordnung zur Abstimmung einer leitend berandeten Apertur ist bekannt aus der US 3,210,766 . Eine Resonanzabstimmung kann dort nur herbeigeführt werden, wenn eine variable Kapazität zwischen einander gegenüberliegenden Punkten ausschließlich in der Mitte der Längsränder der Apertur eingebracht ist. Die dort angegebene Anordnung zielt ausschließlich auf die Erzeugung einer Resonanz der Struktur - ohne Betrachtung der sich dabei ergebenden Bandbreite der Resonanz ab. Die damit verbundenen Nachteile ergeben sich aus der Einschränkung, das abstimmende Element in der Mitte der Längsrichtung der Apertur einzubringen und keine Gestaltungsvielfalt der leitenden Verbindung zwischen den zentralen, einander gegenüberliegenden Punkten zu ermöglichen. Nachteilig ist ebenso, dass die dort angegebene Lösung ausschließlich auf die Erzeugung von Resonanzen mit Hilfe eines variablen kapazitiven Elements für diskrete variable Resonanzfrequenzen abzielt und somit eine breitbandige Resonanz zur Überdeckung eines ganzen Frequenzbereichs, wie z.B. des UKW-Frequenzbereichs nicht möglich ist.An antenna arrangement for tuning a conductively bounded aperture is known from US Pat US 3,210,766 , Resonance tuning can only be achieved there if a variable capacitance is introduced between opposing points exclusively in the middle of the longitudinal edges of the aperture. The arrangement specified therein aims exclusively at generating a resonance of the structure - without consideration of the resulting bandwidth of the resonance. The disadvantages associated therewith result from the restriction to introduce the tuning element in the middle of the longitudinal direction of the aperture and to allow no design diversity of the conductive connection between the central, opposite points. Another disadvantage is that the solution specified there is aimed exclusively at the generation of resonances with the aid of a variable capacitive element for discrete variable resonance frequencies and thus a broadband resonance for covering a whole frequency range, such as the VHF frequency range is not possible.

Aufgabe der Erfindung ist es deshalb, bei solchen Aperturantennen den Nachteil der bei verlustarmer Anpassung der Antenne gegebenen Schmalbandigkeit zu vermeiden.The object of the invention is therefore to avoid the disadvantage of given at low loss adaptation of the antenna narrow band in such aperture antennas.

Diese Aufgabe wird mit Hilfe der Merkmale des Hauptanspruchs bewirkt.This object is achieved by means of the features of the main claim.

Nachfolgend ist die Erfindung anhand einiger Ausführungsbeispiele in den Figuren weiter erläutert. Es zeigen:

Fig. 1a)
Aussparung mit der Aperturlänge L und der Aperturbreite B im leitenden Dach eines Kfz zur Bildung einer Antenne nach der Erfindung
Fig. 1b)
azimutales Strahlungsdiagramm bei Horizontalpolarisation bei Frequenzen unterhalb der Apertur-Eigenresonanz
Fig. 2a)
Frequenzverlauf der Leerlauf-Empfangsspannung am Ankoppelelement 3 zum Nachweis der Eigenresonanzfrequenz fs der Apertur
Fig. 2b)
Anordnung zur Feststellung der Eigenresonanzfrequenz fs
Fig. 2c)
Frequenzverlauf der Leerlauf Empfangsspannung einer Antenne nach der Erfindung am Ankoppelelement 3 zum Nachweis der durch Verstimmung reduzierten Resonanzfrequenz fo
Fig. 2d)
Antenne nach der Erfindung mit einer auf die niedrigere Resonanzfrequenz fo abgestimmten Apertur mit dem kapazitiven Abstimmelement 5
Fig. 3
  1. a) Ersatzschaltbild zur Erläuterung der die Bandbreite reduzierenden Wirkung einer induktiven Komponente im kapazitiven Abstimmelement 5.
  2. b) verlustlose Impedanztransformation auf das gewünschte Impedanzniveau bei Frequenzen unterhalb der Eigenresonanz der Apertur.
Fig. 4
Reduzierung der Bandbreite in Abhängigkeit von der Verstimmung fo/fs bei verschiedenen unerwünschten induktiven Effekten im kapazitiven Abstimmelement 5 als Parameter
  1. a) Verhältnis von bro mit induktivem Effekt zu bropt ohne induktiven Effekt jeweils bei fo
  2. b) Verhältnis von bro bei fo mit induktivem Effekt zu brs bei der Apertur-Eigenresonanz fs
Fig. 5
  1. a) Realisierung eines kapazitiven Abstimmelements 5 mit induktivitätsarmem Leiter 9 und Ankoppelelement 3 mit kapazitiver Ankopplung 23 und Parallelresonanzkreis 21 zur Gestaltung eines Zweikreis- Resonanzbandfilter -Verhaltens
  2. b) Antennenimpedanz an der Antennenanschlußstelle 4 in a) für den FM-Bereich in Japan
Fig. 6
Nachweis der Breitbandigkeit auch bei größerer Bedeckung der Aperturlänge L mit einem induktivitätsarmen Leiter
  1. a) Anordnung des induktivitätsarmen Leiters 9 mit kapazitiven Bauelementen 12 und von ihm getrenntem kapazitiven Koppelelement 3 mit Antennenanschlussstelle 4
  2. b) Impedanzverlauf für die Anordnung in a) an der Antennenanschlussstelle 4
  3. c) wannenartig ausgebildeter induktivitätsarmer Leiter 9 mit Dielektrikum εr zur Ausbildung der zur Abstimmung benötigten verteilten Kapazität zwischen Wannenrand 19 und Aperturrand 13. Die Mikrowellenantenne 24 nutzt die Wanne als Grundfläche
Fig. 7
  1. a) Anordnung wie in Fig. 6a, jedoch mit kapazitivem Ankoppelelement 3 mit einer einfachen Transformationsschaltung
  2. b) Impedanzverlauf für die Anordnung in a) an der Antennenanschlussstelle 4 für das UKW-Band als Betriebsfrequenzbereich
Fig. 8
  1. a) Anordnung mit galvanisch mit der Fahrzeugkarosserie verbundenen flächigem Leiter 22 als mögliche leitende Grundfläche 25 für eine Mikrowellenantenne bei einem kombinierten Antennensystem
  2. b) Impedanzverlauf für die Anordnung in a) an der Antennenanschlussstelle 4 für das FM- Band in Japan als Betriebsfrequenzbereich
Fig. 9
Grundformen für die Ausbildung von Ankoppelelementen 3
  1. a) als magnetischer Dipol 20
  2. b) als elektrischer Dipol 26
Fig. 10
Nachweis der Breitbandigkeit auch bei nahezu über die gesamte Aperturlänge L eingebrachte leitende Fläche 17 als induktivitätsarmer Leiter 9 bei kombinierter Verwendung als Ankoppelelement 3 mit Antennenanschlussstelle 4
  1. a) Anordnung
  2. b) Impedanzverlauf für die Anordnung in a) zur anschließend breitbandigen Transformation für den UKW-Bereich
The invention is further explained below with reference to some embodiments in the figures. Show it:
Fig. 1a)
Recess with the aperture length L and the aperture width B in the conductive roof of a vehicle to form an antenna according to the invention
Fig. 1b)
Azimuthal radiation pattern with horizontal polarization at frequencies below the aperture self-resonance
Fig. 2a)
Frequency curve of the idle receive voltage at the coupling element 3 for detecting the natural resonance frequency f s of the aperture
Fig. 2b)
Arrangement for determining the natural resonant frequency f s
Fig. 2c)
Frequency response of the idle receiving voltage of an antenna according to the invention on the coupling element 3 for detecting the reduced by detuning resonance frequency f o
Fig. 2d)
Antenna according to the invention with an adapted to the lower resonance frequency f o aperture with the capacitive tuning element. 5
Fig. 3
  1. a) equivalent circuit diagram for explaining the bandwidth-reducing effect of an inductive component in the capacitive tuning element. 5
  2. b) lossless impedance transformation to the desired impedance level at frequencies below the natural resonance of the aperture.
Fig. 4
Reduction of the bandwidth as a function of the detuning fo / fs with various undesired inductive effects in the capacitive tuning element 5 as a parameter
  1. a) Ratio of b ro with inductive effect to b ropt without inductive effect at f o
  2. b) Ratio of b ro at f o with inductive effect to b rs at the aperture self-resonance f s
Fig. 5
  1. a) Realization of a capacitive tuning element 5 with low inductance conductor 9 and coupling element 3 with capacitive coupling 23 and parallel resonant circuit 21 for designing a two-circuit resonant band filter behavior
  2. b) Antenna impedance at the antenna connection point 4 in a) for the FM area in Japan
Fig. 6
Demonstration of broadband even with greater coverage of the aperture length L with a low-inductance conductor
  1. a) arrangement of the low-inductance conductor 9 with capacitive components 12 and separated from it capacitive coupling element 3 with antenna connection point. 4
  2. b) impedance curve for the arrangement in a) at the antenna connection point 4
  3. c) trough-shaped inductance-poor conductor 9 with dielectric ε r to form the required for tuning distributed capacitance between Bath rim 19 and aperture edge 13. The microwave antenna 24 uses the tub as a base
Fig. 7
  1. a) arrangement as in Fig. 6a but with capacitive coupling element 3 with a simple transformation circuit
  2. b) impedance curve for the arrangement in a) at the antenna connection point 4 for the VHF band as operating frequency range
Fig. 8
  1. a) arrangement with galvanically connected to the vehicle body planar conductor 22 as a possible conductive base 25 for a microwave antenna in a combined antenna system
  2. b) impedance characteristic for the arrangement in a) at the antenna connection point 4 for the FM band in Japan as the operating frequency range
Fig. 9
Basic forms for the formation of coupling elements 3
  1. a) as a magnetic dipole 20th
  2. b) as an electric dipole 26
Fig. 10
Detection of the broadband even with almost over the entire aperture length L introduced conductive surface 17 as a low-inductance conductor 9 in combined use as a coupling element 3 with antenna connection point. 4
  1. a) arrangement
  2. b) impedance curve for the arrangement in a) for subsequent broadband transformation for the VHF range

Die mit einer Antenne in einer Apertur der vorgegebenen Art verbundene Strahlung ist bei Aperturlängen merklich unter der Halbwellenresonanz in der Hauptsache durch die Ströme am Aperturrand bestimmt. Mit einer Antenne dieser Art, z.B. im Dach eines Kraftfahrzeugs (Fig. 1a), ergibt sich deshalb für Frequenzen unterhalb der Aperturresonanz ein horizontales Strahlungsdiagramm, wie es in Bild 1b) dargestellt ist. Dieses für die Horizontalpolarisation zutreffende Richtdiagramm ist in seiner Form für beliebige Anregung der Apertur unabhängig von der Frequenz, sofern diese die Aperturresonanz nicht überschreitet. Antennenstrukturen, welche in die Apertur eingebracht sind, unterliegen somit bei diesen Frequenzen hinsichtlich ihres eigenen Strahlungsbeitrags der durch die Berandung der Apertur gegebenen Dominanz der Randströme. Aus diesem Grund ist es notwendig, die in die Apertur eingebrachten Antennenstrukturen derart zu gestalten, dass eine möglichst verlustarme und die mögliche Bandbreite so wenig wie möglich reduzierende Anregung der Randströme der Apertur gegeben ist.The radiation associated with an antenna in an aperture of the predetermined type is determined at aperture lengths significantly below the half-wave resonance mainly by the currents at the aperture edge. With an antenna of this kind, for example in the roof of a motor vehicle ( Fig. 1a ), therefore, for frequencies below the aperture resonance results in a horizontal radiation pattern, as shown in Figure 1b). This directional diagram, which applies to the horizontal polarization, is independent in form of any excitation of the aperture, provided the aperture does not exceed the aperture resonance. Antenna structures, which are introduced into the aperture, thus subject at these frequencies in terms of their own contribution to radiation of the given by the boundary of the aperture dominance of the edge currents. For this reason, it is necessary to design the antenna structures introduced into the aperture in such a way that excitation of the edge currents of the aperture which is as low-loss as possible and the possible bandwidth is reduced as little as possible.

Eine Apertur der beschriebenen Art besitzt hinsichtlich ihrer Strahlungseigenschaften einen hochpaßähnlichen Charakter, wobei bei Frequenzen oberhalb der Apertur-Eigenresonanz insbesondere auch bei größerer Breite der Apertur mit unterschiedlichen Antennenstrukturen und Positionierungen unterschiedliche Strahlungsdiagramme und auch relativ große Bandbreiten bei gutem Wirkungsgrad mit relativ schlanken Antennenleitern erreichbar sind. Dies wurde in der Vergangenheit anhand zahlreicher Formen von Fensterscheibenantennen in Kraftfahrzeugen gezeigt.An aperture of the type described has a high pass-like character with respect to its radiation properties, with different beam patterns and relatively large bandwidths with good efficiency can be achieved with relatively slim antenna conductors at frequencies above the aperture self-resonance especially with a larger width of the aperture with different antenna structures and positions. This has been demonstrated in the past by numerous forms of window pane antennas in automobiles.

Zur Erläuterung der mit der Erfindung gegebenen Lehre wird in der folgenden Beschreibung das Beispiel einer Apertur mit der Länge L = 0,9 m und B = 0,2 m angenommen. In Fig. 2b wird diese Apertur mit der Ankoppelleitung 3 mit Anschlußstelle 4 betrachtet. Aufgrund der verteilten Wirkung aller Einflüsse treffen die im folgenden angegebenen mathematischen Beziehungen nicht genau zu. Sie beschreiben jedoch die auftretenden Phänomene mit hinreichender Genauigkeit und ermöglichen anhand der daraus ablesbaren Tendenzen die Umsetzung der angegebenen Lehre in die Praxis.To illustrate the teaching of the invention, the following description assumes the example of an aperture of length L = 0.9 m and B = 0.2 m. In Fig. 2b this aperture is considered with the coupling line 3 with junction 4. Due to the distributed effect of all influences, the following mathematical relationships are not accurate. However, they describe the phenomena occurring with sufficient accuracy and make it possible to translate the given teaching into practice on the basis of the readable tendencies.

Zunächst wird die Frequenzabhängigkeit der Empfangsspannung bei Anstrahlung in Hauptempfangsrichtung als effektive Höhe heff im Fig. 2a betrachtet. Hierbei stellt sich die maximale Strombelegung bei der Eigenresonanzfrequenz fs der Apertur ein, welche sich in einem Maximalwert der an der Ankoppelstelle gemessenen Leerlaufspannung - gemessen als effektive Höhe - ausdrückt. Hierbei wird eine durch die Strahlungsdämpfung und die Blindleistungsverhältnisse bestimmte relative Bandbreite brs gemäß folgender Beziehung b rs = f 1 - f 2 f 1 f 2 = f 1 - f 2 f s

Figure imgb0001
festgestellt. Die Resonanzfrequenz ergibt sich bei Gleichheit der elektrischen, das ist die durch die elektrischen Felder in der Apertur verursachte Blindleistung mit der magnetischen, das ist die durch die magnetischen Felder in der Apertur hervorgerufenen Blindleistung. Bei Frequenzen unterhalb der Resonanzfrequenz, also bei den hier zutreffenden kurzen Aperturlängen, ist die elektrische Blindleistung in der Apertur zu klein, um die gewünschten resonanzartigen Randströme hervorzurufen. Erfindungsgemäß wird dieses Defizit an elektrischer Blindleistung durch ein kapazitives Abstimmelement 5 aufgehoben, so dass die resonanzartigen Ströme nunmehr bei einer niedrigeren Frequenz fo erzeugt sind, welche durch die resonanzartige Überhöhung der effektiven Höhe in Fig. 2c nachgewiesen ist. Aufgrund der bei der niedrigeren Frequenz fo kleineren auf die Blindleistung bezogenen Strahlungsdämpfung der Apertur ist die relative Aperturbandbreite b ro = f 1 - f 2 f 1 f 2 = f 1 - f 2 f o
Figure imgb0002
kleiner als bei der Eigenresonanz fs der Apertur. Bezeichnet man mit Pma die magnetische Blindleistung bei der neuen Resonanzfrequenz fo, so ist die für die Verstimmung notwendige elektrische Blindleistung APe gegeben durch: Δ P e P ma = 1 - f o f s 2
Figure imgb0003
welche mit größer werdender Verstimmung anwächst. Die optimale relative Bandbreite, welche bei dieser Maßnahme für die Resonanzüberhöhung der Aperturströme bei fo erreicht werden kann, ist gegeben durch das Verhältnis aus der gesamten magnetischen Blindleistung Pma zur abgestrahlten Leistung P im Sendefall. b ropt = P ma P
Figure imgb0004
Erfindungsgemäß wirkt das kapazitive Abstimmelement 5 mit seiner wirksamen Kapazität AC in Fig. 3a zwischen den Berandungspunkten A und A', wobei der an dieser Stelle gestrichelt angegebene Leitwert GA die wirksame Strahlungsdämpfung der Anordnung repräsentiert. Der Zusammenhang zwischen den die Strahlungsdämpfung repräsentierenden Leitwerten ergibt sich aus dem Spannungsverhältnis Uc zu UA wie folgt: G A G c U c U A 2
Figure imgb0005
und der Zusammenhang zwischen den wirksamen Kapazitäten ist gegeben aus: Δ C = Δ C c G A G c
Figure imgb0006
First, the frequency dependence of the received voltage when irradiated in the main receiving direction as effective height h eff in Fig. 2a considered. In this case, the maximum current allocation occurs at the natural resonant frequency f s of the aperture, which is expressed in a maximum value of the open circuit voltage measured at the coupling point, measured as the effective height. Here, a relative bandwidth b rs determined by the radiation attenuation and the reactive power ratios becomes as follows b rs = f 1 - f 2 f 1 f 2 = f 1 - f 2 f s
Figure imgb0001
detected. The resonant frequency is given by the electrical equality, that is the reactive power caused by the electric fields in the aperture, which is the reactive power produced by the magnetic fields in the aperture. At frequencies Below the resonant frequency, ie at the short aperture lengths applicable here, the reactive electric power in the aperture is too small to produce the desired resonance-like edge currents. According to the invention, this deficit of electrical reactive power is canceled by a capacitive tuning element 5, so that the resonance-like currents are now generated at a lower frequency f o , which is due to the resonance-like elevation of the effective height in Fig. 2c is proven. Due to the lower reactive-power radiation attenuation of the aperture at the lower frequency f o , the relative aperture bandwidth is b ro = f 1 - f 2 f 1 f 2 = f 1 - f 2 f O
Figure imgb0002
smaller than the natural resonance f s of the aperture. If the magnetic reactive power at the new resonance frequency f o is denoted by P ma , then the reactive electric power AP e required for detuning is given by: Δ P e P ma = 1 - f O f s 2
Figure imgb0003
which increases with increasing nuisance. The optimum relative bandwidth, which can be achieved in this measure for the resonance peaking of the aperture currents at f o , is given by the ratio of the total magnetic reactive power P ma to the radiated power P in the transmission case. b R opt = P ma P
Figure imgb0004
According to the invention, the capacitive tuning element 5 acts with its effective capacitance AC in Fig. 3a between the boundary points A and A ', wherein the guide value G A shown dashed at this point represents the effective radiation damping of the arrangement. The relationship between the conductance values representing the radiation attenuation results from the stress ratio Uc to U A as follows: G A G c U c U A 2
Figure imgb0005
and the relationship between the effective capacities is given by: Δ C = Δ C c G A G c
Figure imgb0006

Mit größer werdendem Abstand dA nimmt die Spannung UA im Verhältnis zur Spannung UC zum Ende der Apertur 1 hin stark ab, so dass sowohl die wirksame Kapazität ΔC als auch der die Strahlung an dieser Stelle repräsentierende Leitwert gemäß den Gleichungen (4) und (5) stark zunimmt. In den Anordnungen in Fig. 3 sind die wirksamen Kapazitäten jeweils durch die Serienschaltung einer Induktivität Lp bzw. Lpc und einer Kapazität Cp bzw. Cpc dargestellt.As the distance d A increases, the voltage U A sharply decreases in relation to the voltage U C towards the end of the aperture 1, so that both the effective capacitance ΔC and the conductance corresponding to the radiation at this point are determined according to equations (4) and (5) increases strongly. In the arrangements in Fig. 3 the effective capacitances are each represented by the series connection of an inductance L p or L pc and a capacitance C p or C pc .

Ein wesentliches Element der vorliegenden Erfindung besteht darin, die wirksame Kapazität an der gewählten Stelle in der Apertur extrem induktionsarm, das heißt, mit möglichst kleinem induktiven Einfluss zu gestalten. Ist der Einfluss der Serieninduktivität vernachlässigbar, so ist die Bandbreite der Resonanzüberhöhung der elektrischen und magnetischen Felder in der Apertur in weiten Grenzen praktisch unabhängig von der Position dA für die Anbringung des kapazitiven Abstimmelements. In diesem Fall ergibt sich bei der Frequenz fo die maximale relative Bandbreite bropt. Kann die induktive Blindleistung Pmp im Element Lp nicht vernachlässigt werden im Vergleich zu der von den Randströmen der Apertur erzeugten magnetischen Blindleistung Pma, so reduziert sich die relative Bandbreite bei der Frequenz fo auf den Wert bro annähernd nach folgendem Zusammenhang: b ro = P Σ P m = P P ma + P mp = / P ma P 1 + / P ma P mp = b ropt 1 + / P ma P mp

Figure imgb0007
An essential element of the present invention is to make the effective capacitance at the selected location in the aperture extremely low induction, that is, with the smallest possible inductive influence. If the influence of the series inductance is negligible, the bandwidth of the resonance peak of the electric and magnetic fields in the aperture is largely independent of the position d A for the attachment of the capacitive tuning element. In this case, at the frequency f o, the maximum relative bandwidth b ropt results . If the inductive reactive power P mp in the element L p can not be neglected compared to the magnetic reactive power P ma generated by the edge currents of the aperture, the relative bandwidth at the frequency f o is reduced to the value b ro approximately according to the following relationship: b ro = P Σ P m = P P ma + P mp = / P ma P 1 + / P ma P mp = b R opt 1 + / P ma P mp
Figure imgb0007

Mit P mp P ma = Δ P e P ma P mp Δ P e

Figure imgb0008
ergibt sich zusammen mit Gleichung (2) eingesetzt in Gleichung (6) für die relative Bandbreite b ro = b ropt 1 + 1 - / f s f o 2 P mp Δ P e = b ropt 1 + 1 - / f s f o 2 ω o 2 Δ CL p
Figure imgb0009
With P mp P ma = Δ P e P ma P mp Δ P e
Figure imgb0008
is given together with equation (2) in equation (6) for the relative bandwidth b ro = b R opt 1 + 1 - / f s f O 2 P mp Δ P e = b R opt 1 + 1 - / f s f O 2 ω O 2 Δ CL p
Figure imgb0009

Damit reduziert sich die Bandbreite durch den Einfluss von Lp beträchtlich, wobei dieser Einfluss mit wachsender Verstimmung anwächst. Je näher die Resonanzfrequenz fp f p = 1 C p L p

Figure imgb0010
des aus 4 und Cp bestehenden Resonanzkreises der Frequenz fo kommt, umso stärker wird die Bandbreite bei fo eingeengt. Damit gilt ferner: b ro = b ropt 1 + 1 - / f s f o 2 f p f o 2 - 1
Figure imgb0011
Thus, the bandwidth is considerably reduced by the influence of L p , which increases with increasing detuning. The closer the resonance frequency f p f p = 1 C p L p
Figure imgb0010
4 and C p resonance circuit of the frequency f o comes, the more the bandwidth is narrowed at f o . Thus, the following also applies: b ro = b R opt 1 + 1 - / f s f O 2 f p f O 2 - 1
Figure imgb0011

In Fig. 4a ist die Bandbreitenreduktion in Abhängigkeit vom Einfluss der in Lp auftretenden unerwünschten magnetischen Blindleistung in Abhängigkeit vom Frequenzverhältnis fo/fs für verschiedene Werte von Cp/ΔC bzw. Pmp/Pma dargestellt. Zusätzlich ist in Fig. 4b der Einfluss der unerwünschten magnetischen Blindleistung auf das Verhältnis der relativen Bandbreite bro bei der Frequenz fo zur relativen Aperturbandbreite brs bei Eigenresonanzfrequenz fs dargestellt, wobei berücksichtigt ist, dass bei niedrigen Frequenzen die optimal erreichbare Bandbreite für die Stromresonanz mit der dritten Potenz der Frequenz kleiner wird. Umso wichtiger ist es, die Bandbreite der Antennenanordnung nicht durch weitere nachteilige Ankopplung an die Apertur zu verringern. Mit größer werdendem Abstand dA von der Mitte ist die Einhaltung der Bedingung Pmp/OPe << 1 immer schwieriger. Dies geht aus der folgenden Gleichung (11) in Verbindung mit Gleichung (4) hervor. Denn für gleich großen Einfluss der Induktivität Lp gilt: L p = L pc G c G

Figure imgb0012
In Fig. 4a is the bandwidth reduction as a function of the influence of the occurring in L p undesired reactive magnetic power as a function of the frequency ratio f o / f s for different values of C p / ΔC and P mp / P ma shown. Additionally is in Fig. 4b the influence of the unwanted reactive magnetic power on the ratio of the relative bandwidth b ro at the frequency f o to the relative aperture bandwidth b rs at natural resonant frequency f s , taking into account that at low frequencies the optimally achievable bandwidth for the current resonance with the cube of the Frequency gets smaller. It is therefore all the more important not to reduce the bandwidth of the antenna arrangement by further disadvantageous coupling to the aperture. As the distance d A from the center increases, compliance with the condition Pmp / OP e << 1 becomes more and more difficult. This is apparent from the following equation (11) in conjunction with equation (4). Because for equal influence of the inductance L p applies: L p = L pc G c G
Figure imgb0012

Aus diesem Grund muss das kapazitive Abstimmelement insbesondere bei Abstimmung außerhalb der Aperturmitte erfindungsgemäß besonders induktionsfrei gestaltet sein. Aus den obigen Ausführungen geht klar hervor, dass ein in die Apertur eingelegter dünner Antennenleiter nicht geeignet ist um der Apertur 1 die für die Abstimmung notwendige Blindleistung APe zuzuführen da dies aufgrund seiner Eigeninduktivität ohne die Bandbreite reduzierende magnetische Blindleistung Pmp nicht möglich ist.For this reason, the capacitive tuning element, in particular when tuned outside the aperture center, must be designed to be particularly non-inductive according to the invention. From the It is clear from the above that a thin antenna conductor inserted into the aperture is not suitable for supplying the reactive power AP e necessary for the tuning to the aperture 1, since this is impossible due to its self-inductance without the bandwidth-reducing reactive magnetic power P mp .

Die Erfindung wird am Beispiel einer Apertur 1 in einer Fahrzeugkarosserie 2 mit einer Aperturlänge L von 90 cm und einer Aperturbreite B von 20 cm weiter erläutert. Ziel ist es in diesem Beispiel dabei, eine Antenne für einen Betriebsfrequenzbereich gemäß dem UKW-Bereich in Europa bzw. gemäß dem FM-Frequenzbereich in Japan zu schaffen. Wird das kapazitive Abstimmelement 5 wie in Fig. 2d in der Mitte der Aperturlänge L in die Apertur 1 eingebracht, so genügt an dieser hochohmigen Stelle eine Kapazität Cpc von 5 pF, um die Eigenresonanzfrequenz fs = 116 MHz der Apertur 1 auf fo = 90 MHz herabzusetzen. Dies geht aus Fig. 2c hervor. Dabei reduziert sich die relative Bandbreite der Aperturresonanz von brs = 0,2 auf bro = 0,08. Der an dieser Stelle wirksame Leitwert Gc (Fig. 3b) beträgt ohne kapazitive Verstimmung im Falle der Apertureigenresonanz fs ca. 1 mS und wird mit der betrachteten Verstimmung auf die Resonanzfrequenz f0 auf ca. 0,54 mS reduziert. Zusammen mit den bei der niedrigeren Frequenz geänderten Blindleistungsverhältnissen ergibt sich für die angegebene Verstimmung die relativ starke Reduzierung der relativen Bandbreite bro der Aperturresonanz. Für die Positionierung des Ankoppelelements 3 mit Antennenanschlußstelle 4 ist der Leitwert von 0,54 mS entsprechend einem Widerstand von 1,86 kΩ ein zu hoher Wert, um eine einfache verlustlose Anpassschaltung zu realisieren. Aus diesem Grund ist es technisch wesentlich günstiger, das Ankoppelelement 3 derart zu positionieren, dass das dort verfügbare Impedanzniveau in der Größenordnung der gewünschten Antennenimpedanz liegt, wobei mit wachsendem Abstand dD von der Mittellinie der Apertur 1 der Leitwert G in den Figuren 3a und 3b stark zunimmt. Dieses Impedanzniveau wird durch den Leitwert G in Fig. 3c bestimmt, welcher an den Punkten D und D' die gesamte Strahlungsdämpfung der Apertur repräsentiert, wobei in Analogie zu Gleichung (3) gilt, dass das Impedanzniveau gemäß folgender Beziehung zum Aperturende hin stark abnimmt und durch Wahl eines geeigneten Abstands dD auf den gewünschten Wert eingestellt werden kann. Für den Leitwert G ergibt sich angenähert: G G c U c U D 2

Figure imgb0013
The invention will be explained further using the example of an aperture 1 in a vehicle body 2 with an aperture length L of 90 cm and an aperture width B of 20 cm. The aim in this example is to create an antenna for an operating frequency range according to the VHF range in Europe or according to the FM frequency range in Japan. If the capacitive tuning element 5 as in Fig. 2d placed in the center of the aperture length L in the aperture 1, so is sufficient at this high-impedance point, a capacitance C pc of 5 pF to reduce the natural resonance frequency f s = 116 MHz of the aperture 1 to f o = 90 MHz. This goes out Fig. 2c out. The relative bandwidth of the aperture resonance is reduced from b rs = 0.2 to bro = 0.08. The effective conductance G c ( Fig. 3b ) is without capacitive detuning in the case of the Apertureigenresonanz f s about 1 mS and is reduced with the considered detuning to the resonant frequency f 0 to about 0.54 mS. Together with the reactive power ratios changed at the lower frequency, the indicated detuning results in the relatively large reduction of the relative bandwidth b ro of the aperture resonance. For the positioning of the coupling element 3 with antenna connection point 4, the conductance of 0.54 mS corresponding to a resistance of 1.86 kΩ is too high a value to realize a simple lossless matching circuit. For this reason, it is technically much cheaper to position the coupling element 3 such that the impedance level available there is of the order of the desired antenna impedance, with increasing distance d D from the center line of the aperture 1, the conductance G in the FIGS. 3a and 3b strongly increases. This impedance level is determined by the conductance G in Fig. 3c determines which represents at the points D and D 'the total radiation attenuation of the aperture, which is analogous to equation (3) that the impedance level strongly decreases according to the relationship to the aperture end and by selecting a suitable distance d D to the desired value can be adjusted. For the conductance G approximates: G G c U c U D 2
Figure imgb0013

Diese als praktisch verlustfreie Maßnahme anzusehende Transformation ermöglicht z.B. die Gestaltung eines äquivalenten Resonanzbandfilters mit zwei Resonanzkreisen, wie dies in Fig. 5a dargestellt ist. Hierbei wirkt die Apertur 1 als ein auf die Frequenz fo abgestimmter Resonanzkreis. Mit Hilfe der in Fig. 5a dargestellten Ankoppelkapazität 23 im Ankoppelelement 3 zusammen mit den verlustarmen Blindelementen 21, welche als zweiter Resonanzkreis der Antennenanschlussstelle 4 parallel geschaltet sind, lässt sich die in Fig. 5b dargestellte breitbandige Impedanzkurve verlustarm erzeugen.This transformation, which can be regarded as a practically lossless measure, makes it possible, for example, to design an equivalent resonant band filter with two resonant circuits, as described in US Pat Fig. 5a is shown. Here, the aperture 1 acts as a tuned to the frequency f o resonant circuit. With the help of in Fig. 5a shown coupling capacitance 23 in the coupling element 3 together with the low-loss dummy elements 21, which are connected in parallel as the second resonant circuit of the antenna connection point 4, the in Fig. 5b produce lossy broadband impedance curve shown.

Diese überdeckt mit einer breitbandigen Schleife in der Umgebung der für Rauschanpassung an einen Transistor optimalen Impedanz das im Vergleich zur Eigenresonanzfrequenz der Apertur 1 niedrige FM-Band in Japan (76 bis 90 MHz, Betriebsfrequenzbereich). Im folgenden wird gezeigt, dass die Aperturresonanz auf unterschiedliche Weise gleichwertig hergestellt werden kann, ohne dass hierbei das Ankoppelelement 3, abgesehen von Feinabstimmungsmaßnahmen, geändert werden müsste. Der induktivitätsarme Leiter 9 kann als flächiger Leiter mit einer hinreichend großen Leiterbreite 11 ausgeführtwerden. Hierbei können zur Überbrückung der Unterbrechungsstelle 6 konzentrierte kapazitive Bauelemente 12 eingesetzt werden, wobei es zur Vermeidung von unerwünschter induktiver Wirkung vorteilhaft ist, mehrere solcher kapazitiver Bauelemente 12 verteilt über die Leiterbreite 11 einzusetzen.This covers with a broadband loop in the vicinity of the optimum impedance for noise matching to a transistor the low in comparison to the natural resonant frequency of the aperture 1 FM band in Japan (76 to 90 MHz, operating frequency range). In the following it will be shown that the aperture resonance can be produced equivalently in different ways, without the coupling element 3 having to be changed except for fine-tuning measures. The low-inductance conductor 9 can be designed as a flat conductor with a sufficiently large conductor width 11. In this case, concentrated capacitive components 12 can be used to bridge the point of interruption, it being advantageous to avoid undesired inductive effect to use a plurality of such capacitive components 12 distributed over the conductor width 11.

Eine weitere Möglichkeit der Gestaltung des kapazitiven Abstimmelements 5 mit der gewünschten wirksamen Kapazität ΔC ist die Ausgestaltung der Unterbrechungsstelle 6 als eine Schlitzkapazität, welche durch Wahl einer geeigneten Leiterschlitzweite 14 eingestellt werden kann.Another possibility of designing the capacitive tuning element 5 with the desired effective capacitance ΔC is the design of the interruption point 6 as a slot capacitance, which can be set by selecting a suitable conductor slot width 14.

Eine weitere vorteilhafte Möglichkeit der Gestaltung des kapazitiven Abstimmelements 5 ist in Fig. 5a dargestellt. Hierbei ist das kapazitive Abstimmelement 5 in einem nennenswerten Abstand dA in die Apertur 1 eingebracht. Dort ist aus Gründen der wesentlich größeren Kapazität Cp als der bei Mittenanbringung erforderlichen Kapazität Cpc der Einfluss der Induktivität Lp wesentlich größer als die einer Induktivität Lpc gleicher Größe bei Mittenanbringung (sh. Gl. 11). Deshalb ist eine flächige Ausgestaltung des induktivitätsarmen Leiters 9 vorteilhaft. Bei geeigneter Wahl des kapazitiven Bauelements 7 bei Einbringung von konzentrierten kapazitiven Bauelementen 12 bei vorgegebenem Randabstand 10 bzw. bei geeigneter Wahl einer Leiterschlitzweite 14 bei der hinreichend groß gewählten Leiterbreite 11 lässt sich die in Fig. 5b dargestellte Impedanzkurve erzielen. Sämtliche in den Figuren dargestellten Möglichkeiten zur Abstimmung der Aperturresonanz sind praktisch gleichwertig.Another advantageous possibility of designing the capacitive tuning element 5 is shown in FIG Fig. 5a shown. Here, the capacitive tuning element 5 is introduced into an appreciable distance d A in the aperture. 1 Because of the considerably larger capacitance C p than the capacitance C pc required for center mounting, the influence of the inductance L p is considerably greater there than that of an inductance L pc of the same size when mounted centrally (see equation 11). Therefore, a flat configuration of the low-inductance conductor 9 is advantageous. With a suitable choice of the capacitive component 7 with introduction of concentrated capacitive components 12 at a given edge distance 10 or with a suitable choice of a conductor slot width 14 in the sufficiently large selected conductor width 11 can be in Fig. 5b Achieve shown impedance curve. All possibilities shown in the figures for tuning the aperture resonance are practically equivalent.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das kapazitive Abstimmelement 5 als eine größere leitende Fläche 17 mit einer Längsabmessung bis zu einer halben Aperturlänge L als induktivitätsarmer Leiter 9 in die Apertur 1, wie in Fig. 6a, eingebracht. Die gewünschte kapazitive Gesamtwirkung wird durch den Randabstand 10 zwischen der Berandung dieser leitenden Fläche 17 und den Aperturrändern 13 in Verbindung mit geeigneten verteilt angeordneten konzentrierten kapazitiven Bauelementen 12 gestaltet. Insbesondere für die Gestaltung von kombinierten Antennensystemen in der Apertur 1 ist es vorteilhaft, die leitende Fläche 17 des kapazitiven Abstimmelements 5 zur Aufnahme weiterer Antennen für andere Frequenzbereiche wannenartig auszubilden. Diese Wanne kann vorteilhaft als leitende Grundfläche 25 von Mikrowellenantennen 24 gestaltet werden (Fig. 6c). Zur Herausführung der Anschlussleitungen aus der Apertur 1 werden diese für den Meterwellenfrequenzbereich durch Verdrosselung hochohmig gestaltet.In a further advantageous embodiment of the invention, the capacitive tuning element 5 as a larger conductive surface 17 with a longitudinal dimension up to half an aperture length L as low-inductance conductor 9 in the aperture 1, as in Fig. 6a , brought in. The desired overall capacitive effect is formed by the edge distance 10 between the boundary of this conductive surface 17 and the aperture edges 13 in conjunction with suitably distributed concentrated capacitive devices 12. In particular for the design of combined antenna systems in the aperture 1, it is advantageous to form the conductive surface 17 of the capacitive tuning element 5 in a trough-like manner for receiving further antennas for other frequency ranges. This trough can advantageously be designed as a conductive base 25 of microwave antennas 24 ( Fig. 6c ). To lead out the connection lines from the aperture 1, these are made high impedance for the meter wave frequency range by throttling.

Hierbei ist zu berücksichtigen, dass aufgrund des verbleibenden kleinen Randabstands 10 der Beitrag des mit der Wanne überbrückten Bereichs der Apertur zur Bildung der Eigeninduktivität weniger beiträgt und der Kapazitätsbelag entsprechend erhöht werden muß; dass jedoch die grundsätzlichen Eigenschaften der abgestimmten Apertur erhalten bleiben. Ähnlich wie die als leitende Wanne ausgeprägte leitende Fläche 17 ist es selbstverständlich nicht notwendig, das Ankoppelelement 3 in der Ebene der die Apertur 1 umgebenden Fahrzeugkarosserie anzubringen. Dieses kann vielmehr ebenso vertieft auf einem dielektrischen Trägermaterial in der Apertur 1 platziert sein.It should be noted that due to the remaining small edge distance 10, the contribution of the area of the aperture bridged with the trough to the formation of the self-inductance contributes less and the capacitance has to be correspondingly increased; however, the basic properties of the tuned aperture are preserved. Of course, similarly to the conductive surface 17, which is in the form of a conductive well, it is not necessary to attach the coupling element 3 in the plane of the vehicle body surrounding the aperture 1. Rather, it may also be placed in a recessed manner on a dielectric carrier material in the aperture 1.

Das Ankoppelelement 3 mit ihrer Antennenanschlußstelle 4 zur Ankopplung an das resonanzartig überhöhte magnetische Feld bzw. an das resonanzartig überhöhte elektrische Feld in der Apertur 1, kann mit einem Ankoppelelement 3 mit dem Charakter eines magnetischen Dipols 20 bzw. mit einem Ankoppelelement 3 mit dem Charakter eines elektrischen Dipols 26 erfolgen (Fig. 9a, Fig. 9b). Magnetisch wirkende Ankoppelelemente 3 zur Auskopplung der starken magnetischen Felder am Ende der Apertur 1 sind zusätzlich in den Figuren 2b, 2d und 3a, 3b dargestellt. Die Auskopplung mit einem elektrischen Monopol geht aus Fig. 8a hervor. Die zugehörige Impedanzkurve in Fig. 6a zeigt die Breitbandigkeit dieser Anordnung an der Antennenanschlussstelle 4, welche vorteilhaft die Transformation in die gewünschte Impedanzkurve in Fig. 7b mit den in Fig. 7a angedeuteten einfachen verlustarmen Blindelementen zulässt.The coupling element 3 with its antenna connection point 4 for coupling to the resonance-like excessive magnetic field or to the resonance-like excessive electric field in the aperture 1, with a coupling element 3 with the character of a magnetic dipole 20 or with a coupling element 3 with the character of electric dipole 26 ( Fig. 9a, Fig. 9b ). Magnetically acting coupling elements 3 for decoupling the strong magnetic fields at the end of the aperture 1 are additionally in the FIGS. 2b, 2d and 3a, 3b shown. The decoupling with an electrical monopoly goes out Fig. 8a out. The associated impedance curve in Fig. 6a shows the broadbandness of this arrangement at the antenna junction 4, which advantageously the transformation into the desired impedance curve in Fig. 7b with the in Fig. 7a indicated simple low-loss reactive elements allows.

Eine besonders vorteilhafte Ankopplung an die Apertur 1 ist die oben erwähnte kapazitive Ankopplung zur Gestaltung eines äquivalenten Resonanzbandfilters mit zwei Kreisen, wie dies z.B. in Figur 5a dargestellt ist. Eine besonders vorteilhafte Variante der Ausgestaltung des Ankoppelelements 3 im Hinblick auf die Gestaltung von Kombinationsantennen ist in Fig. 8a dargestellt. Dort ist der im wesentlichen gestreckte Leiter 22 an seinem einen Ende mit dem Aperturrand 13 galvanisch verbunden. Bei flächiger Ausgestaltung des gestreckten Leiters 22 kann dieser vorteilhaft als leitende Grundfläche 25 von Mikrowellenantennen 24 in einem kombinierten Antennensystem verwendet sein. Aufgrund der galvanischen Kopplung kann dabei die Herausführung der Anschlussleitungen der Mikrowellenantennen 24 problemlos erfolgen.A particularly advantageous coupling to the aperture 1 is the above-mentioned capacitive coupling for the design of an equivalent resonant band filter with two circles, as described, for example, in US Pat FIG. 5a is shown. A particularly advantageous variant of the embodiment of the coupling element 3 with regard to the design of combination antennas is in Fig. 8a shown. There, the substantially elongated conductor 22 is galvanically connected at its one end to the aperture edge 13. In planar design of the elongated conductor 22, this can be advantageously used as a conductive base 25 of microwave antennas 24 in a combined antenna system. Due to the galvanic coupling, the lead-out of the connection lines of the microwave antennas 24 can take place without problems.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das kapazitive Abstimmelement 5 mit dem Ankoppelelement 3 dadurch kombiniert, dass in die Apertur 1 über einen großen Teil der Aperturlänge L eine leitende Fläche 17 als induktivitätsarmer Leiter 9 eingebracht ist. Die Abstimmung erfolgt durch geeignete Gestaltung des Randabstands 10 in Verbindung mit der verteilten Einbringung von konzentrierten kapazitiven Bauelementen 12. Aufgrund der erhöhten Konzentration der magnetischen Felder in unmittelbarer Randnähe ist bei nicht zu kleinem Randabstand 10 kaum eine nachteilige Abnahme der Eigeninduktivität als magnetischer Energiespeicher der Apertur verbunden. Die gewünschte Antennenimpedanz kann bei geeigneter Positionierung der Antennenanschlussstelle 4 eingestellt werden. Diese Impedanz ist in Fig. 10b dargestellt und zeigt eine breitbandige Schleife im Frequenzbereich von 80 bis 110 MHz. Durch übliche Schaltungsmaßnahmen kann eine derart breitbandige Impedanz in eine gewünschte Impedanzkurve z.B. für den UKW-Bereich transformiert werden.In a further advantageous embodiment of the invention, the capacitive tuning element 5 is combined with the coupling element 3 in that in the aperture 1 over a large part of the aperture length L, a conductive surface 17 is introduced as a low-inductance conductor 9. The vote is made by suitable design of the edge distance 10 in conjunction with the distributed introduction of concentrated capacitive elements 12. Due to the increased concentration of magnetic fields in the immediate vicinity of the edge is not too small edge distance 10 hardly a disadvantageous decrease in the self-inductance connected as a magnetic energy storage of the aperture , The desired antenna impedance can be adjusted with suitable positioning of the antenna connection point 4. This impedance is in Fig. 10b and shows a broadband loop in the frequency range of 80 to 110 MHz. By conventional circuit measures, such a broadband impedance can be transformed into a desired impedance curve, for example for the VHF range.

Liste der BezeichnungenList of terms

  • Apertur 1Aperture 1
  • Fahrzeugkarosserie 2Vehicle body 2
  • Ankoppelelement 3Coupling element 3
  • Antennenanschlußstelle 4Antenna connection point 4
  • kapazitive Abstimmelement 5capacitive tuning element 5
  • Unterbrechungsstelle 6Interruption point 6
  • kapazitives Bauelement 7capacitive component 7
  • Distanz 8Distance 8
  • induktivitätsarmer Leiter 9low-inductance conductor 9
  • Randabstand 10Edge distance 10
  • Leiterbreite 11Conductor width 11
  • kapazitive Bauelemente 12capacitive components 12
  • Aperturrand 13Aperturrand 13
  • Leiterschlitzweite 14Conductor slot width 14
  • LMK-Empfangsantennenelement 15LMK receiving antenna element 15
  • LMK-Anschlußstelle 16LMK connection point 16
  • leitende Fläche 17conductive surface 17
  • isolierter Spalt 18isolated gap 18
  • Wannenrand 19Tub rim 19
  • magnetischen Dipols 20magnetic dipole 20
  • verlustarme Blindelemente 21low-loss dummy elements 21
  • gestreckter Leiter 22elongated conductor 22
  • Ankoppelkapazität 23Coupling capacity 23
  • Mikrowellenantennen 24Microwave antennas 24
  • leitende Grundfläche 25conductive base 25
  • elektrischer Dipol 26electric dipole 26
  • Serieninduktivität 27Series inductance 27
  • wirksame Kapazität ΔCeffective capacity ΔC
  • Aperturlänge LAperture length L
  • Eigenresonanzfrequenz fsNatural resonance frequency fs
  • Blindleistung PmpReactive power Pmp
  • erzeugten Blindleistung Pmagenerated reactive power Pma
  • Resonanzfrequenz foResonant frequency fo
  • Abstand dADistance dA
  • Abstand dDDistance dD

Claims (15)

  1. Antenna arrangement in the generally rectangular/trapezoidal aperture (1), with aperture length L and aperture width W where W < L/3, of an electrically conductive vehicle body (2) for the very high frequency (VHF) range, whereby:
    - the aperture length L is selected to be so small that the self-resonant frequency (fs) of the aperture (1) is larger than the centre frequency of the service band;
    - a capacitive tuning element (5) to tune the aperture resonance to a resonance frequency fo near this centre frequency and a coupling element (3) to connect the antenna pick-up point (4) to the resonance-type excessive electromagnetic fields present in the aperture (1);
    - the capacitive tuning element (5) is positioned as a capacitively active connection between opposing points (A, A') on the longitudinal edges of the aperture (1) in an initial finite interval (dA) to the centre of the aperture length L and designed with low inductance such that the magnetic reactive power (Pmp) of this connection, caused by the residual inductive effect, is as small as possible in comparison to the magnetic reactive power (Pma) generated by the magnetic fields in the aperture (1):
    - the interval (8) between the two opposing points is bridged with a low-inductance conductor (9), which must be disconnected at one break point (6) at least, and
    - a capacitive component (7) is present on every one of the break points (6), of which there must be at least one, to bridge same; the capacitive value of this component is selected to be sufficiently large that the delivery of the electrical reactive power (Pe) required to tune the aperture (1) to the desired resonance frequency fo is ensured.
  2. Antenna arrangement according to Claim 1, characterised in that, in particular where the initial interval (dA) has larger values, the low-inductance conductor (9) is realised as a flat conductor with a sufficiently large conductor width (11) and that for low-inductance, capacitive bridging of the minimum one break point (6) one or, where required, several concentrated capacitive components (12) distributed across the conductor width (11) are used.
  3. Antenna arrangement according to one of Claims 1 to 2, characterised in that, only one break point (6) is present on one of the aperture edges (13), such that the entire area of the low-inductance conductor (9) is galvanically connected to the vehicle body (2).
  4. Antenna arrangement according to one of Claims 1 to 3, characterised in that, the minimum one break point (6) of the flat low-inductance conductor (9) is a slit with an appropriate conductor slit width (14) with respect to the slit capacity effective between the slit edges, such that the required capacitive effect is achieved with the selected conductor width (11).
  5. Antenna arrangement according to one of Claims 1 to 3, characterised in that, to construct the capacitive tuning element (5), the low-inductance conductor (9) is designed as a conducting surface (17) over a large part of aperture length L in the aperture (1), the tuning is provided by a suitably designed edge interval (10) in conjunction with the distributed concentrated capacitive components (12) and the low-inductance conductor (9) combined is used as a coupling element (3).
  6. Antenna arrangement according to one of Claims 1 to 2, characterised in that, to construct the capacitive tuning element (5), the low-inductance conductor (9) is provided with small cross-section dimensions near the centre of the aperture length L and the capacitive effect is provided by activating a concentrated capacitive component (7) or, where there are several break points (6), several concentrated capacitive components (7).
  7. Antenna arrangement according to one of Claims 1 to 3, characterised in that, to construct the capacitive tuning element (5), a conducting surface (17) with a length dimension of up to half the aperture length L is provided as a wide low-inductance conductor (9) in the aperture (1), that the minimum one break point (6) is provided by the interval between the edges of this conducting surface (17) and the aperture edges (13) and that the suitable capacitive overall effect is achieved through low-inductance bridging with several, distributed concentrated capacitive components (12).
  8. Antenna arrangement according to one of Claims 1 to 5, characterised in that, to construct the capacitive tuning element (5), the conducting surface (17) is bowl-shaped, that the one minimum break point (6) takes the form of a continuous dielectric, insulated gap (18) between the bowl edge (19) and the aperture edge (13) and that the gap (18) is formed by shaping and by filling with a suitable dielectric material such that it is possible to tune the aperture resonance to the desired resonance frequency fo.
  9. Antenna arrangement according to one of Claims 1 to 8, characterised in that, the coupling element (3) to connect to the resonance-type excessive magnetic field is positioned in the aperture as an antenna element with the character of a magnetic dipole (20).
  10. Antenna arrangement according to one of Claims 1 to 8, characterised in that, the coupling element (3) to connect to the resonance-type excessive electrical field is positioned in the aperture as an antenna element with the character of an electric dipole (26).
  11. Antenna arrangement according to one of Claims 1 to 8, characterised in that, the coupling element (3) is primarily executed as an elongated conductor and arranged with its antenna pick-up point (4) between two opposing points of the aperture edges (13) at an interval of dD from the centre of aperture length L, whereby this interval dD is selected to be correspondingly large to achieve a sufficiently low impedance level and that the coupling element (3) contains a serial coupling capacity to connect to the aperture (1) as the first resonant circuit of a capacitively coupled two-circuit band filter and that the second resonant circuit of the two-circuit band filter is formed by low-loss dummy elements (21) parallel to the antenna pick-up point (4).
  12. Antenna arrangement according to Claim 11, characterised in that, the coupling element (3) additionally contains a series inductance (26), where the inductivity value of the latter in conjunction with the coupling capacity (23) and the low-loss dummy elements (21) creates a three-circuit band filter which increases the bandwidth.
  13. Antenna arrangement according to Claim 11, characterised in that, the largely elongated conductor (22) in the coupling element (3) is galvanically connected at one end with an aperture edge (13) and designed flat so that it can be used as the conducting base (25) for microwave antennae (24) for frequencies which are orders of magnitude higher.
  14. Antenna arrangement according to Claims 1 to 5 and 7 to 13, characterised in that, the conducting surface (17) is designed as a capacitive tuning element (5) and serves similarly as a conducting base (25) for microwave antennae (24) attached to it for frequencies that are orders of magnitude higher and that the connection lines of the microwave antennae (24) to be lead out of the aperture (1) are each designed using throttling to be highly resistive for the VHF range.
  15. Antenna arrangement according to Claims 1 to 2, 4, 5 and 7 to 13, characterised in that, a capacitive long, medium and short-wave receiver antenna element (15) is present in the aperture (1) and that the shielding effect of the low-inductance conductor (9) with respect to reception of the low long, medium and short-wave frequencies is largely neutralised by an arrangement of several break points (6).
EP03001676A 2003-01-25 2003-01-25 Antenna system in the aperture of an electrical conducting car body Expired - Lifetime EP1487052B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT03001676T ATE467922T1 (en) 2003-01-25 2003-01-25 ANTENNA ARRANGEMENT IN THE APERTURE OF AN ELECTRICALLY CONDUCTIVE VEHICLE BODY
EP03001676A EP1487052B1 (en) 2003-01-25 2003-01-25 Antenna system in the aperture of an electrical conducting car body
DE50312708T DE50312708D1 (en) 2003-01-25 2003-01-25 Antenna arrangement in the aperture of an electrically conductive vehicle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03001676A EP1487052B1 (en) 2003-01-25 2003-01-25 Antenna system in the aperture of an electrical conducting car body

Publications (2)

Publication Number Publication Date
EP1487052A1 EP1487052A1 (en) 2004-12-15
EP1487052B1 true EP1487052B1 (en) 2010-05-12

Family

ID=33185842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03001676A Expired - Lifetime EP1487052B1 (en) 2003-01-25 2003-01-25 Antenna system in the aperture of an electrical conducting car body

Country Status (3)

Country Link
EP (1) EP1487052B1 (en)
AT (1) ATE467922T1 (en)
DE (1) DE50312708D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016006975B3 (en) * 2016-06-07 2017-09-07 Audi Ag Motor vehicle with antenna arrangement
DE102016009712A1 (en) 2016-08-10 2018-02-15 Heinz Lindenmeier Active antenna arrangement for radio reception in the section of an electrically conductive vehicle body
KR102209371B1 (en) * 2018-11-29 2021-02-01 주식회사 지엔테크놀로지스 Electromagnetic coupling apparatus for energy saving and wireless communication system comprising the electromagnetic coupling apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210766A (en) 1962-02-15 1965-10-05 Ralph O Parker Slot type antenna with tuning circuit
US4003056A (en) * 1975-05-20 1977-01-11 Ross Alan Davis Windshield antenna system with resonant element and cooperating resonant conductive edge
DE3907493A1 (en) * 1989-03-08 1990-09-20 Lindenmeier Heinz DISC ANTENNA WITH ANTENNA AMPLIFIER
EP0565725B1 (en) * 1991-11-05 1997-05-07 Seiko Epson Corporation Antenna device for radio apparatus
DE19535250B4 (en) 1995-09-22 2006-07-13 Fuba Automotive Gmbh & Co. Kg Multiple antenna system for motor vehicles

Also Published As

Publication number Publication date
EP1487052A1 (en) 2004-12-15
ATE467922T1 (en) 2010-05-15
DE50312708D1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
EP0155647B1 (en) Antenna arrangement in the rear window of a car
EP1138097B1 (en) Half-loop antenna
EP0594809B1 (en) Radio antenna arrangement located next to vehicle window panes
EP0346591B1 (en) Antenna for receiving meter waves,built in a window glass together with a heating of a motor vehicle
DE10030489B4 (en) Capacitive grounding system for VHF and UHF antennas
EP2256673B1 (en) RFID transponder for mounting on metal and production method for same
DE60315556T2 (en) Antenna device for a vehicle
DE2911885A1 (en) LOCATIONAL TRANSMISSION ANTENNA ARRANGEMENT
EP2784874B1 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
DE69913962T2 (en) MORE BAND VEHICLE ANTENNA
DE102007056258A1 (en) Chip antenna and mobile telecommunication terminal, which has these
EP1154518B1 (en) Integrated antenna for mobile telephones
DE60128700T2 (en) WIRELESS RADIO
DE112019000636T5 (en) Antenna device, window glass for a vehicle, and window glass structure
DE102014013926A1 (en) Multi-structure broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles
DE2136759C2 (en) Car radio windscreen aerial - comprises rectangular metal frame with an electrical width of approximately half signal wavelength and a unipole
DE4443596B4 (en) Radio antenna on the window pane of a motor vehicle
DE10141583B4 (en) Antenna arrangement in the aperture of an electrically conductive vehicle body
EP1487052B1 (en) Antenna system in the aperture of an electrical conducting car body
DE102014016851B3 (en) MIMO slot antenna for motor vehicles
DE3630519C2 (en)
WO2004102742A1 (en) Multiband antenna
DE60007254T2 (en) Planar antenna for motor vehicles
DE3410950A1 (en) Antenna arrangement, especially for motor vehicles
DE102013211541A1 (en) Duplex antenna arrangement used for transmitting and receiving in different frequency bands, has helical monopole antennas that are capacitively coupled with electrical antenna conductor by alternating arrangement of windings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20050112

17Q First examination report despatched

Effective date: 20050307

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50312708

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50312708

Country of ref document: DE

Effective date: 20110214

BERE Be: lapsed

Owner name: DELPHI DELCO ELECTRONICS EUROPE G.M.B.H.

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 467922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50312708

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180129

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200330

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803