EP1481418B1 - Short arc high-pressure discharge lamp- - Google Patents

Short arc high-pressure discharge lamp- Download PDF

Info

Publication number
EP1481418B1
EP1481418B1 EP03720140A EP03720140A EP1481418B1 EP 1481418 B1 EP1481418 B1 EP 1481418B1 EP 03720140 A EP03720140 A EP 03720140A EP 03720140 A EP03720140 A EP 03720140A EP 1481418 B1 EP1481418 B1 EP 1481418B1
Authority
EP
European Patent Office
Prior art keywords
cathode
pressure discharge
discharge lamp
short arc
arc high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03720140A
Other languages
German (de)
French (fr)
Other versions
EP1481418B8 (en
EP1481418A1 (en
Inventor
Lars Menzel
Dietmar Ehrlichmann
Thomas Mehr
Stephan Berndanner
Wolfgang Spielmann
Gerhard Leichtfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Osram GmbH
Original Assignee
Plansee SE
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE, Osram GmbH filed Critical Plansee SE
Publication of EP1481418A1 publication Critical patent/EP1481418A1/en
Application granted granted Critical
Publication of EP1481418B1 publication Critical patent/EP1481418B1/en
Publication of EP1481418B8 publication Critical patent/EP1481418B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • H01J61/0737Main electrodes for high-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection

Definitions

  • the invention relates to a short-arc high-pressure discharge lamp for DC operation with a discharge vessel having two diametrically opposite necks, in which an anode and a cathode are melted gastight from tungsten and containing a filling of at least one noble gas and possibly mercury.
  • Such lamps are used as mercury arc lamps in particular for microlithography in the semiconductor industry for the exposure of wafers and as xenon arc lamps for cinema and video projection.
  • the short-arc high-pressure mercury discharge lamps used for the exposure process must deliver a high light intensity in the ultraviolet wavelength range, sometimes limited to a few nanometers wavelength, with the light generation limited to a small spatial area.
  • the high luminance requirement derived therefrom can be achieved by direct current gas discharge with short electrode spacing. This creates a plasma with high light emission in front of the cathode. Due to the strong electrical energy coupling into the plasma electrode temperatures are generated, leading in particular to the cathode to damage the material.
  • Such cathodes therefore have hitherto been preferred, as for example in US Pat EP-A-0 866 492 a doping of thorium oxide ThO 2 , which is reduced during the lamp operation to thorium Th, in this metallic Form occurs on the cathode surface and there leads to lowering of the work function of the cathode.
  • ThO 2 as a dopant is due to the fact that the evaporation of the dopant is relatively low and therefore leads to little disturbing precipitation in the lamp envelope (blackening, deposits).
  • the excellent suitability of ThO 2 correlates with a high melting point of the oxide (3323 K) and metal (2028 K).
  • the solution to the environmental problem is particularly urgent for lamps with high operating currents greater than 20 A, as used in microlithography or projection technology, since these lamps have a particularly high activity due to the electrode size.
  • tungsten cathodes for example, for short-arc high-pressure lamps to which oxide mixtures, in particular La 2 O 3 with HfO 2 and ZrO 2 , are added as a substitute for ThO 2 .
  • oxide mixtures in particular La 2 O 3 with HfO 2 and ZrO 2
  • a lower limit of about 1 wt .-% can be derived.
  • This object is achieved in a short arc high pressure discharge lamp for DC operation with a discharge vessel having two diametrically opposed necks, in which an anode and a cathode are each sealed from tungsten gas-tight and containing a filling of at least one noble gas and possibly mercury achieved in that at least the material of the cathode tip in addition to the tungsten of lanthanum La 2 O 3 and at least one further oxide from the group hafnium oxide HfO 2 and zirconium oxide ZrO 2 , wherein the La 2 O 3 content of the cathode material is 1.0 to 3.5% by weight and the additional molar amount of zirconium oxide ZrO 2 and hafnium oxide HfO 2 at the cathode material is smaller than that of La 2 O 3 .
  • the doping of the cathode tip with La 2 O 3 or the entire cathode should be between 1.0 and 3.5% by weight of the cathode material, more preferably between 1.5 and 3.0% by weight of the cathode material.
  • the addition of other oxides or carbides has been tried to achieve further improvements.
  • the addition of ZrO 2 and / or HfO 2 in small amounts a further improvement in the properties of the emitter evaporation can be achieved as long as the molar amount of La 2 O 3 is not exceeded, since the favorable influence on the luminous flux always accompanied by an increased burn-back of the cathode.
  • An excess of La 2 O 3 is ensured if the proportion by weight of HfO 2 is not more than 0.65 times or the proportion by weight of ZrO 2 is not more than 0.38 times that of La 2 O 3 .
  • the molar amount of ZrO 2 and HfO 2 should be at least 2% of the molar amount of La 2 O 3 .
  • the addition of the second oxide has a significant influence on the luminous flux and electrode burn-back during lamp operation.
  • the optimum burn back of such cathodes can be ensured if the plateau size of the cathode is adapted accordingly. With an unmatched platform size, either the bow would attach to a plateau edge (in the case of a too large plateau) or reach far beyond the edge of the plateau (plateau too small). In both cases, a non-optimized plateau size electrode damage and thus an increased burn-back could be detected. Since the plateau can be both planar and curved, the optimum plateau size can best be determined technically by specifying the current density in the cathode at a distance of 0.5 mm behind the cathode tip.
  • FIG. 1 shows in section a mercury short-arc high-pressure discharge lamp 1 according to the invention with a power of 1.75 kW. It has a piston 2 made of quartz glass, which is elliptical. This is followed on two opposite sides by two ends 3, which are designed as piston necks 4 and each containing holding parts 8.
  • the necks have a front conical part 4a, which contains a quartz glass supporting roll 5 as an essential component of the holding part, and a rear cylindrical part 4b, which forms the sealing melt.
  • the front part 4a has a feeder 6 of 5 mm in length. This is followed by one each Support roller 5 with central bore, which is conically shaped.
  • a shaft 10 of a cathode 7 with an outer diameter of 6 mm is axially guided, which extends into the discharge volume, and there carries an integral head portion 25.
  • the shaft 10 is extended beyond the Stauerröllchen 5 also to the rear and ends at a plate 12, to which the sealing sealing in the form of a cylindrical quartz block 13 connects.
  • a second plate 14 which centrally holds an external power supply in the form of a molybdenum rod 15.
  • four foils 16 made of molybdenum are guided along in a manner known per se and sealed gas-tight on the wall of the piston neck.
  • the cathode 7 is composed of a circular cylindrical shaft 10 of 36 mm in length and a head 25 of 20 mm in length, wherein the head 25 as the shaft has an outer diameter of 6 mm.
  • the anode-facing end of the head 25 is formed as a tip 11 with a point angle ⁇ of 60 ° and has a plateau-shaped end 27 with a diameter of 0.5 mm.
  • the holding part consists of Stauerröllchen 5 and several slides in the bore.
  • a film 24 For mechanical separation of Stauerröllchen and shaft a film 24 several times (two to four layers) is wrapped around the shaft.
  • the mercury short-arc high-pressure discharge lamp according to the invention has a discharge vessel with a volume of 134 cm 3 , which is filled with 603 mg of mercury and xenon with a cold filling pressure of 800 mbar.
  • the operating current of the lamp with an electrode spacing of 4.5 mm is 60 A.
  • the current density J in the cathode at a distance of 0.5 mm from the plateau point is 66 A / mm 2 when the lamp is operated.
  • FIG. 3 a short-arc high-pressure discharge lamp 28 according to the invention is shown with a pure Xe filling.
  • the lamp 28 with a power consumption of 3 kW consists of a rotationally symmetrical lamp envelope 29 made of quartz glass at the two ends of which a lamp neck 30, 31 is likewise made of quartz glass.
  • an electrode rod 32 of a cathode 33 is sealed gas-tight, the inner end of which carries a cathode head 34.
  • an electrode rod 35 of an anode 36 is also sealed gas-tight, at the inner end of an anode head 37 is attached.
  • At the outer ends of the lamp necks 30, 31 base system 38, 39 are mounted for mounting and electrical contact.
  • the cathode head 34 is composed of a conical end portion 34a facing towards the anode head 37 and an end portion 34b facing the electrode rod 32 with a circular-cylindrical and frustoconical portion, wherein between these two portions 34a, 34b, also a circular-cylindrical portion 34c designated heat build-up is of smaller diameter.
  • the tip of the anode head 37 facing conical End portion 34a of the cathode head 34 with a cone angle ⁇ of 40 ° is formed as a hemisphere with a radius R of 0.6 mm.
  • the lamp current is 100 A and the resulting current density at the reference surface 0.5 mm behind the cathode tip 88A / mm 2 .
  • the anode head 37 consists of a circular-cylindrical central portion 37a with a diameter D of 22 mm and two frustoconical end portions 37b, 37c which face the cathode head 34 and the electrode rod 35, respectively.
  • the frusto-conical end portion 37c facing the cathode head 34 has a plateau AP with a diameter of 6 mm. All sections of the two electrodes 33, 36 are made of tungsten.
  • the conical end portion 34a of the cathode head 34 has a dosage of 2.0 wt% La 2 O 3 and 0.5 wt% HfO 2 .
  • the two electrodes 33, 36 are mounted opposite one another in the axis of the lamp bulb 29 in such a way that, when the lamp is hot, there is an electrode spacing or an arc length of 3.5 mm.

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

The invention relates to a short arc high-pressure discharge lamp (1) for dc operation, comprising a discharge vessel (2) that has two necks (4) diametrically opposite each other, in which an anode (26) and a cathode (7) made of tungsten are melted in a gastight manner, and which has a filling made of at least one noble gas and possibly mercury. According to the invention, at least the material of the cathode tip (11) contains lanthanum oxide La2O3 and at least another oxide from the group consisting of hafnium oxide HfO2 and zirconium oxide ZrO2 in addition to the above-mentioned tungsten.

Description

Die Erfindung betrifft eine Kurzbogen-Hochdruckentladungslampe für den Gleichstrombetrieb mit einem Entladungsgefäß, das zwei diametral gegenüberliegend angebrachte Hälse aufweist, in die eine Anode und eine Kathode jeweils aus Wolfram gasdicht eingeschmolzen sind und das eine Füllung aus zumindest einem Edelgas sowie eventuell Quecksilber enthält. Derartige Lampen werden als Quecksilberbogenlampen insbesondere für die Mikrolithographie in der Halbleiterindustrie zur Belichtung von Wafern eingesetzt und als Xenonbogenlampen für die Kino- und Videoprojektion.The invention relates to a short-arc high-pressure discharge lamp for DC operation with a discharge vessel having two diametrically opposite necks, in which an anode and a cathode are melted gastight from tungsten and containing a filling of at least one noble gas and possibly mercury. Such lamps are used as mercury arc lamps in particular for microlithography in the semiconductor industry for the exposure of wafers and as xenon arc lamps for cinema and video projection.

Stand der TechnikState of the art

Die für den Belichtungsprozess verwendeten Quecksilber-Kurzbogen-Hochdruckentladungslampen müssen eine hohe Lichtintensität im ultravioletten Wellenlängenbereich - teils eingeschränkt auf wenige Nanometer Wellenlänge - liefern, wobei die Lichterzeugung auf einen kleinen Raumbereich eingrenzt ist.The short-arc high-pressure mercury discharge lamps used for the exposure process must deliver a high light intensity in the ultraviolet wavelength range, sometimes limited to a few nanometers wavelength, with the light generation limited to a small spatial area.

Intensive Lichterzeugung auf kleinstem Raum ist ebenfalls eine notwendige Forderung an Xenonbogenlampen für die Kino- und Videoprojektion.Intensive light generation in the smallest space is also a necessary requirement for xenon arc lamps for cinema and video projection.

Die daraus abzuleitende Anforderung einer hohen Leuchtdichte kann durch eine Gleichstrom-Gasentladung bei kurzem Elektrodenabstand erzielt werden. Es entsteht dabei ein Plasma mit hoher Lichtemission vor der Kathode. Durch die starke elektrische Energieeinkopplung in das Plasma werden Elektrodentemperaturen erzeugt, die insbesondere bei der Kathode zu einer Schädigung des Materials führen.The high luminance requirement derived therefrom can be achieved by direct current gas discharge with short electrode spacing. This creates a plasma with high light emission in front of the cathode. Due to the strong electrical energy coupling into the plasma electrode temperatures are generated, leading in particular to the cathode to damage the material.

Derartige Kathoden enthalten daher bisher bevorzugt, wie zum Beispiel in der EP-A-0 866 492 aufgeführt, eine Dotierung aus Thoriumoxid ThO2, das während des Lampenbetriebs zu Thorium Th reduziert wird, in dieser metallischen Form an die Kathodenoberfläche tritt und dort zur Absenkung der Austrittsarbeit der Kathode führt.Such cathodes therefore have hitherto been preferred, as for example in US Pat EP-A-0 866 492 a doping of thorium oxide ThO 2 , which is reduced during the lamp operation to thorium Th, in this metallic Form occurs on the cathode surface and there leads to lowering of the work function of the cathode.

Mit der Absenkung der Austrittsarbeit geht eine Reduktion der Betriebstemperatur der Kathode einher, die zu einer längeren Lebensdauer der Kathode führt, da bei erniedrigten Temperaturen weniger Kathodenmaterial verdampft.With the reduction of the work function is accompanied by a reduction of the operating temperature of the cathode, which leads to a longer life of the cathode, since at lower temperatures less cathode material evaporates.

Der bisher bevorzugte Einsatz von ThO2 als Dotierstoff liegt in der Tatsache begründet, dass die Verdampfung des Dotierstoffs relativ gering ist und daher zu wenig störenden Niederschlägen im Lampenkolben (Schwärzung, Beläge) führt. Die vorzügliche Eignung von ThO2 korreliert mit einem hohen Schmelzpunkt des Oxids (3323 K) und Metalls (2028 K).The hitherto preferred use of ThO 2 as a dopant is due to the fact that the evaporation of the dopant is relatively low and therefore leads to little disturbing precipitation in the lamp envelope (blackening, deposits). The excellent suitability of ThO 2 correlates with a high melting point of the oxide (3323 K) and metal (2028 K).

Ein Elektrodenrückbrand lässt sich aber auch bei thorierten Kathoden nicht vermeiden, so dass im vorliegenden Fall einer Gleichstromgasentladungslampe der Lebensdauer durch den Kathodenrückbrand Grenzen gesetzt sind. Dies ist insbesondere bei Lampen mit kurzen Elektrodenabständen - wie sie hier vorliegen - nachteilig, da hier ein geringer Elektrodenrückbrand bereits zu starken Änderungen der lichttechnischen Eigenschaften der Lampe führt. Der entscheidende Nachteil der Verwendung von ThO2 ist aber seine Radioaktivität, die Schutzvorkehrungen beim Umgang in der Vormaterial-und Lampenherstellung erforderlich macht. Je nach Aktivität des Produkts sind auch Auflagen bei Lagerung, Betrieb und Entsorgung der Lampen zu beachten.However, an electrode burn-back can not be avoided even with thoriated cathodes, so that in the present case a direct current gas discharge lamp has its lifetime set by the cathode burn-back. This is disadvantageous in particular with lamps having short electrode spacings, as present here, since a small electrode burn-back already leads to strong changes in the lighting properties of the lamp. The decisive disadvantage of the use of ThO 2 , however, is its radioactivity, which makes it necessary to use precautionary measures in the handling of primary material and lamp manufacturing. Depending on the activity of the product, conditions regarding storage, operation and disposal of the lamps must also be observed.

Die Lösung des Umweltproblems ist bei Lampen mit hohen Betriebsströmen größer 20 A, wie sie in der Mikrolithographie oder Projektionstechnik verwendet werden, besonders dringend, da diese Lampen aufgrund der Elektrodengröße eine besonders hohe Aktivität aufweisen.The solution to the environmental problem is particularly urgent for lamps with high operating currents greater than 20 A, as used in microlithography or projection technology, since these lamps have a particularly high activity due to the electrode size.

Zahlreiche Thoriumersatzstoffe sind deshalb untersucht worden. Beispiele hierfür finden sich in " Metallurgical Transactions A, vol. 21A, Dec 1990, S. 221-3236 . Der kommerzielle Einsatz von Ersatzstoffen bei Lampen für die Mikrolithographie oder Kinoprojektion ist bisher nicht gelungen, da alle Ersatzstoffe durch ihre im Vergleich zu ThO2 leichtere Verdampfbarkeit zu ausgeprägten Kolbenbelägen führten.Numerous thorium substitutes have therefore been investigated. Examples of this can be found in " Metallurgical Transactions A, vol. 21A, Dec 1990, pp. 221-3236 , The commercial use of substitutes for lamps for the Microlithography or cinema projection has not been successful until now, as all substitutes resulted in more pronounced piston linings due to their easier evaporation compared to ThO 2 .

In der EP-A-0 647 964 wird nun für eine Metallhalogenid-Hochdruckentladungslampe vorgeschlagen, anstelle der Dotierung des Wolframmaterials mit ThO2 ein erstes Oxid aus der Gruppe Hafniumoxid und Zirkonoxid und ein zweites Oxid aus der Gruppe Yttriumoxid, Lanthanoxid und Ceroxid zu verwenden.In the EP-A-0 647 964 It is now proposed for a metal halide high-pressure discharge lamp, instead of doping the tungsten material with ThO 2, to use a first oxide from the group hafnium oxide and zirconium oxide and a second oxide from the group of yttrium oxide, lanthanum oxide and cerium oxide.

Das Dokument US-A-6 190579 offenbart Wolframkathoden, beispielsweise für Kurzbogenhochdrucklampen, denen Oxidgemische, insbesondere auch La2O3 mit HfO2 bzw. ZrO2, als Ersatz für ThO2 zugesetzt sind. Für den Anteil von La2O3 ist eine Untergrenze von ca. 1 Gew.-% ableitbar.The document US-A-6,195,079 discloses tungsten cathodes, for example, for short-arc high-pressure lamps to which oxide mixtures, in particular La 2 O 3 with HfO 2 and ZrO 2 , are added as a substitute for ThO 2 . For the proportion of La 2 O 3 , a lower limit of about 1 wt .-% can be derived.

In der Mikrolithographie hängt die Produktivität der Belichter entscheidend von der Lichtmenge ab, die die Lampe bereitstellt. Kolbenbeläge und Elektrodenrückbrand reduzieren das verfügbare Nutzlicht und führen zu einem Produktivitätsverlust der sehr teuren Anlagen aufgrund ansteigender Belichtungszeiten.In microlithography, the productivity of the imagesetters depends crucially on the amount of light that the lamp provides. Piston linings and electrode burn-back reduce the available useful light and lead to a loss of productivity of the very expensive equipment due to increasing exposure times.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der vorliegenden Erfindung, eine Kurzbogen-Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die ohne radioaktive Dotierstoffe im Elektrodenmaterial auskommt, einen geringen Elektrodenrückbrand gewährleistet, der dem erreichten Stand der Technik in Bezug auf den Elektrodenrückbrand nicht -oder nur sehr geringfügig- nachsteht und die Belagsbildung im Lampenkolben über die Lampenlebensdauer wenn möglich weiter reduziert.It is an object of the present invention to provide a short-arc high-pressure discharge lamp according to the preamble of claim 1, which manages without radioactive dopants in the electrode material, ensures a low electrode burn-back, which does not or only very slightly reduces the state of the art in terms of electrode burn-back. is lagging behind and the fouling in the lamp bulb over the lamp life is further reduced if possible.

Diese Aufgabe wird bei einer Kurzbogen-Hochdruckentladungslampe für den Gleichstrombetrieb mit einem Entladungsgefäß, das zwei diametral gegenüberliegend angebrachte Hälse aufweist, in die eine Anode und eine Kathode jeweils aus Wolfram gasdicht eingeschmolzen sind und das eine Füllung aus zumindest einem Edelgas und eventuell Quecksilber enthält dadurch erreicht, dass zumindest das Material der Kathodenspitze zusätzlich zum Wolfram aus Lanthanoxid La2O3 und mindestens einem weiteren Oxid aus der Gruppe Hafniumoxid HfO2 und Zirkonoxid ZrO2 besteht, wobei der La2O3-Gehalt des Kathodenmaterials 1,0 bis 3,5 Gew.% beträgt und die zusätzliche molare Menge Zirkoniumoxid ZrO2 und Hafniumoxid HfO2 am Kathodenmaterial kleiner ist, als die des La2O3.This object is achieved in a short arc high pressure discharge lamp for DC operation with a discharge vessel having two diametrically opposed necks, in which an anode and a cathode are each sealed from tungsten gas-tight and containing a filling of at least one noble gas and possibly mercury achieved in that at least the material of the cathode tip in addition to the tungsten of lanthanum La 2 O 3 and at least one further oxide from the group hafnium oxide HfO 2 and zirconium oxide ZrO 2 , wherein the La 2 O 3 content of the cathode material is 1.0 to 3.5% by weight and the additional molar amount of zirconium oxide ZrO 2 and hafnium oxide HfO 2 at the cathode material is smaller than that of La 2 O 3 .

Untersuchungen an unterschiedlichen Dotierungsstoffkombinationen hatten ergeben, dass diese Mischoxide auf Basis von La2O3 günstige Ergebnisse hinsichtlich Belagsbildung und Elektrodenrückbrand zeigen. Die Dotierung der Kathodenspitze mit La2O3 oder der gesamten Kathode sollte dabei zwischen 1,0 und 3,5 Gew. des Kathodenmaterials, besser zwischen 1,5 und 3,0 Gew.% des Kathodenmaterials liegen. Durch die Zugabe von weiteren Oxyden oder Karbiden wurde versucht weitere Verbesserungen zu erzielen. Dabei zeigte sich, dass durch die Zugabe von ZrO2 und/oder HfO2 in geringen Mengen eine weitere Verbesserung der Eigenschaften hinsichtlich der Emitterverdampfung erzielt werden kann, solange die molare Menge des La2O3 nicht überschritten wird, da die günstige Beeinflussung des Lichtstroms stets mit einem erhöhten Rückbrand der Kathode einhergeht. Ein Überschuss an La2O3 ist gewährleistet, wenn der Gewichtsanteil an HfO2 nicht mehr als das 0,65-fache bzw. der Gewichtsanteil des ZrO2 nicht mehr als das 0,38-fache des La2O3 beträgt. Die molare Menge ZrO2 und HfO2 sollte in jeden Fall mindestens 2 % der molaren Menge des La2O3 betragen.Investigations on different dopant combinations had shown that these mixed oxides based on La 2 O 3 show favorable results with regard to deposit formation and electrode burn-back. The doping of the cathode tip with La 2 O 3 or the entire cathode should be between 1.0 and 3.5% by weight of the cathode material, more preferably between 1.5 and 3.0% by weight of the cathode material. The addition of other oxides or carbides has been tried to achieve further improvements. It was found that the addition of ZrO 2 and / or HfO 2 in small amounts, a further improvement in the properties of the emitter evaporation can be achieved as long as the molar amount of La 2 O 3 is not exceeded, since the favorable influence on the luminous flux always accompanied by an increased burn-back of the cathode. An excess of La 2 O 3 is ensured if the proportion by weight of HfO 2 is not more than 0.65 times or the proportion by weight of ZrO 2 is not more than 0.38 times that of La 2 O 3 . In any case, the molar amount of ZrO 2 and HfO 2 should be at least 2% of the molar amount of La 2 O 3 .

Die Zugabe des zweiten Oxids hat einen deutlichen Einfluss auf den Lichtstrom und Elektrodenrückbrand während des Lampenbetriebs. Eine Quecksilberbogenlampe mit einer Leistung von 1,75 kW, einem La2O3-Gehalt der Kathodenspitze von 2,0 Gew.% sowie einem weiteren Oxid zeigte in Untersuchungen nach 1500 h Betriebsdauer folgende Eigenschaften: Gehalt zweites Oxid HfO2 in Gew. % Lichtstrom bezogen auf 0 h =100 % Kathodenrückbrand 0,0 % 85 % 0,22 mm 0,1 % 89 % 0,21 mm 0,5 % 92 % 0,31 mm 1,0 % 92 % 0,43 mm 2,0 % 84 % 0,55 mm Gehalt zweites Oxid ZrO2 in Gew. % Lichtstrom bezogen auf 0 h =100 % Kathodenrückbrand 0,1 % 87 % 0,25 mm 0,5 % 94 % 0,29 mm 1,0 % 86% 0,52 mm 2,0 % 74 % 0,83 mm The addition of the second oxide has a significant influence on the luminous flux and electrode burn-back during lamp operation. A mercury arc lamp with a power of 1.75 kW, a La 2 O 3 content of the cathode tip of 2.0% by weight and a further oxide showed the following properties in investigations after 1500 h operating time: Content of second oxide HfO 2 in% by weight Luminous flux based on 0 h = 100% Cathode burn-back 0.0% 85% 0.22 mm 0.1% 89% 0.21 mm 0.5% 92% 0.31 mm 1.0% 92% 0.43 mm 2.0% 84% 0.55 mm Content second oxide ZrO 2 in wt.% Luminous flux based on 0 h = 100% Cathode burn-back 0.1% 87% 0.25 mm 0.5% 94% 0.29 mm 1.0% 86% 0.52 mm 2.0% 74% 0.83 mm

Bei der Verwendung von thorierten Kathoden (2 Gew.% ThO2) wurden folgende Werte beobachtet: Lichtstrom bezogen auf 0h =100 % Kathodenrückbrand 94% 0,27 mm When using thoriated cathodes (2% by weight of ThO 2 ), the following values were observed: Luminous flux based on 0h = 100% Cathode burn-back 94% 0.27 mm

Die Verbesserung des Lichtstromverhaltens von reinen Xenonbogenlampen durch den Zusatz eines zweiten Oxids in Form von ZrO2 und/oder HfO2 bei der Verwendung von La2O3-dotierten Kathoden konnte ebenfalls nachgewiesen werden. Der Oxidzusatz vermindert auch hier den starken Austritt von Dotiersubstanz, der zu einer raschen Kolbenbelagsbildung führt.The improvement of the luminous flux behavior of pure xenon arc lamps by the addition of a second oxide in the form of ZrO 2 and / or HfO 2 when using La 2 O 3 -doped cathodes could also be detected. The oxide addition also reduces the strong leakage of dopant, which leads to a rapid Kolbenbelagsbildung here.

Kathoden aus thoriumfreiem Material weisen aufgrund ihrer Eigenschaften - insbesondere bei Verwendung von Mischoxiden- einen größeren Bogenansatz auf. Der optimale Rückbrand solcher Kathoden lässt sich sicherstellen, wenn die Plateaugröße der Kathode entsprechend angepasst wird. Bei einer nicht angepassten Plateaugröße würde entweder der Bogen an einer Plateaukante ansetzen (im Fall eines zu großen Plateaus) bzw. weit über den Rand des Plateaus hinausgreifen (Plateau zu klein). In beiden Fällen wäre bei nicht-optimierter Plateaugröße eine Elektrodenschädigung und damit verbunden ein erhöhter Rückbrand feststellbar. Da das Plateau sowohl eben als auch gekrümmt ausgebildet sein kann, lässt sich die optimale Plateaugröße technisch am besten durch die Angabe der Stromdichte in der Kathode in einer Entfernung von 0,5 mm hinter der Kathodenspitze festlegen. Untersuchungen bei Kathoden, die mit La2O3 sowie mit ZrO2 und/oder HfO2 dotiert waren, zeigten, dass der Kathodenrückbrand bei diesem Kathodenmaterial dann möglichst gering gehalten werden kann, wenn die Kathoden eine solche Gestalt besitzen, dass die Stromdichte J in der Kathode, d.h. der Quotient aus Lampenstrom J in A und effektiver Fläche S in einem Abstand von 0,5 mm von der Kathodenspitze zum hinteren Ende der Kathode nicht kleiner als 5 und nicht größer als 150 A/mm2 bei einer Quecksilber/Edelgas-Füllung und nicht kleiner als 25 und nicht größer als 200 A/mm2 bei einer reinen Edelgas-Füllung ist.Due to their properties - especially when using mixed oxides - cathodes made of thorium-free material have a larger arc attachment. The optimum burn back of such cathodes can be ensured if the plateau size of the cathode is adapted accordingly. With an unmatched platform size, either the bow would attach to a plateau edge (in the case of a too large plateau) or reach far beyond the edge of the plateau (plateau too small). In both cases, a non-optimized plateau size electrode damage and thus an increased burn-back could be detected. Since the plateau can be both planar and curved, the optimum plateau size can best be determined technically by specifying the current density in the cathode at a distance of 0.5 mm behind the cathode tip. Investigations in cathodes doped with La 2 O 3 as well as ZrO 2 and / or HfO 2 showed that the cathode backbone in this cathode material can be kept as low as possible when the cathodes have such a shape that the current density J in the cathode, ie the quotient of lamp current J in A and effective area S at a distance of 0.5 mm from the cathode tip to the rear end of the cathode not smaller is 5 and not larger than 150 A / mm 2 in mercury / inert gas filling and not smaller than 25 and not larger than 200 A / mm 2 in pure noble gas filling.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im folgenden soll die Erfindung anhand eines Ausführungsbeispiels näher erläutert werden. Es zeigen:

Figur 1
eine erfindungsgemäße Quecksilber-Kurzbogen-Hochdruckentladungslampe, im Schnitt
Figur 2
einen Detailausschnitt der Kathode der Quecksilber-Kurzbogen-Hochdruckentladungslampe gemäß Figur 1
Figur 3
eine erfindungsgemäße Xenon-Kurzbogen-Hochdruckentladungslampe, teilweise im Schnitt
Figur 4
die Elektrodenanordnung der Xenon-Kurzbogen-Hochdruckentladungslampe gemäß Figur 3, in vergrößerter Darstellung
In the following the invention will be explained in more detail with reference to an embodiment. Show it:
FIG. 1
a mercury short-arc high-pressure discharge lamp according to the invention, in section
FIG. 2
a detail of the cathode of the mercury short arc high pressure discharge lamp according to FIG. 1
FIG. 3
a xenon short-arc high-pressure discharge lamp according to the invention, partly in section
FIG. 4
the electrode assembly of the xenon short arc high pressure discharge lamp according to FIG. 3 , in an enlarged view

Bevorzugte Ausführungen der ErfindungPreferred embodiments of the invention

Figur 1 zeigt im Schnitt eine erfindungsgemäße Quecksilber-Kurzbogen-Hochdruckentladungslampe 1 mit einer Leistung von 1,75 kW. Sie hat einen Kolben 2 aus Quarzglas, der elliptisch geformt ist. Daran schließen sich an zwei gegenüberliegenden Seiten zwei Enden 3 an, die als Kolbenhälse 4 ausgeführt sind und die jeweils Halteteile 8 beinhalten. Die Hälse besitzen einen vorderen konischen Teil 4a, der ein Stützröllchen 5 aus Quarzglas als wesentliche Komponente des Halteteils enthält, und einen hinteren zylindrischen Teil 4b, der die abdichtende Einschmelzung bildet. Der vordere Teil 4a weist einen Einzug 6 von 5 mm Länge auf. Daran schließt sich jeweils ein Stützröllchen 5 mit zentraler Bohrung an, das konisch geformt ist. Sein Innendurchmesser ist 7 mm, sein Außendurchmesser am vorderen Ende ist 11 mm, der Außendurchmesser am hinteren Ende ist 15 mm. Die Wandstärke des Kolbens 2 in diesem Bereich ist etwa 4 mm. Die axiale Länge des Stützröllchens ist 17 mm. FIG. 1 shows in section a mercury short-arc high-pressure discharge lamp 1 according to the invention with a power of 1.75 kW. It has a piston 2 made of quartz glass, which is elliptical. This is followed on two opposite sides by two ends 3, which are designed as piston necks 4 and each containing holding parts 8. The necks have a front conical part 4a, which contains a quartz glass supporting roll 5 as an essential component of the holding part, and a rear cylindrical part 4b, which forms the sealing melt. The front part 4a has a feeder 6 of 5 mm in length. This is followed by one each Support roller 5 with central bore, which is conically shaped. Its inner diameter is 7 mm, its outer diameter at the front end is 11 mm, the outer diameter at the rear end is 15 mm. The wall thickness of the piston 2 in this area is about 4 mm. The axial length of the Stützröllchens is 17 mm.

In der Bohrung des ersten Stützröllchens ist ein Schaft 10 einer Kathode 7 mit einem Außendurchmesser von 6 mm axial geführt, der bis in das Entladungsvolumen reicht, und dort ein integrales Kopfteil 25 trägt. Der Schaft 10 ist über das Stützröllchen 5 hinaus nach hinten verlängert und endet an einem Teller 12, an den sich die abdichtende Einschmelzung in Form eines zylindrischen Quarzblocks 13 anschließt. Dahinter folgt ein zweiter Teller 14, der mittig eine Außenstromzuführung in Form eines Molybdänstabs 15 hält. An der Außenfläche des Quarzblocks 13 sind vier Folien 16 aus Molybdän in an sich bekannter Weise entlanggeführt und an der Wand des Kolbenhalses gasdicht eingeschmolzen.In the bore of the first Stützröllchens a shaft 10 of a cathode 7 with an outer diameter of 6 mm is axially guided, which extends into the discharge volume, and there carries an integral head portion 25. The shaft 10 is extended beyond the Stützröllchen 5 also to the rear and ends at a plate 12, to which the sealing sealing in the form of a cylindrical quartz block 13 connects. This is followed by a second plate 14 which centrally holds an external power supply in the form of a molybdenum rod 15. On the outer surface of the quartz block 13, four foils 16 made of molybdenum are guided along in a manner known per se and sealed gas-tight on the wall of the piston neck.

In ähnlicher Weise ist die Anode 26, bestehend aus separatem Kopfteil 18 und Schaft 19, in der Bohrung des zweiten Stützröllchens 5 gehaltert.Similarly, the anode 26, consisting of separate head portion 18 and shaft 19, supported in the bore of the second Stützröllchens 5.

In Figur 2 ist die Kathode 7 und das Halteteil 8 im Detail gezeigt. Die Kathode 7 setzt sich aus einem kreiszylindrischen Schaft 10 von 36 mm Länge und einem Kopf 25 von 20 mm Länge zusammen, wobei der Kopf 25 wie der Schaft einen Außendurchmesser von 6 mm aufweist. Das der Anode zugewandte Ende des Kopfes 25 ist als Spitze 11 mit einem Spitzenwinkel β von 60° ausgebildet und besitzt ein plateauförmiges Ende 27 mit einem Durchmesser von 0,5 mm. Das Halteteil besteht aus Stützröllchen 5 und mehreren Folien in dessen Bohrung.In FIG. 2 the cathode 7 and the holding part 8 is shown in detail. The cathode 7 is composed of a circular cylindrical shaft 10 of 36 mm in length and a head 25 of 20 mm in length, wherein the head 25 as the shaft has an outer diameter of 6 mm. The anode-facing end of the head 25 is formed as a tip 11 with a point angle β of 60 ° and has a plateau-shaped end 27 with a diameter of 0.5 mm. The holding part consists of Stützröllchen 5 and several slides in the bore.

Zur mechanischen Trennung von Stützröllchen und Schaft ist eine Folie 24 mehrmals (zwei bis vier Lagen) um den Schaft herumgewickelt. Ein Paar schmaler Folien 23, die einander auf der gewickelten Folie 24 gegenüberliegen, dient der Fixierung des Stützröllchens. Zu diesem Zwecke stehen sie entladungsseitig über das Stützröllchen über und sind nach außen umgebogen. Das Material der Spitze 11 der Kathode 7 weist neben Wolfram eine Dotierung von 2,0 Gew.% La2O3 sowie 0,5 Gew.% ZrO2 auf.For mechanical separation of Stützröllchen and shaft a film 24 several times (two to four layers) is wrapped around the shaft. A pair of narrow foils 23 facing each other on the wound foil 24; serves the fixation of the Stützröllchens. For this purpose, they stand on the discharge side on the Stützröllchen and are bent to the outside. The material of the tip 11 of the cathode 7, in addition to tungsten, a doping of 2.0 wt.% La 2 O 3 and 0.5 wt.% ZrO 2 on.

Die erfindungsgemäße Quecksilber-Kurzbogen-Hochdruckentladungslampe besitzt ein Entladungsgefäß mit einem Volumen von 134 cm3, das mit 603 mg Quecksilber sowie Xenon mit einem Kaltfülldruck von 800 mbar gefüllt ist.The mercury short-arc high-pressure discharge lamp according to the invention has a discharge vessel with a volume of 134 cm 3 , which is filled with 603 mg of mercury and xenon with a cold filling pressure of 800 mbar.

Der Betriebsstrom der Lampe mit einem Elektrodenabstand von 4,5 mm liegt bei 60 A. Die Stromdichte J in der Kathode in einem Abstand von 0,5 mm von der Plateauspitze beträgt bei Betrieb der Lampe 66 A/mm2.The operating current of the lamp with an electrode spacing of 4.5 mm is 60 A. The current density J in the cathode at a distance of 0.5 mm from the plateau point is 66 A / mm 2 when the lamp is operated.

In Figur 3 ist eine erfindungsgemäße Kurzbogen-Hochdruckentladungslampe 28 mit einer reinen Xe-Füllung dargestellt. Die Lampe 28 mit einer Leistungsaufnahme von 3 kW besteht aus einem rotationssymmetrischen Lampenkolben 29 aus Quarzglas an dessen beiden Enden je ein Lampenhals 30, 31 ebenfalls aus Quarzglas angesetzt ist. In den einen Hals 30 ist ein Elektrodenstab 32 einer Kathode 33 gasdicht eingeschmolzen, dessen inneres Ende einen Kathodenkopf 34 trägt. In den anderen Lampenhals 31 ist ebenfalls ein Elektrodenstab 35 einer Anode 36 gasdicht eingeschmolzen, an dessen innerem Ende ein Anodenkopf 37 befestigt ist. An den äußeren Enden der Lampenhälse 30, 31 sind Sockelsystem 38, 39 zur Halterung und zur elektrischen Kontaktierung angebracht.In FIG. 3 a short-arc high-pressure discharge lamp 28 according to the invention is shown with a pure Xe filling. The lamp 28 with a power consumption of 3 kW consists of a rotationally symmetrical lamp envelope 29 made of quartz glass at the two ends of which a lamp neck 30, 31 is likewise made of quartz glass. In one neck 30, an electrode rod 32 of a cathode 33 is sealed gas-tight, the inner end of which carries a cathode head 34. In the other bulb neck 31, an electrode rod 35 of an anode 36 is also sealed gas-tight, at the inner end of an anode head 37 is attached. At the outer ends of the lamp necks 30, 31 base system 38, 39 are mounted for mounting and electrical contact.

Wie aus der Figur 4 ersichtlich setzt sich der Kathodenkopf 34 aus einem dem Anodenkopf 37 zugewandten kegelförmigen Endabschnitt 34a und einem dem Elektrodenstab 32 zugewandten Endabschnitt 34b mit einem kreiszylindrischen und kegelstumpfförmigen Teilabschnitt zusammen, wobei sich zwischen diesen beiden Abschnitten 34a, 34b ein, als Wärmestaunut bezeichneter, ebenfalls kreiszylindrischer Abschnitt 34c von kleinerem Durchmesser befindet. Die Spitze des dem Anodenkopf 37 zugewandten kegelförmigen Endabschnitts 34a des Kathodenkopfs 34 mit einem Kegelwinkel α von 40° ist als Halbkugel mit einem Radius R von 0,6 mm ausgebildet. Der Lampenstrom beträgt hierbei 100 A und die daraus resultierende Stromdichte an der Referenzfläche 0,5 mm hinter der Kathodenspitze 88A/mm2.Like from the FIG. 4 the cathode head 34 is composed of a conical end portion 34a facing towards the anode head 37 and an end portion 34b facing the electrode rod 32 with a circular-cylindrical and frustoconical portion, wherein between these two portions 34a, 34b, also a circular-cylindrical portion 34c designated heat build-up is of smaller diameter. The tip of the anode head 37 facing conical End portion 34a of the cathode head 34 with a cone angle α of 40 ° is formed as a hemisphere with a radius R of 0.6 mm. The lamp current is 100 A and the resulting current density at the reference surface 0.5 mm behind the cathode tip 88A / mm 2 .

Der Anodenkopf 37 besteht aus einem kreiszylindrischen Mittelabschnitt 37a mit einem Durchmesser D von 22 mm und zwei kegelstumpfförmigen Endabschnitten 37b, 37c die dem Kathodenkopf 34 bzw. dem Elektrodenstab 35 zugewandt sind. Der dem Kathodenkopf 34 zugewandte kegelstumpfförmige Endabschnitt 37c besitzt ein Plateau AP mit einem Durchmesser von 6 mm. Alle Abschnitte der beiden Elektroden 33, 36 bestehen aus Wolfram. Zusätzlich weist der kegelförmige Endabschnitt 34a des Kathodenkopfes 34 eine Dosierung von 2,0 Gew.% La2O3 sowie 0,5 Gew.% HfO2 auf.The anode head 37 consists of a circular-cylindrical central portion 37a with a diameter D of 22 mm and two frustoconical end portions 37b, 37c which face the cathode head 34 and the electrode rod 35, respectively. The frusto-conical end portion 37c facing the cathode head 34 has a plateau AP with a diameter of 6 mm. All sections of the two electrodes 33, 36 are made of tungsten. In addition, the conical end portion 34a of the cathode head 34 has a dosage of 2.0 wt% La 2 O 3 and 0.5 wt% HfO 2 .

Die beiden Elektroden 33, 36 sind in der Achse des Lampenkolbens 29 so gegenüberstehend angebracht, dass sich im Heißzustand der Lampe ein Elektrodenabstand bzw. eine Bogenlänge von 3,5 mm ergibt.The two electrodes 33, 36 are mounted opposite one another in the axis of the lamp bulb 29 in such a way that, when the lamp is hot, there is an electrode spacing or an arc length of 3.5 mm.

Claims (10)

  1. Short arc high-pressure discharge lamp (1, 28) for direct current operation, having a discharge vessel (2, 29) which includes two diametrically opposite necks (4; 30, 31), into which an anode (26, 36) and a cathode (7, 33), in each case made from tungsten, are fused in a gastight manner and which contains a fill comprising at least one noble gas and optionally mercury, characterized in that at least the material of the cathode tip (11, 34a), in addition to the tungsten, consists of lanthanum oxide La2O3 and at least one further oxide selected from the group consisting of hafnium oxide HfO2 and zirconium oxide ZrO2, remainder usual impurities, the La2O3 content of the cathode material being from 1.0 to 3.5% by weight, and the additional molar quantity of zirconium oxide ZrO2 and hafnium oxide HfO2 in the cathode material being lower than that of the La2O3.
  2. Short arc high-pressure discharge lamp according to Claim 1, characterized in that the ZrO2 weight fraction amounts to no more than 0.25 times that of the La2O3.
  3. Short arc high-pressure discharge lamp according to Claim 1 or 2, characterized in that the HfO2 weight fraction amounts to no more than 0.5 times that of the La2O3.
  4. Short arc high-pressure discharge lamp according to one of Claims 1 to 3, characterized in that the cathode material of the entire cathode (7, 34), in addition to the tungsten, contains lanthanum oxide La2O3 and at least one further oxide selected from the group consisting of hafnium oxide HfO2 and zirconium oxide ZrO2.
  5. Short arc high-pressure discharge lamp according to one of Claims 1 to 4, characterized in that the La2O3 content of the cathode material is from 1.5 to 3.0% by weight.
  6. Short arc high-pressure discharge lamp according to one of Claims 1 to 4, characterized in that the additional molar quantity of zirconium oxide ZrO2 and hafnium oxide HfO2 amounts to at least 2% of the molar quantity of the La2O3.
  7. Short arc high-pressure discharge lamp according to Claim 1, characterized in the electrode spacing between anode (26) and cathode (7) in the discharge vessel (2) is less than or equal to 8 mm.
  8. Short arc high-pressure discharge lamp according to Claim 1, characterized in that the electrode spacing between anode (36) and cathode (33) in the discharge vessel (29) is less than or equal to 15 mm.
  9. Short arc high-pressure discharge lamp according to Claim 1, characterized in that the lamp current when the lamp (1, 28) is operating is greater than 20 A.
  10. Short arc high-pressure discharge lamp according to Claim 1, characterized in that the form of the cathode (7) is such that when the lamp is operating the current density J, i.e. the quotient of lamp current in A and effective cathode surface area in mm2 for an area which results from a section through the cathode perpendicular to the lamp axis at a distance of 0.5 mm from the tip of the cathode, satisfies the following equation:
    5 ≤ J ≥ 150 in the case of a mercury/noble gas fill
    25 ≤ J ≥ 200 in the case of a pure noble gas fill.
EP03720140A 2002-03-05 2003-03-05 Short arc high-pressure discharge lamp- Expired - Lifetime EP1481418B8 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10209426 2002-03-05
DE10209426A DE10209426A1 (en) 2002-03-05 2002-03-05 Short-arc high pressure discharge lamp
PCT/DE2003/000707 WO2003075310A1 (en) 2002-03-05 2003-03-05 Short arc high-pressure discharge lamp-

Publications (3)

Publication Number Publication Date
EP1481418A1 EP1481418A1 (en) 2004-12-01
EP1481418B1 true EP1481418B1 (en) 2011-11-30
EP1481418B8 EP1481418B8 (en) 2012-03-14

Family

ID=27762648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03720140A Expired - Lifetime EP1481418B8 (en) 2002-03-05 2003-03-05 Short arc high-pressure discharge lamp-

Country Status (8)

Country Link
US (1) US7279839B2 (en)
EP (1) EP1481418B8 (en)
JP (1) JP4741190B2 (en)
KR (1) KR100944818B1 (en)
CN (1) CN1639833A (en)
DE (1) DE10209426A1 (en)
TW (1) TWI288943B (en)
WO (1) WO2003075310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015218878A1 (en) 2015-09-30 2017-03-30 Osram Gmbh DC gas discharge lamp with a thorium-free cathode

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649492A2 (en) * 2003-05-26 2006-04-26 Philips Intellectual Property & Standards GmbH Thorium-free electrode with improved color stability
JP4815839B2 (en) 2005-03-31 2011-11-16 ウシオ電機株式会社 High load high intensity discharge lamp
JP4696697B2 (en) * 2005-06-03 2011-06-08 ウシオ電機株式会社 Super high pressure mercury lamp
US7652430B1 (en) 2005-07-11 2010-01-26 Kla-Tencor Technologies Corporation Broadband plasma light sources with cone-shaped electrode for substrate processing
DE102006026940A1 (en) 2006-06-09 2007-12-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH High pressure discharge lamp
WO2008055550A1 (en) * 2006-11-10 2008-05-15 Osram Gesellschaft mit beschränkter Haftung Electrode, in particular cathode, for a discharge lamp
WO2008067850A1 (en) * 2006-12-07 2008-06-12 Osram Gesellschaft mit beschränkter Haftung Discharge lamp and method for producing a bulb neck for a discharge lamp
DE102006061375B4 (en) * 2006-12-22 2019-01-03 Osram Gmbh Mercury high-pressure discharge lamp with an anode containing tungsten and potassium, which has a grain count greater than 200 grains per mm 2 and a density greater than 19.05 g / cm 3
US8264148B2 (en) 2007-10-09 2012-09-11 Osram Ag Discharge lamp
JP2009259790A (en) * 2008-03-26 2009-11-05 Harison Toshiba Lighting Corp High-pressure discharge lamp
JP5431449B2 (en) * 2008-04-01 2014-03-05 オスラム ゲーエムベーハー Method for manufacturing a high-pressure discharge lamp, method for supplying light by a high-pressure discharge lamp, and digital video projector
JP4486163B1 (en) * 2008-12-08 2010-06-23 株式会社アライドマテリアル Tungsten electrode material and method for producing tungsten electrode material
EP2375438B1 (en) 2008-12-08 2013-05-29 A.L.M.T. Corp. Tungsten electrode material and method of manufacturing said material
JP5239828B2 (en) 2008-12-22 2013-07-17 ウシオ電機株式会社 Discharge lamp
DE102011084911A1 (en) 2011-10-20 2013-04-25 Osram Gmbh MICRICULUM VAPOR SHORT CURRENT LIGHT FOR DC-CURRENT OPERATION WITH CIRCULAR PROCESS
CN106756169B (en) 2011-12-20 2018-07-17 株式会社东芝 Tungsten alloy and tungsten alloy component, discharge lamp, transmitting tube and the magnetron for using the tungsten alloy
EP2801629B1 (en) * 2012-01-07 2020-12-02 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy sintered body using same, discharge lamp, transmitting tube, and magnetron
WO2013113049A1 (en) 2012-01-31 2013-08-08 Plansee Se Tungsten composite electrode
JP5881826B2 (en) 2012-05-29 2016-03-09 株式会社東芝 Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
US9548196B2 (en) 2013-06-24 2017-01-17 Ushio Denki Kabushiki Kaisha Discharge lamp
EP3016131B1 (en) * 2013-06-25 2017-08-30 Ushio Denki Kabushiki Kaisha Discharge lamp
JP6086253B2 (en) * 2014-08-28 2017-03-01 ウシオ電機株式会社 Long arc type discharge lamp
CN105304436B (en) * 2015-11-09 2017-03-22 中国科学院电子学研究所 Directly heated cathode and preparation method thereof
EP3591689A4 (en) * 2017-03-31 2020-12-16 A.L.M.T. Corp. Tungsten electrode material
AT16409U1 (en) 2017-05-23 2019-08-15 Plansee Se Cathode material
JP1679442S (en) * 2020-02-07 2021-02-15
JP7149631B2 (en) * 2021-02-26 2022-10-07 株式会社ユメックス Foil-sealed short-arc mercury lamp

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155458A (en) * 1979-05-24 1980-12-03 Mitsubishi Electric Corp Metal halide lamp
JPS63257177A (en) * 1987-04-13 1988-10-25 Hitachi Ltd Extra-high pressure mercury vapor lamp
JPS6450359A (en) * 1987-08-21 1989-02-27 Hitachi Ltd Extra-high pressure mercury lamp
JPH01161653A (en) * 1987-12-18 1989-06-26 Toshiba Corp Short arc discharge lamp
DE3904552A1 (en) * 1989-02-15 1990-08-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh HIGH PRESSURE DISCHARGE LAMP FOR AC POWER OPERATION
JP2729999B2 (en) * 1989-02-27 1998-03-18 ウシオ電機株式会社 Electrode for discharge lamp
JP2730000B2 (en) * 1989-02-27 1998-03-18 ウシオ電機株式会社 Electrode for discharge lamp
US5791767A (en) * 1992-09-09 1998-08-11 Nikon Corporation Semiconductor exposure device
JPH0799036A (en) * 1993-09-29 1995-04-11 Toshiba Lighting & Technol Corp Metal halide lamp and projector device using metal halide lamp as light source
BE1007595A3 (en) 1993-10-07 1995-08-16 Philips Electronics Nv HIGH-metal halide discharge LAMP.
JP3156904B2 (en) * 1994-09-06 2001-04-16 ウシオ電機株式会社 Mercury discharge lamp
JPH09283014A (en) * 1996-02-14 1997-10-31 Toshiba Lighting & Technol Corp Dc lighting type discharge lamp, dc lighting type discharge lamp lighting device, floodlighting device and projector device
US6084351A (en) * 1996-09-06 2000-07-04 Matsushita Electric Industrial Co., Ltd. Metal halide lamp and temperature control system therefor
JP2915362B2 (en) * 1996-09-27 1999-07-05 ウシオ電機株式会社 Short arc mercury lamp
JP3489373B2 (en) * 1997-02-07 2004-01-19 ウシオ電機株式会社 Short arc mercury lamp
JP3298453B2 (en) 1997-03-18 2002-07-02 ウシオ電機株式会社 Short arc discharge lamp
US6190579B1 (en) 1997-09-08 2001-02-20 Integrated Thermal Sciences, Inc. Electron emission materials and components
JPH11154487A (en) * 1997-09-20 1999-06-08 New Japan Radio Co Ltd Cathode for discharge tube
JP2001513255A (en) * 1997-12-22 2001-08-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ High pressure metal halide discharge lamp
DE29823366U1 (en) * 1998-08-06 1999-07-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München Electrode for a high-pressure discharge lamp with a long service life
JP4011208B2 (en) * 1998-09-29 2007-11-21 株式会社東芝 Tungsten material used for discharge lamp electrodes, discharge lamp electrodes, and discharge lamps using the same
DE20005764U1 (en) * 2000-03-30 2000-06-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München Short arc lamp
JP4648527B2 (en) * 2000-08-31 2011-03-09 新日本無線株式会社 Method for manufacturing cathode
JP3596453B2 (en) * 2000-09-28 2004-12-02 ウシオ電機株式会社 Short arc discharge lamp
JP2002110091A (en) * 2000-09-29 2002-04-12 Toshiba Lighting & Technology Corp Electrode material, high pressure discharge lamp and lighting system
DE10063938A1 (en) * 2000-12-20 2002-07-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Short arc high pressure discharge lamp for digital projection techniques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015218878A1 (en) 2015-09-30 2017-03-30 Osram Gmbh DC gas discharge lamp with a thorium-free cathode

Also Published As

Publication number Publication date
EP1481418B8 (en) 2012-03-14
WO2003075310A1 (en) 2003-09-12
DE10209426A1 (en) 2003-09-18
EP1481418A1 (en) 2004-12-01
JP2005519435A (en) 2005-06-30
JP4741190B2 (en) 2011-08-03
KR100944818B1 (en) 2010-03-03
TWI288943B (en) 2007-10-21
TW200307307A (en) 2003-12-01
US7279839B2 (en) 2007-10-09
KR20050004792A (en) 2005-01-12
CN1639833A (en) 2005-07-13
US20050104521A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP1481418B1 (en) Short arc high-pressure discharge lamp-
EP0314732B1 (en) Xenon short-arc discharge lamp
DE102005007767B4 (en) Discharge lamp with a specially shaped cathode to prevent the fluctuation phenomenon of the arc
DE10291427B4 (en) Metal halide lamp for a motor vehicle headlight
DE9415217U1 (en) High pressure discharge lamp
DE19652822A1 (en) Sintered electrode
DE10243867A1 (en) Mercury-free arc tube for discharge lamp unit
DE102010011980A1 (en) Discharge lamp of the short arc type
DE69731374T2 (en) LOW PRESSURE DISCHARGE LAMP
EP1481417A1 (en) Mercury short arched lamp with a cathode containing lanthanum oxide
DE10245000A1 (en) Mercury-free arc tube for discharge lamp unit
EP1032022B1 (en) Metal halide lamp with ceramic discharge vessel
DE102006052715B4 (en) Process for producing a mercury-free arc tube, each having a single crystal at the electrode tips
DE102006061375B4 (en) Mercury high-pressure discharge lamp with an anode containing tungsten and potassium, which has a grain count greater than 200 grains per mm 2 and a density greater than 19.05 g / cm 3
DE19951445C1 (en) Mercury short-arc lamp for exposure system, has specific diameter relation between head and rod of electrode and specific angle between longitudinal axis of electrode and imaginary auxiliary line
DE102004053094B4 (en) High-pressure discharge lamp
EP0383108B1 (en) High-pressure discharge lamp for operation with an alternating current
DE69810683T2 (en) Short-arc discharge lamp
DE69529187T2 (en) Light source device with a metal halide lamp and method for operating a metal halide lamp
DE102015218878A1 (en) DC gas discharge lamp with a thorium-free cathode
DE69911538T2 (en) LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP
DE102010034661B4 (en) Short arc discharge lamp with longitudinal opening in the anode, on whose inner surface microcracks are formed
DE3044121A1 (en) SODIUM PRESSURE LAMP
DE3687667T2 (en) HIGH PRESSURE SODIUM LAMP AND TERNAERES AMALGAM DAFUER.
DE2311620C3 (en) Electrode for short-arc gas discharge lamps and process for their manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050621

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE SE

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

Owner name: PLANSEE SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE SE

Owner name: OSRAM AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314093

Country of ref document: DE

Effective date: 20120202

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314093

Country of ref document: DE

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNERS: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE; PLANSEE AG, REUTTE, TIROL, AT

Effective date: 20111213

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNERS: OSRAM AG, 81543 MUENCHEN, DE; PLANSEE SE, REUTTE/TIROL, AT

Effective date: 20130206

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: PLANSEE SE, AT

Free format text: FORMER OWNERS: OSRAM AG, 81543 MUENCHEN, DE; PLANSEE SE, REUTTE/TIROL, AT

Effective date: 20130206

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: PLANSEE SE, AT

Free format text: FORMER OWNERS: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE; PLANSEE AG, REUTTE, TIROL, AT

Effective date: 20111213

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUE, PLANSEE AG, , AT

Effective date: 20111213

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: PLANSEE SE, AT

Free format text: FORMER OWNER: OSRAM AG, PLANSEE SE, , AT

Effective date: 20130206

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: PLANSEE SE, AT

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUE, PLANSEE AG, , AT

Effective date: 20111213

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, PLANSEE SE, , AT

Effective date: 20130206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: PLANSEE SE, AT

Free format text: FORMER OWNER: OSRAM GMBH, PLANSEE SE, , AT

Effective date: 20130827

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, PLANSEE SE, , AT

Effective date: 20130827

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNERS: OSRAM GMBH, 81543 MUENCHEN, DE; PLANSEE SE, REUTTE/TIROL, AT

Effective date: 20130827

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314093

Country of ref document: DE

Owner name: PLANSEE SE, AT

Free format text: FORMER OWNERS: OSRAM GMBH, 81543 MUENCHEN, DE; PLANSEE SE, REUTTE/TIROL, AT

Effective date: 20130827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180323

Year of fee payment: 16

Ref country code: BE

Payment date: 20180321

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190305

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210319

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314093

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001