EP1472390A2 - Electrochemical half-cell - Google Patents
Electrochemical half-cellInfo
- Publication number
- EP1472390A2 EP1472390A2 EP03734598A EP03734598A EP1472390A2 EP 1472390 A2 EP1472390 A2 EP 1472390A2 EP 03734598 A EP03734598 A EP 03734598A EP 03734598 A EP03734598 A EP 03734598A EP 1472390 A2 EP1472390 A2 EP 1472390A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- current distributor
- mesh
- electrochemical half
- base support
- distributor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/65—Means for supplying current; Electrode connections; Electric inter-cell connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to an electrochemical half cell, in particular for the electrolysis of an aqueous solution of hydrogen chloride (hydrochloric acid) by means of gas diffusion electrodes.
- a method for the electrolysis of hydrochloric acid using gas diffusion electrodes is known, for example, from US Pat. No. 5,770,035.
- An anode compartment with a suitable anode consisting for example of a substrate made of a titanium-palladium alloy, which is coated with a mixed oxide of ruthenium, iridium and titanium, is filled with the aqueous solution of hydrogen chloride.
- the anode compartment is separated from a cathode compartment by a commercially available cation exchange membrane. On the cathode side, there is a gas diffusion electrode on the cation exchange membrane.
- Gas diffusion electrodes are, for example, oxygen consumable cathodes (SVK).
- SVK oxygen consumable cathodes
- air, oxygen-enriched air or pure oxygen is usually introduced into the cathode compartment, which is converted at the SVK.
- the known electrolysis of hydrochloric acid has the disadvantage that hydrogen evolution is observed on the cathode side at current densities that are greater than 4000 A / m 2 .
- the hydrogen formed mixes with the excess supply of gas to the cathode half-cell, ie with the air, with the air enriched with oxygen or with the oxygen.
- Another disadvantage is that the high current densities also result in very high voltages.
- high current densities and low voltages are necessary for economic reasons when carrying out the process technically.
- a process for the electrolysis of hydrochloric acid by means of gas diffusion electrodes is also known from EP-A-785 294.
- a two-layer power distributor is described therein, the first layer of which consists of a mesh or an expanded metal with a large mesh size and a thickness which brings about sufficient mechanical stability.
- the second layer also consists of a mesh or an expanded metal, but has a smaller mesh size than the first layer and thus offers a large number of contact points with the gas diffusion electrode lying thereon.
- the object of the present invention is to operate the hydrochloric acid electrolysis with the highest possible current densities and the lowest possible voltages and to completely avoid the undesired evolution of hydrogen. Since the excess oxygen used is usually returned to the cathode half-cell, no hydrogen may be formed, as this would otherwise accumulate in the system.
- the invention relates to an electrochemical half-cell, in particular for the electrolysis of aqueous solutions of hydrogen chloride, at least comprising a gas space, the gas space having a gas supply and a gas discharge and a liquid outlet, and a gas diffusion electrode which rests on an electrically conductive current distributor and the current distributor electrically contacted in a conductive manner, the current distributor preferably having a free area in the range from 5 to 65%, preferably from 10 to 60%, particularly preferably from 15 to 50%, based on the total area of the current distributor and a thickness of 0.3 mm to 5 mm from 0.35 to 2 mm.
- the power distributor has several functions to perform. It is intended to make electrical contact with the gas diffusion electrode. At the same time, it must be ensured that the power distributor transports the gas in the gas space to the gas diffusion electrode and transports the reaction formed during the operation of the electrolysis. water and hydrochloric acid, which passes through the ion exchange membrane from the anode half-element into the cathode half-element.
- the current distributor In order that the current can be transported as evenly as possible over the surface of the gas diffusion electrode, uniform contacting of the gas diffusion electrode with the current distributor is necessary.
- the gas diffusion electrode therefore lies on the entire surface of the power distributor.
- the current distributor and the gas diffusion electrode form two planar layers lying one against the other. Furthermore, the current distributor must be connected to the cathode half element with the lowest possible contact resistance.
- the side of the gas diffusion electrode that rests on the current distributor (also referred to below as the rear side) is electrically conductive.
- the electrically conductive contact between the gas diffusion electrode and the current distributor can thus be achieved in that the gas diffusion electrode lies loosely on the current distributor. Due to the higher pressure in the anode half cell compared to the cathode half cell, the ion exchange membrane is pressed onto the gas diffusion electrode, which in turn is pressed onto the current distributor.
- the gas diffusion electrode may also be attached to the power distributor. The attachment can be detachable, for example by means of a clamp connection, or fixed, for example by means of an adhesive connection or by sewing on. Alternatively, the gas diffusion electrode can also be electrically conductively connected to the current distributor. This is particularly necessary when the gas diffusion electrode does not have an electrically conductive back, but on its back with an additional, electrically non-conductive
- the contact surface Open space of the power distributor.
- the sum of the areas of the electricity distribution Those who make contact with the gas diffusion electrode are also referred to below as the contact surface.
- a perforated plate is used as a current distributor, the covering area coincides with the contact area.
- the power distributor is an expanded metal, mesh, fabric or the like, then not the entire covering surface will contact the gas diffusion electrode, but only a smaller part, since the webs of the expanded metal or the like. do not lie on one level. If the expanded metal, mesh, fabric or the like. rolled flat, the contact area increases. In addition, the covering area of the power distributor increases.
- the total area of the power distributor is understood here to mean the area resulting from the
- Length and width of the power distributor is formed.
- the contact surface can e.g. can be measured as follows: The power distributor is pressed like a stamp into a stamp pad and then pressed onto a sheet of paper, which rests on a gas diffusion electrode.
- the contact area can be measured in this way.
- the covering area or the open area can be calculated from this.
- the thickness of the current distributor is
- Bridge thickness meant. The following parameters are used to identify the expanded metals: The web thickness corresponds to the thickness of the metal sheet used to produce the expanded metal. The web width results from the distance between two parallel but offset cuts. The mesh size characterizes the length of the cut, the mesh width of the maximum distance between two adjacent webs created by stretching deformation.
- the current distributor preferably consists of at least one expanded metal, mesh, fabric, foam, fleece, slotted plate or perforated plate. It consists of an electrically conductive material, in particular metal.
- the current distributor preferably consists of titanium or a noble metal-stabilized titanium, for example one precious metal-doped titanium or a precious metal-titanium alloy.
- the power distributor is coated with a noble metal oxide. The noble metal stabilization of the titanium or the noble metal oxide coating takes place, for example, with an element of the platinum metal group, ie Ru, Rh, Pd, Os, Ir, Pt.
- the current distributor is preferably an expanded metal with a mesh length in the range from 4 to 8 mm, a mesh width in the range from 3 to 5 mm, a web width in the range from 0.4 to 1.8 mm and a web thickness in the range from 0.4 to 2 mm.
- the current distributor if it is an expanded metal, is flat-rolled.
- the current distributor is particularly preferably completely flat-rolled. This creates a maximum contact area of the gas diffusion electrode on the power distributor. If the power distributor is rolled flat, the free area of the power distributor refers to the free area after rolling.
- the current distributor rests on an electrically conductive base support and is connected in an electrically conductive manner to the base support, the base support being made of at least one expanded metal,
- the base support consists of titanium or a precious metal-stabilized titanium, the precious metal e.g. can be an element of the platinum metal group.
- the base support is connected in particular to the power distributor with a low impedance. If the power distributor is connected to a base support, the base support is electrically conductively connected to the cathode half element in order to produce the power supply. Alternatively, the current distributor can also be connected in an electrically conductive manner to the cathode half element.
- the base support is connected to the electrode half-element in particular with a low resistance, ie with a slight excess contact resistance.
- a low-resistance connection is understood to mean, for example, a welded, sintered or soldered connection. It is essential for the base support as well as for the power distributor that they do not hinder the liquid transport through the gas diffusion electrode and the gas transport to the gas diffusion electrode.
- the current distributor can be connected directly to the cathode half element with a low resistance.
- the base support can be directly connected to the cathode half element with a low resistance.
- the median resistance connection of the power distributor or the base support to the cathode half element can be made, for example, with the aid of support elements.
- the support elements can e.g. Trapezoidal or Z profiles.
- the connection of the power distributor or the base support to the cathode half-cell must ensure full contact of the gas diffusion electrode with the power distributor.
- Adequate stability can be achieved, for example, by the base support or by a sufficient number of support elements.
- the base support is preferably an expanded metal with a mesh length of 10 to 40 mm, a mesh width of 5 to 15 mm, a web width of 2 to 5 mm and a web thickness of 0.8 to 4 mm.
- a network with a thickness of 1 to 4 mm and a mesh size of 7 to 25 mm is also preferably used as the base support.
- base support is a perforated plate or slotted plate with a free area of at most 70% and a thickness of 1 to 4 mm. Examples:
- the electrolytic cell has an anode half element 1 consisting of an electrolyte compartment 12 and an anode 3, for example a titanium electrode coated with noble metal oxide.
- the electrode area of the anode and cathode was 0.86 m 2 in each case.
- the anode half element 1 is from the cathode half element 2 by a commercially available one
- the cathode half-element 2 consists of a gas space 13 and a cathode, which is formed from a current distributor 6 and a gas diffusion electrode 5.
- the cation exchange membrane 4 usually lies on the gas diffusion electrode 5.
- the current distributor 6 rests on a base support 14 and is connected to it in an electrically conductive manner.
- the gas diffusion electrode 5 requires good contact to the current distributor 6 and to the ion exchange membrane 4. This contact can e.g. can be produced in such a way that the pressure in the anode half element 1 is higher than the pressure in the cathode half element 2.
- the higher pressure in the anode half element presses the cation exchange membrane onto the gas diffusion cathode and this in turn onto the current distributor.
- This can e.g. by a liquid immersion 10 through which the chlorine gas formed during operation of the electrolytic cell is passed.
- the pressure difference between anode half cell and cathode half cell was 400 mbar, the pressure in the anode half element being higher.
- the hydrochloric acid was pumped through the anode half-element at a volume flow of approx. 450 l / h via a feed 7 and a discharge 15.
- the concentration of the pumped hydrochloric acid was 12-13
- Power distributor was on one side of the gas diffusion electrode. On the other side of the power distributor there was another coarser expanded metal with low resistance, which served as the base support. The medohohm connection of the power distributor to the base support was carried out by welding. The base support is also attached to the cathode half element with a low resistance.
- the base carrier had the following dimensions: mesh length 13.2 mm, mesh width 6.3 mm, web width 2.4 mm and web thickness 1.5 mm. The free space of the base beam was 24%.
- the voltage during operation of the electrolysis was 2.02 V at a current density of 5 kA / m 2 .
- the concentration of hydrogen in oxygen which was removed from the cathode half-element was 2000 ppm. This was due to the comparatively high voltage.
- an expanded metal with a mesh length of 6 mm, a mesh width of 3.3 mm, a web width of 0.5 mm and a web thickness of 0.5 mm was used as the current distributor.
- the open space was 68%.
- the expanded metal was rolled flat.
- the free space after rolling was 53%.
- the gas diffusion electrode was on one side of this current distributor.
- the medohohm connection of the power distributor to the base support was carried out by welding.
- the base support is also attached to the cathode half element with a low resistance.
- the base carrier had the following dimensions: mesh length 13.2 mm, mesh width 6.3 mm, web width 2.4 mm and web thickness 1.5 mm.
- the free space of the base beam was 24%.
- the voltage during the operation of the electrolysis was 1.57 V at a current density of
- the concentration of hydrogen in oxygen which was removed from the cathode half-element was less than 1 ppm.
- an expanded metal with a mesh length of 6 mm, a mesh width of 3.4 mm, a web width of 1.3 mm and a web thickness of 1 mm was used as the current distributor.
- the expanded metal was rolled flat. The free space after rolling was 24%.
- the gas diffusion electrode was on one side of this current distributor.
- the medohohm connection of the power distributor to the base support was carried out by welding.
- the base support is also attached to the cathode half element with a low resistance.
- the base carrier had the following dimensions: mesh length 13.2 mm, mesh width 6.3 mm, web width 2.4 mm and web thickness 1.5 mm.
- Free space of the base beam was 24%.
- the voltage during operation of the electrolysis was 1.44 V at a current density of 5 kA / m 2 .
- the concentration of hydrogen in oxygen which was removed from the cathode half-element was less than 1 ppm.
- an expanded metal with a mesh length of 6.2 mm, a mesh width of 3.4 mm, a web width of 1.1 mm and a web thickness of 1 mm was used as the current distributor.
- the expanded metal was rolled flat. The free area after rolling was 35%.
- the gas diffusion electrode was on one side of this current distributor.
- the power distributor was attached to the cathode half element in a low-resistance manner without a base support.
- the voltage during operation of the electrolysis was 1.55 V at a current density of
- the concentration of hydrogen in oxygen which was removed from the cathode half-element was less than 1 ppm.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
The invention relates to an electrochemical half-cell, in particular for the electrolysis of aqueous solutions of hydrogen chloride. Said cell comprises at least one gas chamber, which has a gas supply and a gas discharge, in addition to a liquid outlet and comprises a gas diffusion electrode, which lies on an electrically conductive current distributor and makes contact with the latter in a conductive manner. According to the invention, the current distributor has an exposed surface ranging between 5 and 65 %, preferably between 10 and 60 % and more specifically between 15 and 50 %, in relation to the total surface of said current distributor and a thickness of between 0.3 mm and 5 mm and preferably between 0.35 and 0.6 mm.
Description
Elektrochemische HalbzelleElectrochemical half cell
Die Erfindung betrifft eine elektrochemische Halbzelle, insbesondere für die Elektrolyse einer wässrigen Lösung von Chlorwasserstoff (Salzsäure) mittels Gas- diffusionselektroden.The invention relates to an electrochemical half cell, in particular for the electrolysis of an aqueous solution of hydrogen chloride (hydrochloric acid) by means of gas diffusion electrodes.
Ein Verfahren zur Elektrolyse von Salzsäure mittels Gasdiffusionselektroden ist beispielsweise aus US-A-5 770 035 bekannt. Ein Anodenraum mit einer geeigneten Anode, bestehend z.B. aus einem Substrat aus einer Titan-Palladium-Legierung, welches mit einem Mischoxid aus Ruthenium, Iridium und Titan beschichtet ist, wird mit der wässrigen Lösung von Chlorwasserstoff gefüllt. Das an der Anode gebildete Chlor entweicht aus dem Anodenraum und wird einer geeigneten Aufbereitung zuge- • führt. Der Anodenraum ist von einem Kathodenraum durch eine handelsübliche Kationenaustauschermembran getrennt. Auf der Kathodenseite liegt eine Gasdiffu- sionselektrode auf der Kationenaustauschermembran auf. Die Gasdiffusionselektrode liegt wiederum auf einem Stromverteiler auf. Bei Gasdiffusionselektroden handelt es sich beispielsweise um Sauerstoffverzehrkathoden (SVK). Im Falle einer SVK als Gasdiffusionselektrode wird in den Kathodenraum üblicherweise Luft, mit Sauerstoff angereicherte Luft oder reiner Sauerstoff eingeleitet, der an der SVK umgesetzt wird.A method for the electrolysis of hydrochloric acid using gas diffusion electrodes is known, for example, from US Pat. No. 5,770,035. An anode compartment with a suitable anode, consisting for example of a substrate made of a titanium-palladium alloy, which is coated with a mixed oxide of ruthenium, iridium and titanium, is filled with the aqueous solution of hydrogen chloride. The chlorine formed at the anode to escape from the anode compartment and is an appropriate treatment conces- • leads. The anode compartment is separated from a cathode compartment by a commercially available cation exchange membrane. On the cathode side, there is a gas diffusion electrode on the cation exchange membrane. The gas diffusion electrode in turn rests on a power distributor. Gas diffusion electrodes are, for example, oxygen consumable cathodes (SVK). In the case of an SVK as a gas diffusion electrode, air, oxygen-enriched air or pure oxygen is usually introduced into the cathode compartment, which is converted at the SVK.
Die an sich bekannte Elektrolyse von Salzsäure hat den Nachteil, dass bei Stromdichten, die größer als 4000 A/m2 sind, auf der Kathodenseite Wasserstoffentwicklung beobachtet wird. Der gebildete Wasserstoff vermischt sich mit dem der Katho- denhalbzelle im Überschuss zugeführten Gas, d.h. mit der Luft, mit der mit Sauer- stoff angereicherten Luft oder mit dem Sauerstoff. Ein weiterer Nachteil ist, dass bei den hohen Stromdichten auch sehr hohe Spannungen auftreten. Hohe Stromdichten und niedrige Spannungen sind jedoch bei der technischen Durchführung des Verfahrens aus wirtschaftlichen Gründen notwendig.
Aus EP-A-785 294 ist ebenfalls ein Verfahren zur Elektrolyse von Salzsäure mittels Gasdiffusionselektroden bekannt. Darin wird ein zweilagiger Stromverteiler beschrieben, dessen erste Schicht aus einem Netz oder einem Streckmetall mit einer großen Maschengröße und einer Dicke, welche eine ausreichende mechanische Sta- bilität bewirkt, besteht. Die zweite Schicht besteht ebenfalls aus einem Netz oder einem Streckmetall, besitzt jedoch eine geringere Maschengröße als die erste Schicht und bietet somit eine große Zahl von Kontaktpunkten mit der aufliegenden Gasdiffusionselektrode.The known electrolysis of hydrochloric acid has the disadvantage that hydrogen evolution is observed on the cathode side at current densities that are greater than 4000 A / m 2 . The hydrogen formed mixes with the excess supply of gas to the cathode half-cell, ie with the air, with the air enriched with oxygen or with the oxygen. Another disadvantage is that the high current densities also result in very high voltages. However, high current densities and low voltages are necessary for economic reasons when carrying out the process technically. A process for the electrolysis of hydrochloric acid by means of gas diffusion electrodes is also known from EP-A-785 294. A two-layer power distributor is described therein, the first layer of which consists of a mesh or an expanded metal with a large mesh size and a thickness which brings about sufficient mechanical stability. The second layer also consists of a mesh or an expanded metal, but has a smaller mesh size than the first layer and thus offers a large number of contact points with the gas diffusion electrode lying thereon.
Aufgabe der vorliegenden Erfindung ist es, die Salzsäure-Elektrolyse bei möglichst hohen Stromdichten und möglichst geringen Spannungen zu betreiben und die unerwünschte Wasserstoffentwicklung vollständig zu vermeiden. Da in der Regel der im Uberschuss eingesetzte Sauerstoff in die Kathodenhalbzelle rückgeführt wird, darf kein Wasserstoff gebildet werden, da dieser sich sonst im System anreichern würde.The object of the present invention is to operate the hydrochloric acid electrolysis with the highest possible current densities and the lowest possible voltages and to completely avoid the undesired evolution of hydrogen. Since the excess oxygen used is usually returned to the cathode half-cell, no hydrogen may be formed, as this would otherwise accumulate in the system.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.The object is achieved by the features of claim 1.
Gegenstand der Erfindung ist eine elektrochemische Halbzelle, insbesondere zur Elektrolyse von wässrigen Lösungen von Chlorwasserstoff, wenigstens umfassend einen Gasraum, wobei der Gasraum eine Gaszuführung und eine Gasabführung sowie einen Flussigkeitsauslass aufweist, und eine Gasdiffusionselektrode, welche auf einem elektrisch leitenden Stromverteiler aufliegt und den Stromverteiler elektrisch leitend kontaktiert, wobei der Stromverteiler eine Freifläche im Bereich von 5 bis 65 %, bevorzugt von 10 bis 60 %, insbesondere bevorzugt von 15 bis 50 %, bezogen auf die Gesamtfläche des Stromverteilers und eine Dicke von 0,3 mm bis 5 mm, bevorzugt von 0,35 bis 2 mm, aufweist.The invention relates to an electrochemical half-cell, in particular for the electrolysis of aqueous solutions of hydrogen chloride, at least comprising a gas space, the gas space having a gas supply and a gas discharge and a liquid outlet, and a gas diffusion electrode which rests on an electrically conductive current distributor and the current distributor electrically contacted in a conductive manner, the current distributor preferably having a free area in the range from 5 to 65%, preferably from 10 to 60%, particularly preferably from 15 to 50%, based on the total area of the current distributor and a thickness of 0.3 mm to 5 mm from 0.35 to 2 mm.
Der Stromverteiler hat mehrere Funktionen zu erfüllen. Er soll den elektrischen Kontakt zur Gasdiffusionselektrode herstellen. Gleichzeitig muss gewährleistet sein, dass der Stromverteiler den Transport des Gases im Gasraum zur Gasdiffusionselektrode sowie den Transport von im Betrieb der Elektrolyse gebildetes Reaktions-
wasser und von Salzsäure, welche durch die Ionenaustauschermembran von dem Anodenhalbelement in das Kathodenhalbelement hindurchtritt, nicht behindert.The power distributor has several functions to perform. It is intended to make electrical contact with the gas diffusion electrode. At the same time, it must be ensured that the power distributor transports the gas in the gas space to the gas diffusion electrode and transports the reaction formed during the operation of the electrolysis. water and hydrochloric acid, which passes through the ion exchange membrane from the anode half-element into the cathode half-element.
Damit der Stromtransport möglichst gleichmäßig über die Oberfläche der Gas- diffusionselektrode erfolgen kann, ist eine gleichmäßige Kontaktierung der Gasdiffusionselektrode mit dem Stromverteiler notwendig. Daher liegt die Gasdiffusionselektrode auf dem Stromverteiler vollflächig auf. Der Stromverteiler und die Gasdiffusionselektrode bilden zwei aneinanderliegende ebene Schichten. Ferner muss der Stromverteiler mit dem Kathodenhalbelement mit möglichst geringem Übergangswiderstand verbunden sein.In order that the current can be transported as evenly as possible over the surface of the gas diffusion electrode, uniform contacting of the gas diffusion electrode with the current distributor is necessary. The gas diffusion electrode therefore lies on the entire surface of the power distributor. The current distributor and the gas diffusion electrode form two planar layers lying one against the other. Furthermore, the current distributor must be connected to the cathode half element with the lowest possible contact resistance.
Nach einer bevorzugten Ausführungsform ist die Seite der Gasdiffusionselektrode, die auf dem Stromverteiler aufliegt (im nachfolgenden auch als Rückseite bezeichnet), elektrisch leitend. Somit kann der elektrisch leitende Kontakt zwischen der Gas- diffusionselektrode und dem Stromverteiler dadurch erzielt werden, dass die Gasdiffusionselektrode lose auf dem Stromverteiler aufliegt. Aufgrund des höheren Drucks in der Anodenhalbzelle im Vergleich zur Kathodenhalbzelle wird die Ionenaustauschermembran auf die Gasdiffusionselektrode gedrückt, welche wiederum auf den Stromverteiler gedrückt wird. Gegebenenfalls ist die Gasdiffusionselektrode zu- sätzlich an dem Stromverteiler befestigt. Die Befestigung kann lösbar, beispielsweise mittels einer Klemmverbindung, oder fest, beispielsweise mittels einer Klebeverbindung oder durch Annähen, erfolgen. Alternativ kann die Gasdiffusionselektrode auch mit dem Stromverteiler elektrisch leitend verbunden sein. Dies ist insbesondere dann erforderlich, wenn die Gasdiffusionselektrode keine elektrisch leitende Rückseite besitzt, sondern an ihrer Rückseite mit einer zusätzlichen, elektrisch nicht leitendenAccording to a preferred embodiment, the side of the gas diffusion electrode that rests on the current distributor (also referred to below as the rear side) is electrically conductive. The electrically conductive contact between the gas diffusion electrode and the current distributor can thus be achieved in that the gas diffusion electrode lies loosely on the current distributor. Due to the higher pressure in the anode half cell compared to the cathode half cell, the ion exchange membrane is pressed onto the gas diffusion electrode, which in turn is pressed onto the current distributor. The gas diffusion electrode may also be attached to the power distributor. The attachment can be detachable, for example by means of a clamp connection, or fixed, for example by means of an adhesive connection or by sewing on. Alternatively, the gas diffusion electrode can also be electrically conductively connected to the current distributor. This is particularly necessary when the gas diffusion electrode does not have an electrically conductive back, but on its back with an additional, electrically non-conductive
Schicht versehen ist.Layer is provided.
Wird der Stromverteiler auf die Gasdiffusionselektrode projiziert, sind Bereiche zu unterscheiden, welche die Gasdiffusionselektrode bedecken und welche, die diese nicht bedecken. Die Summe der nicht bedeckenden Flächen wird nachfolgend alsIf the current distributor is projected onto the gas diffusion electrode, a distinction must be made between areas which cover the gas diffusion electrode and those which do not. The sum of the areas not covering is subsequently referred to as
Freifläche des Stromverteilers bezeichnet. Die Summe der Flächen des Stromvertei-
lers, die mit der Gasdiffusionselektrode kontaktieren, wird nachfolgend auch als Kontaktfläche bezeichnet. Wird als Stromverteiler z.B. ein Lochblech eingesetzt, so stimmt die bedeckende Fläche mit der Kontaktfläche überein. Handelt es sich bei dem Stromverteiler um ein Streckmetall, Netz, Gewebe o.dgl., so wird nicht die ge- samte bedeckende Fläche die Gasdiffusionselektrode kontaktieren, sondern nur ein geringerer Teil, da die Stege des Streckmetalls o.dgl. nicht in einer Ebene liegen. Wird das Streckmetall, Netz, Gewebe o.dgl. flachgewalzt, so nimmt die Kontaktfläche zu. Außerdem nimmt die bedeckende Fläche des Stromverteilers zu.Open space of the power distributor. The sum of the areas of the electricity distribution Those who make contact with the gas diffusion electrode are also referred to below as the contact surface. If, for example, a perforated plate is used as a current distributor, the covering area coincides with the contact area. If the power distributor is an expanded metal, mesh, fabric or the like, then not the entire covering surface will contact the gas diffusion electrode, but only a smaller part, since the webs of the expanded metal or the like. do not lie on one level. If the expanded metal, mesh, fabric or the like. rolled flat, the contact area increases. In addition, the covering area of the power distributor increases.
Als Gesamtfläche des Stromverteilers wird hier die Fläche verstanden, die aus derThe total area of the power distributor is understood here to mean the area resulting from the
Länge und Breite des Stromverteilers gebildet wird.Length and width of the power distributor is formed.
Die Kontaktfläche kann z.B. wie folgt gemessen werden: Der Stromverteiler wird wie ein Stempel in ein Stempelkissen gedrückt und anschließend auf ein Blatt Papier, welches auf einer Gasdiffusionselektrode aufliegt, abgedrückt. Dabei werden dieThe contact surface can e.g. can be measured as follows: The power distributor is pressed like a stamp into a stamp pad and then pressed onto a sheet of paper, which rests on a gas diffusion electrode. The
Bereiche sichtbar, an denen der Stromverteiler die Gasdiffusionselektrode kontaktiert. Die Kontaktfläche kann auf diese Weise ausgemessen werden. Daraus kann die bedeckende bzw. die Freifläche berechnet werden.Areas visible where the power distributor contacts the gas diffusion electrode. The contact area can be measured in this way. The covering area or the open area can be calculated from this.
Unter der Dicke des Stromverteilers ist in dem speziellen Fall eines Streckmetalls dieIn the special case of an expanded metal, the thickness of the current distributor is
Stegdicke gemeint. Zur Kennzeichnung der Streckmetalle werden folgende Parameter verwendet: Die Stegdicke entspricht der Dicke des zur Herstellung des Streckmetall verwendeten Metallblechs. Die Stegbreite resultiert aus dem Abstand zweier zueinander paralleler, aber versetzter Schnitte. Die Maschenweite kennzeich- net die Länge des Schnittes, die Maschenbreite der durch streckende Verformung entstandene maximale Abstand zwischen zwei benachbarten Stegen.Bridge thickness meant. The following parameters are used to identify the expanded metals: The web thickness corresponds to the thickness of the metal sheet used to produce the expanded metal. The web width results from the distance between two parallel but offset cuts. The mesh size characterizes the length of the cut, the mesh width of the maximum distance between two adjacent webs created by stretching deformation.
Bevorzugt besteht der Stromverteiler wenigstens aus einem Streckmetall, Netz, Gewebe, Schaum, Vlies, Schlitzblech oder einer Lochplatte. Er besteht aus einem elektrisch leitfähigen Material, insbesondere aus Metall. Der Stromverteiler besteht bevorzugt aus Titan oder einem edelmetallstabilisierten Titan, beispielsweise einem
edelmetalldotierten Titan oder einer Edelmetall-Titan-Legierung. Der Stromverteiler ist mit einem Edelmetalloxid beschichtet. Die Edelmetallstabilisierung des Titans bzw. die Edelmetalloxidbeschichtung erfolgt beispielsweise mit einem Element der Platinmetallgruppe, d.h. Ru, Rh, Pd, Os, Ir, Pt.The current distributor preferably consists of at least one expanded metal, mesh, fabric, foam, fleece, slotted plate or perforated plate. It consists of an electrically conductive material, in particular metal. The current distributor preferably consists of titanium or a noble metal-stabilized titanium, for example one precious metal-doped titanium or a precious metal-titanium alloy. The power distributor is coated with a noble metal oxide. The noble metal stabilization of the titanium or the noble metal oxide coating takes place, for example, with an element of the platinum metal group, ie Ru, Rh, Pd, Os, Ir, Pt.
Der Stromverteiler ist vorzugsweise ein Streckmetall mit einer Maschenlänge im Bereich von 4 bis 8 mm, einer Maschenbreite im Bereich von 3 bis 5 mm, einer Stegbreite im Bereich von 0,4 bis 1,8 mm und einer Stegdicke im Bereich von 0,4 bis 2 mm.The current distributor is preferably an expanded metal with a mesh length in the range from 4 to 8 mm, a mesh width in the range from 3 to 5 mm, a web width in the range from 0.4 to 1.8 mm and a web thickness in the range from 0.4 to 2 mm.
Nach einer bevorzugten Ausführungsform ist der Stromverteiler, falls es sich um ein Streckmetall handelt, flachgewalzt. Der Stromverteiler ist besonders bevorzugt vollständig flachgewalzt. Dies erzeugt eine maximale Kontaktfläche der Gasdiffusionselektrode auf dem Stromverteiler. Ist der Stromverteiler flachgewalzt, bezieht sich die Freifläche des Stromverteilers auf die Freifläche nach dem Walzen.According to a preferred embodiment, the current distributor, if it is an expanded metal, is flat-rolled. The current distributor is particularly preferably completely flat-rolled. This creates a maximum contact area of the gas diffusion electrode on the power distributor. If the power distributor is rolled flat, the free area of the power distributor refers to the free area after rolling.
Um eine höhere mechanische Stabilität zu erzielen, liegt nach einer bevorzugten Ausführungsform der erfindungsgemäßen elektrochemischen Halbzelle der Stromverteiler auf einem elektrisch leitenden Basisträger auf und ist elektrisch leitend mit dem Basisträger verbunden, wobei der Basisträger wenigstens aus einem Streckmetall,In order to achieve a higher mechanical stability, according to a preferred embodiment of the electrochemical half cell according to the invention, the current distributor rests on an electrically conductive base support and is connected in an electrically conductive manner to the base support, the base support being made of at least one expanded metal,
Netz, Gewebe, Schaum, Vlies, Schlitzblech oder einer Lochplatte besteht. Der Basisträger besteht ähnlich wie der Stromverteiler aus Titan oder einem edelmetallstabilisierten Titan, wobei das Edelmetall z.B. ein Element der Platinmetallgruppe sein kann.Net, fabric, foam, fleece, slotted sheet or a perforated plate. Similar to the power distributor, the base support consists of titanium or a precious metal-stabilized titanium, the precious metal e.g. can be an element of the platinum metal group.
Der Basisträger ist insbesondere niederohmig mit dem Stromverteiler verbunden. Ist der Stromverteiler mit einem Basisträger verbunden, so ist der Basisträger elektrisch leitend mit dem Kathodenhalbelement verbunden, um die Stromversorgung herzustellen. Alternativ kann aber auch der Stromverteiler mit dem Kathodenhalbelement elektrisch leitend verbunden sein. Die Verbindung des Basisträgers an das Elektro- denhalbelement erfolgt insbesondere niederohmig, d.h. mit einem geringen Über-
gangswiderstand. Unter einer niederohmigen Verbindung wird z.B. eine Schweiß-, Sinter- oder Lötverbindung verstanden. Wesentlich für den Basisträger ebenso wie für den Stromverteiler ist es, dass sie den Flüssigkeitstransport durch die Gasdiffusionselektrode und den Gastransport zur Gasdiffusionselektrode nicht behin- dem.The base support is connected in particular to the power distributor with a low impedance. If the power distributor is connected to a base support, the base support is electrically conductively connected to the cathode half element in order to produce the power supply. Alternatively, the current distributor can also be connected in an electrically conductive manner to the cathode half element. The base support is connected to the electrode half-element in particular with a low resistance, ie with a slight excess contact resistance. A low-resistance connection is understood to mean, for example, a welded, sintered or soldered connection. It is essential for the base support as well as for the power distributor that they do not hinder the liquid transport through the gas diffusion electrode and the gas transport to the gas diffusion electrode.
Der Stromverteiler kann direkt mit dem Kathodenhalbelement niederohmig verbunden sein. Ebenso kann, falls vorhanden, der Basisträger direkt mit dem Kathodenhalbelement niederohmig verbunden sein.The current distributor can be connected directly to the cathode half element with a low resistance. Likewise, if present, the base support can be directly connected to the cathode half element with a low resistance.
Die mederohmige Verbindung des Stromverteilers oder des Basisträgers mit dem Kathodenhalbelement kann beispielsweise mit Hilfe von Stützelementen erfolgen. Die Stützelemente können z.B. Trapez- oder Z-Profile sein. Die Verbindung des Stromverteilers oder des Basisträgers mit der Kathodenhalbzelle muss einen voll- flächigen Kontakt der Gasdiffusionselektrode mit dem Stromverteiler gewährleisten.The median resistance connection of the power distributor or the base support to the cathode half element can be made, for example, with the aid of support elements. The support elements can e.g. Trapezoidal or Z profiles. The connection of the power distributor or the base support to the cathode half-cell must ensure full contact of the gas diffusion electrode with the power distributor.
Ausreichende Stabilität kann beispielsweise durch den Basisträger erzielt werden oder durch eine ausreichende Anzahl an Stützelementen.Adequate stability can be achieved, for example, by the base support or by a sufficient number of support elements.
Der Basisträger ist vorzugsweise ein Streckmetall mit einer Maschenlänge von 10 bis 40 mm, einer Maschenbreite von 5 bis 15 mm, einer Stegbreite von 2 bis 5 mm und einer Stegdicke von 0,8 bis 4 mm.The base support is preferably an expanded metal with a mesh length of 10 to 40 mm, a mesh width of 5 to 15 mm, a web width of 2 to 5 mm and a web thickness of 0.8 to 4 mm.
Bevorzugt wird außerdem als Basisträger ein Netz mit einer Dicke von 1 bis 4 mm und einer Maschenweite von 7 bis 25 mm verwendet.A network with a thickness of 1 to 4 mm and a mesh size of 7 to 25 mm is also preferably used as the base support.
Eine weitere bevorzugte Ausführungsform des Basisträgers ist ein Lochblech oder Schlitzblech mit einer Freifläche von maximal 70 % und einer Dicke von 1 bis 4 mm.
Beispiele:Another preferred embodiment of the base support is a perforated plate or slotted plate with a free area of at most 70% and a thickness of 1 to 4 mm. Examples:
Die Beispiele wurden in der nachfolgend beschriebenen und in Figur 1 schematisch dargestellten Elektrolysezelle unter den nachfolgend genannten Versuchsbedingun- gen durchgeführt:The examples were carried out in the electrolysis cell described below and shown schematically in FIG. 1 under the test conditions mentioned below:
Die Elektrolysezelle weist ein Anodenhalbelement 1, bestehend aus einem Elektrolytraum 12 und einer Anode 3, z.B. einer edelmetalloxidbeschichteten Titanelektrode, auf. Die Elektrodenfläche der Anode und Kathode betrug jeweils 0,86 m2. Das Anodenhalbelement 1 ist vom Kathodenhalbelement 2 durch eine handelsüblicheThe electrolytic cell has an anode half element 1 consisting of an electrolyte compartment 12 and an anode 3, for example a titanium electrode coated with noble metal oxide. The electrode area of the anode and cathode was 0.86 m 2 in each case. The anode half element 1 is from the cathode half element 2 by a commercially available one
Kationenaustauschermembran 4, beispielsweise Nafion® Typ 324, getrennt. Das Kathodenhalbelement 2 besteht aus einem Gasraum 13 und einer Kathode, welche aus einem Stromverteiler 6 und einer Gasdiffusionselektrode 5 gebildet wird. Üblicherweise liegt die Kationenaustauschermembran 4 auf der Gasdiffusions- elektrode 5 auf. Sofern in den nachfolgenden Beispielen angegeben, liegt der Stromverteiler 6 auf einem Basisträger 14 auf und ist mit diesem elektrisch leitend verbunden. Die Gasdiffusionselektrode 5 benötigt einen guten Kontakt zum Stromverteiler 6 und zur Ionenaustauschermembran 4. Dieser Kontakt kann z.B. dadurch hergestellt werden, dass der Druck im Anodenhalbelement 1 höher ist als der Druck im Kathodenhalbelement 2. Im Normalbetrieb wird durch höheren Druck im Anodenhalbelement die Kationenaustauschermembran auf die Gasdiffusionskathode und diese wiederum auf den Stromverteiler gedrückt. Dies kann z.B. durch eine Flüssigkeitstauchung 10 erfolgen, durch die das im Betrieb der Elektrolysezelle gebildete Chlorgas geleitet wird. Die Druckdifferenz zwischen Anodenhalbzelle und Kathodenhalbzelle betrug 400 mbar, wobei der Druck im Anodenhalbelement höher war.Cation exchange membrane 4, for example Nafion® type 324, separated. The cathode half-element 2 consists of a gas space 13 and a cathode, which is formed from a current distributor 6 and a gas diffusion electrode 5. The cation exchange membrane 4 usually lies on the gas diffusion electrode 5. If specified in the following examples, the current distributor 6 rests on a base support 14 and is connected to it in an electrically conductive manner. The gas diffusion electrode 5 requires good contact to the current distributor 6 and to the ion exchange membrane 4. This contact can e.g. can be produced in such a way that the pressure in the anode half element 1 is higher than the pressure in the cathode half element 2. In normal operation, the higher pressure in the anode half element presses the cation exchange membrane onto the gas diffusion cathode and this in turn onto the current distributor. This can e.g. by a liquid immersion 10 through which the chlorine gas formed during operation of the electrolytic cell is passed. The pressure difference between anode half cell and cathode half cell was 400 mbar, the pressure in the anode half element being higher.
Im Betrieb der Elektrolysezelle wurde die Salzsäure mit einem Volumenstrom von ca. 450 1/h über eine Zuführung 7 und eine Abführung 15 durch das Anodenhalb- element gepumpt. Die Konzentration der umgepumpten Salzsäure betrug 12-13During operation of the electrolysis cell, the hydrochloric acid was pumped through the anode half-element at a volume flow of approx. 450 l / h via a feed 7 and a discharge 15. The concentration of the pumped hydrochloric acid was 12-13
Gew.-%. Bei einer Stromdichte von 5000 A/m2 wurden ca. 23 Liter 30 gew.-%ige
Salzsäure zugegeben. Die verbrauchte Salzsäure wurde ersetzt. Das an der Anode gebildete Chlor wird ebenfalls über die Abfiürrung 15 aus dem Anodenhalbelement 1 abgeführt und über die Tauchung 10 von der Salzsäure getrennt. Das Chlor wird einer geeigneten Aufbereitung zugeführt. In den Gasraum 13 des Kathodenhalb- elements wurde über eine Zufuhr 8 Sauerstoff mit einem Volumenstrom von 1750 1/h eingeleitet. Die Reinheit des Sauerstoffs betrug 99,9 %. Überschüssiger Sauerstoff wird über die Abführung 11 aus dem Kathodenhalbelement abgeführt. Das bei der Reduktion von Sauerstoff an der Gasdiffusionselektrode gebildete Wasser wird über eine Abführung 9 aus dem Gasraum 13 abgeführt.Wt .-%. At a current density of 5000 A / m 2 , approx. 23 liters became 30% by weight Hydrochloric acid added. The used hydrochloric acid was replaced. The chlorine formed on the anode is also removed from the anode half element 1 via the discharge 15 and separated from the hydrochloric acid via the immersion 10. The chlorine is fed into a suitable treatment. Oxygen with a volume flow of 1750 l / h was introduced into the gas space 13 of the cathode half-element via a feed 8. The purity of the oxygen was 99.9%. Excess oxygen is removed from the cathode half element via the discharge 11. The water formed in the reduction of oxygen at the gas diffusion electrode is discharged from the gas space 13 via an outlet 9.
Beispiel 1 (NergleichsbeispieDExample 1 (NergleichsbeispieD
In der oben beschriebenen Elektrolysezelle wurde als Stromverteiler ein Streckmetall mit der Maschenlänge 4,2 mm, der Maschenbreite 3,1 mm, der Stegbreite 0,5 mm und der Stegdicke 0,4 mm eingesetzt. Die Freifläche betrug 68 %. Auf diesemIn the electrolysis cell described above, an expanded metal with a mesh length of 4.2 mm, a mesh width of 3.1 mm, a web width of 0.5 mm and a web thickness of 0.4 mm was used as the current distributor. The open space was 68%. On this
Stromverteiler lag auf der einen Seite die Gasdiffusionselektrode auf. Auf der anderen Seite des Stromverteilers war ein weiteres gröberes Streckmetall niederohmig angebracht, welches als Basisträger diente. Die mederohmige Anbindung des Stromverteilers an den Basisträger erfolgte durch Schweißen. Der Basisträger ist außerdem niederohmig an dem Kathodenhalbelement angebracht. Der Basisträger hatte folgende Abmessungen: Maschenlänge 13,2 mm, Maschenbreite 6,3 mm, Stegbreite 2,4 mm und Stegdicke 1,5 mm. Die Freifläche des Basisträgers betrug 24 %.Power distributor was on one side of the gas diffusion electrode. On the other side of the power distributor there was another coarser expanded metal with low resistance, which served as the base support. The medohohm connection of the power distributor to the base support was carried out by welding. The base support is also attached to the cathode half element with a low resistance. The base carrier had the following dimensions: mesh length 13.2 mm, mesh width 6.3 mm, web width 2.4 mm and web thickness 1.5 mm. The free space of the base beam was 24%.
Die Spannung im Betrieb der Elektrolyse betrug 2,02 V bei einer Stromdichte von 5 kA/m2. Die Konzentration von Wasserstoff im Sauerstoff, der aus dem Kathodenhalbelement abgefiihrt wurde, betrug 2000 ppm. Dies wurde durch die vergleichsweise hohe Spannung bedingt.
Beispiel 2The voltage during operation of the electrolysis was 2.02 V at a current density of 5 kA / m 2 . The concentration of hydrogen in oxygen which was removed from the cathode half-element was 2000 ppm. This was due to the comparatively high voltage. Example 2
In der oben beschriebenen Elektrolysezelle wurde als Stromverteiler ein Streckmetall mit der Maschenlänge 6 mm, der Maschenbreite 3,3 mm, der Stegbreite 0,5 mm und der Stegdicke 0,5 mm eingesetzt. Die Freifläche betrug 68 %. Das Streckmetall war flachgewalzt. Die Freifläche nach dem Walzen betrug 53 %. Auf diesem Stromverteiler lag auf der einen Seite die Gasdiffusionselektrode auf. Auf der anderen Seite des Stromverteilers war ein weiteres gröberes Streckmetall niederohmig angebracht, welches als Basisträger diente. Die mederohmige Anbindung des Stromverteilers an den Basisträger erfolgte durch Schweißen. Der Basisträger ist außerdem niederohmig an dem Kathodenhalbelement angebracht. Der Basisträger hatte folgende Abmessungen: Maschenlänge 13,2 mm, Maschenbreite 6,3 mm, Stegbreite 2,4 mm und Stegdicke 1,5 mm. Die Freifläche des Basisträgers betrug 24 %.In the electrolysis cell described above, an expanded metal with a mesh length of 6 mm, a mesh width of 3.3 mm, a web width of 0.5 mm and a web thickness of 0.5 mm was used as the current distributor. The open space was 68%. The expanded metal was rolled flat. The free space after rolling was 53%. The gas diffusion electrode was on one side of this current distributor. On the other side of the power distributor there was another coarser expanded metal with low resistance, which served as the base support. The medohohm connection of the power distributor to the base support was carried out by welding. The base support is also attached to the cathode half element with a low resistance. The base carrier had the following dimensions: mesh length 13.2 mm, mesh width 6.3 mm, web width 2.4 mm and web thickness 1.5 mm. The free space of the base beam was 24%.
Die Spannung beim Betrieb der Elektrolyse betrug 1,57 V bei einer Stromdichte vonThe voltage during the operation of the electrolysis was 1.57 V at a current density of
5 kA/m2. Die Konzentration von Wasserstoff im Sauerstoff, der aus dem Kathodenhalbelement abgeführt wurde, betrug weniger als 1 ppm.5 kA / m 2 . The concentration of hydrogen in oxygen which was removed from the cathode half-element was less than 1 ppm.
Beispiel 3Example 3
In der oben beschriebenen Elektrolysezelle wurde als Stromverteiler ein Streckmetall mit der Maschenlänge 6 mm, der Maschenbreite 3,4 mm, der Stegbreite 1,3 mm und der Stegdicke 1 mm eingesetzt. Das Streckmetall war flachgewalzt. Die Freifläche nach dem Walzen betrug 24 %. Auf diesem Stromverteiler lag auf der einen Seite die Gasdiffusionselektrode auf. Auf der anderen Seite des Stromverteilers war ein weiteres gröberes Streckmetall niederohmig angebracht, welches als Basisträger diente. Die mederohmige Anbindung des Stromverteilers an den Basisträger erfolgte durch Schweißen. Der Basisträger ist außerdem niederohmig an dem Kathodenhalbelement angebracht. Der Basisträger hatte folgende Abmessungen: Maschenlänge 13,2 mm, Maschenbreite 6,3 mm, Stegbreite 2,4 mm und Stegdicke 1,5 mm. DieIn the electrolysis cell described above, an expanded metal with a mesh length of 6 mm, a mesh width of 3.4 mm, a web width of 1.3 mm and a web thickness of 1 mm was used as the current distributor. The expanded metal was rolled flat. The free space after rolling was 24%. The gas diffusion electrode was on one side of this current distributor. On the other side of the power distributor there was another coarser expanded metal with low resistance, which served as the base support. The medohohm connection of the power distributor to the base support was carried out by welding. The base support is also attached to the cathode half element with a low resistance. The base carrier had the following dimensions: mesh length 13.2 mm, mesh width 6.3 mm, web width 2.4 mm and web thickness 1.5 mm. The
Freifläche des Basisträgers betrug 24 %.
Die Spannung im Betrieb der Elektrolyse betrug 1,44 V bei einer Stromdichte von 5 kA/m2. Die Konzentration von Wasserstoff im Sauerstoff, der aus dem Kathodenhalbelement abgeführt wurde, betrug weniger als 1 ppm.Free space of the base beam was 24%. The voltage during operation of the electrolysis was 1.44 V at a current density of 5 kA / m 2 . The concentration of hydrogen in oxygen which was removed from the cathode half-element was less than 1 ppm.
Beispiel 4Example 4
In der oben beschriebenen Elektrolysezelle wurde als Stromverteiler ein Streckmetall mit der Maschenlänge 6,2 mm, der Maschenbreite 3,4 mm, der Stegbreite 1,1 mm und der Stegdicke 1 mm eingesetzt. Das Streckmetall war flachgewalzt. Die Freifläche nach dem Walzen betrug 35 %. Auf diesem Stromverteiler lag auf der einen Seite die Gasdiffusionselektrode auf. Der Stromverteiler wurde ohne Basisträger niederohmig durch Schweißen an das Kathodenhalbelement angebracht.In the electrolysis cell described above, an expanded metal with a mesh length of 6.2 mm, a mesh width of 3.4 mm, a web width of 1.1 mm and a web thickness of 1 mm was used as the current distributor. The expanded metal was rolled flat. The free area after rolling was 35%. The gas diffusion electrode was on one side of this current distributor. The power distributor was attached to the cathode half element in a low-resistance manner without a base support.
Die Spannung beim Betrieb der Elektrolyse betrug 1,55 V bei einer Stromdichte vonThe voltage during operation of the electrolysis was 1.55 V at a current density of
5 kA/m2. Die Konzentration von Wasserstoff im Sauerstoff, der aus dem Kathodenhalbelement abgeführt wurde, betrug weniger als 1 ppm.5 kA / m 2 . The concentration of hydrogen in oxygen which was removed from the cathode half-element was less than 1 ppm.
Tabelle 1: Übersicht der ErgebnisseTable 1: Overview of the results
Claims
1. Elektrochemische Halbzelle, insbesondere zur Elektrolyse von wässrigen Lösungen von Chlorwasserstoff, umfassend wenigstens einen Gasraum (13), wobei der Gasraum (13) eine Gaszuführuiig (8) und eine Gasabführung (11) sowie einen Flussigkeitsauslass (9) aufweist, und eine Gasdiffusionselektrode (5), welche auf einem elektrisch leitenden Stromverteiler (6) aufliegt und den Stromverteiler (6) elektrisch leitend kontaktiert, dadurch gekennzeichnet, dass der Stromverteiler (6) eine Freifläche im Bereich von 5 bis 65 %, bevorzugt von 10 bis 60 %, insbesondere bevorzugt von 15 bis 50 %, bezogen auf die1. Electrochemical half-cell, in particular for the electrolysis of aqueous solutions of hydrogen chloride, comprising at least one gas space (13), the gas space (13) having a gas supply (8) and a gas discharge (11) and a liquid outlet (9), and a gas diffusion electrode (5), which rests on an electrically conductive current distributor (6) and contacts the current distributor (6) in an electrically conductive manner, characterized in that the current distributor (6) has an open area in the range from 5 to 65%, preferably from 10 to 60%, particularly preferably from 15 to 50%, based on the
Gesamtfläche des Stromverteilers (6) und eine Dicke von 0,3 mm bis 5 mm, bevorzugt von 0,35 bis 2 mm, aufweist.Total area of the power distributor (6) and a thickness of 0.3 mm to 5 mm, preferably from 0.35 to 2 mm.
2. Elektrochemische Halbzelle nach Anspruch 1, dadurch gekennzeichnet, dass der Stromverteiler (6) wenigstens aus einem Streckmetall, Netz, Gewebe,2. Electrochemical half-cell according to claim 1, characterized in that the current distributor (6) consists of at least one expanded metal, mesh, tissue,
Schaum, Vlies, Schlitzblech oder einer Lochplatte besteht.Foam, fleece, slotted sheet or a perforated plate.
3. Elektrochemische Halbzelle nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Stromverteiler (6) ein Streckmetall mit einer Maschen- länge im Bereich von 4 bis 8 mm, einer Maschenbreite im Bereich von 3 bis3. Electrochemical half-cell according to one of claims 1 or 2, characterized in that the current distributor (6) is an expanded metal with a mesh length in the range from 4 to 8 mm, a mesh width in the range from 3 to
5 mm, einer Stegbreite im Bereich von 0,4 bis 1,8 mm und einer Stegdicke im Bereich von 0,35 bis 2 mm ist.5 mm, a web width in the range from 0.4 to 1.8 mm and a web thickness in the range from 0.35 to 2 mm.
4. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 3, dadurch ge- kennzeichnet, dass der Stromverteiler (6) auf einem elektrisch leitenden4. Electrochemical half-cell according to one of claims 1 to 3, characterized in that the current distributor (6) on an electrically conductive
Basisträger (14) aufliegt und elektrisch leitend mit dem Basisträger (14) verbunden ist, wobei der Basisträger (14) wenigstens aus einem Streckmetall, Netz, Gewebe, Schaum, Vlies, Schlitzblech oder einer Lochplatte besteht.Base support (14) rests and is connected to the base support (14) in an electrically conductive manner, the base support (14) consisting of at least one expanded metal, mesh, fabric, foam, fleece, slotted plate or perforated plate.
5. Elektrochemische Halbzelle nach Anspruch 4, dadurch gekennzeichnet, dass5. Electrochemical half cell according to claim 4, characterized in that
Basisträger (14) ein Streckmetall mit einer Maschenlänge von 10 bis 40 mm, einer Maschenbreite von 5 bis 15 mm, einer Stegbreite von 2 bis 5 mm und einer Stegdicke von 0,8 bis 4 mm ist.Base carrier (14) an expanded metal with a mesh length of 10 to 40 mm, a mesh width of 5 to 15 mm, a web width of 2 to 5 mm and a web thickness of 0.8 to 4 mm.
6. Elektrochemische Halbzelle nach Anspruch 4, dadurch gekennzeichnet, dass der Basisträger (14) ein Netz mit einer Dicke von 1 bis 4 mm und einer6. Electrochemical half cell according to claim 4, characterized in that the base support (14) is a network with a thickness of 1 to 4 mm and one
Maschenweite von 7 bis 25 mm ist.Mesh size from 7 to 25 mm.
7. Elektrochemische Halbzelle nach Anspruch 4, dadurch gekennzeichnet, dass der Basisträger (14) ein Lochblech oder Schlitzblech mit einer Freifläche von maximal 70 % und einer Dicke von 1 bis 4 mm ist.7. Electrochemical half cell according to claim 4, characterized in that the base support (14) is a perforated plate or slotted plate with a free area of at most 70% and a thickness of 1 to 4 mm.
8. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Stromverteiler (6) aus Titan oder einem edelmetallstabilisierten Titan und einer Edelmetalloxidbeschichtung besteht.8. Electrochemical half cell according to one of claims 1 to 7, characterized in that the current distributor (6) consists of titanium or a noble metal-stabilized titanium and a noble metal oxide coating.
Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Stromverteiler (6) ein Streckmetall ist, welches flachgewalzt ist. Electrochemical half-cell according to one of Claims 1 to 8, characterized in that the current distributor (6) is an expanded metal which is rolled flat.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10203689 | 2002-01-31 | ||
DE10203689A DE10203689A1 (en) | 2002-01-31 | 2002-01-31 | Cathodic current distributor for electrolytic cells |
PCT/EP2003/000480 WO2003064728A2 (en) | 2002-01-31 | 2003-01-20 | Electrochemical half-cell |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1472390A2 true EP1472390A2 (en) | 2004-11-03 |
Family
ID=7713433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03734598A Withdrawn EP1472390A2 (en) | 2002-01-31 | 2003-01-20 | Electrochemical half-cell |
Country Status (9)
Country | Link |
---|---|
US (1) | US20030173211A1 (en) |
EP (1) | EP1472390A2 (en) |
JP (1) | JP2005516120A (en) |
KR (1) | KR20040089130A (en) |
CN (1) | CN1625610A (en) |
BR (1) | BR0307249A (en) |
DE (1) | DE10203689A1 (en) |
PL (1) | PL370278A1 (en) |
WO (1) | WO2003064728A2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10149779A1 (en) | 2001-10-09 | 2003-04-10 | Bayer Ag | Returning process gas to an electrochemical process with educt gas via gas jet pump |
EP1577424B1 (en) * | 2002-11-27 | 2015-03-11 | Asahi Kasei Chemicals Corporation | Bipolar zero-gap electrolytic cell |
DE10342148A1 (en) * | 2003-09-12 | 2005-04-07 | Bayer Materialscience Ag | Process for the electrolysis of an aqueous solution of hydrogen chloride or alkali chloride |
ITMI20060054A1 (en) * | 2006-01-16 | 2007-07-17 | Uhdenora Spa | ELASTIC CURRENT DISTRIBUTOR FOR PERCOLATOR CELLS |
DE102006005788A1 (en) * | 2006-02-07 | 2007-08-09 | Umicore Ag & Co. Kg | Catalyst with improved light-off behavior |
DE102006023261A1 (en) | 2006-05-18 | 2007-11-22 | Bayer Materialscience Ag | Process for the production of chlorine from hydrogen chloride and oxygen |
AT509237A2 (en) * | 2009-07-01 | 2011-07-15 | Vtu Holding Gmbh | ELECTRODE DEVICE |
US9175135B2 (en) | 2010-03-30 | 2015-11-03 | Bayer Materialscience Ag | Process for preparing diaryl carbonates and polycarbonates |
ES2643234T3 (en) | 2010-03-30 | 2017-11-21 | Covestro Deutschland Ag | Procedure for the preparation of diaryl carbonates and polycarbonates |
CN105585080B (en) * | 2016-03-02 | 2018-01-16 | 蓝星(北京)化工机械有限公司 | Electrically-degradable high concentrated organic wastewater oxygen cathode electrolytic cell |
DE102019200617A1 (en) * | 2019-01-18 | 2020-07-23 | Robert Bosch Gmbh | Gas distribution structures for fuel cells and electrolysers |
DE102023201303A1 (en) | 2023-02-15 | 2024-08-22 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for producing a gas diffusion electrode, welding device and gas diffusion electrode |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4432838A (en) * | 1980-05-05 | 1984-02-21 | Olin Corporation | Method for producing reticulate electrodes for electrolytic cells |
US4354917A (en) * | 1980-10-31 | 1982-10-19 | Diamond Shamrock Corporation | Gas electrode with asymmetric current distributor |
US4732660A (en) * | 1985-09-09 | 1988-03-22 | The Dow Chemical Company | Membrane electrolyzer |
US4690748A (en) * | 1985-12-16 | 1987-09-01 | The Dow Chemical Company | Plastic electrochemical cell terminal unit |
US4731168A (en) * | 1986-02-18 | 1988-03-15 | The Dow Chemical Company | Electrogenerative cell for the oxidation or halogenation of hydrocarbons |
US5454995A (en) * | 1994-04-18 | 1995-10-03 | Cincinnati Milacron, Inc. | Method for reducing cycle time in an injection molding machine |
IT1282367B1 (en) * | 1996-01-19 | 1998-03-20 | De Nora Spa | IMPROVED METHOD FOR THE ELECTROLYSIS OF WATER SOLUTIONS OF HYDROCHLORIC ACID |
IT1284072B1 (en) * | 1996-06-26 | 1998-05-08 | De Nora Spa | ELECTROCHEMICAL DIAPHRAGM CELL FITTED WITH GASEOUS DIFFUSION ELECTRODES CONTACTED BY SMOOTH AND POROUS METALLIC CURRENT HOLDERS |
DE19715429A1 (en) * | 1997-04-14 | 1998-10-15 | Bayer Ag | Electrochemical half cell |
US6383677B1 (en) * | 1999-10-07 | 2002-05-07 | Allen Engineering Company, Inc. | Fuel cell current collector |
-
2002
- 2002-01-31 DE DE10203689A patent/DE10203689A1/en not_active Withdrawn
-
2003
- 2003-01-20 PL PL03370278A patent/PL370278A1/en not_active Application Discontinuation
- 2003-01-20 JP JP2003564314A patent/JP2005516120A/en active Pending
- 2003-01-20 BR BR0307249-5A patent/BR0307249A/en not_active Application Discontinuation
- 2003-01-20 WO PCT/EP2003/000480 patent/WO2003064728A2/en active Application Filing
- 2003-01-20 EP EP03734598A patent/EP1472390A2/en not_active Withdrawn
- 2003-01-20 CN CNA038030225A patent/CN1625610A/en active Pending
- 2003-01-20 KR KR10-2004-7011802A patent/KR20040089130A/en not_active Application Discontinuation
- 2003-01-30 US US10/354,087 patent/US20030173211A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO03064728A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2003064728A2 (en) | 2003-08-07 |
PL370278A1 (en) | 2005-05-16 |
JP2005516120A (en) | 2005-06-02 |
WO2003064728A3 (en) | 2004-01-15 |
BR0307249A (en) | 2004-12-14 |
KR20040089130A (en) | 2004-10-20 |
US20030173211A1 (en) | 2003-09-18 |
DE10203689A1 (en) | 2003-08-07 |
CN1625610A (en) | 2005-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602004007039T2 (en) | STRUCTURES FOR GAS DIFFUSION MATERIALS AND MANUFACTURING METHOD THEREFOR | |
DE2847955C2 (en) | Process for producing halogens by electrolysis of aqueous alkali metal halides | |
DE69015518T2 (en) | Electrode for electrolysis. | |
EP2385996A2 (en) | Structured gas diffusion electrode for electrolysis cells | |
EP2398101A1 (en) | Gas diffusion electrode and method for its production | |
DE3439265A1 (en) | ELECTROLYSIS APPARATUS WITH HORIZONTALLY ARRANGED ELECTRODES | |
EP1472390A2 (en) | Electrochemical half-cell | |
DE10335184A1 (en) | Electrochemical cell | |
EP0168600B1 (en) | Bipolar apparatus for electrolysis using a gas diffusion cathode | |
WO2001093353A1 (en) | Dimensionally stable gas diffusion electrode | |
DE4438275B4 (en) | Electrolytic cell and process for the electrolysis of an aqueous saline solution | |
EP1463847A2 (en) | Electrode for conducting electrolysis in acid media | |
EP1527211A1 (en) | Electrochemical cell | |
EP2573211A2 (en) | Improved gas diffusion electrodes and method for their production | |
DE69904371T2 (en) | ELECTROLYTIC DIAPHRAGIC CELL | |
EP0274138B1 (en) | Electrode arrangement for an electrolyser producing a gas, featuring vertically disposed electrode plates | |
EP2609649B1 (en) | Oxygen-consuming electrode and method for producing same | |
DE2125941C3 (en) | Bipolar unit and electrolytic cell built up with it | |
DE19545332A1 (en) | Electrolytic cell | |
EP2439314A2 (en) | Method for producing oxygen-consuming electrodes which are stable during transport and storage | |
EP2663669B1 (en) | Coating for metallic cell-element materials of an electrolytic cell | |
EP3597791B1 (en) | Method for improving the performance of nickel electrodes | |
EP1368844B1 (en) | Method for depositing a catalyst | |
DE102022004678A1 (en) | Process for the electrolysis of carbon dioxide with prereduction of a silver oxide-containing gas diffusion electrode | |
DE3226347A1 (en) | ELECTROLYSIS DEVICE AND METHOD FOR THE PRODUCTION THEREOF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040831 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080801 |