EP1471539A1 - Imaging system for microscope based on extreme ultraviolet (EUV) radiation - Google Patents

Imaging system for microscope based on extreme ultraviolet (EUV) radiation Download PDF

Info

Publication number
EP1471539A1
EP1471539A1 EP03016371A EP03016371A EP1471539A1 EP 1471539 A1 EP1471539 A1 EP 1471539A1 EP 03016371 A EP03016371 A EP 03016371A EP 03016371 A EP03016371 A EP 03016371A EP 1471539 A1 EP1471539 A1 EP 1471539A1
Authority
EP
European Patent Office
Prior art keywords
imaging system
imaging
diffractive
euv
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03016371A
Other languages
German (de)
French (fr)
Other versions
EP1471539B1 (en
Inventor
Hans-Jürgen DOBSCHAL
Jörn Greif-Wüstenbecker
Robert Brunner
Norbert Rosenkranz
Thomas SCHERÜBL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microelectronic Systems GmbH
Original Assignee
Carl Zeiss Microelectronic Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Microelectronic Systems GmbH filed Critical Carl Zeiss Microelectronic Systems GmbH
Publication of EP1471539A1 publication Critical patent/EP1471539A1/en
Application granted granted Critical
Publication of EP1471539B1 publication Critical patent/EP1471539B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Definitions

  • the present invention relates to a reflective imaging system for a X-ray microscope for examining an object in an object plane, the object with rays of a wavelength ⁇ 100 nm, in particular ⁇ 30 nm illuminated and enlarged in an image plane.
  • the microscopic examination of objects with X-rays is proposed especially important in the semiconductor industry. Smaller structure sizes consequently require ever higher resolutions, which can only be achieved with a Shortening the examination wavelength can be achieved. Especially this is important for the microscopic inspection of masks for the Lithography process.
  • the lithography uses extremely ultraviolet (EUV) radiation is the most promising solution for chip production in the next years.
  • EUV extremely ultraviolet
  • a reflective X-ray microscope for examining an object for microlithography in an object plane with radiation of a wavelength ⁇ 100 nm, in particular ⁇ 30 nm, is known from JP 2001116900.
  • This in X-ray microscope disclosed in this application is a Schwarzschild system with a concave first mirror and a convex second Mirror.
  • the Beam path for examining the object on the object is not telecentric, see above that an examination in reflection, for example of EUV reflection masks, is made possible. This system is very disadvantageous large length to achieve large image scales.
  • FIGS Applications DE 102 20 815 and DE 102 20 816 are described.
  • the Imaging optics designed as a purely reflective system and in terms of less Length optimized at high magnifications. This will u. a. through the Using highly aspherical mirrors achieved.
  • a disadvantage of these Arrangements is that the manufacturing tolerances for the aspherical mirror to achieve a high image quality are extremely demanding and therefore high Requirements to be met by manufacturing technology and measuring technology.
  • the object of the present invention is an imaging system to develop for an X-ray microscope which the in the prior art avoids known disadvantages. Furthermore, a high image quality should can be achieved with a reasonable manufacturing effort.
  • the object is characterized by the features of the independent Claims resolved. Preferred further developments and refinements are Subject of the dependent claims.
  • the proposed imaging system includes all of one imaging Optical elements belonging to optics and generated by the extreme ultraviolet (EUV) radiation a corresponding intermediate image. This can further processed by further imaging systems, d. H. further enlarged become.
  • EUV extreme ultraviolet
  • Imaging system can be used for example in photolithography.
  • At least one of the imaging optical elements 2 and 3 present in the beam path has a diffractive-reflective structure.
  • the diffractive-reflective structure is applied to a spherical or a flat base surface of one or both imaging optical elements 2 and 3 . Concave or convex curvatures are possible as a spherical base.
  • the second imaging system can be based on an x-ray image, one electro-optic imaging or an illustration showing radiation above 200nm used are based.
  • the second can Imaging system also another imaging optical element with a spherical convex base without a diffractive structure.
  • the imaging system according to the invention is preferably for wavelengths in the range less than 30nm, with a magnification of 5 - 1000x and one Length of less than 3m provided.
  • the imaging system has two imaging optical elements 2 and 3 , each with a diffractive-reflective structure, the first imaging optical element 2 having a concave base area and the second imaging optical element 3 having a convex base area for the respective diffractive surface. have reflective structure.
  • the imaging optical elements 2 and 3 are arranged in such a way that the optical paths cross once.
  • the optical axis of the imaging system is inclined to the object normal.
  • the imaging optical elements 2 and 3 can also be arranged such that the optical paths do not cross.
  • Imaging system as the basis for an inspection system for lithography masks be used.
  • imaging system as the basis for an inspection system for lithography masks be used.
  • the first imaging optical element 2 with a spherically concave base surface has, for example, a diffractive-reflective structure with approximately 240 lines / mm
  • the second imaging optical element 3 with a spherically convex base surface has a diffractive-reflective structure with approximately 660 lines / mm.
  • the imaging optical elements 2 and 3 are arranged in such a way that the optical paths cross once.
  • FIG. 1 and FIG. 2 the corresponding ray profiles in the imaging system are shown, starting from the object 1 to be examined, via the imaging optical elements 2 and 3 , up to the intermediate image 4 generated.
  • the beam path shown relates to an imaging system for a microscope based on extremely ultraviolet (EUV) radiation or a corresponding inspection system for lithography masks.
  • EUV extremely ultraviolet
  • FIG. 4 shows the schematic overall view of an inspection system for lithography masks based on EUV radiation.
  • EUV radiation In contrast to UV radiation, EUV radiation is used in almost all of them Materials very strongly absorbed. Because the absorption length in air at Normal pressure is far below 1 mm, the EUV radiation can only in a vacuum almost lossless over the distances required for EUV lithography spread.
  • the EUV radiation is focused on the object 1 by the illumination optics 6.
  • the EUV radiation reflected by the object 1 is focused by the imaging optics 7 as an intermediate image 4 onto a converter layer.
  • the subsystem according to the invention, starting from the object level 1 to the intermediate image 4 , on the converter layer is also referred to as the first subsystem and is based entirely on the EUV radiation.
  • the intermediate image 4 generated in this way can be further enlarged, for example, by a second subsystem.
  • the second subsystem can be based on both EUV radiation and a different wavelength.
  • the EUV radiation is converted, for example, into VIS radiation from the converter layer (intermediate image 4 ).
  • This VIS radiation is imaged on a camera chip 9 by a further imaging optics 8 used as a second subsystem, which is simultaneously designed as a window of the vacuum chamber 10 .
  • the camera chip 9 is used to control the radiation.
  • an imaging system for Provided which the disadvantages known in the prior art avoids and ensures a high image quality.
  • the manufacturing effort remains justifiable through the exclusive use of spherical mirrors.
  • the microscopic examination of objects with X-rays, especially with extremely ultraviolet (EUV) radiation is used mainly in Semiconductor industry increasingly important. Require smaller structure sizes consequently ever higher resolutions, which only by one Shortening the examination wavelength can be achieved. Especially this is important for the microscopic inspection of masks for the Lithography process.
  • EUV extremely ultraviolet
  • X-ray microscopy is particularly important in the case of people such as for example the so-called AIMS (Aenai Imaging Measurement).
  • AIMS Azai Imaging Measurement
  • the lithography stepper is replaced by a less expensive one and simulated simpler microscopic arrangement. It is important that the Figure with the same wavelength of e.g. B. 13.5nm, the same Lighting conditions and the same image quality as with an EUV stepper is produced. In contrast to the stepper, the image field is approx. 10 ⁇ m much smaller instead of several mm. Another difference is that the mask typically magnified 10 - 1000 times on a camera become.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The microscope operates with wavelength of less than 100 nm, especially less than 30 nm i.e. EUV (Extreme Ultraviolet) or X-rays. The microscope may be operated with a magnification of 0.1 to 1000x. The microscope is contained inside a vacuum chamber to avoid absorption of transmitted light. Light from the object (1) is reflected off a first mirror (2) which may be slightly concave, aspherical and may have a reflective diffraction grating of approximately 240 lines/mm. Light is then reflected off a second mirror (3) which may be spherical convex with a diffractive structure of approximately 660 lines/mm. The distance between the object and the intermediate focus point (4) is less than 5 m.

Description

Die vorliegende Erfindung betrifft ein reflektives Abbildungssystem für ein Röntgenmikroskop zur Untersuchung eines Objektes in einer Objektebene, wobei das Objekt mit Strahlen einer Wellenlänge < 100 nm, insbesondere < 30 nm beleuchtet und in eine Bildebene vergrößert abgebildet wird.The present invention relates to a reflective imaging system for a X-ray microscope for examining an object in an object plane, the object with rays of a wavelength <100 nm, in particular <30 nm illuminated and enlarged in an image plane.

Die mikroskopische Untersuchung von Objekten mit Röntgenstrahlung wird vor allem in der Halbleiterindustrie immer wichtiger. Kleinere Strukturgrößen fordern konsequenterweise immer höhere Auflösungen, welche nur durch eine Verkürzung der Untersuchungswellenlänge erreicht werden kann. Besonders wichtig ist dies bei der mikroskopischen Inspektion von Masken für den Lithographieprozess. Dabei stellt die Lithographie mit extrem ultravioletter (EUV) Strahlung die aussichtsreichste Lösung für die Chipfertigung in den nächsten Jahren dar.The microscopic examination of objects with X-rays is proposed especially important in the semiconductor industry. Smaller structure sizes consequently require ever higher resolutions, which can only be achieved with a Shortening the examination wavelength can be achieved. Especially this is important for the microscopic inspection of masks for the Lithography process. The lithography uses extremely ultraviolet (EUV) radiation is the most promising solution for chip production in the next years.

Nach dem Stand der Technik sind zahlreiche verschieden technische Lösungen zu Röntgenmikroskopen bekannt.According to the state of the art, there are numerous different technical solutions known to X-ray microscopes.

Die Anmeldungen US 5,222,113; US 5,311,565; US 5,177,774 und EP 0 459 833 zeigen Röntgenstrahlmikroskope, bei denen in der Projektionsoptik Zonenplatten für die Abbildung vorgesehen sind. Bei diesen Fresnelschen Zonenplatten handelt es sich um ein wellenoptisch abbildendes Element, bei dem das Licht an einem System aus konzentrisch angeordneten Kreisringen gebeugt wird. Der Nachteil der Verwendung von Fresnelschen Zonenplatten in den abbildenden Systemen mit mehreren optischen Elementen im Bereich der Röntgenstrahlung ist darin zu sehen, dass Fresnelsche Zonenplatten transmittive Bauteile sind, die aufgrund der schlechten Transmission im Röntgenbereich zu großen Lichtverlusten führen.The applications US 5,222,113; US 5,311,565; US 5,177,774 and EP 0 459 833 show X-ray microscopes in which in the Projection optics zone plates are provided for the illustration. With these Fresnel zone plates are wave-optically imaging Element where the light on a system of concentrically arranged Circular rings is bent. The disadvantage of using Fresnel Zone plates in the imaging systems with several optical elements in the field of X-rays it can be seen that Fresnel's Zone plates are transmittive components due to the bad Transmission in the X-ray range lead to large light losses.

Die US-Patente US 5,144,497, US 5.291,339 und US 5,131.023 betreffen Röntgenstrahlmikroskope bei denen Schwarzschild-Systeme als abbildende Systeme verwendet werden. Bei diesen Röntgenstrahlmikroskopen sind die Strahlengänge am zu untersuchenden Objekt telezentrisch ausgelegt, was eine Abbildung von Objekten in Reflexion erschwert.U.S. Patents US 5,144,497, US 5,291,339 and US 5,131,023 relate to X-ray microscopes with Schwarzschild systems as imaging Systems are used. These are the X-ray microscopes Beam paths on the object to be examined are designed telecentrically, which is a Illustration of objects in reflection difficult.

Ein weiterer Nachteil derartiger Systeme für einen Einsatz zur Untersuchung von Objekten, insbesondere solchen, die im Bereich der Röntgenlithographie Verwendungen finden, ist deren große Baulänge zur Erzielung eines ausreichenden Abbildungsmaßstabes. Dies erschwert die Verwendung beispielsweise in Inspektionssystemen zur Untersuchung von Masken in EUV-Projektionsbelichtungsanlagen.Another disadvantage of such systems for use in research of objects, especially those in the field of X-ray lithography Finding uses is their great length to achieve one sufficient image scale. This makes it difficult to use for example in inspection systems for examining masks in EUV projection exposure systems.

Aus US 6469827 und US 5022064 sind die Verwendung von diffraktiven Elementen zur spektralen Selektierung durch Beugung von Röntgenstrahlung bekannt. In beiden Schriften werden diese Elemente aber nur zur spektralen Aufspaltung und Selektierung von Röntgenstrahlung und nicht zur Korrektur oder Verbesserung von Abbildungseigenschaften verwendet. Auch dieses System ist am Objekt telezentrisch ausgelegt, was eine Abbildung von Objekten in Reflexion erschwert.From US 6469827 and US 5022064 are the use of diffractive Elements for spectral selection by X-ray diffraction known. In both writings, however, these elements only become spectral Splitting and selection of X-rays and not for correction or improvement of imaging properties used. This too System is designed telecentrically on the object, which is an illustration of Objects in reflection difficult.

Die Verwendung eines diffraktiven optischen Element mit brechungsverstärkender und achromatisierender Wirkung für ein Objektiv, insbesondere ein Mikroskopobjektiv wird in der DE-OS 101 30 212 beschrieben. Ein derartiges Objektiv ist aber für die EUV-Strahlung aufgrund der transmittiven optischen Elemente nicht einsetzbar. Da die EUV-Strahlung im Gegensatz zur UV-Strahlung in nahezu allen Materialien sehr stark absorbiert wird, ist die Verwendung von auf Transmission beruhenden optischen Bauelementen nicht möglich.The use of a diffractive optical element with refraction-enhancing and achromatizing effect for a lens, in particular a microscope objective is described in DE-OS 101 30 212 described. Such a lens is due to the EUV radiation the transmittive optical elements cannot be used. Because the EUV radiation in contrast to UV radiation, very strong in almost all materials is absorbed is the use of transmission based optical components not possible.

Ein reflektives Röntgenstrahfmikroskop zur Untersuchung eines Objektes für die Mikrolithographie in einer Objektebene mit Strahlung einer Wellenlänge < 100 nm, insbesondere < 30 nm, ist aus der JP 2001116900 bekannt. Das in dieser Anmeldung offenbarte Röntgenstrahlmikroskop ist ein Schwarzschild-System mit einem konkaven ersten Spiegel und einem konvexen zweiten Spiegel. Im Gegensatz zu den zuvor beschriebenen Systemen ist der Strahlengang zur Untersuchung des Objektes am Objekt nicht telezentrisch, so dass eine Untersuchung in Reflexion, beispielsweise von EUV-Reflexionsmasken, ermöglicht wird. Nachteilig an diesem System ist die sehr große Baulänge um große Abbildungsmaßstäbe zu erzielen.A reflective X-ray microscope for examining an object for microlithography in an object plane with radiation of a wavelength <100 nm, in particular <30 nm, is known from JP 2001116900. This in X-ray microscope disclosed in this application is a Schwarzschild system with a concave first mirror and a convex second Mirror. In contrast to the systems described above, the Beam path for examining the object on the object is not telecentric, see above that an examination in reflection, for example of EUV reflection masks, is made possible. This system is very disadvantageous large length to achieve large image scales.

Eine weitere Röntgenmikroskopische Anordnung ist beispielsweise in den Anmeldungen DE 102 20 815 und DE 102 20 816 beschrieben. Darin ist die Abbildungsoptik als rein reflektives System ausgelegt und hinsichtlich geringer Baulänge bei hohen Vergrößerungen optimiert. Dies wird u. a. durch die Verwendung stark asphärischer Spiegel erreicht. Nachteilig bei diesen Anordnungen ist, dass die Fertigungstoleranzen für die asphärischen Spiegel zum Erreichen einer hohen Bildgüte extrem anspruchvoll sind und daher hohe Anforderungen an die Fertigungstechnologie und Messtechnik zu stellen sind.Another X-ray microscopic arrangement is shown, for example, in FIGS Applications DE 102 20 815 and DE 102 20 816 are described. In it is the Imaging optics designed as a purely reflective system and in terms of less Length optimized at high magnifications. This will u. a. through the Using highly aspherical mirrors achieved. A disadvantage of these Arrangements is that the manufacturing tolerances for the aspherical mirror to achieve a high image quality are extremely demanding and therefore high Requirements to be met by manufacturing technology and measuring technology.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde ein Abbildungssystem für ein Röntgenmikroskop zu entwickeln, welches die im Stand der Technik bekannten Nachteile vermeidet. Weiterhin soll dabei eine hohe Abbildungsgüte bei einem vertretbaren Fertigungsaufwand erreicht werden.The object of the present invention is an imaging system to develop for an X-ray microscope which the in the prior art avoids known disadvantages. Furthermore, a high image quality should can be achieved with a reasonable manufacturing effort.

Erfindungsgemäß wird die Aufgabe durch die Merkmale der unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.According to the invention, the object is characterized by the features of the independent Claims resolved. Preferred further developments and refinements are Subject of the dependent claims.

Das vorgeschlagene Abbildungssystem beinhaltet alle zu einer abbildenden Optik gehörenden optischen Elemente und erzeugt durch die extrem ultraviolette (EUV) Strahlung ein entsprechendes Zwischenbild. Diese kann durch weitere Abbildungssysteme weiter verarbeitet, d. h. weiter vergrößert werden. The proposed imaging system includes all of one imaging Optical elements belonging to optics and generated by the extreme ultraviolet (EUV) radiation a corresponding intermediate image. This can further processed by further imaging systems, d. H. further enlarged become.

Durch Nutzung einer EUV-Strahlung von 13,5 nm ist das erfindungsgemäße Abbildungssystem beispielsweise in der Photolithographie einsetzbar.By using an EUV radiation of 13.5 nm, this is the invention Imaging system can be used for example in photolithography.

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles beschrieben. Dazu zeigen

Figur 1:
Strahlenverlauf im ersten Subsystem des Mikroskops,
Figur 2:
einen vergrößerten Ausschnitt des Strahlenverlaufes im ersten Subsystem des Mikroskops und
Figur 3:
eine schematische Gesamtansicht eines Inspektionssystems für Lithographiemasken, basierend auf EUV-Strahlung.
The invention is described below using an exemplary embodiment. Show this
Figure 1:
Beam path in the first subsystem of the microscope,
Figure 2:
an enlarged section of the beam path in the first subsystem of the microscope and
Figure 3:
a schematic overall view of an inspection system for lithography masks, based on EUV radiation.

Bei dem erfindungsgemäßen Abbildungssystem für ein, auf extrem ultravioletter (EUV) Strahlung basierendem Mikroskop mit Wellenlängen im Bereich kleiner 100nm, mit einer Vergrößerung von 0,1 - 100x und einer Baulänge kleiner 5m weist mindestens eines der im Strahlengang vorhandenen abbildenden optischen Elemente 2 und 3 eine diffraktiv-reflektive Struktur auf. Die diffraktiv-reflektive Struktur ist dabei auf einer sphärischen oder einer planen Grundfläche eines oder beider abbildenden optischen Elemente 2 und 3 aufgebracht. Als sphärische Grundfläche sind konkave oder konvexe Krümmungen möglich.In the imaging system according to the invention for a microscope based on extremely ultraviolet (EUV) radiation with wavelengths in the range of less than 100 nm, with a magnification of 0.1-100x and a length of less than 5 m, at least one of the imaging optical elements 2 and 3 present in the beam path has a diffractive-reflective structure. The diffractive-reflective structure is applied to a spherical or a flat base surface of one or both imaging optical elements 2 and 3 . Concave or convex curvatures are possible as a spherical base.

Die diffraktiv-reflektiven Strukturen weisen eine nicht rotationssymmetrische, asymmetrische Form auf. Im speziellen Fall sind die Strukturen in der Meridionalebene (entspricht der Zeichnungsebene) asymmetrisch, senkrecht dazu sind sie symmetrisch. Die diffraktiv-reflektiven Strukturen lassen sich beispielsweise durch folgendes Polynom der Phasenverteilung ϕ beschreiben: ϕX, y)= Σai Xm yn mit

  • x, y Koordinaten
  • ai Koeffizienten
  • i Summationsindex
  • m, n ganze Zahlen.
  • The diffractive-reflective structures have a non-rotationally symmetrical, asymmetrical shape. In the special case, the structures in the meridional plane (corresponds to the drawing plane) are asymmetrical, perpendicular to them they are symmetrical. The diffractive-reflective structures can be described, for example, by the following polynomial of the phase distribution ϕ : ϕX, y) = Σa i X m y n With
  • x, y coordinates
  • a i coefficients
  • i Summation index
  • m, n integers.
  • Um eine Gesamtvergrößerung von 5 - 1000x realisieren zu können wird dem ersten Abbildungssystem ein weiteres Abbildungssystem nachgeordnet. Das zweite Abbildungssystem kann dabei auf einer Röntgenabbildung, einer elektro-optischen Abbildung oder einer Abbildung, die eine Strahlung oberhalb 200nm verwendet, basieren. Im einfachsten Fall kann das zweite Abbildungssystem auch ein weiteres abbildendes optisches Elemente mit einer sphärisch konvexen Grundfläche ohne eine diffraktiv wirkende Struktur sein.In order to be able to achieve a total magnification of 5 - 1000x subordinate another imaging system after the first imaging system. The second imaging system can be based on an x-ray image, one electro-optic imaging or an illustration showing radiation above 200nm used are based. In the simplest case, the second can Imaging system also another imaging optical element with a spherical convex base without a diffractive structure.

    Das erfindungsgemäße Abbildungssystem ist vorzugsweise für Wellenlängen im Bereich kleiner 30nm, bei einer Vergrößerung von 5 - 1000x und einer Baulänge kleiner 3m vorgesehen.The imaging system according to the invention is preferably for wavelengths in the range less than 30nm, with a magnification of 5 - 1000x and one Length of less than 3m provided.

    In einer weiteren Ausgestaltung weist das Abbildungssystem zwei abbildende optische Elemente 2 und 3 mit jeweils einer diffraktiv-reflektiven Struktur auf, wobei das erste abbildende optische Element 2 über eine konkave Grundfläche und das zweite abbildende optische Element 3 über eine konvexe Grundfläche für die jeweilige diffraktiv-reflektive Struktur verfügen. Die abbildenden optischen Elemente 2 und 3 sind so angeordnet, dass sich die optischen Wege einmal kreuzen. Außerdem ist die optische Achse des Abbildungssystems dabei zur Objektnormalen geneigt.In a further embodiment, the imaging system has two imaging optical elements 2 and 3 , each with a diffractive-reflective structure, the first imaging optical element 2 having a concave base area and the second imaging optical element 3 having a convex base area for the respective diffractive surface. have reflective structure. The imaging optical elements 2 and 3 are arranged in such a way that the optical paths cross once. In addition, the optical axis of the imaging system is inclined to the object normal.

    Die abbildenden optischen Elemente 2 und 3 können aber auch so angeordnet sein, dass sich die optischen Wege nicht kreuzen. However, the imaging optical elements 2 and 3 can also be arranged such that the optical paths do not cross.

    In einer besonders vorteilhaften Ausgestaltung kann das erfindungsgemäße Abbildungssystem als Basis für ein Inspektionssystem für Lithographiemasken verwendet werden. Für Anwendungen in der Lithographie konzentrieren sich die Arbeiten auf Wellenlängen um 13,5nm, da sich nur hier effiziente Optiken für die erforderlichen Belichtungssysteme herstellen lassen.In a particularly advantageous embodiment, the invention Imaging system as the basis for an inspection system for lithography masks be used. For applications in lithography focus work on wavelengths around 13.5nm, because only here are efficient optics for the required exposure systems.

    Das erste abbildende optische Element 2 mit sphärisch konkaver Grundfläche verfügt dabei beispielsweise über eine diffraktiv-reflektiv wirkende Struktur mit ca. 240 Linien/mm und das zweite abbildende optische Element 3 mit sphärisch konvexer Grundfläche über eine diffraktiv-reflektiv wirkende Struktur mit ca. 660 Linien/mm. Die abbildenden optischen Elemente 2 und 3 sind dabei so angeordnet, dass sich die optischen Wege einmal kreuzen.The first imaging optical element 2 with a spherically concave base surface has, for example, a diffractive-reflective structure with approximately 240 lines / mm, and the second imaging optical element 3 with a spherically convex base surface has a diffractive-reflective structure with approximately 660 lines / mm. The imaging optical elements 2 and 3 are arranged in such a way that the optical paths cross once.

    In Figur 1 und Figur 2 (vergrößerter Ausschnitt) sind die entsprechenden Strahlenverläufe im Abbildungssystem, ausgehend vom zu untersuchenden Objekt 1, über die abbildenden optischen Elemente 2 und 3, bis hin zum erzeugten Zwischenbild 4 dargestellt. Der dargestellte Strahlenverlauf betrifft ein Abbildungssystem für ein, auf extrem ultravioletter (EUV) Strahlung basierendem Mikroskop bzw. einem entsprechenden Inspektionssystem für Lithographiemasken.In FIG. 1 and FIG. 2 (enlarged detail), the corresponding ray profiles in the imaging system are shown, starting from the object 1 to be examined, via the imaging optical elements 2 and 3 , up to the intermediate image 4 generated. The beam path shown relates to an imaging system for a microscope based on extremely ultraviolet (EUV) radiation or a corresponding inspection system for lithography masks.

    Figur 4 zeigt die schematische Gesamtansicht eines Inspektionssystems für Lithographiemasken, basierend auf EUV-Strahlung. FIG. 4 shows the schematic overall view of an inspection system for lithography masks based on EUV radiation.

    Die EUV-Strahlung wird im Gegensatz zur UV-Strahlung in nahezu allen Materialien sehr stark absorbiert. Da die Absorptionslänge in Luft bei Normaldruck weit unter 1 mm liegt, kann sich die EUV-Strahlung nur im Vakuum über die für die EUV-Lithografie notwendigen Entfernungen nahezu verlustfrei ausbreiten.In contrast to UV radiation, EUV radiation is used in almost all of them Materials very strongly absorbed. Because the absorption length in air at Normal pressure is far below 1 mm, the EUV radiation can only in a vacuum almost lossless over the distances required for EUV lithography spread.

    Ausgehend von der Strahlungsquelle 5 wird die EUV-Strahlung von der Beleuchtungsoptik 6 auf das Objekt 1 fokussiert. Die vom Objekt 1 reflektierte EUV-Strahlung wird von der Abbildungsoptik 7 als Zwischenbild 4 auf eine Wandlerschicht fokussiert. Das erfindungsgemäße Teilsystem ausgehend von der Objektebene 1 bis zum Zwischenbild 4, auf der Wandlerschicht wird auch als erstes Subsystem bezeichnet und basiert vollständig auf der EUV-Strahlung.Starting from the radiation source 5, the EUV radiation is focused on the object 1 by the illumination optics 6. The EUV radiation reflected by the object 1 is focused by the imaging optics 7 as an intermediate image 4 onto a converter layer. The subsystem according to the invention, starting from the object level 1 to the intermediate image 4 , on the converter layer is also referred to as the first subsystem and is based entirely on the EUV radiation.

    Das so erzeugte Zwischenbild 4 kann beispielsweise von einem zweiten Subsystem weiter vergrößert werden. Das zweite Subsystem kann hierbei sowohl auf der EUV-Strahlung als auch einer anderen Wellenlänge basieren.The intermediate image 4 generated in this way can be further enlarged, for example, by a second subsystem. The second subsystem can be based on both EUV radiation and a different wavelength.

    Von der Wandlerschicht (Zwischenbild 4) wird die EUV-Strahlung beispielsweise in VIS-Strahlung umgewandelt. Diese VIS-Strahlung wird von einer als zweites Subsystem eingesetzten weiteren Abbildungsoptik 8, welche gleichzeitig als Fenster der Vakuumkammer 10 ausgebildet ist, auf einen Kamerachip 9 abgebildet. Der Kamerachip 9 dient der Kontrolle der Bestrahlung.The EUV radiation is converted, for example, into VIS radiation from the converter layer (intermediate image 4 ). This VIS radiation is imaged on a camera chip 9 by a further imaging optics 8 used as a second subsystem, which is simultaneously designed as a window of the vacuum chamber 10 . The camera chip 9 is used to control the radiation.

    Mit der erfindungsgemäßen Anordnung wird ein Abbildungssystem zur Verfügung gestellt, welches die im Stand der Technik bekannten Nachteile vermeidet und eine hohe Abbildungsgüte gewährleistet. Der Fertigungsaufwand bleibt durch die ausschließlich Verwendung sphärischer Spiegel vertretbar.With the arrangement according to the invention, an imaging system for Provided which the disadvantages known in the prior art avoids and ensures a high image quality. The manufacturing effort remains justifiable through the exclusive use of spherical mirrors.

    Die mikroskopische Untersuchung von Objekten mit Röntgenstrahlung, insbesondere mit extrem ultravioletter (EUV) Strahlung wird vor allem in Halbleiterindustrie immer wichtiger. Kleiner Strukturgrößen fordern konsequenterweise immer höhere Auflösungen, welche nur durch eine Verkürzung der Untersuchungswellenlänge erreicht werden kann. Besonders wichtig ist dies bei der mikroskopischen Inspektion von Masken für den Lithographieprozess.The microscopic examination of objects with X-rays, especially with extremely ultraviolet (EUV) radiation is used mainly in Semiconductor industry increasingly important. Require smaller structure sizes consequently ever higher resolutions, which only by one Shortening the examination wavelength can be achieved. Especially this is important for the microscopic inspection of masks for the Lithography process.

    Besonders wichtig wird die Römgenmikroskopie bei Verfanren, wie beispielsweise dem sogenannten AIMS (Aenai Imaging Measurement). Bei dem AIMS Verfahren wird der Lithographiestepper durch eine preisgünstigere und einfachere mikroskopische Anordnung simuliert. Wichtig dabei ist, dass die Abbildung mit der gleichen Wellenlänge von z. B. 13,5nm, den gleichen Beleuchtungsbedingungen und der gleichen Bildgüte wie bei einem EUV-Stepper erzeugt wird. Im Gegensatz zum Stepper ist aber das Bildfeld mit ca. 10µm statt mehrere mm wesentlich kleiner. Ein weiterer Unterschied ist, dass die Maske typischerweise 10 - 1000fach vergrößert auf eine Kamera abgebildet werden.X-ray microscopy is particularly important in the case of people such as for example the so-called AIMS (Aenai Imaging Measurement). at the AIMS process, the lithography stepper is replaced by a less expensive one and simulated simpler microscopic arrangement. It is important that the Figure with the same wavelength of e.g. B. 13.5nm, the same Lighting conditions and the same image quality as with an EUV stepper is produced. In contrast to the stepper, the image field is approx. 10µm much smaller instead of several mm. Another difference is that the mask typically magnified 10 - 1000 times on a camera become.

    Claims (9)

    Abbildungssystem für ein, auf extrem ultravioletter (EUV) Strahlung basierendem Mikroskop mit Wellenlängen im Bereich < 100nm, mit einer Vergrößerung von 0,1 - 1000x und einer Baulänge < 5m, bei dem mindestens eines der im Strahlengang vorhandenen abbildenden optischen Elemente eine diffraktiv-reflektive Struktur aufweist.Imaging system for one, on extremely ultraviolet (EUV) radiation based microscope with wavelengths in the range <100nm, with a Magnification of 0.1 - 1000x and a length <5m, at which at least one of the imaging in the beam path optical elements has a diffractive-reflective structure. Abbildungssystem nach Anspruch 1, bei dem die diffraktiv-reflektive Struktur auf einer sphärischen oder einer planen Grundfläche aufgebracht ist und eine nicht rotationssymmetrische, asymmetrische Form aufweist.The imaging system of claim 1, wherein the diffractive-reflective Structure on a spherical or flat base is applied and a non-rotationally symmetrical, asymmetrical Has shape. Abbildungssystem nach Anspruch 1 und 2, bei dem die sphärischen Grundflächen konkav oder konvex ausgeprägt ist.Imaging system according to claim 1 and 2, wherein the spherical Bases are concave or convex. Abbildungssystem nach mindestens einem der vorgenannten Ansprüche, bei dem zwei abbildenden optischen Elemente mit jeweils einer diffraktiv-reflektiven Struktur versehen sind, wobei das erste abbildende optische Element eine konkave und das zweite abbildende optische Element eine konvexe sphärische Grundfläche für die jeweilige diffraktiv-reflektive Struktur aufweisen.Imaging system according to at least one of the preceding claims, in the two imaging optical elements, each with a diffractive-reflective Structure are provided, the first imaging optical Element is a concave and the second imaging optical element convex spherical base for the respective diffractive-reflective Have structure. Abbildungssystem nach mindestens einem der vorgenannten Ansprüche, bei dem die optische Achse des Abbildungssystems zur Objektnormalen geneigt ist.Imaging system according to at least one of the preceding claims, where the optical axis of the imaging system is normal to the object is inclined. Abbildungssystem nach mindestens einem der vorgenannten Ansprüche, bei dem die abbildenden optischen Elemente so angeordnet sind, dass sich die optischen Wege mindestens einmal kreuzen. Imaging system according to at least one of the preceding claims, in which the imaging optical elements are arranged such that the optical paths intersect at least once. Abbildungssystem nach mindestens einem der vorgenannten Ansprüche, bei dem die abbildenden optischen Elemente so angeordnet sind, dass sich die optischen Wege nicht kreuzen.Imaging system according to at least one of the preceding claims, in which the imaging optical elements are arranged such that the optical paths do not cross. Abbildungssystem nach mindestens einem der vorgenannten Ansprüche, bei dem ein weiteres Abbildungssystem nachgeordnet wird, um eine Gesamtvergrößerung von 5 - 10000x zu realisieren.Imaging system according to at least one of the preceding claims, where another imaging system is subordinated to a Total magnification of 5 - 10000x to be realized. Inspektionssystem für Lithographiemasken basierend auf einem Abbildungssystem nach mindestens einem der vorgenannten Ansprüche, bei dem ein erstes abbildendes optisches Element mit sphärisch konkaver Grundfläche eine diffraktiv-reflektiv wirkende Struktur mit ca. 240 Linien/mm und ein zweites abbildendes optisches Element mit sphärisch konvexer Grundfläche eine diffraktiv-reflektiv wirkende Struktur mit ca. 660 Linien/mm aufweisen und sich die optischen Wege einmal kreuzen.Inspection system for lithography masks based on one Imaging system according to at least one of the preceding claims, in which a first imaging optical element with spherical concave base a diffractive-reflective structure with approx. 240 lines / mm and a second imaging optical element with spherically convex base has a diffractive-reflective structure with approx. 660 lines / mm and the optical paths once cross.
    EP03016371A 2003-04-25 2003-07-19 Imaging system for microscope based on extreme ultraviolet (EUV) radiation Expired - Lifetime EP1471539B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10319269A DE10319269A1 (en) 2003-04-25 2003-04-25 Imaging system for a microscope based on extremely ultraviolet (EUV) radiation
    DE10319269 2003-04-25

    Publications (2)

    Publication Number Publication Date
    EP1471539A1 true EP1471539A1 (en) 2004-10-27
    EP1471539B1 EP1471539B1 (en) 2006-08-23

    Family

    ID=32946454

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03016371A Expired - Lifetime EP1471539B1 (en) 2003-04-25 2003-07-19 Imaging system for microscope based on extreme ultraviolet (EUV) radiation

    Country Status (4)

    Country Link
    US (1) US6894837B2 (en)
    EP (1) EP1471539B1 (en)
    AT (1) ATE337605T1 (en)
    DE (2) DE10319269A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009118130A1 (en) * 2008-03-27 2009-10-01 Carl Zeiss Sms Gmbh Microscope and microscopy method for examining a reflecting object

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE50313254D1 (en) * 2002-05-10 2010-12-23 Zeiss Carl Smt Ag REFLECTIVE ROENTGENIC MICROSCOPE FOR EXAMINATION OF OBJECTS WITH WAVELENGTH = 100NM IN REFLECTION
    DE102010029050A1 (en) 2010-05-18 2011-03-31 Carl Zeiss Smt Gmbh Magnifying imaging lens for use in aerial image metrology system for e.g. simulation of effects of characteristics of lithography masks used for manufacturing semiconductor elements, has image plane representing lens field plane
    DE102011081914A1 (en) 2011-08-31 2012-09-06 Carl Zeiss Smt Gmbh Illumination optics for use in optical system of projection exposure system for illuminating e.g. lithography mask, for manufacturing memory chips, has facet mirror whose facets uncouple partial beam incident on energy sensor
    DE102013211269A1 (en) 2013-06-17 2014-04-30 Carl Zeiss Smt Gmbh Illumination optics for illuminating structured object such as lithographic mask or wafer, mounted in metrology system, has an energy sensor designed for monitoring the lighting total light dose which hits on the facet mirrors
    DE102019124919B4 (en) 2019-09-17 2021-08-26 Ri Research Instruments Gmbh Microscopic system for testing structures and defects on EUV lithography photomasks

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5719915A (en) * 1995-03-23 1998-02-17 Agency Of Industrial Science And Technology X-ray dispersing/focusing device and method of producing same
    US6118577A (en) * 1998-08-06 2000-09-12 Euv, L.L.C Diffractive element in extreme-UV lithography condenser
    US6522717B1 (en) * 1999-08-11 2003-02-18 Nikon Corporation Reflective-type soft x-ray microscope

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH02210299A (en) * 1989-02-10 1990-08-21 Olympus Optical Co Ltd Optical system for x ray and multi-layered film reflecting mirror used for the same
    JP2865257B2 (en) * 1989-03-07 1999-03-08 オリンパス光学工業株式会社 Schwarzschild optical system
    JP2945431B2 (en) * 1990-03-01 1999-09-06 オリンパス光学工業株式会社 Imaging X-ray microscope
    JP2921038B2 (en) 1990-06-01 1999-07-19 キヤノン株式会社 Observation device using X-ray
    DE4027285A1 (en) * 1990-08-29 1992-03-05 Zeiss Carl Fa X-RAY MICROSCOPE
    US5291339A (en) * 1990-11-30 1994-03-01 Olympus Optical Co., Ltd. Schwarzschild optical system
    JPH04353800A (en) * 1991-05-31 1992-12-08 Olympus Optical Co Ltd Soft x-ray microscope
    US5177774A (en) * 1991-08-23 1993-01-05 Trustees Of Princeton University Reflection soft X-ray microscope and method
    US5384817A (en) * 1993-07-12 1995-01-24 Ovonic Synthetic Materials Company X-ray optical element and method for its manufacture
    JP3167095B2 (en) * 1995-07-04 2001-05-14 キヤノン株式会社 Illumination apparatus, exposure apparatus and microscope apparatus having the same, and device production method
    US6469827B1 (en) * 1998-08-06 2002-10-22 Euv Llc Diffraction spectral filter for use in extreme-UV lithography condenser
    DE10130212A1 (en) 2001-06-22 2003-01-02 Zeiss Carl Jena Gmbh lens
    DE10220816A1 (en) 2002-05-10 2003-11-20 Zeiss Carl Microelectronic Sys Reflective X-ray microscope for examining an object in an object plane illuminates the object with beam wavelengths less than 30 nm while scanning it into an image plane as an enlarged object
    DE10220815A1 (en) 2002-05-10 2003-11-20 Zeiss Carl Microelectronic Sys Reflective X-ray microscope e.g. for microlithography, includes additional subsystem arranged after first subsystem along beam path and containing third mirror
    US6801298B2 (en) * 2002-07-25 2004-10-05 Intel Corporation Light condenser

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5719915A (en) * 1995-03-23 1998-02-17 Agency Of Industrial Science And Technology X-ray dispersing/focusing device and method of producing same
    US6118577A (en) * 1998-08-06 2000-09-12 Euv, L.L.C Diffractive element in extreme-UV lithography condenser
    US6522717B1 (en) * 1999-08-11 2003-02-18 Nikon Corporation Reflective-type soft x-ray microscope

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    SNIGIREV A ET AL: "High energy X-ray phase contrast microscopy using a circular Bragg-Fresnel lens", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 135, no. 4, 15 February 1997 (1997-02-15), pages 378 - 384, XP004016534, ISSN: 0030-4018 *

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009118130A1 (en) * 2008-03-27 2009-10-01 Carl Zeiss Sms Gmbh Microscope and microscopy method for examining a reflecting object

    Also Published As

    Publication number Publication date
    DE50304739D1 (en) 2006-10-05
    US6894837B2 (en) 2005-05-17
    US20040212891A1 (en) 2004-10-28
    EP1471539B1 (en) 2006-08-23
    DE10319269A1 (en) 2004-11-25
    ATE337605T1 (en) 2006-09-15

    Similar Documents

    Publication Publication Date Title
    DE69030231T2 (en) Semiconductor lithography device
    EP1480082B1 (en) Ringfield four mirror system with convex primary mirror for EUV lithography
    DE102008046699B4 (en) Imaging optics
    EP1035445B1 (en) Microlithographic reduction objective and projection exposure apparatus
    EP1282011B1 (en) Reflective projection lens for EUV photolithography
    EP1446813B1 (en) Reflective x-ray microscope for examining objects with wavelengths of = 100nm in reflection
    WO2016012425A9 (en) Imaging optical system for a metrology system for analyzing a lithography mask
    EP1950594A1 (en) Imaging optical system, projection illumination unit for microlithography with such an optical system, method for manufacturing a microstructured component with such a projection illumination unit, microstructured component produced by the manufacturing method and use of such an optical system
    DE10052289A1 (en) 8 mirror microlithography projection lens
    DE10139177A1 (en) Objective with pupil obscuration
    DE102009035583A1 (en) Magnifying imaging optics and metrology system with such an imaging optics
    WO2002033467A1 (en) 8-mirrored microlithographic projector lens
    EP1845417B1 (en) Illumination system with zoom lens
    WO2006125790A2 (en) Imaging systems in particular for a microlithographic projection illumination unit
    EP1102100A2 (en) Catadioptric objective with beamsplitter
    DE102013224435A1 (en) Measuring arrangement for measuring optical properties of a reflective optical element, in particular for microlithography
    DE102011076658A1 (en) Illumination lens for use in projection illumination system for extreme UV-projection lithography for manufacturing e.g. semiconductor chip, has first selection facet comprising larger surface than surfaces of second and third facets
    DE102009035582A1 (en) Magnifying imaging optics and metrology system with such an imaging optics
    EP1471539B1 (en) Imaging system for microscope based on extreme ultraviolet (EUV) radiation
    EP1037115B1 (en) Microlithographic projection objective and projection exposure apparatus
    DE102023200548A1 (en) Chromatically corrected imaging illumination optics for use in a projection exposure system for lithography
    DE102022206110A1 (en) Imaging EUV optics for imaging an object field into an image field
    DE102022206112A1 (en) Imaging EUV optics for imaging an object field into an image field
    DE102011084255A1 (en) Imaging lens for use in metrology system that is utilized during manufacturing of semiconductor components, has mirrors for reproducing object field, where ratio between dimensions of imaging field and user surface is larger than three
    WO2009118130A1 (en) Microscope and microscopy method for examining a reflecting object

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030719

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20050704

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: DOBSCHAL, HANS-JUERGEN

    Inventor name: BRUNNER, ROBERT

    Inventor name: GREIF-WUESTENBECKER, JOERN

    Inventor name: ROSENKRANZ, NORBERT

    Inventor name: SCHERUEBL, THOMAS

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20060823

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50304739

    Country of ref document: DE

    Date of ref document: 20061005

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061123

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061123

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061123

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061204

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20061207

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070125

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070524

    BERE Be: lapsed

    Owner name: CARL ZEISS MICROELECTRONIC SYSTEMS G.M.B.H.

    Effective date: 20070731

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070731

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061124

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070731

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070731

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080731

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070719

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080723

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070719

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070224

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060823

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090719

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080428

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090719

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100202