EP1467818A1 - Buse de pulverisation a diametre reduit - Google Patents

Buse de pulverisation a diametre reduit

Info

Publication number
EP1467818A1
EP1467818A1 EP20030700410 EP03700410A EP1467818A1 EP 1467818 A1 EP1467818 A1 EP 1467818A1 EP 20030700410 EP20030700410 EP 20030700410 EP 03700410 A EP03700410 A EP 03700410A EP 1467818 A1 EP1467818 A1 EP 1467818A1
Authority
EP
European Patent Office
Prior art keywords
spray nozzle
nozzle according
channel
swirl chamber
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20030700410
Other languages
German (de)
English (en)
Inventor
Jean-René BICKART
Pascal Meyer
Jean-Pierre Songbe
Hervé IMENEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meadwestvaco Calmar SL
Verbena Corp NV
Original Assignee
Saint Gobain Calmar SA
Verbena Corp NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Calmar SA, Verbena Corp NV filed Critical Saint Gobain Calmar SA
Publication of EP1467818A1 publication Critical patent/EP1467818A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3436Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a plane perpendicular to the outlet axis

Definitions

  • the present invention relates to liquid spray nozzles, in which a liquid to be sprayed is brought into a central swirl chamber by peripheral transfer channels tangentially injecting the liquid which swirls into the central vortex chamber and then leaves the central vortex chamber via a coaxial outlet passage to the atmosphere.
  • Such spray nozzles may be used in sprayers, in combination with spray pumps with manual actuation or with a push gas, in particular for spraying cosmetic products.
  • spray nozzles comprising a swirl chamber having a general shape of revolution around a longitudinal axis, limited by a peripheral wall, by a rear wall, and by a front wall pierced with a coaxial outlet hole.
  • a coaxial circular channel surrounds the swirl chamber, and communicates with said swirl chamber through a plurality of first oblique peripheral transfer channels which inject the rotating liquid in a direction of rotation into the swirl chamber.
  • a plurality of second transfer channels conduct the liquid from a liquid inlet and inject it into the coaxial circular channel in rotation in said direction of rotation.
  • the first transfer channels are each limited by an outer face with a straight profile which tangentially connects to the peripheral wall of the swirl chamber, and which angularly connects to the inner wall of the coaxial circular channel.
  • Said first transfer channels are each limited by an inner face with a straight profile which is angularly connected to the peripheral wall of the swirl chamber, and which is angularly connected to the internal wall of the coaxial circular channel.
  • the cross section of the first transfer channels is gradually reduced from the coaxial circular channel to the swirl chamber.
  • Such two-stage spray nozzles work relatively well for spraying liquids of low viscosity such as water, producing droplets of satisfactory sizes, of the order of 90 microns, distributed in a spray cone at the outlet of nozzle.
  • the problem proposed by the present invention is both to reduce the size of the droplets sprayed at the outlet of a nozzle supplied with liquid, to ensure a homogeneous distribution. droplets in the spray cone in the case of relatively low and variable fluid pressures produced by manual pumps of cosmetic spray devices, and to achieve these effects with a spray nozzle of reduced diameter.
  • a spray nozzle according to the invention for spraying liquids, comprises:
  • a swirl chamber having a general shape of revolution around a longitudinal axis, limited by a peripheral wall, by a rear wall, and by a front wall pierced with a coaxial outlet hole,
  • the transfer channels are each limited by an outer face of generally rectilinear profile and tangentially connecting to the peripheral wall of the swirl chamber, the transfer channels are each limited by an inner face having a concave profile over most of its length,
  • the exit coaxial hole has a conical shape converging towards the exit.
  • the total diameter of the nozzle is significantly smaller than that of two-stage nozzles.
  • the droplet sizes sprayed at the outlet of the nozzle are much more weak than those obtained by the nozzles of the prior art mentioned above. It is estimated that about 30% is saved on the size of the droplets sprayed at the outlet, with an equal pressure generation system.
  • the average distribution of droplets is homogeneous in the spray cone at the nozzle outlet.
  • An advantageous effect of the invention is also a relative independence of the quality of spraying produced with respect to the pressures and flow rates supplied by the pusher device which introduces the liquid at the inlet of the nozzle.
  • Another effect of this particular nozzle structure according to the invention is an acceptance of higher tolerances of concentricity of the outlet hole with respect to the swirl chamber when spraying relatively viscous liquids: the spraying is excellent when the hole of outlet is centered, but remains acceptable when the outlet hole is slightly off center. Good results can be obtained up to an offset offset of approximately 10% of the diameter of the outlet hole, for liquids whose viscosity is between 800 and 1000 mPa.s.
  • each transfer channel is supplied by a peripheral longitudinal supply channel from the inlet of the nozzle.
  • the inner face with a concave profile of the transfer channel is generally circular according to a radius of between one and a half and two times the radial distance DR between the corresponding peripheral longitudinal supply channel and the swirl chamber. .
  • the external wall of the peripheral longitudinal feed channel is connected to the front front wall of the corresponding transfer channel by a regular rounded area.
  • the inner face with a concave profile of the transfer channel is connected to the corresponding peripheral longitudinal feed channel by a convex rounded zone. This feature also reduces the presence of dead spots, and improves spraying.
  • the inner face with a concave profile of the transfer channel is connected to the peripheral wall of the swirl chamber by a convex rounded connection zone.
  • the cone angle of the outlet coaxial hole is between 15 ° and 30 °, advantageously about 20 °.
  • a better regularity of distribution of droplets at the outlet of the nozzle is also obtained by using transfer channels five in number, distributed regularly around the longitudinal axis of the nozzle. This effect apparently results from the fact that the greater number of channels reduces the duration of the transient spraying establishment regime and makes it possible to reach the steady state more quickly. Compared to a three-channel nozzle, the initial transient regime is reduced, and in particular the spraying angle at the nozzle outlet more quickly reaches the steady-state angle.
  • the invention provides a liquid sprayer, which comprises a spray nozzle as defined above.
  • a sprayer has advantages for spraying all types of liquids, and it also has advantages in particular when it contains a liquid to be sprayed whose viscosity is between 800 and 1000 mPa.s approximately, and whose density is between 1,000 and 1,100 kg / m 3 approximately. Excellent results are obtained when the sprayer contains a thixotropic liquid.
  • FIG. 1 is an overall side view in longitudinal section of a spray nozzle according to a particular embodiment of the invention, comprising a central core engaged in a female nozzle body;
  • FIG. 2 is a view of the rear face of the female nozzle body structure of Figure 1;
  • FIG. 3 is a diametrical longitudinal section of the female nozzle body structure along the plane C-C of Figure 2;
  • FIG. 4 is a rear three-quarter perspective view of the female nozzle body structure
  • Figure 5 is a partial rear view of Figure 2, showing on a larger scale the curvature of the faces of the channels;
  • FIG. 6 is a general schematic view of a sprayer according to the invention.
  • a spray nozzle according to ' 1' invention comprises a nozzle body 1 comprising a cylindrical housing 2 open towards the rear and closed towards the front by a front wall 3.
  • a core 4 (figure 1) generally cylindrical with a full front face 5 is engaged coaxially ent in the cylindrical housing 2 of the nozzle body 1, coming to bear on the rear face 6 of the front wall 3.
  • the front face 5 can advantageously be bordered by a leave 5a .
  • a swirl chamber 7 is thus distinguished, having a general shape of revolution around the longitudinal axis II, limited by a peripheral wall 8, by a rear wall formed by the core 4, and by a front wall 9 pierced with a coaxial outlet hole 10.
  • the spray nozzle comprises five oblique transfer channels such as channels 11, 12, 13, 14 and 15.
  • the transfer channels 11-15 tangentially inject the liquid into the swirl chamber 7 by rotating it around the axis II, for example in the direction of rotation of the needles of a watch in FIG. 2.
  • Five peripheral longitudinal supply channels such as channels 16, 17, 18, 19 and 20 conduct the liquid from a liquid inlet 40 and inject it into a respective transfer channel 11-15.
  • the transfer channels 11-15 are distributed equitably around the swirl chamber 7 and have the same shape, so that the spray nozzle has symmetry about the longitudinal axis I-I. We will therefore describe the shape of only one of the transfer channels. This shape is as shown to scale in Figures 2, 4 and 5, which may be referred to for more details.
  • the transfer channel 11 is limited by an external face 21 and by an internal face 22: the external face 21 is the face furthest from the longitudinal axis II, while the internal face 22 is the side closest to the longitudinal axis II.
  • the outer face 21 has a generally rectilinear profile and is connected tangentially along the connection zone 23 to the peripheral wall 8 of the swirl chamber 7.
  • the inner face 22 of the transfer channel 11 has a concave profile L1 over most of its length.
  • the inner face 22 with concave profile L1 may be generally circular according to a radius advantageously between one and a half and two times the radial distance DR between the corresponding peripheral longitudinal feed channel 16 and the swirl chamber 7.
  • the inner face 22 with a concave profile L1 of the transfer channel 11 can be connected to the peripheral longitudinal supply channel 16 by a convex rounded zone 24.
  • the external face 21 with a generally rectilinear profile of the transfer channel 11 can be connected to the peripheral longitudinal supply channel 16 by a convex rounded zone 25.
  • the inner face 22 with concave profile L1 of the transfer channel 11 can be connected to the peripheral wall 8 of the swirl chamber 7 by a rounded convex connection zone 26 with a small radius.
  • the radius of curvature of the convex connection zone 26 can be between approximately 50 microns and 80 microns.
  • the coaxial outlet hole 10 can advantageously be centered on the longitudinal axis I-I with a tolerance of less than
  • the exit coaxial hole 10 can be aligned on the longitudinal axis I-I with a deviation tolerance of less than approximately 4 °.
  • the coaxial outlet hole 10 according to the invention is conical, converging downstream or towards the outlet of the nozzle.
  • the cone angle A of the outlet coaxial hole 10 is between approximately 15 ° and 30 °, advantageously approximately 20 °.
  • the coaxial outlet hole 10 is conical over most of its length from the inlet port.
  • the coaxial outlet hole 10 can be connected to the external face of the anterior wall 3 by a leave or an O-ring surface, without affecting spray performance.
  • the cross section of the first transfer channels 11-15 can advantageously be reduced progressively from the peripheral longitudinal supply channel towards the swirl chamber 7.
  • the interior and exterior faces can make an angle B of approximately 15 °.
  • Their anterior (in the anterior wall 3) and posterior (anterior face 5 of the core 4) faces may advantageously be parallel, to facilitate manufacture thereof.
  • the external wall of the peripheral longitudinal supply channel 16 is connected to the front front wall of the corresponding transfer channel 11 by a regular rounded zone 16a.
  • the flow of the fluid is improved by reducing its disturbances in the zone upstream from the transfer channels and from the swirl chamber.
  • the acceleration of the fluid takes place gradually from the inlet 40 of the nozzle to the outlet from the coaxial outlet hole 10. This promotes the spraying of all types of liquids, in particular thixotropic liquids.
  • the channel shapes are entirely produced in the nozzle body, the core 4 being simply cylindrical, possibly with a leave 5a. This facilitates the manufacture of the nozzle, making it possible to mass produce small diameter nozzles for cosmetic applications.
  • the shape of the nozzle according to the invention produces a dynamic spraying effect: depending on the pressure, the fractionation of the droplets remains satisfactory, but their distribution is modified in the spray cone.
  • the pressure is low, the droplets tend to concentrate in the center of the spray cone, while at higher pressures the droplets tend to distribute themselves around the periphery of the cone.
  • the pressure begins with low values, then gradually increases, then decreases to low values. The result that the droplets are first concentrated towards the center of the spray cone, then concentrated around the periphery and finally concentrated again at the center, so that the average distribution of the droplets is substantially constant in the spray cone at the end of the spray sequence.
  • the nozzle structure thus defined promotes the acceleration of the fluid inside the channels and in the swirl chamber, thus producing at the outlet of the nozzle a spraying with particularly fine droplets, the size of which is at least 30% smaller. compared to the droplets obtained by known spray nozzles.
  • the general dimensions of the spray nozzle according to the invention can be chosen as a function of the desired flow rate of liquid.
  • a liquid sprayer 27 comprises a container 28, a pump 29 and a spray nozzle 30 as defined above.
  • the pump 29 is actuated which sucks the liquid 32 from the container 28 by a dip tube 33 and injects it under pressure into the spray nozzle 30 which produces, at the outlet, a spray cone 34.
  • the particular structure of the spray nozzle 30 according to the invention allows the correct operation of such a sprayer 27 containing a liquid 32 to be sprayed, the viscosity of which may be greater than that of water, which may be between 800 and 1000 mPa .s approximately, and whose density is between 1000 and 1100 kg / m 3 approximately.

Landscapes

  • Nozzles (AREA)

Abstract

Dans une buse de pulvérisation de liquides selon l'invention, la chambre de tourbillonnement (7) communique avec l'extérieur par un trou coaxial de sortie (10) conique convergent et communique avec l'entrée par une pluralité de canaux de transfert (11, 15) obliques. Chaque premier canal de transfert (11) est limité par une face extérieure (21) à profil généralement rectiligne se raccordant tangentiellement à la paroi périphérique (8) de la chambre de tourbillonnement (7), tandis que la face intérieure (22) présente un profil concave sur la plus grande partie de sa longueur. On améliore ainsi la répartition et la finesse des gouttelettes pulvérisées en sortie de la buse, notamment lorsque le liquide présente une viscosité plus grande que celle de l'eau.

Description

BUSE DE PULVERISATION A DIAMETRE REDUIT DOMAINE TECHNIQUE DE L'INVENTION La présente invention concerne les buses de pulvérisation de liquides, dans lesquelles un liquide à pulvériser est amené dans une chambre centrale de tourbillonnement par des canaux de transfert périphériques injectant tangentiellement le liquide qui tourbillonne dans la chambre centrale de tourbillonnement et sort ensuite de la chambre centrale de tourbillonnement par un passage coaxial de sortie vers l'atmosphère. De telles buses de pulvérisation sont susceptibles d'être utilisées dans des pulvérisateurs, en association avec dès pompes de pulvérisation à actionnement manuel ou avec un gaz pousseur, notamment pour la pulvérisation de produits cosmétiques.
On connaît déjà de telles buses de pulvérisation, décrites notamment dans le document EP 0 000 688 A, comprenant une chambre de tourbillonnement ayant une forme générale de révolution autour d'un axe longitudinal, limitée par une paroi périphérique, par une paroi postérieure, et par une paroi frontale percée d'un trou coaxial de sortie. Un canal circulaire coaxial entoure la chambre de tourbillonnement, et communique avec ladite chambre de tourbillonnement par une pluralité de premiers canaux de transfert périphériques obliques qui injectent le liquide en rotation dans un sens de rotation dans la chambre de tourbillonnement. Une pluralité de seconds canaux de transfert conduisent le liquide depuis une entrée de liquide et l'injectent dans le canal circulaire coaxial en rotation selon ledit sens de rotation. Les premiers canaux de transfert sont limités chacun par une face extérieure à profil rectiligne qui se raccorde tangentiellement à la paroi périphérique de la chambre de tourbillonnement, et qui se raccorde angulairement à la paroi intérieure du canal circulaire coaxial. Lesdits premiers canaux de transfert sont limités chacun par une face intérieure à profil rectiligne qui se raccorde angulairement à la paroi périphérique de la chambre de tourbillonnement, et qui se raccorde angulairement à la paroi intérieure du canal circulaire coaxial . La section transversale des premiers canaux de transfert se réduit progressivement depuis le canal circulaire coaxial vers la chambre de tourbillonnement. De telles buses de pulvérisation à deux étages fonctionnent relativement bien pour la pulvérisation de liquides à faible viscosité tels que l'eau, en produisant des gouttelettes de tailles satisfaisantes, de l'ordre de 90 microns, réparties selon un cône de pulvérisation en sortie de buse.
Cependant, de telles buses de pulvérisation produisent une pulvérisation très insuffisante, c'est-à-dire des tailles de gouttelettes beaucoup trop grosses, lorsque le liquide à pulvériser présente une viscosité plus grande que celle de l'eau. Ce défaut empêche l'utilisation satisfaisante de telles buses de pulvérisation pour la pulvérisation de produits cosmétiques ayant des viscosités moyennes, par exemple des viscosités supérieures à 0,8 Pa.s.
La présence du canal circulaire coaxial et des seconds canaux de transfert augmente le diamètre de la buse, et réduit ses possibilités d'intégration dans les têtes de pulvérisation miniaturisées des dispositifs de pulvérisation de cosmétiques. Mais d'autre part leur présence paraît nécessaire pour réaliser une pulvérisation correcte des liquides à faible viscosité. Une autre difficulté résulte de la pression de fluide relativement faible produite par les pompes manuelles des dispositifs de pulvérisation de cosmétiques, qui réduit encore les capacités de pulvérisation et tend à augmenter la taille des gouttelettes produites. On constate également une répartition . irrégulière des gouttelettes de liquide pulvérisé dans le cône de pulvérisation, avec une plus grande concentration de gouttelettes dans la zone centrale du cône .
En outre, dans une fabrication en série, on constate que les qualités de pulvérisation varient considérablement en fonction des buses considérées. Cela résulte d'une trop grande sensibilité aux variations de dimensions des buses à l'intérieur des tolérances de fabrication.
EXPOSE DE L'INVENTION Le problème proposé par la présente invention est à la fois de réduire la taille des gouttelettes pulvérisées en sortie d'une buse alimentée en liquide, d'assurer une répartition homogène des gouttelettes dans le cône de pulvérisation dans le cas de pressions de fluide relativement faibles et variables produites par les pompes manuelles des dispositifs de pulvérisation de cosmétiques, et d'obtenir ces effets avec une buse de pulvérisation de diamètre réduit.
L'invention résulte de l'observation selon laquelle une réduction des tailles de gouttelettes pulvérisées en sortie de la buse peut être obtenue en favorisant 1 ' accélération du fluide vers la paroi périphérique de la chambre de tourbillonnement, et en évitant autant que possible les zones mortes à faible vitesse du liquide dans les canaux ou chambres de la buse de pulvérisation. Simultanément, on évite une trop grande dispersion du cône de pulvérisation en donnant au trou axial de sortie une forme conique appropriée, convergente vers la sortie. Pour atteindre ces objets ainsi que d'autres, une buse de pulvérisation selon l'invention, pour la pulvérisation de liquides, comprend :
- une chambre de tourbillonnement ayant une forme générale de révolution autour d'un axe longitudinal, limitée par une paroi périphérique, par une paroi postérieure, et par une paroi frontale percée d'un trou coaxial de sortie,
- une pluralité de canaux de transfert obliques injectant le liquide en rotation dans un sens de rotation dans la chambre de tourbillonnement, - les canaux de transfert sont limités chacun par une face extérieure à profil généralement rectiligne et se raccordant tangentiellement à la paroi périphérique de la chambre de tourbillonnement, les canaux de transfert sont limités chacun par une face intérieure ayant un profil concave sur la plus grande partie de sa longueur,
- le trou coaxial de sortie a une forme conique convergente vers la sortie.
Avec une telle structure de buse de pulvérisation, le diamètre total de la buse est nettement plus réduit que celui des buses à deux étages. On constate en outre que les tailles de gouttelettes pulvérisées en sortie de la buse sont nettement plus faibles que celles obtenues par les buses de l'art antérieur mentionné ci-dessus. On estime que l'on gagne environ 30 % sur la taille des gouttelettes pulvérisées en sortie, à système égal de génération de pression. A titre d'exemple, pour des liquides à viscosité moyenne, comprise entre 800 et 1 000 mPa.s, on a pu obtenir un diamètre moyen de gouttelettes compris entre 95 microns environ et 65 microns environ. En outre, la répartition moyenne des gouttelettes est homogène dans le cône de pulvérisation en sortie de buse . Un effet avantageux de l'invention est aussi une relative indépendance de la qualité de pulvérisation réalisée par rapport aux pressions et débits fournis par le dispositif pousseur qui introduit le liquide à l'entrée de la buse.
Un autre effet de cette structure particulière de buse selon 1 ' invention est une acceptation de tolérances plus élevées de concentricité du trou de sortie par rapport à la chambre de tourbillonnement lorsqu'on pulvérise des liquides relativement visqueux : la pulvérisation est excellente lorsque le trou de sortie est centré, mais elle reste acceptable lorsque le trou de sortie est légèrement décentré. De bons résultats peuvent être obtenus jusqu'à un écart de décentrage d'environ 10 % du diamètre du trou de sortie, pour des liquides dont la viscosité est comprise entre 800 et 1 000 mPa.s.
A l'inverse, dans les buses de pulvérisation connues, un décentrage du trou de sortie entraîne une dégradation sensible de la pulvérisation.
De préférence, selon l'invention, chaque canal de transfert est alimenté par un canal d'alimentation longitudinal périphérique depuis 1 ' entrée de la buse . Selon un mode de réalisation préféré, la face intérieure à profil concave de canal de transfert est généralement circulaire selon un rayon compris entre une fois et demie et deux fois la distance radiale DR entre le canal d'alimentation longitudinal périphérique correspondant et la chambre de tourbillonnement. On réduit ainsi la présence de zones mortes, c'est-à-dire de zones dans lesquelles le liquide prend une faible vitesse dans la buse de pulvérisation, et la pulvérisation s'en trouve améliorée. Pour une meilleure pulvérisation des liquides thixotropiques, on préférera éviter les pertes de charges et zones mortes à l'intérieur de la buse. Ainsi, on pourra avantageusement prévoir que la paroi externe du canal d'alimentation longitudinal périphérique se raccorde à la paroi frontale antérieure du canal de transfert correspondant par une zone arrondie régulière.
Selon une réalisation avantageuse, la face intérieure à profil concave de canal de transfert se raccorde au canal d'alimentation longitudinal périphérique correspondant par une zone arrondie convexe. Cette caractéristique réduit également la présence de zones mortes, et améliore la pulvérisation.
Pour les mêmes raisons, on peut également préférer une face extérieure à profil généralement rectiligne de canal de transfert qui se raccorde au canal d'alimentation longitudinal périphérique correspondant par une zone arrondie convexe .
On peut trouver avantage, pour améliorer la pulvérisation, à prévoir que la face intérieure à profil concave de canal de transfert se raccorde à la paroi périphérique de chambre de tourbillonnement par une zone de raccordement arrondie convexe . Pour une répartition moyenne régulière des gouttelettes en sortie de buse, l'angle de cône du trou coaxial de sortie est compris entre 15° et 30°, avantageusement de 20° environ.
Une meilleure régularité de répartition de gouttelettes en sortie de buse est aussi obtenue en utilisant des canaux de transfert au nombre de cinq, répartis régulièrement autour.de l'axe longitudinal de la buse. Cet effet résulte apparemment du fait que le plus grand nombre de canaux réduit la durée du régime transitoire d'établissement de pulvérisation et permet d'atteindre plus vite le régime permanent. Par rapport à une buse à trois canaux, le régime transitoire initial est réduit, et en particulier l'angle de pulvérisation en sortie de buse atteint plus vite l'angle de régime permanent. Par exemple, des- mesures ont été effectuées sur une buse connue à trois canaux et sur une buse selon l'invention à l'instant 0,0001 seconde après le début de fonctionnement : avec la buse de l'art antérieur, l'angle est de 9°, soit 25 % de l'angle en régime permanent ; avec la buse selon l'invention, l'angle est de 24°, soit 50 % de l'angle en régime permanent .
L'invention prévoit un pulvérisateur de liquides, qui comprend une buse de pulvérisation telle que définie ci-dessus. Un tel pulvérisateur présente des avantages pour la pulvérisation de tous types de liquides, et il présente aussi des avantages en particulier lorsqu'il contient un liquide à pulvériser dont la viscosité est comprise entre 800 et 1 000 mPa.s environ, et dont la densité est comprise entre 1 000 et 1 100- kg/m3 environ. D'excellents résultats sont obtenus lorsque le pulvérisateur contient un liquide thixotropique .
DESCRIPTION SOMMAIRE DES DESSINS D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:
- la figure 1 est une vue de côté globale en coupe longitudinale d'une buse de pulvérisation selon un mode de réalisation particulier de l'invention, comprenant un noyau central engagé dans un corps de buse femelle ;
- la figure 2 est une vue de la face postérieure de la structure de corps de buse femelle de la figure 1 ;
- la figure 3 est une coupe longitudinale diamétrale de la structure de corps de buse femelle selon le plan C-C de la figure 2 ;
- la figure 4 est une vue en perspective de trois quarts arrière de la structure de corps de buse femelle ;
- la figure 5 est une vue arrière partielle de la figure 2, montrant à plus grande échelle la courbure des faces des canaux ; et
- la figure 6 est une vue schématique générale d'un pulvérisateur selon l'invention.
DESCRIPTION DES MODES DE REALISATION PREFERES
Dans le mode de réalisation illustré sur les figures, une buse de pulvérisation selon' 1 'invention comprend un corps de buse 1 comportant un logement cylindrique 2 ouvert vers 1 ' arrière et obturé vers 1 ' avant par une paroi antérieure 3. Un noyau 4 ( figure 1) généralement cylindrique à face antérieure 5 pleine est engagé coaxiale ent dans le logement cylindrique 2 du corps de buse 1, venant en appui sur la face postérieure 6 de la paroi antérieure 3. La face antérieure 5 peut avantageusement être bordée par un congé 5a.
Des logements et rainures sont prévus sur la face postérieure 6 de la paroi antérieure 3, pour former les chambres et canaux de la buse de pulvérisation selon l'invention. On distingue ainsi une chambre de tourbillonnement 7, ayant une forme générale de révolution autour de l'axe longitudinal I-I, limitée par une paroi périphérique 8, par une paroi postérieure formée par le noyau 4, et par une paroi frontale 9 percée d'un trou coaxial de sortie 10.
La buse de pulvérisation comprend cinq canaux de transfert obliques tels que les canaux 11, 12, 13, 14 et 15. Les canaux de transfert 11-15 injectent tangentiellement le liquide dans la chambre de tourbillonnement 7 en lui imprimant une rotation autour de l'axe I-I, par exemple dans le sens de rotation des aiguilles d' une montre sur la figure 2. Cinq canaux d'alimentation longitudinaux périphériques tels que les canaux 16, 17, 18, 19 et 20 conduisent le liquide depuis une entrée de liquide 40 et l'injectent dans un canal de transfert respectif 11-15.
Les canaux de transfert 11-15 sont répartis équitablement autour de la chambre de tourbillonnement 7 et présentent la même forme, afin que la buse de pulvérisation présente une symétrie autour de l'axe longitudinal I-I. On décrira donc la forme d'un seul des canaux de transfert. Cette forme est telle que représentée à l'échelle sur les figures 2, 4 et 5, auxquelles on pourra se référer pour plus de détails.
Ainsi, sur la figure 5, le canal de transfert 11 est limité par une face extérieure 21 et par une face intérieure 22 : la face extérieure 21 est la face la plus éloignée de l'axe longitudinal I-I, tandis que la face intérieure 22 est la face la plus proche de l'axe longitudinal I-I. La face extérieure 21 présente un profil généralement rectiligne et se raccorde tangentiellement selon la zone de raccordement 23 à la paroi périphérique 8 de la chambre de tourbillonnement 7.
La face intérieure 22 du canal de transfert 11 présente un profil concave Ll sur la plus grande partie de sa longueur. La face intérieure 22 à profil concave Ll peut être généralement circulaire selon un rayon avantageusement compris entre une fois et demie et deux fois la distance radiale DR entre le canal d'alimentation longitudinal périphérique correspondant 16 et la chambre de tourbillonnement 7. La face intérieure 22 à profil concave Ll du canal de transfert 11 peut se raccorder au ' canal d'alimentation longitudinal périphérique 16 par une zone arrondie convexe 24.
La face extérieure 21 à profil généralement rectiligne du canal de transfert 11 peut se raccorder au canal d'alimentation longitudinal périphérique 16 par une zone arrondie convexe 25.
Enfin, la face intérieure 22 à profil concave Ll du canal de transfert 11 peut se raccorder à la paroi périphérique 8 de chambre de tourbillonnement 7 par une zone de raccordement 26 arrondie convexe à faible rayon. Le rayon de courbure de la zone de raccordement 26 convexe peut être compris entre 50 microns et 80 microns environ.
Le trou coaxial de sortie 10 peut avantageusement être centré sur 1 ' axe longitudinal I-I selon une tolérance inférieure à
10 % du diamètre du trou coaxial de sortie 10, par exemple inférieure à 40 microns environ pour un diamètre en sortie de 400 microns, de préférence inférieure à 30 microns.
De même, le trou coaxial de sortie 10 peut être aligné sur l'axe longitudinal I-I avec une tolérance de déviation inférieure à 4 ° environ. Le trou coaxial de sortie 10 selon l'invention est conique, convergent vers l'aval ou vers la sortie de la buse. L'angle de cône A du trou coaxial de sortie 10 est compris entre 15° et 30° environ, avantageusement de 20° environ.
Ce qui est important est que le trou coaxial de sortie 10 soit conique sur la majeure partie de sa longueur depuis l'orifice d'entrée. Autrement dit, le trou coaxial de sortie 10 peut se raccorder à la face externe de la paroi antérieure 3 par un congé ou une surface torique, sans que cela nuise aux performances de pulvérisation .
La section transversale des premiers canaux de transfert 11-15 peut avantageusement se réduire progressivement depuis le canal d'alimentation longitudinal périphérique vers la chambre de tourbillonnement 7. Par exemple, les faces intérieure et extérieure peuvent faire un angle B d'environ 15°. Leurs faces antérieure (dans la paroi antérieure 3) et postérieure (face antérieure 5 du noyau 4) peuvent avantageusement être parallèles, pour en faciliter la fabrication.
En considérant la figure 1, on voit que la paroi externe du canal d'alimentation longitudinal périphérique 16 se raccorde à la paroi frontale antérieure du canal de transfert correspondant 11 par une zone arrondie régulière 16a. De la sorte, on améliore le cheminement du fluide en diminuant ses perturbations dans la zone en amont des canaux de transfert et de la chambre de tourbillonnement .
L'accélération du fluide se fait progressivement depuis l'entrée 40 de la buse jusqu'à la sortie hors du trou coaxial de sortie 10. Cela favorise la pulvérisation de tous types de liquides, en particulier des liquides thixotropiques .
Les formes de canaux sont entièrement réalisés dans le corps de buse, le noyau 4 étant simplement cylindrique, avec éventuellement un congé 5a. On facilite ainsi la fabrication de la buse, permettant de réaliser en grande série des buses de petit diamètre pour les applications cosmétiques.
De façon particulièrement avantageuse, la forme de buse selon l'invention produit un effet dynamique de pulvérisation : en fonction de la pression, le fractionnement des gouttelettes reste satisfaisant, mais leur répartition est modifiée dans le cône de pulvérisation. Lorsque la pression est faible, les gouttelettes tendent à se concentrer au centre du cône de pulvérisation, tandis qu'aux pressions plus élevées les gouttelettes tendent à se répartir en périphérie du cône. Au cours d'une séquence de pulvérisation, sous l'action d'une force manuelle, la pression commence par des valeurs faibles, puis augmente progressivement pour diminuer ensuite jusqu'à des valeurs faibles. Il en résulte que les gouttelettes sont tout d'abord concentrées vers le centre du cône de pulvérisation, puis concentrées en périphérie et enfin concentrées à nouveau au centre, de sorte que la répartition moyenne des gouttelettes est sensiblement constante dans le cône de pulvérisation à la fin de la séquence de pulvérisation.
La structure de buse ainsi définie favorise l'accélération du fluide à 1 ' intérieur des canaux et dans la chambre de tourbillonnement, produisant ainsi en sortie de la buse une pulvérisation à gouttelettes particulièrement fines, dont la taille est inférieure d'au moins 30 % par rapport aux gouttelettes obtenues par les buses de pulvérisation connues.
Les dimensions générales de la buse de pulvérisation selon l'invention peuvent être choisies en fonction du débit désiré de liquide. On peut notamment réaliser des buses de pulvérisation de petite taille pour les applications cosmétiques, ayant par exemple les principales dimensions suivantes :
- diamètre de chambre de tourbillonnement : 1 mm environ ;
- longueur de chambre de tourbillonnement : 0,40 mm environ ;
- diamètre extérieur de buse : 4,5 mm environ. Dans la réalisation illustrée schématiquement sur la figure 6, un pulvérisateur de liquide 27 comprend un récipient 28, une pompe 29 et une buse de pulvérisation 30 telle que définie précédemment. Par actionnement du bouton 31, on actionne la pompe 29 qui aspire le liquide 32 du récipient 28 par un tube plongeur 33 et l'injecte sous pression dans la buse de pulvérisation 30 qui produit, en sortie, un cône de pulvérisation 34.
La structure particulière de buse de pulvérisation 30 selon l'invention permet le fonctionnement correct d'un tel pulvérisateur 27 contenant un liquide 32 à pulvériser dont la viscosité peut être supérieure à celle de l'eau, pouvant être comprise entre 800 et 1 000 mPa.s environ, et dont la densité est comprise entre 1 000 et 1 100 kg/m3 environ.
De bons résultats peuvent également être obtenus lorsque le liquide 32 présente des propriétés thixotropiques . La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après.

Claims

REVENDICATIONS
1 - Buse de pulvérisation pour la pulvérisation de liquides, comprenant :
- une chambre de tourbillonnement (7) ayant une forme générale de révolution autour d'un axe longitudinal (I-I), limitée par une paroi périphérique (8), par une paroi postérieure (5), et par une paroi frontale (9) percée d'un trou coaxial de sortie (10) ,
- une pluralité de canaux de transfert (11-15) obliques injectant le liquide en rotation dans un sens de rotation dans la chambre de tourbillonnement (7), caractérisée en ce que :
- les canaux de transfert (11-15) sont limités chacun par une face extérieure (21) à profil généralement rectiligne et se raccordant tangentiellement à la paroi périphérique (8) de la chambre de tourbillonnement (7),
- les canaux de transfert (11-15) sont limités chacun par une face intérieure (22) ayant un profil concave (Ll) sur la plus grande partie de sa longueur,
- le trou coaxial de sortie (10) a une forme conique convergente vers la sortie.
2 - Buse de pulvérisation selon la revendication 1, caractérisée en ce que chaque canal de transfert (11-15) est alimenté par un canal d'alimentation longitudinal périphérique (16-20) depuis l'entrée (40) de la buse. 3 - Buse de pulvérisation selon la revendication 2, caractérisée en ce que la face intérieure (22) à profil concave (Ll) de canal de transfert (11-15) est généralement circulaire selon un rayon compris entre une fois et demie et deux fois la distance radiale (DR) entre le canal d'alimentation longitudinal périphérique correspondant (16-20) et la chambre de tourbillonnement (7) .
4 - Buse de pulvérisation selon l'une des revendications 2 ou 3, caractérisée en ce que la face intérieure (22) à profil concave (Ll) de canal de transfert (11-15) se raccorde au canal d'alimentation longitudinal périphérique correspondant par une zone arrondie convexe (24) . 5 - Buse de pulvérisation selon l'une quelconque des revendications 2 à 4, caractérisée en ce que la face extérieure
(21) à profil généralement rectiligne de canal de transfert (11-15) se raccorde au canal d'alimentation longitudinal périphérique correspondant (16-20) par une zone arrondie convexe (25) .
6 - Buse de pulvérisation selon 1 ' une quelconque des revendications 2 à 5, caractérisée en ce que la paroi externe du canal d'alimentation longitudinal périphérique (16-20) se raccorde à la paroi frontale antérieure du canal de transfert correspondant (11-15) par une zone arrondie régulière (16a) .
7 - Buse de pulvérisation selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la face intérieure
(22) à profil concave (Ll) de canal de transfert (11-15) se raccorde à la paroi périphérique (8) de chambre de tourbillonnement (7) par une zone de raccordement (26) arrondie convexe.
8 - Buse de pulvérisation selon la revendication 7, caractérisée en ce que le rayon de courbure de la zone de raccordement (26) convexe est compris entre 50 microns et 80 microns environ. 9 - Buse de pulvérisation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le trou coaxial de sortie (10) est centré sur l'axe longitudinal (I-I) selon une tolérance inférieure à 10 % du diamètre du trou, avantageusement inférieure à 40 microns environ, de préférence inférieure à 30 microns.
10 - Buse de pulvérisation selon la revendication 9, caractérisée en ce que le trou coaxial de sortie (10) est aligné sur l'axe longitudinal (I-I) avec une tolérance de déviation inférieure à 4° environ. 11 - Buse de pulvérisation selon l'une quelconque des revendications 1 à 10, caractérisée en ce que l'angle de cône du trou coaxial de sortie (10) est compris entre 15° et 30°, avantageusement de 20° environ.
12 - Buse de pulvérisation selon l'une quelconque des revendications 1 à 11, caractérisée en ce que les canaux de transfert (11-15) sont au nombre de cinq, répartis régulièrement autour de 1 ' axe longitudinal de la buse . 13 - Pulvérisateur de liquide (27) , comprenant une buse de pulvérisation (30) selon l'une quelconque des revendications 1 à 12.
14 - Pulvérisateur (27) selon la revendication 13, caractérisé en ce qu'il contient un liquide (32) à pulvériser dont la viscosité est comprise entre 800 et 1 000 mPa.s environ, et dont la densité est comprise entre 1 000 et 1 100 kg/m3 environ.
15 - Pulvérisateur (27) selon l'une des revendications 13 ou 14, caractérisé en ce qu'il contient un liquide thixotropique .
EP20030700410 2002-01-25 2003-01-24 Buse de pulverisation a diametre reduit Withdrawn EP1467818A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0201116 2002-01-25
FR0201116A FR2835203B1 (fr) 2002-01-25 2002-01-25 Buse de pulverisation a diametre reduit
PCT/IB2003/000188 WO2003061839A1 (fr) 2002-01-25 2003-01-24 Buse de pulverisation a diametre reduit

Publications (1)

Publication Number Publication Date
EP1467818A1 true EP1467818A1 (fr) 2004-10-20

Family

ID=27589592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030700410 Withdrawn EP1467818A1 (fr) 2002-01-25 2003-01-24 Buse de pulverisation a diametre reduit

Country Status (3)

Country Link
EP (1) EP1467818A1 (fr)
FR (1) FR2835203B1 (fr)
WO (1) WO2003061839A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904573B1 (fr) * 2006-08-04 2008-12-05 Rexam Dispensing Systems Sas Buse de pulverisation, organe de distribution comprenant une telle buse, distributeur comprenant un tel organe de distribution et utilisation d'une telle buse.
FR2909908B1 (fr) * 2006-12-15 2009-02-27 Rexam Dispensing Systems Sas Buse de pulverisation, organe de distribution comprenant une telle buse, distributeur comprenant un tel organe et utilisation d'une telle buse.
EP2570190A1 (fr) * 2011-09-15 2013-03-20 Braun GmbH Buse de pulvérisation pour distribuer un fluide et pulvérisateur comportant une telle buse de pulvérisation
EP2570110B1 (fr) * 2011-09-15 2017-05-03 Noxell Corporation Produit de laque aérosol pour styliser et/ou mettre en place les cheveux
JP6158940B2 (ja) 2013-06-28 2017-07-05 ザ プロクター アンド ギャンブル カンパニー スプレー装置を備えるエアロゾルヘアスプレー製品
CN103464318B (zh) * 2013-09-26 2015-12-02 无锡美灵数码科技有限公司 精细喷嘴
MX2017001539A (es) * 2014-08-06 2017-11-28 Johnson & Son Inc S C Cabezales de atomizacion.
BR112017025687B1 (pt) 2015-06-01 2021-11-23 The Procter & Gamble Company Produto fixador para cabelos em aerossol que compreende um dispositivo de aspersão
WO2017132595A1 (fr) * 2016-01-27 2017-08-03 dlhBowles Inc. Ensemble buse à turbulence amélioré doté d'une rupture mécanique à haut rendement permettant de générer des pulvérisations en brouillard de petites gouttelettes uniformes
FR3050125B1 (fr) * 2016-04-14 2021-12-17 Albea Le Treport Buse de pulverisation, notamment pour un systeme de distribution d'un produit sous pression muni d'un bouton poussoir, et systeme de distribution comprenant une telle buse
US11141545B2 (en) * 2016-12-01 2021-10-12 Mark L. Anderson, Llc Sprayer technology
FR3096280B1 (fr) * 2017-11-06 2023-09-15 Lindal France Buse en deux pièces pour diffuseurs d’aérosol
CA3133778C (fr) * 2019-04-10 2023-09-26 Lindal France Sas Buse en deux pieces pour diffuseurs d'aerosol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1431526A (en) * 1921-04-09 1922-10-10 Duriron Co Spray nozzle
IT1094411B (it) 1977-08-02 1985-08-02 Werding Winfried J Ugello spruzzatore,dispositivi comprendenti tale ugello e procedimento per la loro produzione
FR2756502B1 (fr) * 1996-12-03 1999-01-22 Oreal Buse pour dispositif de pulverisation d'un liquide et dispositif de pulverisation equipe d'une telle buse
DE19918120A1 (de) * 1999-04-22 2000-10-26 Bosch Gmbh Robert Zerstäuberdüse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03061839A1 *

Also Published As

Publication number Publication date
FR2835203B1 (fr) 2004-04-09
WO2003061839A1 (fr) 2003-07-31
FR2835203A1 (fr) 2003-08-01

Similar Documents

Publication Publication Date Title
EP1365864B1 (fr) Buse de pulverisation a canaux profiles
EP3246096B1 (fr) Dispositif de pulvérisation et utilisation de ce dispositif
EP2139604B1 (fr) Organe de pulverisation, dispositif de projection comportant un tel organe, installation de projection et methode de nettoyage d'un tel organe
EP3231516B1 (fr) Buse de pulverisation, notamment pour un systeme de distribution d'un produit sous pression muni d'un bouton poussoir, et systeme de distribution comprenant une telle buse
WO2003061839A1 (fr) Buse de pulverisation a diametre reduit
EP2496361B2 (fr) Bouton poussoir pour un système de distribution d'un produit sous pression
EP2006025A1 (fr) Buse de pulvérisation comprenant des rainures axiales d'alimentation équilibrée de la chambre tourbillonnaire
EP2490823B1 (fr) Tete de distribution pour dispositif de distribution de produit fluide
EP2606980B1 (fr) Bouton poussoir pour un système de distribution d'un produit sous pression
WO2021156573A1 (fr) Buse de pulvérisation de liquide sous forme de brouillard
EP2119508B1 (fr) Bouton poussoir à canaux de distribution convergents
EP3579979A1 (fr) Tête de pulvérisation de produit fluide et utilisation d'une telle tête
EP2233211B1 (fr) Bouton poussoir pour un système de distribution d'un liquide sous pression
EP3530355B1 (fr) Tête de distribution à chambre tourbillonnaire étagée pour un système de distribution
EP1677916B1 (fr) Tete de pulverisation de produit fluide
LU86331A1 (fr) Procede de production de mousse et distributeur de mousse pour la mise en oeuvre du procede
EP2353726A1 (fr) Bouton poussoir pour un système de distribution d'un produit sous pression
FR2888762A1 (fr) Buse a conduit divergent
EP4448185A1 (fr) Tete de pulverisation
EP3140032A1 (fr) Dispositif d'injection, notamment pour injecter une charge d'hydrocarbures dans une unité de raffinage.
WO2019193275A1 (fr) Tête de distribution de produit fluide
FR2933883A1 (fr) Buse de pulverisation de produit fluide et poussoir integrant une telle buse
BE601350A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IMENEZ, HERVE

Inventor name: SONGBE, JEAN-PIERRE

Inventor name: BICKART, JEAN-RENE

Inventor name: MEYER, PASCAL

17Q First examination report despatched

Effective date: 20071213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091009