EP1466037B1 - High-temperature protective coating - Google Patents
High-temperature protective coating Download PDFInfo
- Publication number
- EP1466037B1 EP1466037B1 EP03700010A EP03700010A EP1466037B1 EP 1466037 B1 EP1466037 B1 EP 1466037B1 EP 03700010 A EP03700010 A EP 03700010A EP 03700010 A EP03700010 A EP 03700010A EP 1466037 B1 EP1466037 B1 EP 1466037B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protection layer
- temperature protection
- temperature
- coating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12937—Co- or Ni-base component next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
Definitions
- the invention relates to a high-temperature protective layer according to the independent Claim.
- Such high-temperature protective layers are mainly used where the base material of components made of heat-resistant steels and / or alloys which is used at temperatures above 600 oC.
- Such high temperature protective layers Due to these high-temperature protective layers, the effect of high-temperature corrosion especially of sulfur, oil pockets, oxygen, alkaline earths and vanadium slowed down or completely stopped.
- Such high temperature protective layers are designed to be directly on the base material of the protective component can be applied.
- high temperature protective coatings are of particular importance Importance. They are mainly used on runners and vanes as well Applied thermal heat segments of gas turbines.
- these components is preferably an austenitic material used on the basis of nickel, cobalt or iron.
- nickel superalloys are used as base material Application.
- Most of the coatings for high temperature applications come from the Families of NiCrAlY, CoCrAlY or NiCoCrAlY.
- the layers are different through the concentration of "family elements" nickel, cobalt, chrome, aluminum and Yttrium and by adding more elements.
- the composition of the layer determined Significantly, the behavior at high temperature in oxidizing or corrosive Atmosphere, with temperature changes and under mechanical load. moreover the composition of the layer determines the material and manufacturing costs.
- Many known layers show excellent properties only in some aspects. Although widely used worldwide, by adding cobalt according to their own Investigations have negatively affected both corrosion resistance and cost.
- the invention is based on the above-mentioned prior art the The object of the invention is to provide a high-temperature protective layer which is cost-effective, resistant to oxidation, corrosion and temperature change resistant.
- the inventive composition of this alloy has (wt .-%) 23 bis 27% chromium, 4 to 7% aluminum, 0.1 to 3% silicon, 0.1 to 3% tantalum, 0.2 to 2% Yttrium, 0.001 to 0.01% boron, 0.001 to 0.01% magnesium and 0.001 to 0.01% calcium on. All weights are based on the total weight of the respective Alloy. The remainder of the alloy is nickel and unavoidable Impurities.
- the Al content is in a range of more than 5 to 6 Wt .-%.
- the protective layer according to the invention is a NiCrAlY alloy. It shows a significant improvement in oxidation and corrosion resistance compared to the already known high-temperature protective layers.
- the high-temperature protective layer according to the invention it should be noted that they at high temperatures (depending on the design above 800 ° C) aluminum-containing ⁇ and ⁇ '-phases having a volume fraction of at least 50%, which the Formation of an aluminum oxide-containing protective layer allows, at low and at medium temperatures (depending on the design below 900 ° C) chromium-containing ⁇ -Cr phases (referred to in Fig. 1 as BCC) of more than 5%, which the training a chromium oxide-containing protective layer allows.
- BCC chromium-containing ⁇ -Cr phases
- the adhesion of the alumina-containing cover layer improves High temperature, which is the protection of the high-temperature protective layer and the underneath located significantly increased component.
- magnesium and calcium are especially the naturally occurring impurities in the production bound and thus for temperatures below 850-950 ° C the Increased corrosion resistance.
- the amount ratio of chromium to aluminum is limited to 3.6 to 6.5 to prevent the formation of brittle ⁇ -phases.
- the ratio of nickel to chromium is limited to 2.3 to 3.0 in order to obtain brittle ⁇ phases to prevent what improves the thermal shock resistance.
- the solid and the consistent adhesion of the protective layer and its topcoat in frequent Temperature change is due to the specified for the alloy share Yttrium reached.
- composition chosen here shows no or only small proportions by volume of ⁇ -phase or ⁇ -NiAl phase (FIG. 1), so that under thermal cycling clearly advantages are to be expected.
- the comparative alloy of Fig. 2 shows a similar one Composition of some elements, but due to the differences of others Elements show a very different microstructure based on In our experience, no adequate thermal shock resistance for turbine and can not be used by the incipient melting over 900 ° C. is.
- the production-related, inherent contamination of sulfur which is typically in concentrations of less than 10 ppm, in some cases up to 50 ppm can lead to reduced oxidation and corrosion resistance.
- the trace elements Mg and Ca added, which absorb sulfur.
- the alloy is applied directly to the base material of the component or to an intermediate layer, consisting of a third composition, applied.
- the layer thicknesses vary depending on the coating method between 0.03 mm to 1.5 mm.
- the gas turbine component to be coated is made of an austenitic material, in particular a nickel superalloy.
- the coating of the component takes place under Vacuum, under inert gas or in air by means of thermal spraying (LPPS, VPS, APS), high speed spraying (HVOF), electrochemical processes, physical / chemical vaporization (PVD, CVD) or another from the Prior art known coating method.
- a NiCrAlY alloy is used according to the invention (Wt .-%) 23 to 27 wt .-% chromium, 4 to 7 wt .-% aluminum, 0.1 to 3 wt .-% silicon, 0.1 to 3% by weight of tantalum, 0.2 to 2% by weight of yttrium, 0.001 to 0.01% by weight of boron, 0.001 to 0.01% by weight of magnesium and 0.001 to 0.01% by weight of calcium.
- the remaining portion of the alloy consists of nickel and unavoidable impurities.
- the Al content is in a range of over 5 to 6 wt .-%. All weights refer to the total weight of the alloy used.
- the alloy according to the invention has a marked improvement in the oxidation and corrosion resistance over the already known high-temperature protective layers on.
- inventive high-temperature protective layer is determine that they are at high temperatures (depending on the design above 800 ° C) aluminum-containing ⁇ and ⁇ '-phases with a volume fraction of at least 50%, which allows the formation of an aluminum oxide-containing protective layer, at low and medium temperatures (depending on the version below of 900 ° C) chromium-containing ⁇ -Cr phases of more than 5%, which the training a chromium oxide-containing protective layer allows.
- the composition selected here shows no or only small volume fractions of ⁇ -phase or ⁇ -NiAl phase or boride phases (in Fig. 1 as M2B_ORTH), so that under thermal cycling significant benefits are expected.
- the comparative alloy ( Figure 2) shows a similar one Composition of some elements, but due to the differences of others Elements show a very different microstructure based on In our experience, no adequate thermal shock resistance for turbine and can not be used by the incipient melting over 900 ° C. is.
- the base material that forms the high-temperature protective layer silicon and boron added. This increases the protection of the high-temperature protective layer and the underlying device essential.
- the production-related, inherent contamination of sulfur which is typically in a concentration of less than 10 ppm, in some cases 50 ppm can lead to reduced oxidation and corrosion resistance.
- the trace elements Mg and Ca are added, which absorb sulfur and thereby in for temperatures below from 850 to 950 ° C increases the corrosion resistance.
- the ratio of chromium to aluminum is limited to 3.6 to 6.5 to the Prevent training of brittle ⁇ -phases.
- the ratio of nickel to Chromium is limited to 2.3 to 3.0, to prevent brittle ⁇ -phases, what the thermal shock resistance improved.
- the firm and consistent adhesion of the protective layer and its topcoat Frequent temperature change is determined by the specific for the alloy Proportion of yttrium reached.
- the material forming the alloy is in powder form for the thermal spraying processes before and preferably has a particle size of 5 to 90 microns.
- the alloy is prepared as a target or as a suspension.
- the alloy is applied directly to the base material of the component or to an intermediate layer, consisting of a third composition, applied.
- the layer thicknesses vary depending on the coating method between 0.03 mm to 1.5 mm.
- the device is subjected to a heat treatment. This takes place at a temperature of 1000 to 1200 ° C for about 10 minutes up to 24 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Inorganic Insulating Materials (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Physical Vapour Deposition (AREA)
- Spark Plugs (AREA)
- Laminated Bodies (AREA)
- Insulated Conductors (AREA)
- Resistance Heating (AREA)
- Ceramic Products (AREA)
- Organic Insulating Materials (AREA)
- Magnetic Heads (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Hochtemperatur-Schutzschicht gemäss dem unabhängigen Patentanspruch.The invention relates to a high-temperature protective layer according to the independent Claim.
Solche Hochtemperatur-Schutzschichten kommen vor allem dort zur Anwendung, wo das Grundmaterial von Bauelementen aus warmfesten Stählen und/oder Legierungen zu schützen ist, die bei Temperaturen über 600 ºC verwendet werden.Such high-temperature protective layers are mainly used where the base material of components made of heat-resistant steels and / or alloys which is used at temperatures above 600 ºC.
Durch diese Hochtemperatur-Schutzschichten soll die Wirkung von Hochtemperaturkorrosionen vor allem von Schwefel, Ölaschen, Sauerstoff, Erdalkalien und Vanadium verlangsamt bzw. vollständig unterbunden werden. Solche Hochtemperatur-Schutzschichten sind so ausgebildet, dass sie direkt auf das Grundmaterial des zu schützenden Bauelementes aufgetragen werden können.Due to these high-temperature protective layers, the effect of high-temperature corrosion especially of sulfur, oil pockets, oxygen, alkaline earths and vanadium slowed down or completely stopped. Such high temperature protective layers are designed to be directly on the base material of the protective component can be applied.
Bei Bauelementen von Gasturbinen sind Hochtemperatur-Schutzschichten von besonderer Bedeutung. Sie werden vor allem auf Lauf- und Leitschaufeln sowie auf Wärmestausegmenten von Gasturbinen aufgetragen. For gas turbine components, high temperature protective coatings are of particular importance Importance. They are mainly used on runners and vanes as well Applied thermal heat segments of gas turbines.
Für die Fertigung dieser Bauelemente wird vorzugsweise ein austenitisches Material auf der Basis von Nickel, Kobalt oder Eisen verwendet. Bei der Herstellung von Gasturbinenbauteilen kommen vor allem Nickel-Superlegierungen als Grundmaterial zur Anwendung.For the production of these components is preferably an austenitic material used on the basis of nickel, cobalt or iron. In the manufacture of gas turbine components In particular, nickel superalloys are used as base material Application.
Bis jetzt ist es üblich, Bauelemente, die für Gasturbinen bestimmt sind, mit Schutzschichten zu versehen, die durch Legierungen gebildet werden, deren wesentliche Bestandteile Nickel, Chrom, Aluminium und Yttrium sind. Solche Hochtemperatur-Schutzschichten weisen eine Matrix auf, in die eine aluminiumhaltige Phase eingelagert ist.So far, it is common to design components intended for gas turbines with protective coatings provided by alloys whose essential Components are nickel, chromium, aluminum and yttrium. Such high temperature protective layers have a matrix in which an aluminum-containing phase embedded is.
Die meisten der Beschichtungen für Hochtemperaturanwendungen stammen aus den Familien der NiCrAlY, CoCrAlY oder NiCoCrAlY. Die Schichten unterscheiden sich durch die Konzentration der "Familenelemente" Nickel, Kobalt, Chrom, Aluminium und Yttrium und durch Zugabe weiterer Elemente. Die Zusammensetzung der Schicht bestimmt massgeblich das Verhalten bei Hochtemperatur in oxidierender bzw. korrodierender Atmosphäre, bei Temperaturwechsel und bei mechanischer Belastung. Zudem bestimmt die Zusammensetzung der Schicht die Material- und Herstellungskosten. Viele bekannte Schichten zeigen nur bei Teilaspekten hervorragende Eigenschaften. Obwohl weltweit vielfach benutzt, werden durch Zugabe von Kobalt gemäss eigenen Untersuchungen sowohl die Korrosionsbeständigkeit als auch die Kosten negativ beeinflusst.Most of the coatings for high temperature applications come from the Families of NiCrAlY, CoCrAlY or NiCoCrAlY. The layers are different through the concentration of "family elements" nickel, cobalt, chrome, aluminum and Yttrium and by adding more elements. The composition of the layer determined Significantly, the behavior at high temperature in oxidizing or corrosive Atmosphere, with temperature changes and under mechanical load. moreover the composition of the layer determines the material and manufacturing costs. Many known layers show excellent properties only in some aspects. Although widely used worldwide, by adding cobalt according to their own Investigations have negatively affected both corrosion resistance and cost.
Aus den Dokumenten JP-A-53-085736, US-A-3,620,693, US-A-4,477,538, US-A-4,537,744, US-A-3,754,903, US-A-4,013,424, US-A-4,022,587 und US-A-4,743,514 sind zahlreiche Legierungen der Familie "kobald-freier NiCrAlY" bekannt geworden. Die thermodynamische Modellierung für den Temperaturbereich 800°C bis 1050°C des Phasenbestandes dieser Legierungen hat gezeigt, dass die spezifizierten Zusammensetzungen zu Mikrostrukturen mit unerwünschten Phasen bzw. thermisch aktivierten Phasenübergängen führen, namentlich σ- und/oder β-NiAl in nachteilig grossen Volumenanteilen. From documents JP-A-53-085736, US-A-3,620,693, US-A-4,477,538, US-A-4,537,744, U.S. Patent Nos. 3,754,903, 4,013,424, 4,022,587 and 4,743,514 numerous alloys of the family "Kobald-free NiCrAlY" have become known. The thermodynamic modeling for the temperature range 800 ° C to 1050 ° C The phase balance of these alloys has shown that the specified compositions to microstructures with undesirable phases or thermally activated Phase transitions lead, in particular σ- and / or β-NiAl in disadvantageously large Volume fractions.
Der Erfindung liegt ausgehend von dem eingangs genannten Stand der Technik die Aufgabe zugrunde, eine Hochtemperatur-Schutzschicht zu schaffen, die kostengünstig, oxidationsbeständig, korrosionsbeständig und temperaturwechselbeständig ist.The invention is based on the above-mentioned prior art the The object of the invention is to provide a high-temperature protective layer which is cost-effective, resistant to oxidation, corrosion and temperature change resistant.
Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Patentanspruches 1 gelöst.This object is achieved according to the invention by the features of claim 1 solved.
Die erfindungsgemässe Zusammensetzung dieser Legierung weist (Gew.-%) 23 bis 27% Chrom, 4 bis 7% Aluminium, 0.1 bis 3% Silizium, 0.1 bis 3% Tantal, 0.2 bis 2% Yttrium, 0.001 bis 0.01% Bor, 0.001 bis 0.01% Magnesium und 0.001 bis 0.01% Kalzium auf. Alle Gewichtsangaben beziehen sich auf das Gesamtgewicht der jeweiligen Legierung. Der übrige Anteil der Legierung besteht aus Nickel und unvermeidbaren Verunreinigungen. Vorzugsweise liegt der Al-Gehalt in einem Bereich von über 5 bis 6 Gew.-%.The inventive composition of this alloy has (wt .-%) 23 bis 27% chromium, 4 to 7% aluminum, 0.1 to 3% silicon, 0.1 to 3% tantalum, 0.2 to 2% Yttrium, 0.001 to 0.01% boron, 0.001 to 0.01% magnesium and 0.001 to 0.01% calcium on. All weights are based on the total weight of the respective Alloy. The remainder of the alloy is nickel and unavoidable Impurities. Preferably, the Al content is in a range of more than 5 to 6 Wt .-%.
Bei der erfindungsgemässen Schutzschicht handelt es sich um eine NiCrAIY-Legierung. Sie weist eine deutliche Verbesserung der Oxidation- und Korrosionsbeständigkeit gegenüber den bereits bekannten Hochtemperatur-Schutzschichten auf. Bei der erfindungsgemässen Hochtemperatur-Schutzschicht ist festzustellen, dass sie bei hohen Temperaturen (je nach Ausführung oberhalb von 800°C) aluminiumhaltige γ und γ'-Phasen mit einem Volumenanteil von mindestens 50% aufweist, welche die Ausbildung einer aluminiumoxidhaltigen Schutzschicht ermöglicht, bei niedrigen und bei mittleren Temperaturen (je nach Ausführung unterhalb von 900°C) chromhaltige α-Cr-Phasen (in Fig. 1 als BCC bezeichnet) von mehr als 5% aufweist, welche die Ausbildung einer chromoxidhaltigen Schutzschicht ermöglicht.The protective layer according to the invention is a NiCrAlY alloy. It shows a significant improvement in oxidation and corrosion resistance compared to the already known high-temperature protective layers. In the high-temperature protective layer according to the invention, it should be noted that they at high temperatures (depending on the design above 800 ° C) aluminum-containing γ and γ'-phases having a volume fraction of at least 50%, which the Formation of an aluminum oxide-containing protective layer allows, at low and at medium temperatures (depending on the design below 900 ° C) chromium-containing α-Cr phases (referred to in Fig. 1 as BCC) of more than 5%, which the training a chromium oxide-containing protective layer allows.
Wird der Legierung, die die Hochtemperatur-Schutzschicht bildet, Silizium und Bor zugegeben, so verbessert sich die Haftung der aluminiumoxidhaltigen Deckschicht bei Hochtemperatur, welche den Schutz der Hochtemperatur-Schutzschicht und des darunter befindlichen Bauelementes wesentlich erhöht. Mit einem Zusatz von Magnesium und Kalzium werden vor allem die bei der Herstellung natürlich vorhandenen Verunreinigungen gebunden und dadurch für Temperaturen unterhalb von 850-950°C die Korrosionsbeständigkeit erhöht. Das Mengenverhältnis von Chrom zu Aluminium ist auf 3.6 bis 6.5 begrenzt, um die Ausbildung spröder β-Phasen zu verhindern. Das Mengenverhältnis von Nickel zu Chrom ist auf 2.3 bis 3.0 begrenzt, um spröde σ-Phasen zu verhindern, was die Temperaturwechselbeständigkeit verbessert. Die feste und die beständige Haftung der Schutzschicht und ihrer Deckschicht bei häufigen Temperaturwechsel wird durch den speziell für die Legierung festgelegten Anteil an Yttrium erreicht.Is added to the alloy forming the high temperature protective layer, silicon and boron, Thus, the adhesion of the alumina-containing cover layer improves High temperature, which is the protection of the high-temperature protective layer and the underneath located significantly increased component. With an addition of magnesium and calcium are especially the naturally occurring impurities in the production bound and thus for temperatures below 850-950 ° C the Increased corrosion resistance. The amount ratio of chromium to aluminum is limited to 3.6 to 6.5 to prevent the formation of brittle β-phases. The The ratio of nickel to chromium is limited to 2.3 to 3.0 in order to obtain brittle σ phases to prevent what improves the thermal shock resistance. The solid and the consistent adhesion of the protective layer and its topcoat in frequent Temperature change is due to the specified for the alloy share Yttrium reached.
Die hier gewählte Zusammensetzung zeigt keine bzw. nur geringe Volumenanteile von σ-Phase bzw. β-NiAl-Phase (Fig. 1), so dass unter Temperaturwechselbeanspruchung deutlich Vorteile zu erwarten sind. Die Vergleichslegierung aus Fig. 2 zeigt eine ähnliche Zusammensetzung bei einigen Elementen, aber aufgrund der Unterschiede anderer Elemente zeigt sich doch eine sehr verschiedene Mikrostruktur, die basierend auf unserer Erfahrung keine ausreichende Temperaturwechselbeständigkeit für Turbine haben wird und zudem durch das beginnende Aufschmelzen über 900 °C nicht einsetzbar ist.The composition chosen here shows no or only small proportions by volume of σ-phase or β-NiAl phase (FIG. 1), so that under thermal cycling clearly advantages are to be expected. The comparative alloy of Fig. 2 shows a similar one Composition of some elements, but due to the differences of others Elements show a very different microstructure based on In our experience, no adequate thermal shock resistance for turbine and can not be used by the incipient melting over 900 ° C. is.
Die produktionsbedingte, inhärente Verunreinigung von Schwefel, die typischerweise im Konzentration kleiner 10 ppm, in einzelnen Fällen aber auch bis zu 50ppm erreichen kann, führt zu reduzierter Oxidation- und Korrosionsbeständigkeit. Erfindungsgemäss werden bei der Herstellung der Beschichtung die Spurenelemente Mg und Ca zugegeben, die Schwefel absorbieren.The production-related, inherent contamination of sulfur, which is typically in concentrations of less than 10 ppm, in some cases up to 50 ppm can lead to reduced oxidation and corrosion resistance. According to the invention In the production of the coating, the trace elements Mg and Ca added, which absorb sulfur.
Die Legierung wird direkt auf das Grundmaterial des Bauelementes oder auf eine Zwischenlage, bestehend aus einer dritten Zusammensetzung, aufgetragen. Die Schichtdicken variieren je nach Beschichtungsverfahren zwischen 0.03 mm bis 1.5 mm.The alloy is applied directly to the base material of the component or to an intermediate layer, consisting of a third composition, applied. The layer thicknesses vary depending on the coating method between 0.03 mm to 1.5 mm.
Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denen
- Fig. 1
- das Phasengleichgewicht (Molanteil Φ [%] vs. Temperatur [º C]) gemäss der hier angegebenen Zusammensetzung zeigt,
- Fig. 2
- das Phasengleichgewicht (Molanteil Φ [%] vs. Temperatur [º C]) gemäss der im Patent US-A-4,973,445 angegebenen Zusammensetzung darstellt.
- Fig. 1
- the phase equilibrium (mole fraction Φ [%] vs. temperature [° C]) according to the composition given here shows
- Fig. 2
- represents the phase equilibrium (mole fraction Φ [%] vs. temperature [° C]) according to the composition given in US Pat. No. 4,973,445.
Es sind nur die für die Erfindung wesentlichen Elemente dargestellt.Only the elements essential to the invention are shown.
Anhand eines Ausführungsbeispiels, das die Herstellung eines beschichteten Gasturbinenbauteils oder eines anderen Bauelements einer thermischen Turbomaschine beschreibt, wird die Erfindung näher erläutert. Das zu beschichtende Gasturbinenbauteil ist aus einem austenitischen Material, insbesondere einer Nickel-Superlegierung gefertigt. Vor der Beschichtung wird das Bauteil zunächst chemisch gereinigt und dann mit einem Strahlprozess aufgerauht. Die Beschichtung des Bauelementes erfolgt unter Vakuum, unter Schutzgas oder in Luft mittels thermischen Spritzverfahren (LPPS, VPS, APS), Hochgeschwindigkeitsspritzen (HVOF), elektrochemischen Verfahren, physikalischen/chemischer Verdampfung (PVD, CVD) oder einem anderen aus dem Stand der Technik bekannten Beschichtungsverfahren.With reference to an embodiment, the preparation of a coated gas turbine component or another component of a thermal turbomachine, the invention will be explained in more detail. The gas turbine component to be coated is made of an austenitic material, in particular a nickel superalloy. Before coating, the component is first chemically cleaned and then roughened with a blasting process. The coating of the component takes place under Vacuum, under inert gas or in air by means of thermal spraying (LPPS, VPS, APS), high speed spraying (HVOF), electrochemical processes, physical / chemical vaporization (PVD, CVD) or another from the Prior art known coating method.
Für die Beschichtung wird eine NiCrAlY-Legierung verwendet, die erfindungsgemäss (Gew.-%) 23 bis 27 Gew.-% Chrom, 4 bis 7 Gew.-% Aluminium, 0.1 bis 3 Gew.-% Silizium, 0.1 bis 3 Gew.-% Tantal, 0.2 bis 2 Gew.-% Yttrium, 0.001 bis 0.01 Gew-% Bor, 0.001 bis 0.01 Gew-% Magnesium und 0.001 bis 0.01 Gew-% Kalzium aufweist. Der übrige Anteil der Legierung besteht aus Nickel und unvermeidbaren Verunreinigungen. Vorzugsweise liegt der Al-Gehalt in einem Bereich von über 5 bis 6 Gew.-%. Alle Gewichtsangaben beziehen sich auf das Gesamtgewicht der verwendeten Legierung.For the coating, a NiCrAlY alloy is used according to the invention (Wt .-%) 23 to 27 wt .-% chromium, 4 to 7 wt .-% aluminum, 0.1 to 3 wt .-% silicon, 0.1 to 3% by weight of tantalum, 0.2 to 2% by weight of yttrium, 0.001 to 0.01% by weight of boron, 0.001 to 0.01% by weight of magnesium and 0.001 to 0.01% by weight of calcium. Of the The remaining portion of the alloy consists of nickel and unavoidable impurities. Preferably, the Al content is in a range of over 5 to 6 wt .-%. All weights refer to the total weight of the alloy used.
Die erfindungsgemässe Legierung weist eine deutliche Verbesserung der Oxidation- und Korrosionsbeständigkeit gegenüber den bereits bekannten Hochtemperatur-Schutzschichten auf. Bei der erfindungsgemässen Hochtemperatur-Schutzschicht ist festzustellen, dass sie bei hohen Temperaturen (je nach Ausführung oberhalb von 800 °C) aluminiumhaltige γ und γ'-Phasen mit einem Volumenanteil von mindestens 50% aufweist, welche die Ausbildung einer aluminiumoxidhaltigen Schutzschicht ermöglicht, bei niedrigen und bei mittleren Temperaturen (je nach Ausführung unterhalb von 900°C) chromhaltige α-Cr-Phasen von mehr als 5% aufweist, welche die Ausbildung einer chromoxidhaltigen Schutzschicht ermöglicht.The alloy according to the invention has a marked improvement in the oxidation and corrosion resistance over the already known high-temperature protective layers on. In the inventive high-temperature protective layer is determine that they are at high temperatures (depending on the design above 800 ° C) aluminum-containing γ and γ'-phases with a volume fraction of at least 50%, which allows the formation of an aluminum oxide-containing protective layer, at low and medium temperatures (depending on the version below of 900 ° C) chromium-containing α-Cr phases of more than 5%, which the training a chromium oxide-containing protective layer allows.
Wie aus der Fig. 1 ersichtlich, zeigt die hier gewählte Zusammensetzung keine bzw. nur geringe Volumenanteile von σ-Phase bzw. β-NiAl-Phase oder Borid-Phasen (in Fig. 1 als M2B_ORTH bezeichnet), so dass unter Temperaturwechselbeanspruchung deutliche Vorteile zu erwarten sind. Die Vergleichslegierung (Fig. 2) zeigt eine ähnliche Zusammensetzung bei einigen Elementen, aber aufgrund der Unterschiede anderer Elemente zeigt sich doch eine sehr verschiedene Mikrostruktur, die basierend auf unserer Erfahrung keine ausreichende Temperaturwechselbeständigkeit für Turbine haben wird und zudem durch das beginnende Aufschmelzen über 900 °C nicht einsetzbar ist.As can be seen from FIG. 1, the composition selected here shows no or only small volume fractions of σ-phase or β-NiAl phase or boride phases (in Fig. 1 as M2B_ORTH), so that under thermal cycling significant benefits are expected. The comparative alloy (Figure 2) shows a similar one Composition of some elements, but due to the differences of others Elements show a very different microstructure based on In our experience, no adequate thermal shock resistance for turbine and can not be used by the incipient melting over 900 ° C. is.
Um die Haftung der aluminiumoxidhaltigen Deckschicht bei Hochtemperatur zu verbessern, wird dem Basiswerkstoff, der die Hochtemperatur-Schutzschicht bildet, Silizium und Bor zulegiert. Dadurch erhöht sich der Schutz der Hochtemperatur-Schutzschicht und des darunter befindlichen Bauelementes wesentlich.To improve the adhesion of the alumina-containing topcoat at high temperature, becomes the base material that forms the high-temperature protective layer, silicon and boron added. This increases the protection of the high-temperature protective layer and the underlying device essential.
Die produktionsbedingte, inhärente Verunreinigung von Schwefel, die typischerweise
in einer Konzentration von kleiner als 10 ppm, in einzelnen Fällen aber auch 50ppm
erreichen kann, führt zu reduzierter Oxidation- und Korrosionsbeständigkeit. Erfindungsgemäss
werden bei der Herstellung der Beschichtung die Spurenelemente Mg
und Ca zugegeben, die Schwefel absorbieren und dadurch im für Temperaturen unterhalb
von 850 bis 950 °C die Korrosionsbeständigkeit erhöht.The production-related, inherent contamination of sulfur, which is typically
in a concentration of less than 10 ppm, in some
Das Mengenverhältnis von Chrom zu Aluminium ist auf 3.6 bis 6.5 begrenzt, um die Ausbildung spröder β-Phasen zu verhindern. Das Mengenverhältnis von Nickel zu Chrom ist auf 2.3 bis 3.0 begrenzt, um spröde σ-Phasen zu verhindern, was die Temperaturwechselbeständigkeit verbessert. The ratio of chromium to aluminum is limited to 3.6 to 6.5 to the Prevent training of brittle β-phases. The ratio of nickel to Chromium is limited to 2.3 to 3.0, to prevent brittle σ-phases, what the thermal shock resistance improved.
Die feste und die beständige Haftung der Schutzschicht und ihrer Deckschicht bei häufigen Temperaturwechsel wird durch den speziell für die Legierung festgelegten Anteil an Yttrium erreicht.The firm and consistent adhesion of the protective layer and its topcoat Frequent temperature change is determined by the specific for the alloy Proportion of yttrium reached.
Das die Legierung bildende Material liegt für die thermischen Spritzprozesse in Pulverform vor und weist vorzugsweise eine Korngrösse von 5 bis 90 µm auf. Bei den anderen o.a. Verfahren wird die Legierung als Target bzw. als Suspension hergestellt. Die Legierung wird direkt auf das Grundmaterial des Bauelementes oder auf eine Zwischenlage, bestehend aus einer dritten Zusammensetzung, aufgetragen. Die Schichtdicken variieren je nach Beschichtungsverfahren zwischen 0.03 mm bis 1.5 mm. Nach dem Aufbringen der Legierung wird das Bauelement einer Wärmebehandlung unterzogen. Diese erfolgt bei einer Temperatur von 1000 bis 1200 ºC für etwa 10 Minuten bis 24 h Stunden.The material forming the alloy is in powder form for the thermal spraying processes before and preferably has a particle size of 5 to 90 microns. By the others O.A. Method, the alloy is prepared as a target or as a suspension. The alloy is applied directly to the base material of the component or to an intermediate layer, consisting of a third composition, applied. The layer thicknesses vary depending on the coating method between 0.03 mm to 1.5 mm. To the application of the alloy, the device is subjected to a heat treatment. This takes place at a temperature of 1000 to 1200 ° C for about 10 minutes up to 24 hours.
Claims (10)
- High-temperature protection layer for a component, characterized in that it contains (% by weight) 23 to 27% Cr, 4 to 7% Al, 0.1 to 3% Si, 0.1 to 3% Ta, 0.2 to 2% Y, 0.001 to 0.01% B, 0.001 to 0.01% Mg and 0.001 to 0.01% Ca, remainder Ni and inevitable impurities.
- The high-temperature protection layer as claimed in Claim 1, characterized in that the protection layer contains (% by weight) over 5% up to 6% Al.
- The high-temperature protection layer as claimed in Claim 1 or 2, characterized in that the quantitative ratio of Cr to Al is in a range from 3.6 to 6.5.
- The high-temperature protection layer as claimed in Claim 1 or 2, characterized in that the quantitative ratio of Ni to Cr is in a range from 2.3 to 3.0.
- The high-temperature protection layer as claimed in one of Claims 1 to 4, characterized in that the sum of the proportions by volume of the two phases γ (gamma) and γ' (gamma prime) in the temperature range from 800°C to 1050°C amounts to more than 50%.
- The high-temperature protection layer as claimed in one of Claims 1 to 5, characterized in that the proportion by volume of the α-Cr phases in the temperature range from 800°C to 900°C is more than 5%.
- The high-temperature protection layer as claimed in one of Claims 1 to 6, characterized in that the coating is produced under a vacuum, under shielding gas or in air by means of thermal spraying processes (LPPS, VPS, APS), high-velocity spraying (HVOF), electrochemical deposition, physical/chemical vapour deposition (PVD, CVD) or another coating process which is known from the prior art.
- The high-temperature protection layer as claimed in one of Claims 1 to 7, characterized in that it is a coating for components of thermal turbomachines.
- The high-temperature protection layer as claimed in one of Claims 1 to 8, characterized in that the layer thickness of between 0.03 mm and 1.5 mm is applied direct to the base material of the component or to an intermediate layer.
- The high-temperature protection layer as claimed in one of Claims 1 to 9, characterized in that the coating is used as a bonding layer beneath a thermal barrier coating.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10202012 | 2002-01-18 | ||
DE10202012 | 2002-01-18 | ||
PCT/CH2003/000023 WO2003060194A1 (en) | 2002-01-18 | 2003-01-16 | High-temperature protective coating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1466037A1 EP1466037A1 (en) | 2004-10-13 |
EP1466037B1 true EP1466037B1 (en) | 2005-07-13 |
Family
ID=7712588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03700010A Expired - Lifetime EP1466037B1 (en) | 2002-01-18 | 2003-01-16 | High-temperature protective coating |
Country Status (12)
Country | Link |
---|---|
US (1) | US7052782B2 (en) |
EP (1) | EP1466037B1 (en) |
JP (1) | JP4217626B2 (en) |
CN (1) | CN100350075C (en) |
AT (1) | ATE299536T1 (en) |
AU (1) | AU2003200835A1 (en) |
BR (1) | BR0306989B1 (en) |
CA (1) | CA2473565C (en) |
DE (1) | DE50300758D1 (en) |
ES (1) | ES2244914T3 (en) |
RU (1) | RU2301284C2 (en) |
WO (1) | WO2003060194A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1466037B1 (en) | 2002-01-18 | 2005-07-13 | ALSTOM Technology Ltd | High-temperature protective coating |
US7288328B2 (en) * | 2004-10-29 | 2007-10-30 | General Electric Company | Superalloy article having a gamma-prime nickel aluminide coating |
US7364801B1 (en) * | 2006-12-06 | 2008-04-29 | General Electric Company | Turbine component protected with environmental coating |
IL191822A0 (en) * | 2007-06-25 | 2009-02-11 | Sulzer Metaplas Gmbh | Layer system for the formation of a surface layer on a surface of a substrate and also are vaporization source for the manufacture of a layer system |
EP2022870B1 (en) | 2007-06-25 | 2014-07-23 | Sulzer Metaplas GmbH | Layer system for creating a surface layer on a surface of a substrate, vaporisation source for manufacturing a layer system |
WO2009109199A1 (en) * | 2008-03-04 | 2009-09-11 | Siemens Aktiengesellschaft | Alloy, high-temperature corrosion protection layer and layer system |
DE102010021691A1 (en) * | 2010-05-27 | 2011-12-01 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Layer composite with a one-dimensional composite structure |
EP2474413A1 (en) * | 2011-01-06 | 2012-07-11 | Siemens Aktiengesellschaft | Alloy, protective coating and component |
US9359669B2 (en) * | 2011-12-09 | 2016-06-07 | United Technologies Corporation | Method for improved cathodic arc coating process |
EP3118345B1 (en) | 2015-07-17 | 2018-04-11 | Ansaldo Energia IP UK Limited | High temperature protective coating |
CN105419409A (en) * | 2015-11-23 | 2016-03-23 | 沈阳黎明航空发动机(集团)有限责任公司 | High-temperature-fuel-gas-washing-resistant coating and preparation method and application thereof |
CN108165902A (en) * | 2017-12-27 | 2018-06-15 | 宁波市江北吉铭汽车配件有限公司 | A kind of gasoline tank |
US20220145426A1 (en) * | 2019-03-07 | 2022-05-12 | Oerlikon Metco (Us) Inc. | Advanced bond coat materials for tbc with improved thermal cyclic fatigue and sulfidation resistance |
CN111485205A (en) * | 2020-05-25 | 2020-08-04 | 中国科学院宁波材料技术与工程研究所 | NiMALY/Al2O3Composite coating and preparation method and application thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620693A (en) * | 1969-04-22 | 1971-11-16 | Gte Electric Inc | Ductile, high-temperature oxidation-resistant composites and processes for producing same |
US3754903A (en) * | 1970-09-15 | 1973-08-28 | United Aircraft Corp | High temperature oxidation resistant coating alloy |
US4013424A (en) * | 1971-06-19 | 1977-03-22 | Rolls-Royce (1971) Limited | Composite articles |
US3837894A (en) * | 1972-05-22 | 1974-09-24 | Union Carbide Corp | Process for producing a corrosion resistant duplex coating |
US4022587A (en) * | 1974-04-24 | 1977-05-10 | Cabot Corporation | Protective nickel base alloy coatings |
US4088479A (en) * | 1976-01-16 | 1978-05-09 | Westinghouse Electric Corp. | Hot corrosion resistant fabricable alloy |
US4095003A (en) * | 1976-09-09 | 1978-06-13 | Union Carbide Corporation | Duplex coating for thermal and corrosion protection |
JPS5385736A (en) * | 1977-01-06 | 1978-07-28 | Mitsubishi Heavy Ind Ltd | Surface treatment method of metallic body |
US4477538A (en) * | 1981-02-17 | 1984-10-16 | The United States Of America As Represented By The Secretary Of The Navy | Platinum underlayers and overlayers for coatings |
DE3246507C2 (en) * | 1982-12-16 | 1987-04-09 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | High temperature protection layer |
US4743514A (en) * | 1983-06-29 | 1988-05-10 | Allied-Signal Inc. | Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components |
DE3740478C1 (en) * | 1987-11-28 | 1989-01-19 | Asea Brown Boveri | High temperature protective layer |
IT1294098B1 (en) * | 1997-07-10 | 1999-03-22 | Flametal S P A | CORROSION RESISTANT ALLOY OR COATINGS. |
EP1001055B1 (en) * | 1998-11-10 | 2004-02-25 | ALSTOM Technology Ltd | Gas turbine component |
KR100372482B1 (en) * | 1999-06-30 | 2003-02-17 | 스미토모 긴조쿠 고교 가부시키가이샤 | Heat resistant Ni base alloy |
JP3952861B2 (en) * | 2001-06-19 | 2007-08-01 | 住友金属工業株式会社 | Metal material with metal dusting resistance |
EP1466037B1 (en) | 2002-01-18 | 2005-07-13 | ALSTOM Technology Ltd | High-temperature protective coating |
-
2003
- 2003-01-16 EP EP03700010A patent/EP1466037B1/en not_active Expired - Lifetime
- 2003-01-16 CN CNB038023121A patent/CN100350075C/en not_active Expired - Fee Related
- 2003-01-16 RU RU2004125154/02A patent/RU2301284C2/en not_active IP Right Cessation
- 2003-01-16 JP JP2003560271A patent/JP4217626B2/en not_active Expired - Fee Related
- 2003-01-16 CA CA2473565A patent/CA2473565C/en not_active Expired - Fee Related
- 2003-01-16 AT AT03700010T patent/ATE299536T1/en not_active IP Right Cessation
- 2003-01-16 WO PCT/CH2003/000023 patent/WO2003060194A1/en active IP Right Grant
- 2003-01-16 ES ES03700010T patent/ES2244914T3/en not_active Expired - Lifetime
- 2003-01-16 BR BRPI0306989-3A patent/BR0306989B1/en not_active IP Right Cessation
- 2003-01-16 AU AU2003200835A patent/AU2003200835A1/en not_active Abandoned
- 2003-01-16 DE DE50300758T patent/DE50300758D1/en not_active Expired - Lifetime
-
2004
- 2004-07-19 US US10/893,326 patent/US7052782B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1617951A (en) | 2005-05-18 |
AU2003200835A1 (en) | 2003-07-30 |
BR0306989A (en) | 2004-12-14 |
US20050042474A1 (en) | 2005-02-24 |
CA2473565C (en) | 2010-12-07 |
JP2005514525A (en) | 2005-05-19 |
EP1466037A1 (en) | 2004-10-13 |
US7052782B2 (en) | 2006-05-30 |
CN100350075C (en) | 2007-11-21 |
RU2004125154A (en) | 2005-07-20 |
CA2473565A1 (en) | 2003-07-24 |
WO2003060194A1 (en) | 2003-07-24 |
ATE299536T1 (en) | 2005-07-15 |
ES2244914T3 (en) | 2005-12-16 |
DE50300758D1 (en) | 2005-08-18 |
RU2301284C2 (en) | 2007-06-20 |
JP4217626B2 (en) | 2009-02-04 |
BR0306989B1 (en) | 2012-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60305329T2 (en) | HIGHLY OXIDATION-RESISTANT COMPONENT | |
EP1466037B1 (en) | High-temperature protective coating | |
DE68911363T2 (en) | Ceramic-coated heat-resistant alloy component. | |
DE2657288C2 (en) | Coated superalloy article and its uses | |
DE69401260T2 (en) | Coating composition with good protection against corrosion and oxidation | |
US5154885A (en) | Highly corrosion and/or oxidation-resistant protective coating containing rhenium | |
DE69606708T2 (en) | SUPER ALLOY COMPONENT WITH A PROTECTIVE LAYER SYSTEM | |
DE69732046T2 (en) | PROTECTIVE COATING FOR HIGH TEMPERATURE | |
EP1082216B1 (en) | Product with an anticorrosion protective layer and a method for producing an anticorrosion protective layer | |
US5273712A (en) | Highly corrosion and/or oxidation-resistant protective coating containing rhenium | |
US9873936B2 (en) | Superalloy component and slurry composition | |
DE3211583A1 (en) | SUPER ALLOY COATING COMPOSITION WITH HIGH-TEMPERATURE OXIDATION RESISTANCE | |
WO1991002108A1 (en) | High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines | |
US5268238A (en) | Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof | |
CH647557A5 (en) | OBJECT OF A SUPER ALLOY PROVIDED WITH A COATING LAYER AND METHOD FOR THE PRODUCTION THEREOF. | |
EP1902160B1 (en) | Ceramic heat insulating layer | |
DE112008003460T5 (en) | Coated Super Alloy Objects | |
EP0134821B1 (en) | High-temperature protective coating | |
EP1029100B1 (en) | Product with a layer system for protecting against a hot aggressive gas | |
DE102007056315A1 (en) | Coating systems with layers based on rhodium aluminide | |
DE60209661T2 (en) | Hafnium-containing nickel aluminide coating and coating systems made therefrom | |
EP0241807B1 (en) | High-temperature-resistant coating | |
EP1970461A1 (en) | Turbine part with heat insulation layer | |
DE4010076A1 (en) | MATERIAL SYSTEMS FOR USE IN HIGHER TEMPERATURE JET ENGINES | |
DE3246507C2 (en) | High temperature protection layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50300758 Country of ref document: DE Date of ref document: 20050818 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ALSTOM TECHNOLOGY LTD |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051013 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051013 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051013 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051013 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2244914 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060418 |
|
BERE | Be: lapsed |
Owner name: ALSTOM TECHNOLOGY LTD Effective date: 20060131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050713 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50300758 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50300758 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50300758 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH Effective date: 20161021 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: ALSTOM TECHNOLOGY LTD Effective date: 20161006 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161110 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: ANSALDO ENERGIA IP UK LIMITED; GB Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT Effective date: 20170301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170119 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170119 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20170123 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50300758 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50300758 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: ANSALDO ENERGIA IP UK LIMITED Effective date: 20170927 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Effective date: 20171221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180226 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180119 Year of fee payment: 16 Ref country code: IT Payment date: 20180129 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180719 AND 20180725 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180201 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190117 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211216 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211215 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50300758 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230115 |