EP1466020B1 - Verfahren zum behandeln von leder - Google Patents

Verfahren zum behandeln von leder Download PDF

Info

Publication number
EP1466020B1
EP1466020B1 EP02712252A EP02712252A EP1466020B1 EP 1466020 B1 EP1466020 B1 EP 1466020B1 EP 02712252 A EP02712252 A EP 02712252A EP 02712252 A EP02712252 A EP 02712252A EP 1466020 B1 EP1466020 B1 EP 1466020B1
Authority
EP
European Patent Office
Prior art keywords
leather
plasma
minutes
mbar
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02712252A
Other languages
English (en)
French (fr)
Other versions
EP1466020A1 (de
Inventor
Alessandra Siena
Claudia Università Degli Studi di Milano Riccardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONCIARICERCA R&S Srl
Universita degli Studi di Milano Bicocca
Original Assignee
CONCIARICERCA ITALIA Srl
Universita degli Studi di Milano Bicocca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONCIARICERCA ITALIA Srl, Universita degli Studi di Milano Bicocca filed Critical CONCIARICERCA ITALIA Srl
Publication of EP1466020A1 publication Critical patent/EP1466020A1/de
Application granted granted Critical
Publication of EP1466020B1 publication Critical patent/EP1466020B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C9/00Impregnating leather for preserving, waterproofing, making resistant to heat or similar purposes

Definitions

  • the present invention is related to a method for processing leather and, in particular, to a method that has shown to improve or provide completely new post-tanning characteristics of the leather.
  • leathers after the traditionally used tanning techniques, are subjected to a further series of chemical and mechanical treatments aimed at transforming said leathers into a commercial product, having different characteristics suited to the final use destination.
  • the practical applicability and commercial value of the leather product are effectively determined by the aesthetic characteristics, the sensation to the touch, and the physical and mechanical characteristics that make this product suitable for the use to which it is intended.
  • Post-tanning process of the leather generally comprise a variety of phases, including dyeing, fatliquoring, and finishing.
  • the dyeing phase includes a series of treatments aimed at lending the tanned leather a certain colour.
  • the fatliquoring phase allows the fibres making up the dried leather to be separated after tanning, through the use of products that give the tanned leather softness, flexibility, and feel characteristics of various types of leather.
  • finishing in the broadest sense includes chemical operations such as, among others, bleaching, surface degreasing, application of seasons and pigments, varnishing, and mechanical treatments aimed at improving at the aesthetic appearance of the leather.
  • finishing intends application of coatings, protection and polishes onto the surface of the leather, whose purpose is to correct any irregularities.
  • Another problem is associated with static electricity that may be present on the surface of the fibres making up the leather after tanning process.
  • the dyeing phase is influenced by the static electricity on the surface of the fibres making up the leather: at the isoelectric point, the collagen in the leather has a very low tendency to combine with the colouring ions since it is electrically neutral.
  • the farther that the pH in the dyeing bath is from the isoelectrical point the more rapidly the collagen in the leather will react by combining with colouring ions.
  • the electrical charge depends on the type of tanning process that the leather has been submitted to.
  • chrome tanning it is necessary to carry out a neutralisation or acid-removal phase that tends to eliminate the acid groups created by the treatment by using chrome cationic salts.
  • Neutralisation brings the pH in the dyeing bath above the isoelectrical point of the leather by forming negative charges prevalent on the surface of the fibres.
  • the re-bathing phase is difficult to carry out for chrome tanned leathers because during the prior dehydration and drying phases, acid groups replace water groups and bond to the chrome in the form of complexes.
  • the basic groups of the collagen are free and can bind electrovalently with the sulphonic groups of the acid dyes.
  • This type of bond is not very stable and can be further weakened by the attraction between the reagent ions and the permanent dipoles of the water molecules that surround them. These forces of attraction encourage the solubility of the dyes and are the cause of the insufficient colour fastness of the already combined dye to the water.
  • the dyes that form predominantly electrovalent bonds therefore become unusable due to their poor affinity with the leather.
  • finishing phase a problem that could arise is associated with the absorbing power of the surface of the leather towards the chemical products used (for example, chemicals used in dyeing, protection, coating, and similar products): if the leather absorbs excessive amounts, it is necessary to limit this tendency in order to obtain a finishing uniform, not crusted, and with a good tightness of grain; if the leather does not absorb enough, it becomes necessary to use more diluted bottoming solutions supplemented by alcohols and surface-active agents that promote adherence of the finishing layers.
  • chemical products used for example, chemicals used in dyeing, protection, coating, and similar products
  • the leather is as uniform and regular as possible so that the products applied adhere and are distributed evenly over the entire surface.
  • a process frequently carried out in order to provide greater purity to the tone of the leather is bleaching, which entails lightening the colour and eliminating the oxidized tannins and excess tanning substances from the exterior surfaces.
  • acids are generally used in traditional technology, including oxalic acid, or, the leather may be immersed in successive alkaline or acidic baths, diluted with intermediate and final rinsing phases in water.
  • the alkaline solution dissolves the oxidised tannins, while the acidic bath, by lowering the pH, lightens the dark colour acquired by the leather after the alkaline treatment.
  • these inconveniences can also be due to residual undissolved dyes, sediment forming in the liquid dyes or in the dyeing with powder dyes in reduced baths, or the presence of grease marks and stains due to the uneven absorption of the fatliquoring products.
  • plasma use is well known for treating different types of material with a view to obtaining certain structural and functional characteristics.
  • RU-C-2 127 763 discloses subjecting skin to action of high-frequency discharge low-temperature nonequilibrium plasma in vacuum chamber, but does not disclose an outgassing phase as defined in claims 1 or 2 of the present invention.
  • EP 1 138 788 discloses leather treatment with plasma, but again fails to discloses an outgassing phase as defined in claims 1 or 2 of the present invention.
  • the problem addressed with the present invention is therefore formulating a method for treating leather that offers characteristics meeting the aforementioned needs and at the same time, obviates the multiple inconveniences presented by the aforementioned leather treatment methods inherent in the traditional techniques.
  • the treatment phase of the leather using plasma can be carried out using all the noble gases, preferably helium, argon, neon and their mixtures with air or oxygen, inert gases such as, for example, nitrogen and their mixtures, fluorinated gases such as, for example, CF 4 , SF 6 , CFC, hydrocarbons, CO 2 , air, oxygen, silicon compounds, silanes, siloxanes and organosilanes, chlorine compounds, vinyl acrylate monomers, fluorocarbons, as well as corresponding mixtures of said gases, metals and chloromethylsilane.
  • noble gases preferably helium, argon, neon and their mixtures with air or oxygen
  • inert gases such as, for example, nitrogen and their mixtures
  • fluorinated gases such as, for example, CF 4 , SF 6 , CFC, hydrocarbons, CO 2 , air, oxygen, silicon compounds, silanes, siloxanes and organosilanes, chlorine compounds, vinyl acrylate monomers, flu
  • the plasma used for treating leather in accordance with the discovery is cold plasma, i.e., the temperature of the total mass of gas in the plasma phase is approximately room temperature.
  • Cold plasma can be produced in vacuum (A) or at atmospheric pressure (B).
  • cold plasma is produced in chambers containing gas at pressure values varying from 0.1 to 20 mbar.
  • Plasma can be generated by various electromagnetic sources, i.e. sources at diverse frequencies and different geometry.
  • the physical and chemical processes that take place on the surface of the leather depend indeed mostly on the parameters of plasma, the pressure of the gas that is used to generate it, and the values of electric potential assumed by the sample with respect to the plasma potential, i.e., the electric fields in the vicinity of the sample.
  • Electric fields produce currents either of positively or negatively charged species that interact with the sublayer by either bombarding it, or simply electrically charging it.
  • These electric fields can be controlled by biasing the support of the sample (or the sample itself) or by positioning the sample in the ionic sheath that is created in proximity to the antenna, which assumes negative electric potential values of a few hundred volts (from 0 to 800V) in a spatial area of a few millimetres (from 1 to 10 mm).
  • the parameters of plasma are set by the so-called discharge parameters, i.e., by the parameters of the source.
  • the electric potential which for leathers having dimensions between 10 and 400 cm 2 can vary from 50 to 200W
  • the geometry of the source that produces the plasma (capacitive, inductive source)
  • the frequencies of the electromagnetic radiation used in producing the plasma and the residual vacuum inside the chamber where the treatment is done.
  • the vacuum is also dependent on the amount of residual humidity and the outgassing of the leather, i.e., the flow of volatile substances that leave the leather and the outgassing of the internal structures that make up the reactor.
  • the position of the leather sample may be varied with respect to the source of the plasma: (a) the sample can be located near the area of diffused plasma mounted on a floating surface; (b) the sample may be mounted on a metallic support that is negatively or positively biased to a few dozen volts in order to encourage the ionic bombarding of its surface; (c) the sample is positioned on the ionic sheath that is created in proximity to the source of the plasma.
  • the treatment time of the leather in cold plasma usually does not exceed 20 minutes, and is preferably between 5 and 15 minutes, more preferably, ranges between 6 and 10 minutes.
  • the gas that has provided the best performance is SF 6 or mixtures of it with noble gases.
  • this type of plasma in vacuum can be used according to discontinuous or continuous methods.
  • the discontinuous method requires a first and second phase where, in the first phase, the sample is placed in a chamber that is evacuated at pressures lower than the gas being used.
  • the gas used is air resident inside the chamber, the evacuation of this air by creating vacuum would occur up to the pressure value at which the plasma treatment is realised.
  • the gas used is not air
  • the gas used is introduced into the chamber after all the air present in the chamber has been evacuated.
  • Plasma is produced and the treatment is controlled.
  • Plasma can be produced indeed using a number of different electromagnetic sources, i.e., sources of different frequencies. Processing conditions are controlled by measuring the plasma parameters.
  • Treatment times last less than 15 minutes and the treatment can be repeated several times.
  • the leather can be left for a considerable amount of time in atmospheres of either air or active or inert gases to then be submitted to another treatment with the same gas or another gas.
  • the system used can be comprised of several chambers, for example a loading and evacuation chamber, a chamber for plasma treatment, and a final evacuation and leather unloading chamber.
  • a loading and evacuation chamber a chamber for plasma treatment
  • a final evacuation and leather unloading chamber a chamber for vacuum treatment
  • the leather is loaded into the first chamber, it is closed and evacuated at pressure equal to or lesser than treatment pressure so that the outgassing phase of the leather surface can also be accomplished.
  • this evacuation has been done, the leather is transferred into the treatment chamber where the plasma is generated, which should be at a pressure higher than or equal to the two adjacent chambers.
  • guards which are constituted by spaces between the adjacent chambers and function as isolation between the chambers.
  • the leather is treated. After the treatment - which lasts less than 15 minutes - the leather is transferred to the evacuation and unloading chamber which is found at a pressure lower than the treatment pressure. Subsequently, the evacuation and unloading chamber is opened and the leather is unloaded.
  • this last chamber is evacuated again and the cycle is repeated.
  • the leather can be treated in a system comprised of several treatment chambers. These chambers are positioned between the loading and evacuation chamber and the evacuation and unloading chamber. Or, in cyclical treatments, the leather can stop in special chambers to then be treated again.
  • the cold plasma produced at atmospheric pressure is ideally corona plasma.
  • the plasma is produced at low frequency at atmospheric pressure between two electrode conductors either one conductor and one dielectric or two conductors covered with dielectric material.
  • the leather With the aforementioned type of cold plasma at atmospheric pressure, the leather is generally located at a distance of 0.5 cm to 3 centimetres from the electrodes.
  • the sample can move at variable speeds with respect to the plasma source, using movement systems widely used in the sector, so that the treatment time may vary according to need.
  • the leather is treated in a continuous way, moving underneath the electrode used to produce the plasma and the treatment time lasts less than one second in order to keep the leather from being damaged.
  • the power used is approximately 300 W along 20 cm of leather, while the pressure is atmospheric. Before and during treatment, the surface of the leather is cleaned using inert gases.
  • the sample can be treated either once or several times. Each time, it must be treated for periods of less than one second, in order to avoid damage.
  • the method for processing the tanned leather includes a phase using cold plasma to treat the surface of the said leather, characterised by the fact that this leather is subjected to a outgassing phase either before or during plasma treatment.
  • the outgassing phase is conducted until a flow of residual gas on the surface of the leather is less than 4x10 -4 mbar cm 3 /sec.
  • This outgassing phase carries out a sort of cleaning of the gases escaping from the surface of the tanned leather, so that to create the optimal conditions for plasma treatment on the surface of the leather.
  • the outgassing phase can be done until a residual pressure is obtained that is equal to or _lesser than 10 -4 mbar, preferably equal to or lesser than _10 -5 mbar, more preferably less than 5x10 -6 mbar.
  • the plasma treatment can be done before any of the other processing phases on the leather, subsequent to the tanning phase.
  • the treatments normally done can be wholly replaced by the method as described in the present invention.
  • This technique can be applied to any type of leather and any final use of product and it can be realised with any cold plasma reactor in order to improve and modify the surface characteristics without altering the massive characteristics obtained during the previous processing phases, nor the characteristic intrinsic to the leather.
  • the plasma treatment can preferably comprise the following phases either individually, or in any combination:
  • This process can be carried out with various types of plasma including among these, plasmas of noble gases, inert gases, and preferably, oxygen, air, chlorine, ammonia, fluorinated gases and their mixtures.
  • the treatment chamber of the leather should be evacuated in order to obtain pressures preferably between 0.1 and 2 mbar.
  • the treatment chamber is evacuated in order to obtain pressures lower than the pressure under which the treatment is realised, and consequently, to carry out sufficient outgassing of the surface being treated. Subsequently, the chamber is filled with treatment gas.
  • the pressure is preferably between 0.1 and 10 mbar
  • the electron temperature of the plasma is between 1 and 15 eV
  • the electron density is between 10 7 and 10 8 cm -3 .
  • the treatment pressure is between 0.2 mbar and 2 mbar, even more preferably between 0.2 and 0.6 mbar.
  • the said plasma is applied to the surface of the leather for less than 15 minutes, preferably between 3 and 8 minutes and more preferably between 4 and 6 minutes.
  • This process results in an increase in the wetting of the leather, i.e., the hydrophilic quality of the surface of the leather is improved.
  • the degradation time of a drop of water was calculated. This represents the time after which a drop of water loses its shape and spreads across the surface of the leather without being absorbed, and the absorption time on the surface of the leather.
  • the degradation time of a drop of water decreases from one minute, in leathers not outgassed and not treated with plasma, to less than 10 seconds in plasma treated material. Contemporaneously, the absorption time of a drop of water decreases from 10 minutes to less than 1 minute.
  • the increased hydrophilic quality is temporal limited. Therefore, in the case in which this process is used before the re-wetting phase or the dyeing phase, it is necessary that the subsequent re-wetting or dyeing phases be done before two weeks have elapsed.
  • the hydrophilic quality also increases, partly due to the hydrophilic groups implantation on the surface of the leather. These groups are also important for controlling the chemical affinity of the surface of the leather with the dyes or finishing layers, as will be explained in the ensuing text.
  • Another advantage offered by the method according to the invention lies in the fact that the contact angle decreases by at least 20 degrees.
  • the contact angle is a parameter used in the sector to evaluate a surface's wettability: the lower the contanct angle, the greater the wettability.
  • Type of gas SF 6 in vacuum Pressure: 0.1 mbar Length of the treatment: 10 minutes
  • Type of gas air in vacuum Pressure: 0.4 mbar Length of the treatment: 5 minutes
  • Type of gas oxygen in vacuum Pressure: 0.4 mbar Length of the treatment: 5 minutes
  • Type of gas SF 6 under vacuum Pressure: 0.1 mbar Length of the treatment: 15 minutes
  • Type of gas oxygen in vacuum Pressure: 0.4 mbar Length of the treatment: 5 minutes
  • the said process in particular aims to activate the surface of the leather by either breaking the chemical bonds and generating the free radicals, or altering the electrical charge of the surface.
  • This process can preferably be carried out with a source emitted at radio frequency in vacuum.
  • the plasma is created with gases such as noble gases, electro-negative gases, among which fluorinated gases such as CF 4 and CFC and preferably SF 6 , oxygen, CO 2 air, nitrogen, chlorine, ammonia, and their mixtures, hydrocarbons and their mixtures.
  • gases such as noble gases, electro-negative gases, among which fluorinated gases such as CF 4 and CFC and preferably SF 6 , oxygen, CO 2 air, nitrogen, chlorine, ammonia, and their mixtures, hydrocarbons and their mixtures.
  • the leather sample is ideally mounted on a moveable support with respect to the source of the plasma, located in a chamber where the vacuum is realised at pressures lower than those used for the plasma treatment, i.e., between 0.1 and 2 mbar. In this way, the surface of the leather to treat can be adequately outgassed.
  • the chamber is filled with gas at pressures that may vary from 0.1 to 2 mbar and generate plasma with sources emitted at radio frequency for less than 15 minutes.
  • the pressure should range from 0.2 to 0.6 mbar and the treatment times vary from 3 to 8 minutes.
  • plasma parameters may vary according to the gas used. Electron temperatures range from 1 to 15 eV, electron densities vary from 10 7 and 10 8 cm -3 and potentials vary from 0 to 800 V.
  • the aforementioned method increases the solidity of the dye to the leather, thereby improving the fixation and fastness over a longer time with respect to those that are obtained using the methods in the traditional techniques.
  • radicals such as - OH, -COOH or -NH 2 on the surface of the leathers, adapted to bond with various types of dyes, that in the normal operating conditions cannot be used due to the reasons explained in the introductory portion of this description.
  • Another advantage offered by the method described in the present invention lies in the ability to increase the level of saturation (the quantity of dye absorbed by the leather) and the ability to mount the dye (percentage of dye absorbed in a set amount of time) .
  • a method has been devised for improving the colour quality on the so-called "flesh" side of the leather, i.e., the side of the derma originally in contact with connective tissues.
  • gas such as, for example, noble gases, nitrogen, air, fluorinated gases including among these preferably CF 4 , SF 6 , CFC, ammonia, hydrocarbons, and their mixtures.
  • the use conditions of the plasma are essentially the ones described in reference to Process II) for increasing and/or controlling the affinity of the surface of the leather to the dyes to use.
  • Type of gas oxygen in a vacuum Pressure: 0.4 mbar Length of the treatment: 5 minutes
  • the method has been devised for improving the colour quality on the so-called "grain" side of the leather, i.e., the side of the derma originally in contact with the epidermis and opposite from the flesh side.
  • Example 6 the same types of plasma can also be applied in this example, using the same general treatment conditions as described in the above mentioned Process II).
  • Type of gas oxygen in vacuum Pressure: 0.4 mbar Length of the treatment: 7 minutes
  • Another advantage offered by the method described in the present invention lies in the fact that it is possible to obtain excellent uniformity in the distribution of the dyes.
  • gases such as oxygen, air, ammonia, chlorine, and their mixtures used in accordance with the instructions described previously in reference to Process II).
  • this method prevents the formation of marks and stains on the surface of the leather, caused by excess products that may concentrate unevenly on the leather when the traditional treatment methods are used.
  • the method for processing the leather according to the invention can also be used for cleaning the surface of said material.
  • the gases to be used may be, for instance, noble gases, inert gases - ideally nitrogen, oxygen, air, chlorine, ammonia, fluorinated gases and their mixtures.
  • the plasma can be generated in vacuum or at atmospheric pressure.
  • This process is preferably carried out with plasma in a vacuum, at pressures between 0.1 and 1 mbar, at an electron temperature of between 1 and 15 eV, electron density from between 10 7 and 10 8 cm -3 , for less than 20 minutes.
  • treatment time is reduced to less than one second.
  • the aforementioned cleaning can be assessed, for instance, as uniformity and smoothness of the surface of the leather.
  • a measure of the smoothness of a surface is obtained by measuring the roll-off angle.
  • the roll-off angle is the angle to which it is necessary to tilt the sample, starting from a horizontal position, to make a drop of water begin to roll.
  • the roll-off angle decreases from 36° for untreated leather to 20° for leather treated with plasma, and advantageously to less than 10°. Furthermore, the leather also results hydrophilic in the most cases.
  • the absorption time of a drop of water is less than 10 minutes, and it is preferably equal to or lesser than 6 minutes.
  • the quantity of surface material removed is always less than 2% and the surface is surprisingly uniform, smooth, and hydrophilic.
  • Type of gas SF 6 Pressure: 0.2 mbar Length of the treatment: 5 minutes
  • Type of gas air Pressure: 0.4 mbar Length of the treatment: 5 minutes
  • Type of gas oxygen Pressure: 0.4 mbar Length of the treatment: 5 minutes
  • the treatment time can be reduced to less than one second and the surface results in being surprisingly uniform, smooth, and, additionally, hydrophilic.
  • Another use of the method for treating the leather as explained in this discovery lies in obtaining a water repellent effect of the surface of the leather.
  • the said process can be realised by using fluorinated gases in general such as, for instance, CF 4 , SF 6 , NF 3 , CFC, composed of silicone, silane, and siloxanes and their mixtures.
  • fluorinated gases in general such as, for instance, CF 4 , SF 6 , NF 3 , CFC, composed of silicone, silane, and siloxanes and their mixtures.
  • the surface of the leather is bombarded with fluorine radicals that implant to form stable and lasting chemical bonds.
  • the method for obtaining water repellence is achieved preferably with SF 6 gas or blends of this with noble gases (i.e., gases that enable formation of numerous fluorocarbons) either in vacuum with sources emitted at radio frequency or low frequency or at pressures between 0.1 and 10 mbar, preferably between 0.2 and 2 mbar, more preferably between 0.2 mbar and 0.6 mbar.
  • noble gases i.e., gases that enable formation of numerous fluorocarbons
  • the electron plasma density should be about 10 7 -10 8 cm -3 while the ion plasma density should have a value of 10 11 cm -3 .
  • the ionic temperature is between 1-10 eV, preferably between 3 and 8 eV, more preferably between 4 eV and 7 eV.
  • the treatment time is less than 10 minutes, preferably between 3 and 8 minutes, more preferably between 4 and 6 minutes.
  • the treatment of the leather can be carried out as follows.
  • the leather sample is mounted on a moveable support and positioned in a chamber that is evacuated at pressures lower than the processing gas, i.e., lower than the processing pressure. Subsequently, the chamber containing the sample fills up with gas and the plasma is generated with a source emitted at radio frequency or low frequency. The treatment of the leather lasts less than 10 minutes.
  • the water repellent effect with fluorinated gases on the leather does not depend on the source generating the plasma and can be obtained with either microwave sources or with corona plasmas at high pressures that contain numerous fluorine radicals.
  • the effectiveness and stability of the effect on the leather improves when a fluorinated gas containing SF 6 is used for the process.
  • Type of gas SF 6 Pressure: 0.3 mbar Length of the treatment: 6 minutes
  • Treatment is the same process presented in example 8 Type of gas: SF 6 Pressure: 0.3 mbar Length of the treatment: 15 minutes
  • the marks left by drops of water are visibly reduced as the swellings of the surface.
  • This process is useful in order to make leather water repellent without altering the organoleptic properties obtained with prior treatments while also guaranteeing the breatheability.
  • Anti-bacterial properties can be obtained preferably by using either inert gases with metals, noble gases with metals, ammonia, or mixtures with nitrogen.
  • the anti-static quality of the leather can be improved by using especially plasma with metals or chloromethylsilane.
  • deposits of organic and inorganic materials on the surface of the leather can be obtained with cold plasma in a vacuum generated with acrylates, vinyl monomers, fluorocarbons, silanes, siloxanes, organosilanes, saturated hydrocarbons and their mixtures.
  • the layers deposited can be of varying thicknesses: with treatments lasting just a few minutes, deposits of a few dozen nm (10-50 nm) are made, for longer treatments, deposits thicker than a micron are achieved.
  • the stability of the deposit depends on the degree of adhesion to the surface of the leather and therefore on the sublayer subjected to treatment.
  • the plasma can contemporaneously activate the surface during the depositing process or it can make the deposit phase precede activation or carry out cyclical processes.
  • Some special effects can be obtained by creating areas that are more or less hydrophilic and similar to the dye, in order to create patterns on the surface of the leather, or metallic areas.
  • leathers treated according to the method described in the present invention can be used advantageously in order to produce any manner of leather article, for example leather for leather goods, apparel, automobile upholstery, furniture and footwear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)

Claims (30)

  1. Verfahren zum Behandeln von Leder bei der Nachgerbung, umfassend eine Phase der Behandlung mit kaltem Plasma auf der Oberfläche des Leders, dadurch gekennzeichnet, dass das Leder vor der Behandlung mit Plasma einer Ausgasungsphase unterworfen wird, wobei die Ausgasungsphase im Vakuum durchgeführt wird.
  2. Verfahren zum Behandeln von Leder bei der Nachgerbung, umfassend eine Phase der Behandlung mit kaltem Plasma auf der Oberfläche des Leders, dadurch gekennzeichnet, dass das Leder während der Behandlung mit Plasma einer Ausgasungsphase unterworfen wird, wobei die Ausgasungsphase durchgeführt wird, indem ein Gasstrom tangential zur Oberfläche angelegt wird, um das Leder zu behandeln.
  3. Verfahren nach Anspruch 1 oder 2, wobei das kalte Plasma aus Gasen erhalten wird, die aus der Gruppe bestehend aus Edelgasen, Luft, Sauerstoff, Inertgasen, fluorierten Gasen, Kohlenwasserstoffen, CO2, Siliziumverbindungen, Silanen, Siloxanen und Organosilanen, Chlorverbindungen, Vinylacrylatmonomeren, Fluorkohlenwasserstoffen und entsprechenden Mischungen dieser Gase und aus Gasen mit Metallen und Chlormethylsilan ausgewählt sind.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Edelgase aus Helium, Argon, Neon und ihren Mischungen ausgewählt sind, das Inertgas Stickstoff ist und die fluorierten Gase aus CF4, SF6 und CFC oder ihren Mischungen ausgewählt sind.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Plasma im Vakuum oder bei Atmosphärendruck hergestellt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Ausgasungsphase so lange durchgeführt wird, bis ein Restgasfluss von weniger als 4 x 10-4 mbar pro cm3/s von der Oberfläche des Leders erhalten wird.
  7. Verfahren nach einem der Ansprüche 1 oder 3 bis 6, umfassend nacheinander die folgenden Phasen:
    - Platzieren des zu behandelnden Leders in eine Evakuierungskammer;
    - Behandeln des Leders im Vakuum für eine Zeitspanne, die lang genug ist, um die Ausgasung zu erreichen;
    - Befüllen der Evakuierungskammer mit einem Gas nach Anspruch 2 oder 3;
    - Erzeugen des Plasmas im Vakuum;
    - Behandeln der Oberfläche des Leders mit dem Plasma für weniger als 20 Minuten.
  8. Verfahren nach einem der Ansprüche 2 bis 5, umfassend nacheinander die folgenden Phasen:
    - Platzieren des zu behandelnden Leders in eine Evakuierungskammer;
    - Evakuieren der Kammer;
    - Einführen eines Gases nach Anspruch 2 oder 3 in die Evakuierungskammer auf solch eine Weise tangential zur Oberfläche des Leders, dass die Ausgasung erreicht wird;
    - Erzeugen des Plasmas im Vakuum;
    - Behandeln der Oberfläche des Leders mit dem Plasma für weniger als 20 Minuten.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Plasma bei einem Druck im Bereich von 0,1 mbar bis 20 mbar, bei einer Elektronentemperatur im Bereich von 1 eV bis 15 eV und für Behandlungszeitspannen von weniger als 20 Minuten hergestellt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 8, wobei Plasma mit SF6 bei einem Druck zwischen 0,1 und 10 mbar, einer Elektronentemperatur zwischen 1 und 10 eV und für Zeitspannen von weniger als 10 Minuten hergestellt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei das Plasma im Vakuum entweder mit dem diskontinuierlichen oder kontinuierlichen Verfahren verwendet wird.
  12. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Plasma ein Plasma vom Corona-Typ ist, das bei Atmosphärendruck für eine Zeitspanne von weniger als einer Sekunde hergestellt wurde.
  13. Verfahren zum Behandeln von Leder nach einem der Ansprüche 1 bis 12, wobei die Anwendung von Plasma die folgenden Phasen entweder einzeln oder in irgendeiner Kombination umfasst:
    a) Entfernen der Materialschichten, die der Oberfläche des Leders am nächsten sind (BEIZEN);
    b) Implantation von Atomen oder chemischen Gruppen auf der Oberfläche des Leders (PFROPFEN), wobei der kontinuierliche Fluss der reaktiven Stoffe, die im Plasma hergestellt werden, ihre Adsorption innerhalb des zu behandelnden Leders fördert, was die Implantation von funktionellen Gruppen auf der Oberfläche desselben fördert;
    c) Abscheidung dünner Metall- oder Polymerschichten auf der Oberfläche des Leders;
    d) Aktivierung der Oberfläche des Leders, indem chemische Bindungen aufgebrochen werden und freie Radikale auf der Oberfläche erzeugt werden;
    e) spontane Bildung neuer Bindungen auf der Oberfläche des Leders, ohne Implantation der reaktiven Bestandteile des Plasmas.
  14. Verfahren zur Steigerung der Benetzung des Leders, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13.
  15. Verfahren nach Anspruch 14, wobei das Leder mit einem Plasma bei Drücken im Bereich von 0,1 bis 10 mbar, Elektronentemperaturen im Bereich von 1 bis 15 eV und für eine Zeitspanne von weniger als 15 Minuten behandelt wird.
  16. Verfahren nach Anspruch 14 oder 15, wobei der Behandlungsdruck des Plasmas zwischen 0,2 und 2 mbar ist, bevorzugt zwischen 0,2 und 0,6 mbar, die Elektronentemperatur zwischen 1 und 15 eV ist und die Behandlungszeit von 3 bis 8 Minuten dauert, bevorzugt von 4 bis 6 Minuten.
  17. Verfahren nach Anspruch 14, 15 oder 16, wobei, wenn das verwendete Gas SF6 ist, das Plasma mit Hochfrequenz bei einem Druck von 0,1 mbar, mit einer Elektronentemperatur von 4,5 eV erzeugt wird, wobei das Plasma auf die Oberfläche des Leders für eine Zeitspanne von weniger als oder gleich 10 Minuten aufgebracht wird.
  18. Verfahren nach Anspruch 14, 15 oder 16, wobei, wenn das verwendete Gas Sauerstoff oder Luft ist, das Plasma mit Hochfrequenz bei einem Druck von 0,4 mbar und einer Elektronentemperatur von 4,5 eV erzeugt wird, wobei das Plasma auf die Oberfläche des Leders für eine Zeitspanne von 5 Minuten aufgebracht wird.
  19. Verfahren um die Affinität der Oberfläche des Leders für die Farbstoffe und/oder ihre Qualität auf der "Fleisch"-seite und/oder "Körnigkeit" der Oberfläche, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13, zu erhöhen und/oder zu kontrollieren.
  20. Verfahren nach Anspruch 19, wobei das Leder bei Drücken im Bereich von 0,1 bis 2 mbar, einer Elektronentemperatur zwischen 1 und 15 eV und für eine Zeitspanne von weniger als 15 Minuten mit Plasma behandelt wird.
  21. Verfahren, um oberflächliche Lederschichten, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13, zu entfernen/reinigen.
  22. Verfahren nach Anspruch 21, wobei das Leder bei Drücken im Bereich von 0,1 bis 1 mbar, einer Elektronentemperatur zwischen 1 und 15 eV und für eine Zeitspanne von weniger als 20 Minuten mit Plasma behandelt wird.
  23. Verfahren nach Anspruch 21 oder 22, wobei, wenn das verwendete Gas SF6 ist, der Behandlungsdruck des Plasmas 0,2 mbar ist und die Behandlungszeit 5 Minuten ist.
  24. Verfahren, um die Oberfläche des Leders wasserabweisend zu machen, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13.
  25. Verfahren nach Anspruch 24, wobei das Leder bei einem Druck im Bereich von 0,1 bis 10 mbar, einer Elektronentemperatur zwischen 1 und 10 eV und für eine Zeitspanne von weniger als 10 Minuten mit Plasma behandelt wird.
  26. Verfahren nach Anspruch 24 oder 25, wobei der Behandlungsdruck des Plasmas zwischen 0,2 und 2 mbar ist, bevorzugt zwischen 0,2 und 0,6 mbar, bei Elektronentemperaturen zwischen 3 und 8 eV und Behandlungszeiten, die zwischen 3 und 8 Minuten dauern, bevorzugt zwischen 4 und 6 Minuten.
  27. Verfahren, um die Oberfläche des Leders schwerentflammbar zu machen, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13.
  28. Verfahren, um die Oberfläche des Leders antibakteriell zu machen, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13.
  29. Verfahren, um anorganische oder organische Materialien auf der Oberfläche des Leders abzuscheiden, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13.
  30. Verfahren, um Bereiche auf der Oberfläche des Leders zu bilden, die unterschiedliche hydrophile Qualitäten und unterschiedliche Affinitäten für Farbstoffe haben, unter Verwendung des Verfahrens nach einem der Ansprüche 1 bis 13.
EP02712252A 2002-01-15 2002-01-15 Verfahren zum behandeln von leder Expired - Lifetime EP1466020B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2002/000016 WO2003060166A1 (en) 2002-01-15 2002-01-15 Method for the processing of leather

Publications (2)

Publication Number Publication Date
EP1466020A1 EP1466020A1 (de) 2004-10-13
EP1466020B1 true EP1466020B1 (de) 2010-07-21

Family

ID=11133778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02712252A Expired - Lifetime EP1466020B1 (de) 2002-01-15 2002-01-15 Verfahren zum behandeln von leder

Country Status (5)

Country Link
EP (1) EP1466020B1 (de)
AT (1) ATE474939T1 (de)
AU (1) AU2002232127A1 (de)
DE (1) DE60237112D1 (de)
WO (1) WO2003060166A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460805C1 (ru) * 2011-02-21 2012-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") Способ обработки натуральной кожи с дефектом отдушистости
RU2475544C1 (ru) * 2011-06-27 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" Способ гидрофобизации кожевенно-меховых материалов

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20070350A1 (it) * 2007-02-23 2008-08-24 Univ Milano Bicocca Metodo di lavorazine a plasma atmosferico per il trattamento dei materiali
CN102797166B (zh) * 2012-09-05 2014-01-22 上海华峰超纤材料股份有限公司 拒水拒油超细纤维合成革及其制备方法
CN103468835B (zh) * 2013-09-16 2015-05-27 四川大学 用低温等离子体聚合沉积制备的防水皮革及其方法
CN111286079A (zh) * 2018-07-30 2020-06-16 四川大学 一种兼具红外隐身的雷达波吸收复合材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646151B1 (de) * 1991-06-14 1997-11-05 W.L. Gore & Associates, Inc. Oberflächenmodifiziertes, poröses expandiertes polytetrafluoroäthylen und verfahren zur herstellung desselben
RU2001968C1 (ru) * 1991-06-17 1993-10-30 Radzevich Sergej A Способ нанесени декоративных покрытий в вакууме
IT1250739B (it) * 1991-08-02 1995-04-21 Ausimont Spa Impiego di poliuretani fluorurati per il trattamento di film o fogli di cellulosa, mica, caolino e simili materiali naturali
RU2127763C1 (ru) * 1997-12-08 1999-03-20 Казанский государственный технологический университет Способ отделки кож
DE10015555A1 (de) * 2000-03-30 2001-10-18 Eybl Internat Ag Krems Leder und dessen Zurichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460805C1 (ru) * 2011-02-21 2012-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") Способ обработки натуральной кожи с дефектом отдушистости
RU2475544C1 (ru) * 2011-06-27 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" Способ гидрофобизации кожевенно-меховых материалов

Also Published As

Publication number Publication date
WO2003060166A1 (en) 2003-07-24
ATE474939T1 (de) 2010-08-15
EP1466020A1 (de) 2004-10-13
AU2002232127A1 (en) 2003-07-30
DE60237112D1 (de) 2010-09-02

Similar Documents

Publication Publication Date Title
EP1466020B1 (de) Verfahren zum behandeln von leder
Kamlangkla et al. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment
EP3399073B1 (de) Gehäuse aus aluminiumlegierung und herstellungsverfahren dafür
AU2011252996B2 (en) Method for producing improved feathers and improved feathers thereto
EP0625349B1 (de) Oberflächenmodifizierte Auftragseinheit und Verfahren
EP3399852A1 (de) Aluminiumlegierungsgehäuse und herstellungsverfahren dafür
US3711313A (en) Process for the deposition of resinous films on aluminum-bearing substrates
CZ20021908A3 (cs) Způsob modifikování povrchu dřeva
WO2005035212A2 (en) Electrically conductive mdf surface
US6610368B2 (en) Leather and a method of dressing same
Ryu et al. The effect of sputter etching on the surface characteristics of black‐dyed polyamide fabrics
Liao et al. Hydrophilic treatment of the dyed nylon-6 fabric using high-density and extensible antenna-coupling microwave plasma system
EP1506335A1 (de) Verfahren zur behandlung von materialien mit plasma
EP2287394B1 (de) Verfahren zur Verarbeitung polymerischer und anorganischer Materialien mit Plasma
RU2127763C1 (ru) Способ отделки кож
Samanta et al. Plasma and other irradiation technologies application in textile
GB2091274A (en) A process for the treatment of polyacetal articles
US3474008A (en) Method of surface finishing a metallic part
EP1942199A1 (de) Leder, beschichtet mit einer wässrigen Zusammensetzung, die Methycrylat-Harz enthält
KR100348876B1 (ko) 금속성 피막을 코팅시킨 복합소재 낚시대 및 제조방법
AU771750B2 (en) Plasma polymerization on surface of material
TWI287057B (en) A metallized woven fabric with high scratch and abrasion resistance and method for making the same
WO2006058722A1 (en) Process of surface finishing and colouration of an article
JPS60199986A (ja) 皮革様シ−ト物の製造方法
JPH073032B2 (ja) 繊維構造物およびその製造法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20070104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONCIARICERCA ITALIA S.R.L.

Owner name: UNIVERSITA' DEGLI STUDI DI MILANO - BICOCCA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60237112

Country of ref document: DE

Date of ref document: 20100902

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONCIARICERCA R&S S.R.L.

Owner name: UNIVERSITA' DEGLI STUDI DI MILANO - BICOCCA

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101022

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60237112

Country of ref document: DE

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110115

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60237112

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120209

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141222

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160115