EP1463882A1 - Injector control method - Google Patents

Injector control method

Info

Publication number
EP1463882A1
EP1463882A1 EP02801120A EP02801120A EP1463882A1 EP 1463882 A1 EP1463882 A1 EP 1463882A1 EP 02801120 A EP02801120 A EP 02801120A EP 02801120 A EP02801120 A EP 02801120A EP 1463882 A1 EP1463882 A1 EP 1463882A1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
tube
injection
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02801120A
Other languages
German (de)
French (fr)
Inventor
Lanig Garo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1463882A1 publication Critical patent/EP1463882A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • F02D41/3872Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves characterised by leakage flow in injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure

Definitions

  • the invention relates to an injector control method, in particular for common rail engines under high pressure.
  • Fuel injectors for engines are known, supplied by a common rail under a very high source pressure Ps, for example under 1600 bars.
  • a needle has a conical end and cooperates with a seat to close or free the passage of fuel to a nozzle.
  • the movement of the needle is controlled by a difference in axial pressure exerted by the fuel on surfaces of the needle.
  • the needle comprises a flange on the side of the conical end, the flange and part of the conical end of the needle being subjected to the pressure of the fuel before passing through the nozzle.
  • the other end of the needle is subjected to the pressure of the fuel prevailing in a bypass coming from a tube coming from the common rail for the supply of fuel.
  • the bypass communicates with the tube through a restricted orifice.
  • a valve makes it possible to connect the bypass on command to a fuel return line.
  • the invention relates to a method for controlling a fuel injection device, the device comprising a fuel injector, a tube for supplying the injector with fuel, a needle movable between a position opening and closing position of the injector, a valve controlling a fuel leak to drop a control pressure of the needle below a switching pressure threshold, the tube being supplied with fuel under a source pressure, characterized in that: apart from the injection phases, short valve openings are piloted at an excitation frequency to create an oscillatory phenomenon of the pressure in the tube around the source pressure, the duration of the openings being less than a predetermined time necessary for the control pressure to reach the switching pressure, the start of fuel injection is controlled at a time when the pressure in the tube is increasing and greater than the source pressure.
  • Opening the valve outside the injection phase creates a leakage flow through the tube and a pressure drop.
  • a wave is thus created and propagates in the fuel contained in the tube, according to the characteristic speed of the fuel.
  • the wave is reflected at the tube connection on the common rail and returns to the injector.
  • the injection is carried out over a period during which the pressure is more often greater than the source pressure than lower, and therefore the average of the pressure in the tube is greater than that which would be present without the oscillatory phenomenon.
  • the fuel flow rate obtained is therefore also higher by implementing the method of the invention.
  • the excitation frequency is preferably a frequency sub-multiple of the resonance frequency of the device comprising the tube.
  • the excitation frequency is the resonance frequency.
  • the injection duration extends over an odd number of half-periods of oscillation of the pressure in the tube, the pressure being greater than the source pressure during the first half-period.
  • the number of half-periods during which the pressure is greater than the source pressure exceeds by one the number of half-periods during which the pressure is less than the source pressure.
  • the length of the tube will be determined to adjust the resonance frequency and so that the duration of injection coincides with an odd number of half-periods. Even more particularly, the duration of injection extends over three half-periods. This is a good compromise between the length of the tube and the resulting average pressure. To obtain that the injection lasts only half a period, it is necessary to lower the resonance frequency by increasing the length of the tube, in a way which is no longer realistic. On the other hand, by increasing the resonance frequency and the number of half-periods during the injection, the gain according to the method is less.
  • the small openings of the valve are piloted from an instant preceding the injection of a predetermined duration comprising an integer number of full periods and increased by a half-period.
  • the pressure is in the growth phase and greater than the source pressure at the time of injection start. Thanks to this characteristic, the start of the injection takes place at a selected time.
  • FIG. 1 is a time diagram of the controls of the valve and the injection according to the invention
  • - Figure 2 is a time diagram of the pressure in the injector after the establishment of the oscillatory phenomenon
  • - Figure 3 is a time diagram of the pressure in the injector during injection according to the prior art and according to the invention
  • FIG. 4 is a time diagram of the comparison of the pressures according to the diagram in FIG. 3.
  • control method according to the invention is implemented on a device identical to that of the prior art, described above. Only the operation is modified. The description of the device is not repeated here.
  • small valve openings are controlled at a frequency which is the resonance frequency of the fuel contained in the hydraulic line which extends from the connection of the tube on the ramp to the needle of the injector.
  • the leak created lets fuel escape, which returns to the tank through the return line.
  • the resonant frequency is mainly determined by the geometric characteristics of the hydraulic line, in particular its length, and the characteristics of the fuel, in particular the speed of sound in the carburan.
  • the duration of the openings is less than the switching delay, so that the opening of the injector is not controlled.
  • FIG. 1 shows a diagram of which a curve 1 represents the opening of the injector, and a curve 2 shows the opening of the valve.
  • the start of an injection phase is synchronized with the oscillations so that the needle is opened when the pressure in the tube is increasing and greater than the source pressure Ps.
  • the pressure P in the injector downstream of the needle is represented as a function of a time scale T which extends from a period before the theoretical start of the injection Ti and until after the theoretical end of the injection Tf .
  • the pressure represented by curve 10 is the pressure which prevails in the injector in the absence of injection, after the installation of the oscillatory phenomenon.
  • a segment 11 extends from the instant Ti to the instant Tf to symbolize the duration Di of the injection. Note that the segment 11 extends over three half-periods of the oscillatory phenomenon of the pressure P. With the numerical values cited above, this duration is 1 order of 1.5 ms.
  • the graph in FIG. 3 makes it possible to highlight the pressures P in the injector with or without the oscillatory phenomenon.
  • Curve 22 shows the pressure P conventionally present without the oscillatory phenomenon, while curve 20 shows the pressure with the implementation of the method according to the invention.
  • Curve 22 has a bearing 220 at the source pressure Ps, for example 1600 bars, until an instant Tv when the control valve opens.
  • the pressure P drops slightly until the instant Ti when the needle passes from the closed position to the open position and allows the injection of fuel.
  • the switching delay is therefore the difference Ti-Tv.
  • the injection continues until time Tf where the needle passes the opening to the closed position position to stop fuel injection.
  • the pressure in the tube rises above the source pressure Ps because of the "water hammer" which occurs when the injector closes with the needle.
  • the curve 20 has an oscillation before the needle passes into the open position at the instant Ti.
  • the pressure P is in the growth phase and reaches the source pressure Ps.
  • the pressure also drops during fuel injection, but less quickly than in the previous case.
  • the needle returns to the closed position also at time Tf.
  • the comparison between curves 20 and 22 is highlighted on the graph of FIG. 4, on which the curve 30 is represented representing the difference DP between curve 20 and curve 22. Oscillations appear until now Ti.
  • the pressure difference DP also presents oscillations over three half-periods, even if these oscillations are weaker than those present before the start of the injection Ti. Over the injection period, it can be seen that the mean value of the pressure difference DP is positive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a fuel injection device comprising: a fuel injector; a tube which is used to supply fuel to the injector; a needle which moves and thereby opens or closes the injector; and a valve which controls a fuel leak in order to cause the needle control pressure to drop below a switching pressure threshold, said tube being supplied with fuel at a source pressure (Ps). The invention comprises the following two steps, namely: the valve is opened, outside of the injection phases, for short periods at an excitation frequency in order to create an oscillatory phenomenon in relation to the pressure in the tube around the source pressure (Ps), the opening duration being shorter than a predetermined period which is necessary for the control pressure to reach the switching pressure; and the fuel injection is started at a moment when the pressure in the tube is increasing and greater than the source pressure (Ps).

Description

Procédé de commande d' injecteur. Injector control method.
L'invention concerne un procédé de commande d' injecteur, en particulier pour les moteurs à rampe commune sous haute pression.The invention relates to an injector control method, in particular for common rail engines under high pressure.
On connaît des injecteurs de carburant pour les moteurs, alimentés par une rampe commune sous une pression de source Ps très haute, par exemple sous 1600 bars. Dans ces injecteurs, une aiguille comporte une extrémité conique et coopère avec un siège pour obturer ou libérer le passage du carburant vers un gicleur. Dans un mode particulier de réalisation, tel que dévoilé par le document WO 00/55490, le mouvement de l'aiguille est commandé par une différence de pression axiale exercée par le carburant sur des surfaces de l'aiguille. Plus précisément, l'aiguille comporte une collerette du côté de l'extrémité conique, la collerette et une partie de l'extrémité conique de l'aiguille étant soumises à la pression du carburant avant le passage dans le gicleur. Par ailleurs, l'autre extrémité de l'aiguille est soumise à la pression du carburant régnant dans une dérivation en provenance d'un tube issu de la rampe commune pour l'amenée du carburant. La dérivation communique avec le tube par un orifice restreint. De plus, une vanne permet de relier sur commande la dérivation à une canalisation de retour du carburant.Fuel injectors for engines are known, supplied by a common rail under a very high source pressure Ps, for example under 1600 bars. In these injectors, a needle has a conical end and cooperates with a seat to close or free the passage of fuel to a nozzle. In a particular embodiment, as disclosed in document WO 00/55490, the movement of the needle is controlled by a difference in axial pressure exerted by the fuel on surfaces of the needle. More specifically, the needle comprises a flange on the side of the conical end, the flange and part of the conical end of the needle being subjected to the pressure of the fuel before passing through the nozzle. Furthermore, the other end of the needle is subjected to the pressure of the fuel prevailing in a bypass coming from a tube coming from the common rail for the supply of fuel. The bypass communicates with the tube through a restricted orifice. In addition, a valve makes it possible to connect the bypass on command to a fuel return line.
Ainsi, lorsque la vanné est ouverte, une fuite de carburant est établie entre le tube et la canalisation. Du fait de l'orifice restreint, la pression dans la dérivation chute à un niveau nettement inférieur à celle dans le tube. La force résultante de cette pression sur l'aiguille diminue donc et l'équilibre des forces sur la collerette et sur l'extrémité de l'aiguille est modifié de telle sorte que, après un délai de commutation après l'ouverture de la vanne, l'aiguille quitte le siège. Le passage du carburant est donc possible et l'injection a lieu. Lorsque la vanne se referme, la fuite est arrêtée et la pression, dans la dérivation remonte et provoque le mouvement de l'aiguille contre le siège, ce qui termine l'injection de carburant.Thus, when the valve is open, a fuel leak is established between the tube and the pipe. Due to the restricted orifice, the pressure in the bypass drops to a level significantly lower than that in the tube. The force resulting from this pressure on the needle therefore decreases and the balance of forces on the flange and on the end of the needle is modified so that, after a switching delay after opening the valve, the needle leaves the seat. The passage of fuel is therefore possible and injection takes place. When the valve closes, the leak is stopped and the pressure in the bypass rises and causes the needle to move against the seat, which ends the injection of fuel.
Lorsque l'on souhaite augmenter la quantité de carburant injecté, il est possible d'augmenter simplement la durée d'injection. Cependant, cette durée est limitée par des considérations sur les conditions d'injection. En effet, le carburant doit être injecté quand le piston est au point mort haut, sans trop s'étendre pendant la phase de détente. Il est alors envisageable d'augmenter la pression d'injection. Pour cela, la solution la plus évidente est d'augmenter la pression de source délivrée par la capacité de la pompe d'injection alimentant la rampe commune. Cependant, cette augmentation de capacité augmente singulièrement le coût d'un tel équipement. II est encore envisageable d'augmenter la taille de l'orifice de l'injecteur. Cependant, la qualité de la pulvérisation du carburant dans ce cas est moins bonne et conduit à une baisse des prestations de dépollution.When it is desired to increase the quantity of fuel injected, it is possible to simply increase the duration of injection. However, this duration is limited by considerations on the injection conditions. Indeed, the fuel must be injected when the piston is in top dead center, without extending too much during the expansion phase. It is then conceivable to increase the injection pressure. For this, the most obvious solution is to increase the source pressure delivered by the capacity of the injection pump supplying the common rail. However, this increase in capacity dramatically increases the cost of such equipment. It is also conceivable to increase the size of the injector orifice. However, the quality of the fuel spraying in this case is less good and leads to a reduction in the cleaning performance.
C'est donc un objectif de l'invention d'augmenter la quantité de carburant injecté sans modifier la pression de source délivrée par la pompe d'injection ni la durée de l'injection.It is therefore an objective of the invention to increase the quantity of fuel injected without modifying the source pressure delivered by the pump. the duration of the injection.
Avec cet objectif en vue, l'invention a pour objet un procédé de commande d'un dispositif d'injection de carburant, le dispositif comportant un injecteur de carburant, un tube pour alimenter l'injecteur en carburant, une aiguille mobile entre une position d'ouverture et une position de fermeture de l'injecteur, une vanne commandant une fuite de carburant pour faire chuter une pression de commande de l'aiguille en dessous d'un seuil de pression de commutation, le tube étant alimenté en carburant sous une pression de source, caractérisé en ce que : en dehors des phases d'injection, on pilote de courtes ouvertures de la vanne a une fréquence d'excitation pour créer un phénomène oscillatoire de la pression dans le tube autour de la pression de source, la durée des ouvertures étant inférieure à un délai prédéterminé nécessaire pour que la pression de commande atteigne la pression de commutation, on pilote le début de l'injection du carburant à un instant où la pression dans le tube est croissante et supérieure à la pression de source.With this objective in view, the invention relates to a method for controlling a fuel injection device, the device comprising a fuel injector, a tube for supplying the injector with fuel, a needle movable between a position opening and closing position of the injector, a valve controlling a fuel leak to drop a control pressure of the needle below a switching pressure threshold, the tube being supplied with fuel under a source pressure, characterized in that: apart from the injection phases, short valve openings are piloted at an excitation frequency to create an oscillatory phenomenon of the pressure in the tube around the source pressure, the duration of the openings being less than a predetermined time necessary for the control pressure to reach the switching pressure, the start of fuel injection is controlled at a time when the pressure in the tube is increasing and greater than the source pressure.
L'ouverture de la vanne en dehors de la phase d'injection crée un débit de fuite à travers le tube et une chute de pression. Une onde est ainsi créée et se propage dans le carburant contenu dans le tube, selon la célérité caractéristique du carburant. L'onde est réfléchie au raccord du tube sur la rampe commune et revient vers l'injecteur. En excitant ces oscillations en phase avec la fréquence propre du carburant contenu dans une ligne hydraulique comprenant le tube, le phénomène oscillatoire est créé et amplifié jusqu'à une amplitude dont la limite est déterminée par la viscosité du fluide et les pertes d'énergie par amortissement du mouvement.Opening the valve outside the injection phase creates a leakage flow through the tube and a pressure drop. A wave is thus created and propagates in the fuel contained in the tube, according to the characteristic speed of the fuel. The wave is reflected at the tube connection on the common rail and returns to the injector. By exciting these oscillations in phase with the natural frequency of the fuel contained in a hydraulic line including the tube, the oscillatory phenomenon is created and amplified to an amplitude whose limit is determined by the viscosity of the fluid and the energy losses by damping the movement.
L'injection est réalisée sur une période pendant laquelle la pression est plus souvent supérieure à la pression de source qu'inférieure, et donc la moyenne de la pression dans le tube est supérieure à celle qui serait présente sans le phénomène oscillatoire. Pour une durée d'injection déterminée, le débit de carburant obtenu est donc également supérieur en mettant en œuvre le procédé de 1' invention.The injection is carried out over a period during which the pressure is more often greater than the source pressure than lower, and therefore the average of the pressure in the tube is greater than that which would be present without the oscillatory phenomenon. For a determined injection duration, the fuel flow rate obtained is therefore also higher by implementing the method of the invention.
La fréquence d'excitation est de préférence une fréquence sous-multiple de la fréquence de résonance du dispositif comprenant le tube. Avantageusement, la fréquence d'excitation est la fréquence de résonance.The excitation frequency is preferably a frequency sub-multiple of the resonance frequency of the device comprising the tube. Advantageously, the excitation frequency is the resonance frequency.
La mise en résonance est alors la plus rapide.The resonance is then the fastest.
De manière préférentielle, la durée d'injection s'étend sur un nombre impair de demi-périodes d'oscillation de la pression dans le tube, la pression étant supérieure à la pression de source pendant la première demi-période. Ainsi, le nombre de demi-périodes pendant lesquelles la pression est supérieure à la pression de source dépasse d'une unité le nombre de demi-périodes pendant lesquelles la pression est inférieure à la pression de source.Preferably, the injection duration extends over an odd number of half-periods of oscillation of the pressure in the tube, the pressure being greater than the source pressure during the first half-period. Thus, the number of half-periods during which the pressure is greater than the source pressure exceeds by one the number of half-periods during which the pressure is less than the source pressure.
La durée d'injection étant prédéterminée, la longueur du tube sera déterminée pour ajuster la fréquence de résonance et pour que la durée d'injection coïncide avec un nombre impair de demi-périodes. De manière plus particulière encore, la durée d'injection s'étend sur trois demi-périodes . Il s'agit d'un bon compromis entre la longueur du tube et la pression moyenne résultante. Pour obtenir que l'injection ne dure qu'une demi-période, il faut abaisser la fréquence de résonance en augmentant la longueur du tube, d'une manière qui n'est plus réaliste. Par contre, en augmentant la fréquence de résonance et le nombre de demi-périodes pendant l'injection, le gain selon le procédé est moindre.The duration of injection being predetermined, the length of the tube will be determined to adjust the resonance frequency and so that the duration of injection coincides with an odd number of half-periods. Even more particularly, the duration of injection extends over three half-periods. This is a good compromise between the length of the tube and the resulting average pressure. To obtain that the injection lasts only half a period, it is necessary to lower the resonance frequency by increasing the length of the tube, in a way which is no longer realistic. On the other hand, by increasing the resonance frequency and the number of half-periods during the injection, the gain according to the method is less.
Avantageusement, on pilote les petites ouvertures de la vanne à partir d'un instant précédant l'injection d'une durée prédéterminée comportant un nombre entier de périodes pleines et augmentée d'une demi -période .Advantageously, the small openings of the valve are piloted from an instant preceding the injection of a predetermined duration comprising an integer number of full periods and increased by a half-period.
Ainsi, comme la première demi -période est une phase de chute de pression, la pression est en phase de croissance et supérieure à la pression de source à l'instant de début de l'injection. Grâce à cette caractéristique, le début de l'injection a lieu à un instant choisi.Thus, as the first half-period is a pressure drop phase, the pressure is in the growth phase and greater than the source pressure at the time of injection start. Thanks to this characteristic, the start of the injection takes place at a selected time.
L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels : la figure 1 est un diagramme temporel des commandes de la vanne et l'injection selon l' invention ; - la figure 2 est un diagramme temporel de la pression dans l'injecteur après l'établissement du phénomène oscillatoire ,- la figure 3 est un diagramme temporel de la pression dans l'injecteur pendant l'injection selon l'art antérieur et selon l'invention ; - la figure 4 est un diagramme temporel de la comparaison des pressions selon le diagramme de la figure 3.The invention will be better understood and other particularities and advantages will appear on reading the description which follows, the description referring to the appended drawings among which: FIG. 1 is a time diagram of the controls of the valve and the injection according to the invention; - Figure 2 is a time diagram of the pressure in the injector after the establishment of the oscillatory phenomenon, - Figure 3 is a time diagram of the pressure in the injector during injection according to the prior art and according to the invention; FIG. 4 is a time diagram of the comparison of the pressures according to the diagram in FIG. 3.
Le procédé de commande selon l'invention est mis en œuvre sur un dispositif identique à celui de l'art antérieur, décrit précédemment. Seul le fonctionnement est modifié. La description du dispositif n'est pas répétée ici.The control method according to the invention is implemented on a device identical to that of the prior art, described above. Only the operation is modified. The description of the device is not repeated here.
Selon le procédé de l'invention, de petites ouvertures de la vanne sont commandées à une fréquence qui est la fréquence de résonance du carburant contenu dans la ligne hydraulique qui s'étend depuis le raccordement du tube sur la rampe jusqu'à l'aiguille de l'injecteur. La fuite créée laisse s'échapper du carburant, qui retourne au réservoir par la canalisation de retour. La fréquence de résonance est déterminée essentiellement par les caractéristiques géométriques de la ligne hydraulique, en particulier sa longueur, et les caractéristiques du carburant, en particulier la célérité du son dans le carburan . La durée des ouvertures est inférieure au délai de commutation, de telle sorte que l'ouverture de l'injecteur n'est pas commandée .According to the method of the invention, small valve openings are controlled at a frequency which is the resonance frequency of the fuel contained in the hydraulic line which extends from the connection of the tube on the ramp to the needle of the injector. The leak created lets fuel escape, which returns to the tank through the return line. The resonant frequency is mainly determined by the geometric characteristics of the hydraulic line, in particular its length, and the characteristics of the fuel, in particular the speed of sound in the carburan. The duration of the openings is less than the switching delay, so that the opening of the injector is not controlled.
A titre d'exemple, lorsque le moteur fonctionne à 4000 tr/min, pour un cylindre donné, une injection est réalisée à des intervalles de 30 ms . La fréquence de résonance est de l'ordre de 1000 HZ, et la durée d'ouverture est de 100 à 200 μs . Ces valeurs correspondent à une géométrie et des caractéristiques classiques d'un système d'injection. La figure 1 montre un diagramme dont une courbe 1 figure l'ouverture de l'injecteur, et une courbe 2 montre l'ouverture de la vanne.For example, when the engine is running at 4000 rpm, for a given cylinder, an injection is performed at 30 ms intervals. Frequency resonance is around 1000 HZ, and the opening time is 100 to 200 μs. These values correspond to a standard geometry and characteristics of an injection system. Figure 1 shows a diagram of which a curve 1 represents the opening of the injector, and a curve 2 shows the opening of the valve.
A chaque ouverture de la vanne, une onde de dépression est créée dans la ligne hydraulique. Cette onde oscille dans le tube et est amplifiée à chaque ouverture de la vanne. Après 8 à 10 ouvertures de la vanne, on constate que le maximum d'amplitude des oscillations est atteint. La phase d'établissement du phénomène oscillatoire dure de l'ordre de 8 à 10 ms.Each time the valve is opened, a vacuum wave is created in the hydraulic line. This wave oscillates in the tube and is amplified each time the valve is opened. After 8 to 10 valve openings, it can be seen that the maximum amplitude of the oscillations has been reached. The phase of establishment of the oscillatory phenomenon lasts on the order of 8 to 10 ms.
Le début d'une phase d'injection est synchronisé avec les oscillations pour que l'ouverture de l'aiguille soit effectuée lorsque la pression dans le tube est croissante et supérieure à la pression de source Ps. Sur la figure 2, la pression P dans l'injecteur en aval de l'aiguille est représentée en fonction d'une échelle de temps T qui s'étend d'une période avant le début théorique de l'injection Ti et jusqu'après la fin théorique de l'injection Tf . La pression représentée par la courbe 10 est la pression qui règne dans l'injecteur en l'absence d'injection, après l'installation du phénomène oscillatoire. Un segment 11 s'étend de l'instant Ti à l'instant Tf pour symboliser la durée Di de l'injection. On remarque que le segment 11 s'étend sur trois demi-périodes du phénomène oscillatoire de la pression P. Avec les valeurs numériques citées précédemment, cette durée est de 1 ' ordre de 1 , 5 ms .The start of an injection phase is synchronized with the oscillations so that the needle is opened when the pressure in the tube is increasing and greater than the source pressure Ps. In FIG. 2, the pressure P in the injector downstream of the needle is represented as a function of a time scale T which extends from a period before the theoretical start of the injection Ti and until after the theoretical end of the injection Tf . The pressure represented by curve 10 is the pressure which prevails in the injector in the absence of injection, after the installation of the oscillatory phenomenon. A segment 11 extends from the instant Ti to the instant Tf to symbolize the duration Di of the injection. Note that the segment 11 extends over three half-periods of the oscillatory phenomenon of the pressure P. With the numerical values cited above, this duration is 1 order of 1.5 ms.
Le graphique de la figure 3 permet de mettre en évidence les pressions P dans l'injecteur avec ou sans le phénomène oscillatoire. La courbe 22 montre la pression P présente classiquement sans le phénomène oscillatoire, tandis que la courbe 20 montre la pression avec la mise en œuvre du procédé selon l'invention.The graph in FIG. 3 makes it possible to highlight the pressures P in the injector with or without the oscillatory phenomenon. Curve 22 shows the pressure P conventionally present without the oscillatory phenomenon, while curve 20 shows the pressure with the implementation of the method according to the invention.
La courbe 22 présente un palier 220 à la pression de source Ps, par exemple 1600 bars, jusqu'à un instant Tv où la vanne de commande s'ouvre. La pression P chute légèrement jusqu'à l'instant Ti où l'aiguille passe de la position de fermeture à la position d'ouverture et permet l'injection de carburant. Le délai de commutation est donc la différence Ti-Tv. ' L'injection se poursuit jusqu'à l'instant Tf où l'aiguille passe de la position d'ouverture à la position de fermeture pour arrêter l'injection de carburant. La pression dans le tube remonte au-dessus de la pression de source Ps à cause du « coup de bélier » qui se produit à la fermeture de l'injecteur par l'aiguille.Curve 22 has a bearing 220 at the source pressure Ps, for example 1600 bars, until an instant Tv when the control valve opens. The pressure P drops slightly until the instant Ti when the needle passes from the closed position to the open position and allows the injection of fuel. The switching delay is therefore the difference Ti-Tv. 'The injection continues until time Tf where the needle passes the opening to the closed position position to stop fuel injection. The pressure in the tube rises above the source pressure Ps because of the "water hammer" which occurs when the injector closes with the needle.
Par comparaison, la courbe 20 présente une oscillation avant que l'aiguille ne passe en position d'ouverture à l'instant Ti . A cet instant, la pression P est en phase de croissance et atteint la pression de source Ps . La pression chute également pendant l'injection de carburant, mais moins rapidement que dans le cas précédent. L'aiguille repasse en position de fermeture également à l' instant Tf . La comparaison entre les courbes 20 et 22 est mise en évidence sur le graphique de la figure 4, sur lequel on a représenté la courbe 30 représentant la différence DP entre la courbe 20 et la courbe 22. Des oscillations apparaissent jusqu'à l'instant Ti . Pendant la phase d'injection, représentée par le segment 11, la différence de pression DP présente également des oscillations sur trois demi-périodes, même si ces oscillations sont plus faibles que celles présentes avant le début de l'injection Ti . Sur la période d'injection, on constate que la valeur moyenne de la différence de pression DP est positive. En effet, celle-ci est liée à la différence entre les surfaces 31, 33 comprises entre la courbe 30 et au- dessus l'axe des abscisses, et la surface 32 comprise entre la courbe 30 et au-dessous l'axe des abscisses. La somme des surfaces 31 et 33 est nettement plus importante que la surface 32. On en conclut aisément que la pression moyenne pendant la phase d'injection est supérieure dans le cas de l'application du procédé qu'en son absence. La quantité de carburant injectée est donc supérieure. By comparison, the curve 20 has an oscillation before the needle passes into the open position at the instant Ti. At this instant, the pressure P is in the growth phase and reaches the source pressure Ps. The pressure also drops during fuel injection, but less quickly than in the previous case. The needle returns to the closed position also at time Tf. The comparison between curves 20 and 22 is highlighted on the graph of FIG. 4, on which the curve 30 is represented representing the difference DP between curve 20 and curve 22. Oscillations appear until now Ti. During the injection phase, represented by segment 11, the pressure difference DP also presents oscillations over three half-periods, even if these oscillations are weaker than those present before the start of the injection Ti. Over the injection period, it can be seen that the mean value of the pressure difference DP is positive. Indeed, this is related to the difference between the surfaces 31, 33 included between the curve 30 and above the abscissa axis, and the surface 32 comprised between the curve 30 and below the abscissa axis . The sum of the surfaces 31 and 33 is much larger than the surface 32. It is easily concluded that the average pressure during the injection phase is higher in the case of the application of the process than in its absence. The amount of fuel injected is therefore greater.

Claims

REVENDICATIONS
1. Procédé de commande d'un dispositif d'injection de carburant, le dispositif comportant un injecteur de carburant, un tube pour alimenter l'injecteur en carburant, une aiguille mobile entre une position d'ouverture et une position de fermeture de l'injecteur, une vanne commandant une fuite de carburant pour faire chuter une pression de commande de l'aiguille en dessous d'un seuil de pression de commutation, le tube étant alimenté en carburant sous une pression de source (Ps) , caractérisé en ce que : en dehors des phases d'injection, on pilote de courtes ouvertures de la vanne à une fréquence d'excitation pour créer un phénomène oscillatoire de la pression dans le tube autour de la pression de source (PS) , la durée des ouvertures étant inférieure à un délai prédéterminé nécessaire pour que la pression de commande atteigne la pression de commutation, on pilote le début de l'injection du carburant à un instant (Ti) où la pression dans le tube est croissante et supérieure à la pression de source (Ps) .1. A method of controlling a fuel injection device, the device comprising a fuel injector, a tube for supplying the injector with fuel, a needle movable between an open position and a closed position of the injector, a valve controlling a fuel leak to drop a control pressure of the needle below a switching pressure threshold, the tube being supplied with fuel under a source pressure (Ps), characterized in that : apart from the injection phases, short valve openings are piloted at an excitation frequency to create an oscillatory phenomenon of the pressure in the tube around the source pressure (PS), the duration of the openings being less at a predetermined time necessary for the control pressure to reach the switching pressure, the start of fuel injection is controlled at an instant (Ti) when the pressure in the tube is increasing and s higher than the source pressure (Ps).
2. Procédé de commande selon la revendication 1, caractérisé en ce que la fréquence d'excitation est une fréquence sous-multiple de la fréquence de résonance du dispositif comprenant le tube.2. Control method according to claim 1, characterized in that the excitation frequency is a frequency submultiple of the resonance frequency of the device comprising the tube.
3. Procédé de commande selon la revendication 2, caractérisé en ce que la fréquence d'excitation est la fréquence de résonance.3. Ordering method according to claim 2, characterized in that the excitation frequency is the resonant frequency.
4. Procédé de commande selon la revendication 1, caractérisé en ce que la durée d'injection (Di) s'étend sur un nombre impair de demi-périodes d'oscillation de la pression dans le tube, la pression étant supérieure à la pression de source (Ps) pendant la première demi-période.4. Control method according to claim 1, characterized in that the injection duration (Di) extends over an odd number of half-periods of oscillation of the pressure in the tube, the pressure being greater than the pressure source (Ps) during the first half-period.
5. Procédé de commande selon la revendication 4, caractérisé en ce que la durée d'injection (Di) s'étend sur trois demi-périodes .5. Control method according to claim 4, characterized in that the injection duration (Di) extends over three half-periods.
6. Procédé de commande selon la revendication 1, caractérisé en ce qu'on pilote les ouvertures de la vanne à partir d'un instant précédant l'injection d'une durée prédéterminée comportant un nombre entier de périodes pleines et augmentée d'une demi-période.6. Control method according to claim 1, characterized in that one controls the valve openings from an instant preceding the injection of a predetermined duration comprising an integer of full periods and increased by half -period.
7. Dispositif d'injection de carburant comportant au moins un injecteur et une unité de commande des injecteurs, l'unité de commande comportant des moyens pour mettre en œuvre le procédé selon l'une des revendications 1 à 6. 7. Fuel injection device comprising at least one injector and an injector control unit, the control unit comprising means for implementing the method according to one of claims 1 to 6.
EP02801120A 2001-12-17 2002-12-12 Injector control method Withdrawn EP1463882A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116271A FR2833654B1 (en) 2001-12-17 2001-12-17 INJECTOR CONTROL METHOD
FR0116271 2001-12-17
PCT/FR2002/004318 WO2003054370A1 (en) 2001-12-17 2002-12-12 Injector control method

Publications (1)

Publication Number Publication Date
EP1463882A1 true EP1463882A1 (en) 2004-10-06

Family

ID=8870553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02801120A Withdrawn EP1463882A1 (en) 2001-12-17 2002-12-12 Injector control method

Country Status (3)

Country Link
EP (1) EP1463882A1 (en)
FR (1) FR2833654B1 (en)
WO (1) WO2003054370A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855846B2 (en) * 2002-05-21 2006-12-13 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
FR2863316B1 (en) 2003-12-04 2007-12-28 Renault Sas PRESSURE WAVE DAMPING DEVICE IN A DRIVE AND FUEL INJECTION INSTALLATION EQUIPPED WITH SUCH A DEVICE
DE102012210628A1 (en) * 2012-06-22 2013-12-24 Robert Bosch Gmbh Method for operating a common-rail injection system
DE102014213182A1 (en) * 2013-09-13 2015-03-19 Ford Global Technologies, Llc Method for controlling fuel injection and fuel injection system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159372A (en) * 1997-11-25 1999-06-15 Toyota Motor Corp Injection control device for accumulator multiple cylinder engine
WO1999047802A1 (en) * 1998-03-16 1999-09-23 Siemens Aktiengesellschaft Method for determining the injection time in a direct injection internal combustion engine
JP4122615B2 (en) * 1999-02-24 2008-07-23 トヨタ自動車株式会社 Fuel pressure control system for high-pressure fuel injection system
DE19908678C5 (en) * 1999-02-26 2006-12-07 Robert Bosch Gmbh Control of a direct injection fuel internal combustion engine of a motor vehicle, in particular during startup operation
EP1163440B1 (en) 1999-03-18 2005-10-05 Delphi Technologies, Inc. Fuel injector
DE10018050C2 (en) * 2000-04-12 2002-06-13 Bosch Gmbh Robert Method for operating an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03054370A1 *

Also Published As

Publication number Publication date
FR2833654B1 (en) 2004-02-20
FR2833654A1 (en) 2003-06-20
WO2003054370A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
FR2791735A1 (en) FUEL SUPPLY SYSTEM FOR A DIRECT INJECTION GASOLINE ENGINE
CH622062A5 (en)
FR2869651A1 (en) INJECTOR HAVING A STRUCTURE FOR CONTROLLING AN INJECTION NEEDLE
FR2704600A1 (en) Fuel injection system for a heat engine.
FR2833040A1 (en) System for controlling an automotive IC engine, includes compressing the fuel with first pump to a determined threshold temperature/pressure relationship, upstream of the second fuel pump
FR2901323A1 (en) COMMON RAIL INJECTION SYSTEM
WO2006100370A2 (en) Device for accelerating a turbocharging unit at low speeds of a reciprocating engine and reciprocating engine comprising same
FR2768775A1 (en) INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR CONTROLLING SUCH AN INJECTION SYSTEM
FR2878291A1 (en) High pressure fuel pump rate controlling method for internal combustion engine, involves flowing back fuel quantity sucked in pressure chamber into high pressure fuel pipe while piston moves from bottom dead center to top dead center
FR2482669A2 (en) IMPROVEMENT TO INJECTION PUMP FOR INTERNAL COMBUSTION ENGINE
FR2865776A1 (en) Fuel injection system for internal combustion engine, has shock absorbing chamber delimited outside radially by sleeve provided in hydraulic chamber, where sleeve is guided on shock absorbing piston
FR2816669A1 (en) PRESSURE-CONTROLLED INJECTOR WITH A STROKE-BASED INJECTION CURVE
FR2828525A1 (en) CONTROL METHOD AND FUEL SUPPLY SYSTEM FOR AN INTERNAL COMBUSTION ENGINE IN PARTICULAR WITH DIRECT INJECTION AND CONTROL AND REGULATING APPARATUS FOR IMPLEMENTING IT
WO2003054370A1 (en) Injector control method
FR2539818A1 (en) FUEL INJECTOR
FR2694339A1 (en) Company known as: ROBERT BOSCH GMBH.
FR2828526A1 (en) Method for feeding fuel to internal combustion engine, comprises control of relative opening duration of main fuel pump entry valve hydraulically by modifying pressure on control surface
FR2520808A1 (en) PROCESS FOR FORMING A MIXTURE FOR COMPRESSION INTERNAL COMBUSTION ENGINES OF THE MIXTURE, AND FUEL SUPPLY INSTALLATION FOR CARRYING OUT SAID METHOD
FR2738295A1 (en) FUEL INJECTION SYSTEM IN AN INTERNAL COMBUSTION ENGINE
EP0458670B1 (en) Method of pneumatic fuel injection in a two-stroke engine and such a two-stroke engine
FR2841940A1 (en) Control method for fuel injector consists of causing short valve openings with excitation frequency to create oscillatory pressure in fuel supply tube and starting injection when tube pressure is less than source pressure
FR2811022A1 (en) PRESSURE CONTROLLED COMMON RAMP INJECTOR CONTROL PARTS
FR2584458A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
EP1614894B1 (en) Common-Rail Fuel Injection System with Pressure Wave Damping Means
FR2811379A1 (en) Fuel injector for IC engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080429