EP1459365A2 - Method for the production of iii-v laser components - Google Patents

Method for the production of iii-v laser components

Info

Publication number
EP1459365A2
EP1459365A2 EP02805280A EP02805280A EP1459365A2 EP 1459365 A2 EP1459365 A2 EP 1459365A2 EP 02805280 A EP02805280 A EP 02805280A EP 02805280 A EP02805280 A EP 02805280A EP 1459365 A2 EP1459365 A2 EP 1459365A2
Authority
EP
European Patent Office
Prior art keywords
iii
layer
substrate
deposited
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02805280A
Other languages
German (de)
French (fr)
Inventor
Holger JÜRGENSEN
Alois Krost
Armin Dadgar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10206750A external-priority patent/DE10206750A1/en
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP1459365A2 publication Critical patent/EP1459365A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates

Definitions

  • the invention relates to a method for producing III-V laser components, a III-V semiconductor layer being formed on a silicon substrate in a process chamber of a reactor from gaseous starting materials, for example trimethyl gallium, trimethyl indium, trimethyl aluminum, phosphine or arsine. For example, gallium nitride is deposited.
  • III-nitride semiconductors on foreign substrates such as Sapphire, silicon carbide or silicon is inexpensive because this substrate material is less expensive than III-V substrate material.
  • the lattice mismatch of the layer on the substrate is problematic.
  • gallium nitride grows rotated by 30 ° to the sapphire and thus reduces part of the lattice mismatch. Due to this twisted growth, there is no common direction of fracture or splitting of the layer relative to the substrate.
  • the break line generally runs along the break line or split line of the substrate, because it is considerably thicker than the layer deposited thereon.
  • the invention has for its object to provide an inexpensive method to produce high quality lasers.
  • the object is achieved by the invention specified in the claims, the main focus being on first depositing an aluminum-containing buffer layer onto a Si substrate, in particular an Si (III) substrate. This is done using MOCVD.
  • This buffer layer can consist of aluminum nitride and can be 20 to 100 ran thick.
  • the active III-V layer, preferably a III-nitride layer and particularly preferably a gallium nitride layer or a sequence of such layers for component layers is then deposited onto this buffer layer in the same reactor, preferably without further intermediate steps, in such a way that the lattice plane of the Layer runs parallel to the splitting direction of the substrate.
  • the break When the substrate is broken, the break then takes place along a crystallographically suitable surface.
  • the break occurs essentially along a plane.
  • the fracture or gap lines of the Si (III) substrate can then be selected so that plane-parallel layer fracture surfaces are created. These layer fracture areas then form the laser facets.
  • the laser facets thus result from only breaking or splitting. This is possible because the crystallographic fracture direction of the silicon substrate and the gallium nitride-based structure coincide.
  • the aluminum-containing germ layer is essential. With a seed layer of this type, it is even possible to deposit gallium nitride adapted to the direction of fracture on Si (001). The only problem here is the lack of a common crystal symmetry.
  • electrically active layers can be deposited onto the layer sequence described above. It is essential, however, that the hexagonal crystal of gallium nitride is deposited on the cubic crystal lattice of silicon with a corresponding crystal orientation in such a way that the natural fracture directions of the two crystals are in the plane coincide in such a way that only breaking the substrate along the natural break lines creates plane-parallel laser facets.

Abstract

The invention relates to a method for the production of III-V laser components, whereby a III-V semiconductor layer is deposited on a silicon substrate in a process chamber of a reactor from a gaseous starting material. According to the invention, an economical method for the production of qualitatively high-grade laser may be achieved, whereby, firstly, an Al-containing buffer layer is deposited on the Si substrate, in particular a Si(III) substrate, on which the III-V semiconductor layer, in particular, GaN layer is then deposited such that the lattice plane thereof runs parallel to the cleavage direction of the substrate, whereby, on cleaving the substrate plane-parallel layer, cleavage surfaces are formed.

Description

Verfahren zum Herstellen von Ill-V-LaserbauelementenProcess for the manufacture of Ill-V laser components
Die Erfindung betrifft ein Verfahren zum Herstellen von III-V- Laserbauelementen, wobei in einer Prozesskammer eines Reaktors aus gasf ör- migen Ausgangsstoffen, bspw. Trimethylgallium, Trimethylindium, Trimethy- laluminium, Phosphin oder Arsin auf einem Siliziumsubstrat eine III- V- Halbleiterschicht, bspw. Galliumnitrid abgeschieden wird.The invention relates to a method for producing III-V laser components, a III-V semiconductor layer being formed on a silicon substrate in a process chamber of a reactor from gaseous starting materials, for example trimethyl gallium, trimethyl indium, trimethyl aluminum, phosphine or arsine. For example, gallium nitride is deposited.
Die Abscheidung von III-Nitridhalbleitern auf Fremdsubstraten wie z.B. Saphir, Siliziumcarbit oder Silizium ist kostengünstig, da dieses Substratmaterial preisgünstiger ist, als III-V-Substratmaterial. Problematisch ist dabei allerdings die Gitterfehlanpassung der Schicht auf dem Substrat. Durch geeignete Wahl des Substratmaterials zum Schichtmaterial kann hier eine Anpassung stattfinden, so wächst bspw. Galliumnitrid um 30° verdreht zum Saphir und baut so einen Teil der Gitterfehlanpassung ab. Durch dieses verdrehte Wachstum fehlt aber eine gemeinsame Bruch- bzw. Spaltrichtung der Schicht zum Substrat. Die Bruchlinie verläuft in der Regel entlang der Bruchlinie bzw. Spaltlinie des Substrates, weil dieses erheblich dicker ist, als die darauf abgeschiedene Schicht. Im zuvor beschriebenen Fall führt dies zu einer rauen Laserfacette, die nachgearbeitet werden muss. Auch bei einer bspw. nass-chemischen Nachbehandlung entstehen bei derartig gefertigten Laserspiegeln ungewünschte Verluste. Die Rauig- keit der Laserspiegel oder nicht exakt ausgerichtete Facetten, führen zu Verlusten und bedingen dadurch einen hohen Schwellstrom verbunden mit einer erhöhten thermischen Belastung beim späteren Bauelement.The deposition of III-nitride semiconductors on foreign substrates such as Sapphire, silicon carbide or silicon is inexpensive because this substrate material is less expensive than III-V substrate material. However, the lattice mismatch of the layer on the substrate is problematic. By a suitable choice of the substrate material to the layer material an adaptation can take place here, for example gallium nitride grows rotated by 30 ° to the sapphire and thus reduces part of the lattice mismatch. Due to this twisted growth, there is no common direction of fracture or splitting of the layer relative to the substrate. The break line generally runs along the break line or split line of the substrate, because it is considerably thicker than the layer deposited thereon. In the case described above, this leads to a rough laser facet that has to be reworked. Even with, for example, wet chemical aftertreatment, undesirable losses occur in the case of laser mirrors produced in this way. The roughness of the laser mirrors or facets that are not exactly aligned lead to losses and therefore cause a high threshold current combined with an increased thermal load on the later component.
Der Erfindung liegt die Aufgabe zugrunde, ein preisgünstiges Verfahren anzugeben, um qualitativ hochwertige Laser herzustellen. Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung, wobei im Wesentlichen darauf abgestellt wird, dass auf ein Si-Substrat, insbesondere ein Si(lll)-Substrat zunächst eine aluminiumhaltige Pufferschicht abgeschieden wird. Dies erfolgt mittels MOCVD. Diese Pufferschicht kann aus Aluminiumnitrid bestehen und 20 bis 100 ran dick sein. Auf diese Pufferschicht wird sodann im selben Reaktor, bevorzugt ohne weitere Zwischenschritte die aktive III-V-Schicht, bevorzugt eine III-Nitrid-Schicht und besonders bevorzugt eine Galliumnitrid-Schicht bzw. eine Folge derartiger Schichten für Bauelementeschichten derart abgeschieden, dass die Gitterebene der Schicht parallel ver- läuft zur Spaltrichtung des Substrates. Beim Brechen des Substrates erfolgt der Bruch dann entlang einer kristallographisch geeigneten Fläche. Der Bruch erfolgt im Wesentlichen entlang einer Ebene. Es lassen sich dann die Bruch- bzw. Spaltlinien des Si(lll)-Substrates so wählen, dass planparallele Schichtbruchflächen entstehen. Diese Schichtbruchflächen bilden dann die Laserfacetten aus. Die Laserfacetten entstehen somit durch ledigliches Brechen bzw. Spalten. Dies ist dadurch möglich, dass die kristallographische Bruchrichtung des Siliziumsubstrates und der galliumnitridbasierten Struktur zusammenfallen.The invention has for its object to provide an inexpensive method to produce high quality lasers. The object is achieved by the invention specified in the claims, the main focus being on first depositing an aluminum-containing buffer layer onto a Si substrate, in particular an Si (III) substrate. This is done using MOCVD. This buffer layer can consist of aluminum nitride and can be 20 to 100 ran thick. The active III-V layer, preferably a III-nitride layer and particularly preferably a gallium nitride layer or a sequence of such layers for component layers is then deposited onto this buffer layer in the same reactor, preferably without further intermediate steps, in such a way that the lattice plane of the Layer runs parallel to the splitting direction of the substrate. When the substrate is broken, the break then takes place along a crystallographically suitable surface. The break occurs essentially along a plane. The fracture or gap lines of the Si (III) substrate can then be selected so that plane-parallel layer fracture surfaces are created. These layer fracture areas then form the laser facets. The laser facets thus result from only breaking or splitting. This is possible because the crystallographic fracture direction of the silicon substrate and the gallium nitride-based structure coincide.
Wesentlich ist die aluminiumhaltige Keimschicht. Mit einer derartigen Keim- schicht lässt sich sogar bruchrichtungsangepasstes Galliumnitrid auf Si (001) abscheiden. Problematisch ist hier lediglich das Fehlen einer gemeinsamen Kristallsymmetrie.The aluminum-containing germ layer is essential. With a seed layer of this type, it is even possible to deposit gallium nitride adapted to the direction of fracture on Si (001). The only problem here is the lack of a common crystal symmetry.
Auf die zuvor beschriebene Schichtenfolge können bedarfsweise weitere, insbe- sondere elektrisch aktive Schichten abgeschieden werden. Wesentlich ist aber, dass auf das kubische Kristallgitter des Siliziums bei einer entsprechenden Kristallorientierung das hexagonale Kristall von Galliumnitrid derart abgeschieden wird, dass die natürlichen Bruchrichtungen der beiden Kristalle in der Ebene derart zusammenfallen, dass durch ledigliches Brechen des Substrates entlang der natürlichen Bruchlinien planparallele Laserfacetten entstehen.If necessary, further, in particular electrically active layers can be deposited onto the layer sequence described above. It is essential, however, that the hexagonal crystal of gallium nitride is deposited on the cubic crystal lattice of silicon with a corresponding crystal orientation in such a way that the natural fracture directions of the two crystals are in the plane coincide in such a way that only breaking the substrate along the natural break lines creates plane-parallel laser facets.
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen. All of the features disclosed are (in themselves) essential to the invention. The disclosure content of the associated / attached priority documents (copy of the prior application) is hereby also included in full in the disclosure of the application, also for the purpose of including features of these documents in claims of the present application.

Claims

ANSPRUCHE EXPECTATIONS
1. Verfahren zum Herstellen von III-V-Laserbauelementen, wobei in einer Prozesskammer eines Reaktors aus gasförmigen Ausgangsstoffen auf einem Sili- ziumsubstrat eine III-V-Halbleiterschicht abgeschieden wird, dadurch gekennzeichnet, dass auf das Si-Substrat, insbesondere Si(lll)-Substrat zunächst eine Al-haltige Pufferschicht abgeschieden wird, auf welche dann die III-V-Halbleiterschicht, insbesondere GaN-Schicht derart abgeschieden wird, dass ihre Gitterebene parallel zur Spaltrichtung des Substrates verläuft, so dass sich beim Spalten des Substrates planparallele Schichtbruchflächen ausbilden.1. A method for producing III-V laser components, a III-V semiconductor layer being deposited on a silicon substrate in a process chamber of a reactor from gaseous starting materials, characterized in that on the Si substrate, in particular Si (III) An Al-containing buffer layer is first deposited onto which the III-V semiconductor layer, in particular GaN layer, is then deposited in such a way that its lattice plane runs parallel to the splitting direction of the substrate, so that plane-parallel layer fracture surfaces form when the substrate is split.
2. Verfahren nach Anspruch 1 oder insbesondere danach, dadurch gekennzeichnet, dass die Pufferschicht aus A1N oder A1N unter Zusatz eines oder mehreren weiteren Elemente der Gruppe III oder V besteht.2. The method according to claim 1 or in particular according thereto, characterized in that the buffer layer consists of A1N or A1N with the addition of one or more further elements of group III or V.
3. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Pufferschicht eine III-V-Halbleiterschicht und zwischen 20 und 100 nm dick ist.3. The method according to one or more of the preceding claims or in particular according thereto, characterized in that the buffer layer is a III-V semiconductor layer and between 20 and 100 nm thick.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass auf die, insbesondere Galliumnitrid-Schicht, weitere, insbesondere aktive Schichten abgeschieden werden.4. The method according to one or more of the preceding claims or in particular according thereto, characterized in that further, in particular active layers are deposited on the, in particular gallium nitride layer.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Schichten im MOCVD-Verfahren, im VPE- Verfahren oder im MBE- Verfahren abgeschieden werden. 5. The method according to one or more of the preceding claims or in particular according thereto, characterized in that the layers are deposited in the MOCVD process, in the VPE process or in the MBE process.
6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesonder danach, dadurch gekennzeichnet, dass auf der Pufferschicht Bauelementeschichtenf olgen abgeschieden werden.6. The method according to one or more of the preceding claims or in particular according thereto, characterized in that component layer layers are deposited on the buffer layer.
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass aus den Bauelemente- schichtenfolgen Bauelemente gefertigt werden. 7. The method according to one or more of the preceding claims or in particular according thereto, characterized in that components are manufactured from the component layer sequences.
EP02805280A 2001-12-21 2002-11-15 Method for the production of iii-v laser components Withdrawn EP1459365A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10163714 2001-12-21
DE10163714 2001-12-21
DE10206750 2002-02-19
DE10206750A DE10206750A1 (en) 2001-12-21 2002-02-19 Process for the manufacture of III-V laser components
PCT/EP2002/012799 WO2003054921A2 (en) 2001-12-21 2002-11-15 Method for the production of iii-v laser components

Publications (1)

Publication Number Publication Date
EP1459365A2 true EP1459365A2 (en) 2004-09-22

Family

ID=26010857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805280A Withdrawn EP1459365A2 (en) 2001-12-21 2002-11-15 Method for the production of iii-v laser components

Country Status (5)

Country Link
US (1) US20050025909A1 (en)
EP (1) EP1459365A2 (en)
JP (1) JP2005513797A (en)
AU (1) AU2002356608A1 (en)
WO (1) WO2003054921A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11308477B2 (en) 2005-04-26 2022-04-19 Spriv Llc Method of reducing fraud in on-line transactions
US11354667B2 (en) 2007-05-29 2022-06-07 Spriv Llc Method for internet user authentication
US11792314B2 (en) 2010-03-28 2023-10-17 Spriv Llc Methods for acquiring an internet user's consent to be located and for authenticating the location information
US11818287B2 (en) 2017-10-19 2023-11-14 Spriv Llc Method and system for monitoring and validating electronic transactions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362503B2 (en) * 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
US7825432B2 (en) 2007-03-09 2010-11-02 Cree, Inc. Nitride semiconductor structures with interlayer structures
DE102009051520B4 (en) 2009-10-31 2016-11-03 X-Fab Semiconductor Foundries Ag Process for the production of silicon semiconductor wafers with layer structures for the integration of III-V semiconductor devices
US9595805B2 (en) 2014-09-22 2017-03-14 International Business Machines Corporation III-V photonic integrated circuits on silicon substrate
US9395489B2 (en) 2014-10-08 2016-07-19 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material
US9344200B2 (en) 2014-10-08 2016-05-17 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0174303B1 (en) * 1994-06-24 1999-02-01 가나이 쯔또무 Semiconductor device and method of manufacturing the same
JP3557011B2 (en) * 1995-03-30 2004-08-25 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP3036495B2 (en) * 1997-11-07 2000-04-24 豊田合成株式会社 Method for manufacturing gallium nitride-based compound semiconductor
WO2001043174A2 (en) * 1999-12-13 2001-06-14 North Carolina State University Fabrication of gallium nitride layers on textured silicon substrates
FR2810159B1 (en) * 2000-06-09 2005-04-08 Centre Nat Rech Scient THICK LAYER OF GALLIUM NITRIDE OR MIXED NITRIDE OF GALLIUM AND ANOTHER METAL, PROCESS FOR PREPARING THE SAME, AND ELECTRONIC OR OPTOELECTRONIC DEVICE COMPRISING SUCH A LAYER
US6649287B2 (en) * 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
JP3763753B2 (en) * 2001-06-05 2006-04-05 豊田合成株式会社 Group III nitride compound semiconductor device and method for manufacturing the same
JP2003152220A (en) * 2001-11-15 2003-05-23 Sharp Corp Manufacturing method for semiconductor light emitting element and the semiconductor light emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03054921A2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11308477B2 (en) 2005-04-26 2022-04-19 Spriv Llc Method of reducing fraud in on-line transactions
US11354667B2 (en) 2007-05-29 2022-06-07 Spriv Llc Method for internet user authentication
US11556932B2 (en) 2007-05-29 2023-01-17 Spriv Llc System for user authentication
US11792314B2 (en) 2010-03-28 2023-10-17 Spriv Llc Methods for acquiring an internet user's consent to be located and for authenticating the location information
US11818287B2 (en) 2017-10-19 2023-11-14 Spriv Llc Method and system for monitoring and validating electronic transactions

Also Published As

Publication number Publication date
AU2002356608A8 (en) 2003-07-09
WO2003054921A3 (en) 2003-12-24
WO2003054921B1 (en) 2004-03-04
US20050025909A1 (en) 2005-02-03
AU2002356608A1 (en) 2003-07-09
WO2003054921A2 (en) 2003-07-03
JP2005513797A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US8383493B2 (en) Production of semiconductor devices
US9129977B2 (en) Method of controlling stress in group-III nitride films deposited on substrates
KR100401898B1 (en) Base substrate for crystal growth and manufacturing method of substrate by using the same
US8039869B2 (en) Gallium nitride device substrate containing a lattice parameter altering element
JP4735949B2 (en) Method for producing group III-V nitride semiconductor crystal and method for producing group III-V nitride semiconductor substrate
EP1908099B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
JP3821232B2 (en) Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
EP1232520A1 (en) Pendeoepitaxial growth of gallium nitride layers on sapphire substrates
US6967355B2 (en) Group III-nitride on Si using epitaxial BP buffer layer
DE10320160A1 (en) Production of semiconductor bodies for e.g. optoelectronic components comprises forming a mask layer on the substrate or on an initial layer having windows to the substrate, back-etching, and further processing
EP1459365A2 (en) Method for the production of iii-v laser components
JPH11274079A (en) Semiconductor device and manufacture thereof
DE10206750A1 (en) Process for the manufacture of III-V laser components
WO2011032546A1 (en) Semi-polar, wurtzite-type, group iii nitride based semiconductor layers and semiconductor components based thereon
US20150115277A1 (en) Episubstrates for Selective Area Growth of Group III-V Material and a Method for Fabricating a Group III-V Material on a Silicon Substrate
JPH088185A (en) Multilayer structure and growth method of gan-based compound semiconductor thin film
GB2470097A (en) Epitaxial overgrowth
Liliental-Weber TEM studies of GaN layers grown in non-polar direction: Laterally overgrown and pendeo-epitaxial layers
KR101094409B1 (en) Preparation of single crystalline gallium nitride thick film
DE20122426U1 (en) Production of a planar tear-free light emitter structure comprises applying an aluminum-containing group III-V seed layer, aluminum-containing group III-V intermediate layers, and silicon nitride intermediate layers on a silicon substrate
DE102012204551A1 (en) Preparing template comprising substrate and crystal layer made of e.g. aluminum nitride, comprises e.g. performing crystal growth of material on substrate at crystal growth temperature, changing to second temperature and continuing growth
Bhattacharyya et al. A Strategic Review of Reduction of Dislocation Density at the Heterogenious Junction of GAN Epilayer on Foreign Substrate
Layers 10 Defects Formed in Nonpolar GaN Grown on SiC and Al2O3 and their Reduction in Pendeo-epitaxial and Laterally Overgrown GaN Layers Zuzanna Liliental-Weber and Dmitri Nikdaj Zakharov

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040522

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DADGAR, ARMIN

Inventor name: KROST, ALOIS

Inventor name: JUERGENSEN, HOLGER

17Q First examination report despatched

Effective date: 20070131

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070612