EP1459347B1 - Vacuum tube and method of manufacturing thereof - Google Patents

Vacuum tube and method of manufacturing thereof Download PDF

Info

Publication number
EP1459347B1
EP1459347B1 EP02796902A EP02796902A EP1459347B1 EP 1459347 B1 EP1459347 B1 EP 1459347B1 EP 02796902 A EP02796902 A EP 02796902A EP 02796902 A EP02796902 A EP 02796902A EP 1459347 B1 EP1459347 B1 EP 1459347B1
Authority
EP
European Patent Office
Prior art keywords
ceramic
electrode
tube
conductive
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02796902A
Other languages
German (de)
French (fr)
Other versions
EP1459347A2 (en
Inventor
Pascal Thales Intellectual Property PONARD
Marc Thales Intellectual Property FERRATO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1459347A2 publication Critical patent/EP1459347A2/en
Application granted granted Critical
Publication of EP1459347B1 publication Critical patent/EP1459347B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the invention relates to a method for manufacturing electrodes, designed mainly for producing vacuum electronic tubes, and in particular tubes using an electron collector; the collector collects the electrons after using a fraction of the energy that has been communicated to them by an acceleration electric field created in the vacuum tube.
  • This manufacturing method is usable for producing other electrodes than electronic tube collectors. More generally it is applicable to the production of electrodes of all kinds of total or partial vacuum devices involving in this vacuum a physical transport of charged elementary particles (electrons but also ions) which can be accelerated, slowed down or collected by electrodes of the device. The method will however be described in connection with the most interesting application which is the embodiment of the collector of a linear beam vacuum tube.
  • linear beam tubes examples include mono or multibeam klystrons, traveling wave tubes, carcinotrons, inductive output tubes (IOTs).
  • IOTs inductive output tubes
  • These tubes generally work by interacting, in an area called interaction zone, an electromagnetic wave and a linear electron beam, the beam communicating a portion of its kinetic energy to the electromagnetic wave to amplify it.
  • the beam still retains a portion of its kinetic energy after passing through the interaction zone and the residual electrons must be collected in a collector placed at the exit of the interaction zone.
  • the kinetic energy remaining downstream of the interaction zone can reach 50% to 80% of the energy initially transmitted to the beam upstream of this zone. This results in strong constraints for the construction of the collector, in terms of heat dissipation; this results in strong constraints for the construction of the collector, in terms of heat dissipation; there are also other constraints, such as voltage withstand, etc.
  • the collector consisted of a simple metal electrode, usually copper, brought to a suitable potential (most often that of the anode which was used to accelerate the electrons).
  • a suitable potential most often that of the anode which was used to accelerate the electrons.
  • mono or multi-stage depressed collectors consisting of several successive electrodes carried at different potentials and thus electrically insulated from each other, have been made.
  • the problems are particularly delicate for the realization of a multi-stage collector, but it will be understood that they may also exist for insulated electrodes for which it is also necessary to provide on the one hand an electrical insulation relative to the rest of the tube, on the other hand a supply voltage or current, and finally an evacuation of the heat produced.
  • JP-61214327 describes a vacuum tube according to claim 1.
  • the present invention is intended to achieve an improved construction tube in terms of the ratio between the performance obtained and the manufacturing cost.
  • the invention proposes firstly a vacuum tube according to claim 1 and secondly a method of manufacturing such a tube according to claim 8.
  • these electrodes of the vacuum tube according to the invention is that they are made in the form of ceramic blocks and not metal blocks.
  • Ceramics are refractory mineral compounds such as metal oxides, metal nitrides, metal carbides, treated by sintering, that is to say by agglomeration under high temperature (and possibly under pressure) of a powder of the compound or of a paste of the compound (the paste being a powder mixed with an organic binder, the latter disappearing during the agglomeration operation).
  • Some ceramics are electrically insulating, others are conductive, depending on the nature of the mineral compounds that compose it. In a mixture of insulating compounds and electrically conductive compounds, ceramics can also have intermediate conductivities.
  • the electrode is thus made in this case in the form of a composite ceramic block (with two different compositions, one conductive the other insulating but both ceramic) and not in the form of a brazing of an electrode metal (copper) on an insulating ceramic (alumina) as could be done in the prior art.
  • Ceramic with a high thermal conductivity means a ceramic with a thermal conductivity of at least 100 watts / m ° K at 20 ° C, which is about a quarter of the conductivity of copper, but about three times at least the conductivity of the alumina.
  • the electrode thus made of ceramic may participate directly in the vacuum seal of the tube if it directly constitutes a part of the wall of the tube casing. But it can also be cofrittée with another insulating ceramic constituting (partially or completely) the sealed envelope of the tube.
  • the electrodes are ceramic blocks (at least superficially electrically conductive) inserted in an insulating ceramic sheath and co-sealed with this sheath. The sleeve then constitutes the vacuum-tight envelope of the tube.
  • a conductive ceramic pin will also preferably be used; this pin is in contact on one side with a conductive ceramic portion of the electrode, inside the tube; and it passes through an insulating ceramic forming part of the electrode and / or the jacket of the tube, and co-sealed with this insulating ceramic.
  • the vacuum tightness of these conductive vias is excellent because on the one hand the bond obtained by high temperature heat treatment is strong and on the other hand the alloy materials exhibit similar thermomechanical behavior. This is particularly true when the crossing is made by coiling ceramics.
  • the bushings can, however, also be made of refractory metal co-sealed with the ceramic during sintering thereof.
  • this electrode embodiment in the form of a ceramic block which is highly heat-conductive, it is possible to adopt tube arrangements which are particularly effective from the point of view of the heat dissipation, the insulation between the electrodes, the compactness of the tube, its weight, provisions that could not be adopted with conventional metal electrodes or with conventionally soldered ceramic / metal assemblies.
  • the conductive ceramic made in a thin layer may in particular be silicon carbide, or titanium carbide, or tungsten carbide, or titanium nitride, or a mixture of two or more of these materials. It may also include additions of compounds facilitating sintering, such as for example yttrium oxide, the presence of additions being conventional in the sintering of ceramics.
  • the ceramic used to make an insulating ceramic block forming part of the electrode or the jacket of the tube is preferably essentially based on aluminum nitride, which has very good thermal conduction properties (about 180 watts / mK at 20 ° C) and very good dielectric strength (withstand at electric fields of at least 20 kV / mm). It can be made of almost pure aluminum nitride or composite ceramic comprising aluminum nitride co-cured with carbide silicon or titanium nitride in low proportion in the aluminum nitride. Sinter additions can also be present.
  • the invention is applicable to vacuum tubes (total or partial vacuum).
  • the main application is the application to electron tubes, that is to say tubes in which the charged particles that are transported are electrons (and in this case the vacuum is usually very high).
  • Another possible application is a device (also referred to as the "tube” for simplification) in which the particles transported are not electrons but ions.
  • the invention can be applied to the production of acceleration electrodes of an ionic propellant; an ion thruster is a motor intended to act to move an object in a vacuum (for a satellite or a spaceship); it produces continuously, when operating, a plasma of charged ions which are accelerated under partial vacuum by an electric field (thanks to electrodes) and ejected through a nozzle.
  • the ejection acts as a conventional jet propellant, with the difference that the ejected material is ionic (charged) and is ejected by an acceleration by an electric field acting directly on the ions because of their charge.
  • the term "tube” includes all electrode devices using the transport of charged particles in a total vacuum (that is to say very high ) or partial (less advanced), whether the tube is closed or partially open (as in the case of a thruster).
  • the invention will be described with regard to the embodiment of the collector of a multi-stage depressed collector traveling wave tube, but it is applicable in many other cases: other vacuum electronic tubes than a TOP, non-depressed collector a single electrode, other electrodes than collector electrodes. But it is particularly interesting in the case of a multi-stage depressed collector and this is why this example was chosen to be described in detail. Similarly, with regard to the manufacturing method according to the invention, which will be described about the same traveling wave tube, it will be understood that it is applicable to the realization of a TOP collector as to the realization of other tube electrodes, with the overall meaning given above for the word tube.
  • a traveling wave tube (TOP in French abbreviation, TWT in English abbreviation) is a vacuum tube comprising a cathode emitting a linear electron beam (focused by permanent magnets), and, successively from upstream downstream in the direction of travel of the electrons: an anode of acceleration of these electrons; a radiofrequency signal input receiving a radio frequency signal to be amplified, this input being connected to the input of a slowing structure which is for example a helix surrounding the electron beam; an output of the deceleration structure, constituting the output of the TOP, providing a radiofrequency signal; and a collector for collecting the electrons from the beam downstream of the deceleration structure.
  • TOP traveling wave tube
  • the collector is typically a multi-stage depressed collector, i.e., several electrodes with different potentials and insulated from each other by electrically insulating parts.
  • the potentials are chosen so that the electrons have a certain energy if possible reach the electrode which is at a potential corresponding substantially to this energy. In this way we obtain a good performance of the tube, but this requires providing a connection of several electrodes to the outside of the tube.
  • the envelope comprises insulating parts and possibly also conductive parts.
  • electrodes or insulators between electrodes can themselves be part of the sealed envelope and thus ensure themselves a vacuum seal.
  • Welds or solders between elements, for example between a metal electrode and an insulating ceramic also participate in this seal.
  • an electrode is located completely inside the envelope (that is to say, it does not constitute a part of the outer envelope and is therefore not accessible directly from the outside ), it is generally necessary, to connect it to the outside, to provide a conductive crossing, through an insulating portion of the casing, to connect the casing to an outer pin.
  • the figure 1 represents an embodiment of a multi-stage depressed sink with internal isolation of the prior art, which will better understand the differences brought by the invention in the overall construction of the collector.
  • the collector of generally cylindrical shape, comprises in this example three massive copper electrodes E1, E2, E3 having conical shapes whose apex, open for the first two electrodes and closed for the last, is turned towards the arrival side. electrons (left on the figure 1 ). Electrodes E1 and E2 also comprise a cylindrical portion sandwiched by insulating ceramic bars (or plates) 10, themselves enclosed in an outer metal shell ENV constituting both an electromagnetic protective cover and a vacuum-tight envelope.
  • the insulating ceramic is generally alumina for low powers to dissipate and beryllium oxide BeO at higher powers.
  • the collector is closed on the right by an assembly of insulating parts and conductive parts brazed together, also performing vacuum sealing.
  • Conductive vias are provided to connect the electrodes E1, E2, E3 to the outside. These bushings comprise a conductor 12, 13 or 14 surrounded by insulating ceramic 16, 17 or 18. In the example of the figure 1 , the ceramic bars 10 surrounding the electrodes E1 and E2 also serve to pass a conductor of the electrode E1 to the bottom of the collector, to the conductive passage 12, isolating the conductor of the electrode E2 and the outer envelope ENV.
  • the figure 2 represents another example of a TOP collector embodiment in which the electrodes are less massive than on the figure 1 : they are thin copper revolution cores brazed over their entire cylindrical periphery inside a ceramic sleeve 20; the holding of this structure to thermal stresses is possible only if the thinness of the electrodes makes it possible to accommodate the differential expansions without excessive stress.
  • the ceramic sleeve is again surrounded by another metal sleeve 22 serving as an electromagnetic protection cover. Vacuum tightness is achieved by both metal parts and insulating ceramic parts.
  • conductive vias 24 may be provided radially through the insulating sleeves for the connection of the electrode E1 with the outside of the vacuum tube.
  • a metal conductor such as brazed nickel is used on the internal electrode E1. Vacuum tightness is provided by brazing on the ceramic sleeve.
  • the electrode itself has been taken out of the bottom of the tube to the outside, and this electrode E2 therefore itself participates directly in the vacuum seal.
  • the E3 electrode a complex assembly of metal, insulating ceramic and conducting bushing must be provided to ensure the connection with the outside by the bottom of the tube.
  • the figure 3 represents the general principle of tube construction according to the invention with a collector whose particularity is that at least some of the electrodes (but preferably all) are made mainly of ceramic: they each consist of a ceramic block (similar to copper blocks from the figure 1 ); this ceramic is at least superficially conductive (to perform the function of electrode collecting electrons); this ceramic has very good thermal conduction properties to evacuate the heat generated by the impact of electrons.
  • each electrode consists of a thin layer of conductive ceramic sintered on the surface of an insulating ceramic.
  • it is the electrically insulating ceramic which must have very good thermal conduction properties.
  • the preferred construction of the collector is as follows: the ceramic blocks constituting the different electrodes are placed in contact with the inner periphery of an insulating ceramic sheath.
  • Conductive vias are preferably provided in this sleeve to provide the electrical connection between the outside of the tube and the conductive portion of at least some of the ceramic electrodes.
  • the electrodes, the insulating sheath and the conductive vias are preferably made integral in a single heat treatment operation (cofritting) or else several successive heat treatments which ensure a strong bond and therefore a seal of the inside of the vacuum tube. .
  • FIG. 3 there is shown a collector with four electrodes which are respectively, following the direction of displacement of the electrons, a first electrode 30, a second electrode 40, a third electrode 50, and a final electrode 60.
  • the first three electrodes are pierced axially at their center to let the electron beam through, with apertures (respectively 31, 41, 51) becoming larger to take account of the increasing divergence of the beam downstream.
  • the final electrode 60 is not pierced.
  • the electrodes are made of electrically conductive ceramic in certain areas, in area, and electrically insulating in the mass.
  • the ceramic may be conductive over its entire surface or only in areas drawn in a pattern that depends of course on the general design of the tube, the rest of the electrode being constituted by an insulating ceramic block.
  • the four electrodes are preferably mounted in a cylindrical sleeve 70 of electrically insulating ceramic and strongly conductor of heat.
  • This cylindrical sheath 70 constitutes the outer casing of the tube and it is preferably provided with radial fins 80 facilitating the evacuation of heat generated in operation from inside the tube.
  • This sleeve 70 may, like the electrodes 30, 40, 50, 60, have a locally conductive surface, both inside and outside the tube. In practice, it will be seen that the sheath may constitute an electrode with the same potential (its inner surface only) as the electrode 50.
  • the bottom of the tube on the right of the figure 3 , can be completely constituted by the mass of the final electrode 60, especially if it is conductive only in its inner surface portion to the tube.
  • each electrode has not been detailed. However, to illustrate the principle of the invention, there is shown by a dashed line 90, along the inner wall of the sleeve 70 and along a portion of the electrode 50, a surface area which is conductive.
  • the electrical connection of the different electrodes with the outside, to ensure the passage of currents or bias voltages, is carried out in the following manner: for the electrode 30, a radial conductive passage is provided through the cylindrical insulating sleeve 70.
  • the bushing comprises a conductive rod 32 which passes through a bore in the electrode 30 and a corresponding bore in the sleeve 70.
  • the conductive rod 32 is preferably made of conducting ceramic, but it could also be made of refractory conductive metal such as tungsten. It comes into contact, inside the tube with a conductive zone of the first electrode 30.
  • the assembly is quite similar, with a radial conductive feedthrough comprising a conductive rod 42.
  • the third electrode 50 it would also have been possible to provide a conductive passage, but it has been provided in this example that the inner surface of the sleeve 70 is rendered conductive in the same manner as the conductive surface of the electrodes, that is, that is, preferably by cofiring a conductive ceramic on an insulating ceramic.
  • the conductive zone is represented by the dashed line 90 already mentioned. Conductive electrical continuity can thus be established from the electrode 50 to the outside of the tube, as shown in the line dashed 90 which starts from the electrode 50 and which goes beyond the electrode 60. The conductive portion outside the tube can then constitute an external connection of the third electrode 50. For this reason, it can be considered that the sheath itself constitutes an electrode, at the same potential as the electrode 50.
  • connection of the final electrode 60 with the outside can also be done by the bottom of the tube, or by direct contact with the ceramic if its outer face is conductive and in electrical conduction contact with its inner face to the tube or if it is entirely made of conductive ceramic, or by a conductive passage, with a rod 62, from the inner face of the electrode to the outside of the tube if only the ceramic surface inside the tube is conductive.
  • the passage passes in this case through the insulating ceramic block constituting the electrode 60 and not through the sleeve 70. It extends axially and not radially.
  • the entire collector is then formed of ceramics, some parts being electrically insulating ceramic but very good thermal conductivity, and other parts being electrically conductive ceramic and connected to conductive rods passing through the insulating ceramic.
  • a collector block is thus obtained whose parts have homogeneous thermomechanical properties.
  • the figure 4 represents in isolation the first electrode 30.
  • the electrode is superficially conductive over most of its surface, but not at its periphery. It will also be in contact at its periphery with the sheath 70.
  • the electrode is made by machining a raw paste of insulating ceramic.
  • the machined electrode is coated with a thin layer of green conductive ceramics 35 represented by a dashed line.
  • the delimitation of the conductive zone can be done either by masking the areas that must remain insulating, or by selective removal after uniform deposition on all surfaces.
  • the electrode 30 may be sintered before insertion into the sleeve 70, or inserted first into the sleeve 70 and then co-sealed with the sleeve. If it is sintered at the same time as the sleeve, the mechanical connection between the electrode and the sleeve will be all the more resistant and the thermal conductivity improved.
  • the conductive bushing for connecting the electrode to the sheath is made by providing a radial bore 36 into which the conductive rod 32 visible to the figure 3 ; this rod will preferably be placed in the bore before common sintering of the electrode and the sheath. It is in contact on one side with the conductive ceramic layer 35. The sintering ensures the adhesion of the surface conductive ceramic 35 with the insulating ceramic which forms the body of the electrode 30.
  • the figure 5 represents the second electrode 40 taken alone. It is constituted in principle in the same way as the first one, namely by sintering a green electrically insulating ceramic body having the shape of the desired electrode, partially coated with a thin layer of raw conducting ceramic 45.
  • a drilling 46 serves to pass a rod 42 for the establishment of the conductive bushing.
  • the figure 6 represents the third electrode 50 taken alone, constituting like the others with a local surface layer 55 of conductive ceramic, but no drilling in the case where there is no conductive bushing for its connection to the outside.
  • the figure 7 represents the fourth electrode 60 with its local surface conductive ceramic layer 65, and its bore 66 for a conductive bushing.
  • the figure 8 represents the cylindrical sleeve 70 taken alone, with its radial fins 80.
  • bores 72 and 73 in the sleeve which are opposite holes 36 and 46 of the first and the second electrode 30 and 40 when they are mounted in the sheath, to allow passage to the conductive rods 32 and 42.
  • the conductive rods pass through in this case not only the thickness of the blocks of insulating ceramic which constitute the electrodes 30 and 40, but also the thickness of the sleeve 70.
  • There are no fins at the holes 72 and 73 so that the conductive rods that will be placed in the holes are accessible.
  • the holes 72, 73, 36 and 46 serve at the same time to ensure the correct positioning of the ceramic electrodes in the sheath 70.
  • the various constituent elements of the collector can be made with the aid of conventional ceramic techniques.
  • the sleeve 70 with its fins 80 is preferably made, because it is cylindrical, by extrusion of a ceramic paste raw.
  • the fins may have a grooved surface (grooves also made during extrusion) to improve heat dissipation.
  • the shape of the sheath can be completed by other machining operations and drilling of the raw ceramic paste.
  • the electrodes are preferably made by extrusion and then machining these blocks to give them the desired shape (conical with an opening at the top and recesses facilitating their introduction into the sleeve).
  • the blocks of electrically insulating raw ceramic are coated with a slurry of electrically conductive ceramic raw. Alternatively, they could be coated with a conductive ink based on refractory metal (especially tungsten).
  • This arrangement makes it possible to limit the reflected electrons by creating an asymmetry of the electric field applied by the electrode thus formed while maintaining an axisymmetric electrode easy to manufacture.
  • the raw composite ceramic blocks coated with an electrically conductive layer are inserted into the sleeve, the rods of the conducting bushings are put in place, a conductive paste (ceramic or conductive tungsten ink) may be deposited, for example with a brush, on the ends of these rods to facilitate the electrical connection between these rods and the conductive surfaces of the electrodes.
  • a conductive paste ceramic or conductive tungsten ink
  • a conductive tungsten ink or a conductive ceramic paste may be deposited inside the sheath, with a brush and / or by dipping and / or by spraying or spraying, to produce the conductive surface represented by line 90 of the figure 3 .
  • a conductive film may also be deposited outside the sleeve (without establishing an electrical connection with the inner surfaces of the tube), to ensure the electromagnetic shielding of the collector.
  • the last electrode 60 which forms the bottom of the tube, is put in place, with its conducting rod 62, after these operations.
  • the set of electrodes, the sheath, and the conductive rods is cofired to result in the desired collector structure.
  • the figure 9 represents, in partially open view, the collector block thus produced.
  • all the electrodes and the sleeve are at least superficially conductive ceramic.
  • the preferred ceramic for all insulating parts is preferably based on aluminum nitride AlN (up to 100%).
  • the thermal conductivity of aluminum nitride is about 180 watts / mK.
  • Aluminum nitride can be mixed in a small proportion of silicon carbide SiC or titanium nitride TiN. Sintering additions in a small proportion (less than 10%) can be included in the raw ceramic paste to facilitate sintering or co-sintering with other ceramics.
  • the ceramic is preferably of titanium nitride TiN, but may also be titanium carbide TiC, tungsten carbide WC, silicon carbide SiC. These materials can be mixed with aluminum nitride.
  • the metal is preferably tungsten or molybdenum. Again sintering additions are advantageously provided, especially to facilitate the cofritting with aluminum nitride.
  • the particle size of the powders used to make the ceramics makes it possible to modify the texture of the conductive surface of the electrode, a controlled particle size of the order of one micrometer (0.5 to 2 micrometers) resulting in the formation of superficial microcavities tending to limit the secondary emission of electrons when the electrode is bombarded by electrons.
  • the conductive rods constituting the bushings in the insulating ceramics may be titanium nitride, titanium carbide, or silicon carbide, or a mixture of these materials. Again, sintering additions can be provided.
  • the stems may also be tungsten or molybdenum.
  • the sintering additions may typically be yttrium oxide Y2O3, calcium oxide CaO, yttrium fluoride YF3, calcium fluoride CaF2.
  • Aluminum nitride (insulator) and titanium nitride (conductor) have similar characteristics, particularly in terms of densification kinetics during cofiring, resulting in a strong inorganic bond, of the ionocovalent type.
  • the electrode assemblies thus produced can withstand very high operating temperatures without causing degassing phenomena as on metal electrodes of the prior art.
  • the invention can facilitate the cooling of the tube by fluid (and in particular a liquid such as an electrical insulating oil or deionized water) if the channels formed in the barrel body are mixed in the barrel body. during the extrusion of the sheath.
  • fluid and in particular a liquid such as an electrical insulating oil or deionized water
  • the fluid had to have sufficient dielectric strength to accommodate the external faces of the electrodes and the outer envelope subjected to different voltages between them.
  • the structure of the outer ceramic shell may advantageously be traversed in the longitudinal direction by capillaries in which a cooling fluid can be circulated.
  • a cooling fluid can be circulated.
  • this arrangement makes it possible to use a standard fluid such as water since the fluid is no longer directly in contact with the electrodes.
  • the fluid is in direct contact with the envelope over the entire length thereof.
  • This new arrangement also makes it possible to avoid the occurrence of galvanic torque, of chemical corrosion.
  • Aluminum nitride being particularly chemically inert.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microwave Tubes (AREA)

Abstract

The invention concerns vacuum tubes, and in particular electronic tubes. The invention concerns a method for making a tube, in particular an electron collector with several electrodes (30, 40, 50, 60), which consists in producing electrodes in the form of ceramic blocks with high thermal conductivity. The blocks have (at least) electrically conductive surfaces. They are preferably made of insulating ceramic such as aluminium nitride, and are made conductive over part of their surface. The conductive surface portion preferably consists of a conductive ceramic, preferably based on titanium nitride, or similar conductive ceramic materials. Thus robustness, heat discharge capacity and weight are improved.

Description

L'invention concerne un procédé de fabrication d'électrodes, conçu principalement pour la réalisation de tubes électroniques à vide, et notamment de tubes utilisant un collecteur d'électrons ; le collecteur recueille les électrons après utilisation d'une fraction de l'énergie qui leur a été communiquée par un champ électrique d'accélération créé dans le tube à vide. Ce procédé de fabrication est utilisable pour la réalisation d'autres électrodes que des collecteurs de tubes électroniques. Plus généralement il est applicable à la réalisation d'électrodes de toutes sortes de dispositifs à vide total ou partiel faisant intervenir dans ce vide un transport physique de particules élémentaires chargées (électrons mais aussi ions) qui peuvent être accélérées, ou ralenties ou collectées par des électrodes du dispositif. Le procédé sera cependant décrit à propos de l'application la plus intéressante qui est la réalisation du collecteur d'un tube électronique à vide à faisceau linéaire.The invention relates to a method for manufacturing electrodes, designed mainly for producing vacuum electronic tubes, and in particular tubes using an electron collector; the collector collects the electrons after using a fraction of the energy that has been communicated to them by an acceleration electric field created in the vacuum tube. This manufacturing method is usable for producing other electrodes than electronic tube collectors. More generally it is applicable to the production of electrodes of all kinds of total or partial vacuum devices involving in this vacuum a physical transport of charged elementary particles (electrons but also ions) which can be accelerated, slowed down or collected by electrodes of the device. The method will however be described in connection with the most interesting application which is the embodiment of the collector of a linear beam vacuum tube.

On citera à titre d'exemple de tubes à faisceau linéaire : les klystrons mono ou multifaisceaux, les tubes à ondes progressives, les carcinotrons, les tubes à sortie inductive (IOT pour Inductive Output Tube).Examples of linear beam tubes include mono or multibeam klystrons, traveling wave tubes, carcinotrons, inductive output tubes (IOTs).

Ces tubes fonctionnent généralement en faisant interagir, dans une zone dite zone d'interaction, une onde électromagnétique et un faisceau linéaire d'électrons, le faisceau communiquant une partie de son énergie cinétique à l'onde électromagnétique pour amplifier celle-ci. Généralement, le faisceau conserve encore une partie de son énergie cinétique après son passage dans la zone d'interaction et il faut recueillir les électrons résiduels dans un collecteur placé à la sortie de la zone d'interaction. Parfois, l'énergie cinétique subsistante en aval de la zone d'interaction peut atteindre 50% à 80% de l'énergie initialement communiquée au faisceau en amont de cette zone. Il en découle de fortes contraintes pour la réalisation du collecteur, en termes de dissipation de chaleur ; il en découle de fortes contraintes pour la réalisation du collecteur, en termes de dissipation de chaleur ; il y a par ailleurs d'autres contraintes, telles que la tenue en tension, etc.These tubes generally work by interacting, in an area called interaction zone, an electromagnetic wave and a linear electron beam, the beam communicating a portion of its kinetic energy to the electromagnetic wave to amplify it. Generally, the beam still retains a portion of its kinetic energy after passing through the interaction zone and the residual electrons must be collected in a collector placed at the exit of the interaction zone. Sometimes, the kinetic energy remaining downstream of the interaction zone can reach 50% to 80% of the energy initially transmitted to the beam upstream of this zone. This results in strong constraints for the construction of the collector, in terms of heat dissipation; this results in strong constraints for the construction of the collector, in terms of heat dissipation; there are also other constraints, such as voltage withstand, etc.

Dans le passé, le collecteur était constitué par une simple électrode métallique, le plus souvent en cuivre, portée à un potentiel approprié (le plus souvent celui de l'anode qui a servi à accélérer les électrons). Mais pour augmenter le rendement des tubes on a été amené à réaliser des collecteurs plus sophistiqués, appelés collecteurs déprimés mono ou multiétages, constitués par plusieurs électrodes successives portées à des potentiels différents et donc isolées électriquement les unes des autres.In the past, the collector consisted of a simple metal electrode, usually copper, brought to a suitable potential (most often that of the anode which was used to accelerate the electrons). However, to increase the efficiency of the tubes, more sophisticated collectors, called mono or multi-stage depressed collectors, consisting of several successive electrodes carried at different potentials and thus electrically insulated from each other, have been made.

La réalisation de ces électrodes de collecteur pose différents problèmes, d'autant plus difficiles à résoudre que les tubes doivent être à la fois de plus en plus puissants et de plus en plus compacts. Parmi ces problèmes, il y a le problème de l'évacuation de la chaleur produite par l'impact des électrons sur une électrode ainsi que le problème de ré-émission électronique secondaire des électrodes ; il y a le problème de l'isolation électrique des électrodes entre elles et vis à vis de l'extérieur ; il y a le problème de l'étanchéité au vide du tube, avec le problème conjoint de la traversée de connexions électriques de l'intérieur vers l'extérieur du tube pour amener un courant ou une tension d'une électrode intérieure vers l'extérieur du tube ou de l'extérieur vers une électrode intérieure du tube, et ceci pour chacune des électrodes du collecteur, de même d'ailleurs que pour les autres électrodes du tube (anode, cathode).The realization of these collector electrodes poses different problems, all the more difficult to solve that the tubes must be both more and more powerful and more and more compact. Among these problems, there is the problem of the evacuation of the heat produced by the impact of the electrons on an electrode as well as the problem of secondary electronic re-emission of the electrodes; there is the problem of the electrical insulation of the electrodes with each other and with respect to the outside; there is the problem of vacuum tightness of the tube, with the joint problem of the crossing of electrical connections from the inside to the outside of the tube to bring a current or voltage of an inner electrode to the outside from the tube or from the outside to an inner electrode of the tube, and this for each of the electrodes of the collector, as well as for the other electrodes of the tube (anode, cathode).

Les solutions adoptées pour la réalisation de ces collecteurs déprimés utilisent le plus souvent des électrodes en cuivre brasées ou frettées sur des pièces en céramique isolante ; la céramique assure l'isolation électrique entre électrodes portées à des potentiels différents et dans le cas d'un collecteur à isolement électrique interne, celle ci doit assurer également le transfert du flux thermique. Le brasage assure la tenue mécanique et l'étanchéité au vide. Ces assemblages sont complexes et d'un coût élevé. Leur structure hétérogène constituée de céramiques et de métal les rend particulièrement sensibles aux contraintes thermomécaniques et vibrations. Leurs performances limitées notamment en ce qui concerne l'efficacité de la dissipation thermique, les tensions de fonctionnement admissibles, la compacité, parfois aussi le poids (pour des applications de tubes spatiaux par exemple).The solutions adopted for producing these depressed collectors most often use brazed or shrink-wrapped copper electrodes on insulating ceramic parts; the ceramic provides electrical insulation between electrodes carried at different potentials and in the case of a collector with internal electrical insulation, it must also ensure the transfer of heat flow. Brazing provides mechanical strength and vacuum tightness. These assemblies are complex and expensive. Their heterogeneous structure made of ceramics and metal makes them particularly sensitive to thermomechanical stresses and vibrations. Their limited performance in particular as regards the efficiency of the heat dissipation, the admissible operating voltages, the compactness, sometimes also the weight (for applications of space tubes for example).

Les problèmes sont particulièrement délicats pour la réalisation d'un collecteur multiétages, mais on comprendra qu'ils peuvent exister aussi pour des électrodes isolées pour lesquelles il faut aussi prévoir d'une part une isolation électrique par rapport au reste du tube, d'autre part une alimentation en tension ou en courant, et enfin une évacuation de la chaleur produite.The problems are particularly delicate for the realization of a multi-stage collector, but it will be understood that they may also exist for insulated electrodes for which it is also necessary to provide on the one hand an electrical insulation relative to the rest of the tube, on the other hand a supply voltage or current, and finally an evacuation of the heat produced.

On notera qu'il est suggéré dans le brevet US 4,277,721 , de réaliser des électrodes dont les surfaces ont des caractéristiques qui minimisent l'émission secondaire grâce à des revêtements en matériaux tels que le graphite pyrolytique, le carbure de titane, le carbure de tungstène, le diborure de titane. La conductivité thermique de ces matériaux n'est pas mentionnée, et ils sont en principe déposés sur des électrodes qui classiquement sont en cuivre.Note that it is suggested in the patent US 4,277,721 , to produce electrodes whose surfaces have characteristics that minimize secondary emission through coatings of materials such as pyrolytic graphite, titanium carbide, tungsten carbide, titanium diboride. The thermal conductivity of these materials is not mentioned, and they are in principle deposited on electrodes that are conventionally made of copper.

JP-61214327 décrit un tube à vide selon la revendication 1. JP-61214327 describes a vacuum tube according to claim 1.

La présente invention a notamment pour but de réaliser un tube de construction améliorée en termes de rapport entre les performances obtenues et le coût de fabrication.The present invention is intended to achieve an improved construction tube in terms of the ratio between the performance obtained and the manufacturing cost.

Pour cela l'invention propose d'une part un tube à vide selon la revendication 1 et d'autre part un procédé de fabrication d'un tel tube selon la revendication 8.For this, the invention proposes firstly a vacuum tube according to claim 1 and secondly a method of manufacturing such a tube according to claim 8.

La particularité de ces électrodes du tube à vide selon l'invention est donc qu'elles sont réalisées sous forme de blocs de céramique et non de blocs métalliques.The particularity of these electrodes of the vacuum tube according to the invention is that they are made in the form of ceramic blocks and not metal blocks.

Les céramiques sont des composés minéraux réfractaires tels que des oxydes métalliques, des nitrures métalliques, des carbures métalliques, traités par frittage, c'est-à-dire par agglomération sous forte température (et éventuellement sous pression) d'une poudre du composé ou d'une pâte du composé (la pâte étant une poudre mélangée à un liant organique, ce dernier disparaîssant lors de l'opération d'agglomération). Certaines céramiques sont électriquement isolantes, d'autres sont conductrices, selon la nature des composés minéraux qui la composent. En mélange de composés isolants et de composés électriquement conducteurs, les céramiques peuvent d'ailleurs avoir des conductivités intermédiaires.Ceramics are refractory mineral compounds such as metal oxides, metal nitrides, metal carbides, treated by sintering, that is to say by agglomeration under high temperature (and possibly under pressure) of a powder of the compound or of a paste of the compound (the paste being a powder mixed with an organic binder, the latter disappearing during the agglomeration operation). Some ceramics are electrically insulating, others are conductive, depending on the nature of the mineral compounds that compose it. In a mixture of insulating compounds and electrically conductive compounds, ceramics can also have intermediate conductivities.

L'électrode est donc réalisée dans ce cas sous forme d'un bloc de céramique composite (avec deux compositions différentes, l'une conductrice l'autre isolante mais toutes deux en céramique) et non sous forme d'un brasage d'une électrode métallique (cuivre) sur une céramique isolante (alumine) comme on pouvait le faire dans l'art antérieur.The electrode is thus made in this case in the form of a composite ceramic block (with two different compositions, one conductive the other insulating but both ceramic) and not in the form of a brazing of an electrode metal (copper) on an insulating ceramic (alumina) as could be done in the prior art.

Le montage est d'autant plus avantageux que la céramique (et notamment celle qui compose le bloc isolant) a une forte conductivité thermique. Par céramique à forte conductivité thermique, on entend une céramique dont le coefficient de conductivité thermique est d'au moins 100 watts/m.°K à 20°C, ce qui représente environ un quart de la conductivité du cuivre, mais environ trois fois au moins la conductivité de l'alumine.The assembly is all the more advantageous as the ceramic (and in particular that which composes the insulating block) has a high thermal conductivity. Ceramic with a high thermal conductivity means a ceramic with a thermal conductivity of at least 100 watts / m ° K at 20 ° C, which is about a quarter of the conductivity of copper, but about three times at least the conductivity of the alumina.

L'électrode ainsi réalisée en céramique peut participer directement à l'étanchéité au vide du tube si elle constitue directement une partie de la paroi de l'enveloppe du tube. Mais elle peut également être cofrittée avec une autre céramique isolante constituant (partiellement ou totalement) l'enveloppe étanche du tube. Par exemple, les électrodes sont des blocs de céramique (au moins superficiellement électriquement conducteurs) insérés dans un fourreau de céramique isolante et cofrittés avec ce fourreau. Le fourreau constitue alors l'enveloppe, étanche au vide, du tube.The electrode thus made of ceramic may participate directly in the vacuum seal of the tube if it directly constitutes a part of the wall of the tube casing. But it can also be cofrittée with another insulating ceramic constituting (partially or completely) the sealed envelope of the tube. For example, the electrodes are ceramic blocks (at least superficially electrically conductive) inserted in an insulating ceramic sheath and co-sealed with this sheath. The sleeve then constitutes the vacuum-tight envelope of the tube.

Pour réaliser la connexion de l'électrode vers l'extérieur du tube, on utilisera de préférence aussi une broche en céramique conductrice ; cette broche est en contact d'un côté avec une partie de céramique conductrice de l'électrode, à l'intérieur du tube; et elle traverse une céramique isolante faisant partie de l'électrode et/ou de l'enveloppe du tube, et cofrittée avec cette céramique isolante.To make the connection of the electrode towards the outside of the tube, a conductive ceramic pin will also preferably be used; this pin is in contact on one side with a conductive ceramic portion of the electrode, inside the tube; and it passes through an insulating ceramic forming part of the electrode and / or the jacket of the tube, and co-sealed with this insulating ceramic.

L'étanchéité au vide de ces traversées conductrices est excellente car d'une part la liaison obtenue par traitement thermique à haute température est forte et d'autre part les matériaux alliés présentent des comportements thermomécaniques voisins. Ceci est particulièrement vrai lorsque la traversée est faite par cofrittage de céramiques. Les traversées peuvent cependant aussi être réalisées en métal réfractaire cofritté avec la céramique pendant le frittage de celle-ci.The vacuum tightness of these conductive vias is excellent because on the one hand the bond obtained by high temperature heat treatment is strong and on the other hand the alloy materials exhibit similar thermomechanical behavior. This is particularly true when the crossing is made by coiling ceramics. The bushings can, however, also be made of refractory metal co-sealed with the ceramic during sintering thereof.

Grâce à cette réalisation d'électrode sous forme d'un bloc de céramique fortement conductrice de la chaleur, on peut adopter des dispositions de tubes particulièrement efficaces du point de vue de l'évacuation de la chaleur, de l'isolation entre électrodes, de la compacité du tube, de son poids, dispositions qu'on ne pourrait pas adopter avec des électrodes métalliques classiques ou avec des assemblages céramique/métal classiquement brasés.Thanks to this electrode embodiment in the form of a ceramic block which is highly heat-conductive, it is possible to adopt tube arrangements which are particularly effective from the point of view of the heat dissipation, the insulation between the electrodes, the compactness of the tube, its weight, provisions that could not be adopted with conventional metal electrodes or with conventionally soldered ceramic / metal assemblies.

La céramique conductrice réalisée en couche mince peut notamment être en carbure de silicium, ou en carbure de titane, ou en carbure de tungstène, ou en nitrure de titane, ou en mélange de deux ou plus de ces matériaux. Elle peut comprendre aussi des ajouts de composés facilitant le frittage, tel que par exemple l'oxyde d'yttrium, la présence d'ajouts étant classique en matière de frittage de céramiques.The conductive ceramic made in a thin layer may in particular be silicon carbide, or titanium carbide, or tungsten carbide, or titanium nitride, or a mixture of two or more of these materials. It may also include additions of compounds facilitating sintering, such as for example yttrium oxide, the presence of additions being conventional in the sintering of ceramics.

La céramique utilisée pour réaliser un bloc de céramique isolante faisant partie de l'électrode ou de l'enveloppe du tube est de préférence essentiellement à base de nitrure d'aluminium, qui a de très bonnes propriétés de conduction thermique (environ 180 watts/mK à 20°C) et une très bonne tenue diélectrique (tenue à des champs électriques d'au moins 20 kV/mm). Elle peut être en nitrure d'aluminium presque pur ou en céramique composite comprenant du nitrure d'aluminium cofritté avec du carbure de silicium ou du nitrure de titane en faible proportion dans le nitrure d'alumium. Des ajouts de frittage peuvent là aussi être présents.The ceramic used to make an insulating ceramic block forming part of the electrode or the jacket of the tube is preferably essentially based on aluminum nitride, which has very good thermal conduction properties (about 180 watts / mK at 20 ° C) and very good dielectric strength (withstand at electric fields of at least 20 kV / mm). It can be made of almost pure aluminum nitride or composite ceramic comprising aluminum nitride co-cured with carbide silicon or titanium nitride in low proportion in the aluminum nitride. Sinter additions can also be present.

L'invention est applicable aux tubes à vide (vide total ou partiel). L'application principale est l'application aux tubes électroniques, c'est-à-dire des tubes dans lesquels les particules chargées qui sont transportées sont des électrons (et dans ce cas le vide est en général très poussé). Une autre application possible est un dispositif (qu'on désignera aussi par le vocable « tube » pour simplifier) dans lequel les particules transportées ne sont pas des électrons mais des ions. Par exemple, on peut appliquer l'invention à la réalisation d'électrodes d'accélération d'un propulseur ionique ; un propulseur ionique est un moteur destiné à agir pour déplacer un objet dans le vide (pour un satellite ou un vaisseau spatial); il produit en continu, lorsqu'il fonctionne, un plasma d'ions chargés qui sont accélérés sous vide partiel par un champ électrique (grâce à des électrodes) et éjectés à travers une tuyère. L'éjection agit comme un propulseur à réaction classique, à la différence que la matière éjectée est ionique (chargée) et qu'elle est éjectée sous l'effet d'une accélération par un champ électrique agissant directement sur les ions du fait de leur charge. Dans cette demande de brevet, et notamment dans les revendications, on considérera qu'on englobe sous l'appellation « tube » tous les dispositifs à électrodes utilisant le transport de particules chargées dans un vide total (c'est-à-dire très poussé) ou partiel (moins poussé), que le tube soit fermé ou qu'il soit partiellement ouvert (comme dans le cas d'un propulseur).The invention is applicable to vacuum tubes (total or partial vacuum). The main application is the application to electron tubes, that is to say tubes in which the charged particles that are transported are electrons (and in this case the vacuum is usually very high). Another possible application is a device (also referred to as the "tube" for simplification) in which the particles transported are not electrons but ions. For example, the invention can be applied to the production of acceleration electrodes of an ionic propellant; an ion thruster is a motor intended to act to move an object in a vacuum (for a satellite or a spaceship); it produces continuously, when operating, a plasma of charged ions which are accelerated under partial vacuum by an electric field (thanks to electrodes) and ejected through a nozzle. The ejection acts as a conventional jet propellant, with the difference that the ejected material is ionic (charged) and is ejected by an acceleration by an electric field acting directly on the ions because of their charge. In this patent application, and in particular in the claims, it will be considered that the term "tube" includes all electrode devices using the transport of charged particles in a total vacuum (that is to say very high ) or partial (less advanced), whether the tube is closed or partially open (as in the case of a thruster).

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :

  • les figures 1 et 2 représentent des constructions de collecteur de tubes à vide de l'art antérieur ;
  • la figure 3 représente en coupe un collecteur de tube selon l'invention ;
  • les figures 4 à 7 représentent les différentes électrodes de céramique séparées ;
  • la figure 8 représente le fourreau de céramique destiné à enfermer les différentes électrodes ;
  • la figure 9 représente en perspective partiellement coupée le collecteur monté.
Other features and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which:
  • the Figures 1 and 2 represent vacuum tube collector constructions of the prior art;
  • the figure 3 represents in section a tube collector according to the invention;
  • the Figures 4 to 7 represent the different ceramic electrodes separated;
  • the figure 8 represents the ceramic sheath for enclosing the different electrodes;
  • the figure 9 represents in perspective partially cut the mounted collector.

L'invention sera décrite à propos de la réalisation du collecteur d'un tube électronique à ondes progressives à collecteur déprimé multiétage, mais elle est applicable dans bien d'autres cas : autres tubes électronique à vide qu'un TOP, collecteur non déprimé à une seule électrode, autres électrodes que des électrodes de collecteur. Mais elle est particulièrement intéressante dans le cas d'un collecteur déprimé multi-étage et c'est pourquoi cet exemple a été choisi pour être décrit en détail. De même, pour ce qui concerne le procédé de fabrication selon l'invention, qui sera décrit à propos du même tube à ondes progressives, on comprendra qu'il est applicable à la réalisation d'un collecteur de TOP comme à la réalisation d'autres électrodes de tubes, avec la signification globale donnée ci-dessus pour le mot tube.The invention will be described with regard to the embodiment of the collector of a multi-stage depressed collector traveling wave tube, but it is applicable in many other cases: other vacuum electronic tubes than a TOP, non-depressed collector a single electrode, other electrodes than collector electrodes. But it is particularly interesting in the case of a multi-stage depressed collector and this is why this example was chosen to be described in detail. Similarly, with regard to the manufacturing method according to the invention, which will be described about the same traveling wave tube, it will be understood that it is applicable to the realization of a TOP collector as to the realization of other tube electrodes, with the overall meaning given above for the word tube.

On rappelle qu'un tube à ondes progressives (TOP en abbréviation française, TWT en abbréviation anglaise) est un tube à vide comportant une cathode émettant un faisceau d'électrons linéaire (focalisé par des aimants permanents), et, successivement de l'amont vers l'aval dans le sens de parcours des électrons : une anode d'accélération de ces électrons ; une entrée de signal radiofréquence recevant un signal radiofréquence à amplifier, cette entrée étant reliée à l'entrée d'une structure de ralentissement qui est par exemple une hélice entourant le faisceau d'électrons ; une sortie de la structure de ralentissement, constituant la sortie du TOP, fournissant un signal radiofréquence ; et un collecteur pour recueillir les électrons du faisceau en aval de la structure de ralentissement. Ces électrons ont perdu une partie de leur énergie en la communiquant à l'onde radiofréquence, dans la zone d'interaction située entre la partie amont et la partie aval de l'hélice. Le collecteur qui reçoit les électrons est soumis à un échauffement intense dû à l'énergie d'impact des électrons et cet échauffement est l'une des principales causes de difficultés pour la réalisation du tube.It is recalled that a traveling wave tube (TOP in French abbreviation, TWT in English abbreviation) is a vacuum tube comprising a cathode emitting a linear electron beam (focused by permanent magnets), and, successively from upstream downstream in the direction of travel of the electrons: an anode of acceleration of these electrons; a radiofrequency signal input receiving a radio frequency signal to be amplified, this input being connected to the input of a slowing structure which is for example a helix surrounding the electron beam; an output of the deceleration structure, constituting the output of the TOP, providing a radiofrequency signal; and a collector for collecting the electrons from the beam downstream of the deceleration structure. These electrons have lost some of their energy by communicating it to the radiofrequency wave, in the interaction zone situated between the upstream part and the downstream part of the helix. The collector that receives the electrons is subjected to intense heating due to the impact energy of the electrons and this heating is one of the main causes of difficulties for the realization of the tube.

Le collecteur est typiquement un collecteur déprimé à plusieurs étages, c'est-à-dire à plusieurs électrodes portées des potentiels différents et isolées les unes des autres par des parties électriquement isolantes. Les potentiels sont choisis de sorte que les électrons ayant une certaine énergie atteignent si possible l'électrode qui est à un potentiel correspondant sensiblement à cette énergie. De cette manière on obtient un bon rendement du tube, mais cela oblige à prévoir une connexion de plusieurs électrodes vers l'extérieur du tube.The collector is typically a multi-stage depressed collector, i.e., several electrodes with different potentials and insulated from each other by electrically insulating parts. The potentials are chosen so that the electrons have a certain energy if possible reach the electrode which is at a potential corresponding substantially to this energy. In this way we obtain a good performance of the tube, but this requires providing a connection of several electrodes to the outside of the tube.

L'ensemble des éléments qui viennent d'être décrits est enfermé à l'intérieur d'une enveloppe étanche dans laquelle est fait un vide poussé. L'enveloppe comporte des parties isolantes et éventuellement aussi des parties conductrices. Certains des éléments décrits ci-dessus, électrodes ou isolants entre électrodes peuvent eux-mêmes faire partie de l'enveloppe étanche et assurent donc eux-mêmes une étanchéité au vide. Les soudures ou brasures entre éléments, par exemple entre une électrode métallique et une céramique isolante, participent également à cette étanchéité. Enfin lorsqu'une électrode est située complètement à l'intérieur de l'enveloppe (c'est-à-dire qu'elle ne constitue pas une partie de l'enveloppe extérieure et elle n'est donc pas accessible directement de l'extérieur), il est en général nécessaire, pour la connecter à l'extérieur, de prévoir une traversée conductrice, à travers une partie isolante de l'enveloppe, pour relier l'enveloppe à une broche extérieure.All the elements that have just been described are enclosed inside a sealed envelope in which is made a high vacuum. The envelope comprises insulating parts and possibly also conductive parts. Some of the elements described above, electrodes or insulators between electrodes can themselves be part of the sealed envelope and thus ensure themselves a vacuum seal. Welds or solders between elements, for example between a metal electrode and an insulating ceramic, also participate in this seal. Finally, when an electrode is located completely inside the envelope (that is to say, it does not constitute a part of the outer envelope and is therefore not accessible directly from the outside ), it is generally necessary, to connect it to the outside, to provide a conductive crossing, through an insulating portion of the casing, to connect the casing to an outer pin.

La figure 1 représente un exemple de réalisation d'un collecteur déprimé multiétages à isolement interne de l'art antérieur, ce qui permettra de mieux faire comprendre les différences apportées par l'invention dans la construction globale du collecteur.The figure 1 represents an embodiment of a multi-stage depressed sink with internal isolation of the prior art, which will better understand the differences brought by the invention in the overall construction of the collector.

Le collecteur, de forme généralement cylindrique, comprend dans cet exemple trois électrodes massives en cuivre E1, E2, E3 ayant des formes coniques dont le sommet, ouvert pour les deux premières électrodes et fermé pour la dernière, est tourné vers le côté d'arrivée des électrons (à gauche sur la figure 1). Les électrodes E1 et E2 comportent également une partie cylindrique enserrée par des barreaux (ou des plaquettes) 10 de céramique isolante, elles-mêmes enfermées dans une enveloppe métallique extérieure ENV constituant à la fois un capot de protection électromagnétique et une enveloppe étanche au vide. La céramique isolante est en général en alumine pour de faibles puissances à dissiper et en oxyde de béryllium BeO aux puissances plus élevées. Le collecteur est fermé à droite par un assemblage de parties isolantes et de parties conductrices brasées les unes avec les autres, réalisant également l'étanchéité au vide. Des traversées conductrices sont prévues pour connecter les électrodes E1, E2, E3 à l'extérieur. Ces traversées comprennent un conducteur 12, 13 ou 14 entouré de céramique isolante 16, 17 ou 18. Dans l'exemple de la figure 1, les barreaux de céramique 10 qui entourent les électrodes E1 et E2 servent aussi à faire passer un conducteur de l'électrode E1 vers le fond du collecteur, jusqu'à la traversée conductrice 12, en isolant ce conducteur de l'électrode E2 et de l'enveloppe extérieure ENV.The collector, of generally cylindrical shape, comprises in this example three massive copper electrodes E1, E2, E3 having conical shapes whose apex, open for the first two electrodes and closed for the last, is turned towards the arrival side. electrons (left on the figure 1 ). Electrodes E1 and E2 also comprise a cylindrical portion sandwiched by insulating ceramic bars (or plates) 10, themselves enclosed in an outer metal shell ENV constituting both an electromagnetic protective cover and a vacuum-tight envelope. The insulating ceramic is generally alumina for low powers to dissipate and beryllium oxide BeO at higher powers. The collector is closed on the right by an assembly of insulating parts and conductive parts brazed together, also performing vacuum sealing. Conductive vias are provided to connect the electrodes E1, E2, E3 to the outside. These bushings comprise a conductor 12, 13 or 14 surrounded by insulating ceramic 16, 17 or 18. In the example of the figure 1 , the ceramic bars 10 surrounding the electrodes E1 and E2 also serve to pass a conductor of the electrode E1 to the bottom of the collector, to the conductive passage 12, isolating the conductor of the electrode E2 and the outer envelope ENV.

La figure 2 représente un autre exemple de réalisation de collecteur de TOP dans lequel les électrodes sont moins massives que sur la figure 1 : ce sont des coprs de révolution en cuivre mince brasés sur toute leur périphérie cylindrique à l'intérieur d'un fourreau de céramique 20 ; la tenue de cette structure aux contraintes thermiques n'est possible que si la minceur des électrodes permet d'accomoder les dilatations différentielles sans contrainte excessive. Le fourreau de céramique est là encore entouré d'un autre fourreau métallique 22 servant de capot de protection électromagnétique. L'étanchéité au vide est réalisée à la fois par des parties métalliques et par des parties de céramique isolante. Sur la figure 2, on voit que des traversées conductrices 24 peuvent être prévues radialement à traverse les fourreaux isolants pour la connexion de l'électrode E1 avec l'extérieur du tube à vide. On utilise un conducteur métallique tel que du nickel brasé sur l'électrode interne E1. L'étanchéité au vide est assurée par brasage sur le fourreau céramique. Pour la connexion avec l'électrode E2, on a fait sortir l'électrode elle-même par le fond du tube jusqu'à l'extérieur, et cette électrode E2 participe donc elle-même directement à l'étanchéité au vide. Pour l'électrode E3, un assemblage complexe de métal, de céramique isolante et de traversée conductrice doit être prévu pour assurer la liaison avec l'extérieur par le fond du tube.The figure 2 represents another example of a TOP collector embodiment in which the electrodes are less massive than on the figure 1 : they are thin copper revolution cores brazed over their entire cylindrical periphery inside a ceramic sleeve 20; the holding of this structure to thermal stresses is possible only if the thinness of the electrodes makes it possible to accommodate the differential expansions without excessive stress. The ceramic sleeve is again surrounded by another metal sleeve 22 serving as an electromagnetic protection cover. Vacuum tightness is achieved by both metal parts and insulating ceramic parts. On the figure 2 it can be seen that conductive vias 24 may be provided radially through the insulating sleeves for the connection of the electrode E1 with the outside of the vacuum tube. A metal conductor such as brazed nickel is used on the internal electrode E1. Vacuum tightness is provided by brazing on the ceramic sleeve. For the connection with the electrode E2, the electrode itself has been taken out of the bottom of the tube to the outside, and this electrode E2 therefore itself participates directly in the vacuum seal. For the E3 electrode, a complex assembly of metal, insulating ceramic and conducting bushing must be provided to ensure the connection with the outside by the bottom of the tube.

Dans tous les cas, on voit sur ces figures la complexité de l'assemblage qui permet de tenir les contraintes mécaniques, les contraintes électriques et les contraintes thermiques.In all cases, we see in these figures the complexity of the assembly that allows to hold the mechanical stresses, electrical stresses and thermal stresses.

La figure 3 représente le principe général de construction de tube selon l'invention avec un collecteur dont la particularité est que certaines au moins des électrodes (mais de préférence toutes) sont réalisées principalement en céramique : elles sont constituées chacune d'un bloc de céramique (semblables aux blocs de cuivre de la figure 1) ; cette céramique est au moins superficiellement conductrice (pour réaliser la fonction d'électrode recueillant des électrons) ; cette céramique a de très bonnes propriétés de conduction thermique pour évacuer la chaleur engendrée par les impacts d'électrons.The figure 3 represents the general principle of tube construction according to the invention with a collector whose particularity is that at least some of the electrodes (but preferably all) are made mainly of ceramic: they each consist of a ceramic block (similar to copper blocks from the figure 1 ); this ceramic is at least superficially conductive (to perform the function of electrode collecting electrons); this ceramic has very good thermal conduction properties to evacuate the heat generated by the impact of electrons.

De préférence, chaque électrode est constituée d'une couche mince de céramique conductrice frittée à la surface d'une céramique isolante. Dans ce cas, c'est la céramique électriquement isolante qui doit avoir de très bonnes propriétés de conduction thermique.Preferably, each electrode consists of a thin layer of conductive ceramic sintered on the surface of an insulating ceramic. In this case, it is the electrically insulating ceramic which must have very good thermal conduction properties.

La construction préférée du collecteur est la suivante : les blocs de céramique constituant les différentes électrodes sont placés en contact avec la périphérie intérieure d'un fourreau de céramique isolante.The preferred construction of the collector is as follows: the ceramic blocks constituting the different electrodes are placed in contact with the inner periphery of an insulating ceramic sheath.

Des traversées conductrices sont de préférence prévues dans ce fourreau pour assurer la liaison électrique entre l'extérieur du tube et la partie conductrice de certaines au moins des électrodes en céramique.Conductive vias are preferably provided in this sleeve to provide the electrical connection between the outside of the tube and the conductive portion of at least some of the ceramic electrodes.

Les électrodes, le fourreau isolant et les traversées conductrices sont de préférence rendues solidaires en une seule opération de traitement thermique (cofrittage) ou bien alors de plusieurs traitements thermiques successifs qui assurent une forte liaison et donc une étanchéité de l'intérieur du tube à vide.The electrodes, the insulating sheath and the conductive vias are preferably made integral in a single heat treatment operation (cofritting) or else several successive heat treatments which ensure a strong bond and therefore a seal of the inside of the vacuum tube. .

Sur la figure 3, on a représenté un collecteur à quatre électrodes qui sont respectivement, en suivant le sens de déplacement des électrons, une première électrode 30, une deuxième électrode 40, une troisième électrode 50, et une électrode finale 60. Les trois premières électrodes sont percées axialement en leur centre pour laisser passer le faisceau électronique, avec des ouvertures (respectivement 31, 41, 51) de plus en plus larges pour tenir compte de la divergence de plus en plus grande du faisceau vers l'aval. L'électrode finale 60 n'est pas percée.On the figure 3 , there is shown a collector with four electrodes which are respectively, following the direction of displacement of the electrons, a first electrode 30, a second electrode 40, a third electrode 50, and a final electrode 60. The first three electrodes are pierced axially at their center to let the electron beam through, with apertures (respectively 31, 41, 51) becoming larger to take account of the increasing divergence of the beam downstream. The final electrode 60 is not pierced.

Les électrodes sont réalisées en céramique électriquement conductrice dans certaines zones, en superficie, et électriquement isolante dans la masse. La céramique peut être conductrice sur toute sa surface ou seulement dans des zones dessinées selon un motif qui dépend bien sûr de la conception générale du tube, le reste de l'électrode étant constitué par un bloc de céramique isolant.The electrodes are made of electrically conductive ceramic in certain areas, in area, and electrically insulating in the mass. The ceramic may be conductive over its entire surface or only in areas drawn in a pattern that depends of course on the general design of the tube, the rest of the electrode being constituted by an insulating ceramic block.

Les quatre électrodes sont de préférence montées dans un fourreau cylindrique 70 en céramique électriquement isolante et fortement conductrice de la chaleur. Ce fourreau cylindrique 70 constitue l'enveloppe extérieure du tube et il est de préférence muni d'ailettes radiales 80 facilitant l'évacuation de la chaleur générée en fonctionnement depuis l'intérieur du tube. Ce fourreau 70 peut, comme les électrodes 30, 40, 50, 60, avoir une surface localement conductrice, aussi bien à l'intérieur qu'à l'extérieur du tube. En pratique on verra que le fourreau peut constituer une électrode au même potentiel (sa surface interne uniquement) que l'électrode 50.The four electrodes are preferably mounted in a cylindrical sleeve 70 of electrically insulating ceramic and strongly conductor of heat. This cylindrical sheath 70 constitutes the outer casing of the tube and it is preferably provided with radial fins 80 facilitating the evacuation of heat generated in operation from inside the tube. This sleeve 70 may, like the electrodes 30, 40, 50, 60, have a locally conductive surface, both inside and outside the tube. In practice, it will be seen that the sheath may constitute an electrode with the same potential (its inner surface only) as the electrode 50.

Le fond du tube, sur la droite de la figure 3, peut être constitué complètement par la masse de l'électrode finale 60, surtout si celle-ci n'est conductrice que dans sa partie superficielle intérieure au tube.The bottom of the tube, on the right of the figure 3 , can be completely constituted by the mass of the final electrode 60, especially if it is conductive only in its inner surface portion to the tube.

Sur la figure 3, on n'a pas détaillé les zones conductrices de chaque électrode. Toutefois, pour illustrer le principe de l'invention, on a représenté par un trait tireté 90, le long de la paroi intérieure du fourreau 70 et le long d'une partie de l'électrode 50, une zone superficielle qui est conductrice.On the figure 3 the conductive areas of each electrode have not been detailed. However, to illustrate the principle of the invention, there is shown by a dashed line 90, along the inner wall of the sleeve 70 and along a portion of the electrode 50, a surface area which is conductive.

La connexion électrique des différentes électrodes avec l'extérieur, pour assurer le passage de courants ou de tensions de polarisations, est réalisée de la manière suivante : pour l'électrode 30, une traversée conductrice radiale est prévue à travers le fourreau cylindrique isolant 70. La traversée comprend une tige conductrice 32 qui passe à travers un perçage dans l'électrode 30 et un perçage correspondant dans le fourreau 70. La tige conductrice 32 est de préférence en céramique conductrice, mais elle pourrait aussi être en métal conducteur réfractaire tel que du tungstène. Elle vient en contact, à l'intérieur du tube avec une zone conductrice de la première électrode 30.The electrical connection of the different electrodes with the outside, to ensure the passage of currents or bias voltages, is carried out in the following manner: for the electrode 30, a radial conductive passage is provided through the cylindrical insulating sleeve 70. The bushing comprises a conductive rod 32 which passes through a bore in the electrode 30 and a corresponding bore in the sleeve 70. The conductive rod 32 is preferably made of conducting ceramic, but it could also be made of refractory conductive metal such as tungsten. It comes into contact, inside the tube with a conductive zone of the first electrode 30.

Pour la deuxième électrode 40, le montage est tout-à-fait similaire, avec une traversée conductrice radiale comprenant un tige conductrice 42.For the second electrode 40, the assembly is quite similar, with a radial conductive feedthrough comprising a conductive rod 42.

En ce qui concerne la troisième électrode 50, on aurait pu également prévoir une traversée conductrice, mais on a prévu dans cet exemple que la surface intérieure du fourreau 70 est rendue conductrice de la même manière que la surface conductrice des électrodes, c'est-à-dire de préférence par cofrittage d'une céramique conductrice sur une céramique isolante. La zone conductrice est représentée par la ligne tiretée 90 déjà mentionnée. Une continuité électrique conductrice peut être établie ainsi depuis l'électrode 50 jusqu'à l'extérieur du tube, comme le montre la ligne tiretée 90 qui part de l'électrode 50 et qui va jusqu'au delà de l'électrode 60. La partie conductrice extérieure au tube peut alors constituer une connexion extérieure de la troisième électrode 50. Pour cette raison, on peut considérer que le fourreau constitue lui-même une électrode, au même potentiel que l'électrode 50.As regards the third electrode 50, it would also have been possible to provide a conductive passage, but it has been provided in this example that the inner surface of the sleeve 70 is rendered conductive in the same manner as the conductive surface of the electrodes, that is, that is, preferably by cofiring a conductive ceramic on an insulating ceramic. The conductive zone is represented by the dashed line 90 already mentioned. Conductive electrical continuity can thus be established from the electrode 50 to the outside of the tube, as shown in the line dashed 90 which starts from the electrode 50 and which goes beyond the electrode 60. The conductive portion outside the tube can then constitute an external connection of the third electrode 50. For this reason, it can be considered that the sheath itself constitutes an electrode, at the same potential as the electrode 50.

La connexion de l'électrode finale 60 avec l'extérieur peut se faire également par le fond du tube, soit par un contact direct avec la céramique si sa face externe est conductrice et en contact de conduction électrique avec sa face intérieure au tube ou bien si elle est entièrement réalisée en céramique conductrice, soit par une traversée conductrice, avec une tige 62, depuis la face intérieure de l'électrode jusqu'à l'extérieur du tube si seule la surface de céramique intérieure au tube est conductrice. La traversée passe dans ce cas à travers le bloc de céramique isolante constituant l'électrode 60 et non pas à travers le fourreau 70. Elle s'étend axialement et non radialement.The connection of the final electrode 60 with the outside can also be done by the bottom of the tube, or by direct contact with the ceramic if its outer face is conductive and in electrical conduction contact with its inner face to the tube or if it is entirely made of conductive ceramic, or by a conductive passage, with a rod 62, from the inner face of the electrode to the outside of the tube if only the ceramic surface inside the tube is conductive. The passage passes in this case through the insulating ceramic block constituting the electrode 60 and not through the sleeve 70. It extends axially and not radially.

L'ensemble du collecteur est alors formé de céramiques, certaines parties étant en céramique électriquement isolante mais de très bonne conductivité thermique, et d'autres parties étant en céramique électriquement conductrice et reliées à des tiges conductrices passant à travers la céramique isolante. On obtient donc un bloc de collecteur dont les parties ont des propriétés thermomécaniques homogènes.The entire collector is then formed of ceramics, some parts being electrically insulating ceramic but very good thermal conductivity, and other parts being electrically conductive ceramic and connected to conductive rods passing through the insulating ceramic. A collector block is thus obtained whose parts have homogeneous thermomechanical properties.

On a avantage à réaliser l'ensemble du collecteur par cofrittage des céramiques, c'est-à-dire en montant les électrodes et le fourreau en place les uns par rapport aux autres alors que ces pièces sont encore dans l'état de céramiques crues, et en effectuant le frittage pour toutes les céramiques à la fois. Il est toutefois possible aussi de fortement associer les électrodes au corps par traitements thermiques successifs ou bien aussi d'effectuer des cofrittages partiels de certains sous-ensembles et d'associer ensuite les sous-ensembles entre eux avec ou sans autre opération de frittage.It is advantageous to achieve the entire collector by cofritting ceramics, that is to say by mounting the electrodes and the sleeve in place relative to each other while these parts are still in the state of raw ceramics and sintering for all ceramics at a time. However, it is also possible to strongly associate the electrodes to the body by successive heat treatments or also to partially subcompact some subassemblies and then to associate the subassemblies together with or without further sintering operation.

La figure 4 représente de manière isolée la première électrode 30. Dans cet exemple de réalisation, l'électrode est superficiellement conductrice sur presque toute sa surface, mais pas à sa périphérie. Elle sera d'ailleurs en contact à sa périphérie avec le fourreau 70. L'électrode est réalisée par usinage d'une pâte crue de céramique isolante.The figure 4 represents in isolation the first electrode 30. In this embodiment, the electrode is superficially conductive over most of its surface, but not at its periphery. It will also be in contact at its periphery with the sheath 70. The electrode is made by machining a raw paste of insulating ceramic.

L'électrode usinée est revêtue d'une couche fine de céramique conductrice crue 35 représentée par un trait tireté. La délimitation de la zone conductrice peut se faire soit par masquage des zones qui doivent rester isolantes, soit par enlèvement sélectif après dépôt uniforme sur toutes les surfaces. L'électrode 30 peut être frittée préalablement à son insertion dans le fourreau 70, ou bien insérée d'abord dans le fourreau 70 puis cofrittée avec le fourreau. Si elle est frittée en même temps que le fourreau, la liaison mécanique entre l'électrode et le fourreau n'en sera que plus résistante et la conductivité thermique améliorée. La traversée conductrice permettant de relier l'électrode au fourreau est réalisée en prévoyant un perçage radial 36 dans lequel on pourra insérer la tige conductrice 32 visible à la figure 3 ; cette tige sera de préférence mise en place dans le perçage avant frittage commun de l'électrode et du fourreau. Elle est en contact d'un côté avec la couche de céramique conductrice 35. Le frittage assure l'adhérence de la céramique conductrice superficielle 35 avec la céramique isolante qui forme le corps de l'électrode 30.The machined electrode is coated with a thin layer of green conductive ceramics 35 represented by a dashed line. The delimitation of the conductive zone can be done either by masking the areas that must remain insulating, or by selective removal after uniform deposition on all surfaces. The electrode 30 may be sintered before insertion into the sleeve 70, or inserted first into the sleeve 70 and then co-sealed with the sleeve. If it is sintered at the same time as the sleeve, the mechanical connection between the electrode and the sleeve will be all the more resistant and the thermal conductivity improved. The conductive bushing for connecting the electrode to the sheath is made by providing a radial bore 36 into which the conductive rod 32 visible to the figure 3 ; this rod will preferably be placed in the bore before common sintering of the electrode and the sheath. It is in contact on one side with the conductive ceramic layer 35. The sintering ensures the adhesion of the surface conductive ceramic 35 with the insulating ceramic which forms the body of the electrode 30.

La figure 5 représente la deuxième électrode 40 prise isolément. Elle est constituée en principe de la même manière que la première, à savoir par frittage d'un corps de céramique électriquement isolante crue ayant la forme de l'électrode désirée, revêtue partiellement d'une couche mince de céramique conductrice crue 45. Un perçage 46 sert à laisser passer une tige 42 pour l'établissement de la traversée conductrice.The figure 5 represents the second electrode 40 taken alone. It is constituted in principle in the same way as the first one, namely by sintering a green electrically insulating ceramic body having the shape of the desired electrode, partially coated with a thin layer of raw conducting ceramic 45. A drilling 46 serves to pass a rod 42 for the establishment of the conductive bushing.

La figure 6 représente la troisième électrode 50 prise isolément, consitutée comme les autres avec une couche superficielle locale 55 de céramique conductrice, mais pas de perçage dans le cas où on ne prévoit pas de traversée conductrice pour sa connexion à l'extérieur.The figure 6 represents the third electrode 50 taken alone, constituting like the others with a local surface layer 55 of conductive ceramic, but no drilling in the case where there is no conductive bushing for its connection to the outside.

La figure 7 représente la quatrième électrode 60 avec sa couche de céramique conductrice superficielle locale 65, et son perçage 66 pour une traversée conductrice.The figure 7 represents the fourth electrode 60 with its local surface conductive ceramic layer 65, and its bore 66 for a conductive bushing.

La figure 8 représente le fourreau cylindrique 70 pris isolément, avec ses ailettes radiales 80. On remarque des perçages 72 et 73 dans le fourreau, qui viennent en regard des perçages 36 et 46 de la première et la deuxième électrode 30 et 40 lorsque celles-ci sont montées dans le fourreau, pour laisser le passage aux tiges conductrices 32 et 42. En effet, les tiges conductrices traversent dans ce cas non seulement l'épaisseur des blocs de céramique isolante qui constituent les électrodes 30 et 40, mais aussi l'épaisseur du fourreau 70. Il n'y a pas d'ailettes à l'endroit des perçages 72 et 73 afin que les tiges conductrices qu'on placera dans les perçages soient accessibles. Les perçages 72, 73, 36 et 46 servent en même temps à assurer le positionnement correct des électrodes en céramique dans le fourreau 70.The figure 8 represents the cylindrical sleeve 70 taken alone, with its radial fins 80. There are bores 72 and 73 in the sleeve, which are opposite holes 36 and 46 of the first and the second electrode 30 and 40 when they are mounted in the sheath, to allow passage to the conductive rods 32 and 42. Indeed, the conductive rods pass through in this case not only the thickness of the blocks of insulating ceramic which constitute the electrodes 30 and 40, but also the thickness of the sleeve 70. There are no fins at the holes 72 and 73 so that the conductive rods that will be placed in the holes are accessible. The holes 72, 73, 36 and 46 serve at the same time to ensure the correct positioning of the ceramic electrodes in the sheath 70.

Les différents éléments constitutifs du collecteur (électrodes, fourreau) peuvent être réalisés avec l'aide des techniques céramiques conventionnelles. De préférence, le fourreau 70 avec ses ailettes 80 est de préférence réalisé, du fait qu'il est cylindrique, par extrusion d'une pâte de céramique crue. Les ailettes peuvent avoir une surface rainurée (rainures également réalisée pendant l'extrusion) pour améliorer la dissipation de la chaleur. La conformation du fourreau peut être complétée par d'autres opérations d'usinage et perçage de la pâte de céramique crue.The various constituent elements of the collector (electrodes, sheath) can be made with the aid of conventional ceramic techniques. Preferably, the sleeve 70 with its fins 80 is preferably made, because it is cylindrical, by extrusion of a ceramic paste raw. The fins may have a grooved surface (grooves also made during extrusion) to improve heat dissipation. The shape of the sheath can be completed by other machining operations and drilling of the raw ceramic paste.

Les électrodes sont de préférence réalisées par extrusion puis usinage de ces blocs pour leur donner la forme désirée (conique avec une ouverture au sommet et des décrochements facilitant leur mise en place dans le fourreau). Les blocs de céramique électriquement isolante crue sont revêtus d'une barbotine de céramique électriquement conductrice crue. Alternativement, elles pourraient être revêtues d'une encre conductrice à base de métal réfractaire (tungstène notamment).The electrodes are preferably made by extrusion and then machining these blocks to give them the desired shape (conical with an opening at the top and recesses facilitating their introduction into the sleeve). The blocks of electrically insulating raw ceramic are coated with a slurry of electrically conductive ceramic raw. Alternatively, they could be coated with a conductive ink based on refractory metal (especially tungsten).

Sur les figures, on a représenté des électrodes dont les parties conductrices sont à symétrie de révolution. On peut cependant prévoir n'importe quel motif de zone conductrice sans difficulté particulière, alors que l'usinage de blocs métalliques selon des formes non symétriques posait beaucoup plus de problèmes dans l'art antérieur.In the figures, there are shown electrodes whose conductive parts are symmetrical of revolution. However, any conductive zone pattern can be provided without particular difficulty, while machining metal blocks into unsymmetrical shapes was much more problematic in the prior art.

Cette disposition permet de limiter les électrons réfléchis en créant une dissymétrie du champ électrique appliqué par l'électrode ainsi constitué tout en conservant une électrode axisymétrique simple à fabriquer.This arrangement makes it possible to limit the reflected electrons by creating an asymmetry of the electric field applied by the electrode thus formed while maintaining an axisymmetric electrode easy to manufacture.

Les blocs de céramique composite crue revêtus d'une couche électriquement conductrice sont insérés dans le fourreau, les tiges des traversées conductrices sont mises en place, une pâte conductrice (céramique ou encre conductrice au tungstène) peut être déposée, par exemple au pinceau, sur les extrémités de ces tiges pour faciliter la liaison électrique entre ces tiges et les surfaces conductrices des électrodes.The raw composite ceramic blocks coated with an electrically conductive layer are inserted into the sleeve, the rods of the conducting bushings are put in place, a conductive paste (ceramic or conductive tungsten ink) may be deposited, for example with a brush, on the ends of these rods to facilitate the electrical connection between these rods and the conductive surfaces of the electrodes.

De même, une encre conductrice au tungstène ou une pâte de céramique conductrice peut être déposée à l'intérieur du fourreau, au pinceau et/ou par trempage et/ou par projection ou pulvérisation, pour réaliser la surface conductrice représentée par la ligne 90 de la figure 3. Un film conducteur peut également être déposé à l'extérieur du fourreau (sans établir de liaison électrique avec les surfaces intérieures au tube), pour assurer le blindage électromagnétique du collecteur.Similarly, a conductive tungsten ink or a conductive ceramic paste may be deposited inside the sheath, with a brush and / or by dipping and / or by spraying or spraying, to produce the conductive surface represented by line 90 of the figure 3 . A conductive film may also be deposited outside the sleeve (without establishing an electrical connection with the inner surfaces of the tube), to ensure the electromagnetic shielding of the collector.

La dernière électrode 60, qui forme le fond du tube, est mise en place, avec sa tige conductrice 62, après ces opérations.The last electrode 60, which forms the bottom of the tube, is put in place, with its conducting rod 62, after these operations.

L'ensemble des électrodes, du fourreau, et des tiges conductrices, est cofritté pour aboutir à la structure de collecteur désirée.The set of electrodes, the sheath, and the conductive rods is cofired to result in the desired collector structure.

La figure 9 représente, en vue partiellement ouverte, le bloc de collecteur ainsi réalisé. Dans sa version préférée, toutes les électrodes ainsi que le fourreau sont en céramique au moins superficiellement conductrice.The figure 9 represents, in partially open view, the collector block thus produced. In its preferred version, all the electrodes and the sleeve are at least superficially conductive ceramic.

La céramique préférée pour toutes les parties isolantes est de préférence à base de nitrure d'aluminium AIN (jusqu'à 100%). La conductivité thermique du nitrure d'aluminium est d'environ 180 watts/mK. Au nitrure d'aluminium peuvent être mélangés en faible proportion du carbure de silicium SiC ou du nitrure de titane TiN. Des ajouts de frittage en faible proportion (inférieure à 10%) peuvent être inclus dans la pâte de céramique crue pour faciliter le frittage ou le cofrittage avec d'autres céramiques.The preferred ceramic for all insulating parts is preferably based on aluminum nitride AlN (up to 100%). The thermal conductivity of aluminum nitride is about 180 watts / mK. Aluminum nitride can be mixed in a small proportion of silicon carbide SiC or titanium nitride TiN. Sintering additions in a small proportion (less than 10%) can be included in the raw ceramic paste to facilitate sintering or co-sintering with other ceramics.

Pour les parties électriquement conductrices de l'électrode, la céramique est de préférence en nitrure de titane TiN, mais peut être également en carbure de titane TiC, carbure de tungstène WC, carbure de silicium SiC. Ces matériaux peuvent être mélangés à du nitrure d'aluminium. Dans le cas où les parties superficielles conductrices sont métalliques, le métal est de préférence du tungstène ou du molybdène. Là encore des ajouts de frittage sont avantageusement prévus, notamment pour faciliter le cofrittage avec le nitrure d'aluminium.For the electrically conductive parts of the electrode, the ceramic is preferably of titanium nitride TiN, but may also be titanium carbide TiC, tungsten carbide WC, silicon carbide SiC. These materials can be mixed with aluminum nitride. In the case where the conductive surface portions are metallic, the metal is preferably tungsten or molybdenum. Again sintering additions are advantageously provided, especially to facilitate the cofritting with aluminum nitride.

La granulométrie des poudres utilisées pour réaliser les céramiques permet de jouer sur la texture de la surface conductrice de l'électrode, une granulométrie contrôlée de l'ordre du micromètre (0,5 à 2 micromètres) aboutissant à former des microcavités superficielles tendant à limiter l'émission secondaire d'électrons lorsque l'électrode est bombardée par des électrons.The particle size of the powders used to make the ceramics makes it possible to modify the texture of the conductive surface of the electrode, a controlled particle size of the order of one micrometer (0.5 to 2 micrometers) resulting in the formation of superficial microcavities tending to limit the secondary emission of electrons when the electrode is bombarded by electrons.

Les tiges conductrices constituant les traversées dans les céramiques isolantes peuvent être en nitrure de titane, en carbure de titane, ou en carbure de silicium, ou en mélange de ces matériaux. Là encore, des ajouts de frittage peuvent être prévus. Les tiges peuvent aussi être en tungstène ou molybdène.The conductive rods constituting the bushings in the insulating ceramics may be titanium nitride, titanium carbide, or silicon carbide, or a mixture of these materials. Again, sintering additions can be provided. The stems may also be tungsten or molybdenum.

Les ajouts de frittage peuvent être typiquement de l'oxyde d'yttrium Y2O3, de l'oxyde de calcium CaO, du fluorure d'yttrium YF3, du fluorure de calcium CaF2.The sintering additions may typically be yttrium oxide Y2O3, calcium oxide CaO, yttrium fluoride YF3, calcium fluoride CaF2.

Le nitrure d'aluminium (isolant) et le nitrure de titane (conducteur) présentent des caractéristiques voisines, en particulier en termes de cinétique de densification lors du cofrittage, aboutissant à une liaison forte inorganique, de type iono-covalente.Aluminum nitride (insulator) and titanium nitride (conductor) have similar characteristics, particularly in terms of densification kinetics during cofiring, resulting in a strong inorganic bond, of the ionocovalent type.

On sait que la céramique crue subit un rétreint important lors du frittage (de l'ordre de 15 à 30%). On tient évidemment compte de ce rétreint pour déterminer l'usinage des pièces de céramique crue. On profitera de ce rétreint pour assurer un frettage (serrage radial vers l'intérieur) du fourreau sur les électrodes pendant l'opération de frittage.It is known that the raw ceramic undergoes significant shrinkage during sintering (of the order of 15 to 30%). This shrinkage is obviously taken into account in order to determine the machining of the raw ceramic pieces. This shrinkage will be used to ensure shrinking (radial inward tightening) of the sleeve on the electrodes during the sintering operation.

Les assemblages d'électrodes ainsi réalisés peuvent supporter de très hautes températures de fonctionnement sans entraîner des phénomènes de dégazage comme sur des électrodes métalliques de l'art antérieur.The electrode assemblies thus produced can withstand very high operating temperatures without causing degassing phenomena as on metal electrodes of the prior art.

Concernant le fourreau, on peut remarquer que l'invention peut faciliter le refroidissement du tube par fluide (et notamment un liquide tel qu'une huile isolante électrique ou de l'eau désionisée) si on mélange dans le corps du fourreau des canaux réalisés au cours de l'extrusion du fourreau.With regard to the sheath, it may be noted that the invention can facilitate the cooling of the tube by fluid (and in particular a liquid such as an electrical insulating oil or deionized water) if the channels formed in the barrel body are mixed in the barrel body. during the extrusion of the sheath.

En effet dans l'art antérieur, le fluide devait posséder une rigidité diélectrique suffante pour s'accommoder des faces externes des électrodes et de l'enveloppe externe soumises à des tensions différentes entre elles.Indeed, in the prior art, the fluid had to have sufficient dielectric strength to accommodate the external faces of the electrodes and the outer envelope subjected to different voltages between them.

Dans l'invention, le structure de l'enveloppe externe en céramique peut avantageusement être traversée dans le sens longitudinal par des capillaires dans lequel on peut faire circuler un fluide de refroidissement. Outre la proximité du fluide de refroidissement par rapport aux surfaces internes à refroidir, cette disposition permet d'utiliser un fluide standard tel que de l'eau puisque le fluide n'est plus directement au contact des électrodes. Le fluide est en contact direct avec l'enveloppe sur toute la longueur de celle-ci.In the invention, the structure of the outer ceramic shell may advantageously be traversed in the longitudinal direction by capillaries in which a cooling fluid can be circulated. In addition to the proximity of the cooling fluid with respect to the internal surfaces to be cooled, this arrangement makes it possible to use a standard fluid such as water since the fluid is no longer directly in contact with the electrodes. The fluid is in direct contact with the envelope over the entire length thereof.

Cette nouvelle disposition, permet également d'éviter l'apparition de couple galvanique, de corrosion chimique. Le nitrure d'aluminium étant particulièrement inerte chimiquement.This new arrangement also makes it possible to avoid the occurrence of galvanic torque, of chemical corrosion. Aluminum nitride being particularly chemically inert.

Claims (11)

  1. A vacuum tube, characterised in that it comprises at least one electrode (30, 40, 50, 60) produced in the form of an electrically insulating ceramic block with high thermal conductivity, characterised in that said block is cofired with a thin surface layer of electrically conductive ceramic on at least one portion of its surface.
  2. The tube according to claim 1, characterised in that the ceramic block has a thermal conductivity of at least 100 watts/mK at 20°C.
  3. The tube according to claim 2, characterised in that the insulating ceramic is mainly based on aluminium nitride.
  4. The tube according to claim 3, characterised in that the surface conductive ceramic is based on titanium nitride or titanium carbide or silicon carbide or tungsten carbide or a mixture of two or more of these materials.
  5. The tube according to any one of claims 1 to 4, characterised in that it comprises a rod (32) made from conductive ceramic so as to connect the electrode with the outside of the tube, one side of said rod being in contact with a conducting portion of the electrode inside the tube and passing through an insulating ceramic forming part of the electrode and/or an insulating envelope of the tube, and which is cofired with said insulating ceramic.
  6. The tube according to any one of claims 1 to 5, characterised in that it comprises an external envelope made from electrically insulating ceramic and cooling means by circulation of liquid in direct contact with said envelope over the entire length of the envelope.
  7. The tube according to any one of claims 1 to 6, characterised in that the electrode is an electron collector.
  8. A process for producing a vacuum tube, characterised in that it comprises the production of at least one electrode for the tube from a composite ceramic, by cofiring an electrically conducting ceramic with an electrically insulating ceramic with high thermal conductivity.
  9. The process according to claim 8, characterised in that the conducting ceramic is deposited as a thin layer on a portion of the surface of the insulating ceramic.
  10. The process according to any one of claims 8 to 9, characterised in that the electrode is produced by depositing a thin layer of raw conductive ceramic on a raw compound of insulating ceramic.
  11. The process according to any one of claims 8 to 10, characterised in that the electrode is an electron collector.
EP02796902A 2001-12-20 2002-12-10 Vacuum tube and method of manufacturing thereof Expired - Lifetime EP1459347B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116562 2001-12-20
FR0116562A FR2834122B1 (en) 2001-12-20 2001-12-20 ELECTRODES MANUFACTURING METHOD AND ELECTRONIC VACUUM TUBE USING THE SAME
PCT/FR2002/004272 WO2003054900A2 (en) 2001-12-20 2002-12-10 Method for making electrodes and vacuum tube using same

Publications (2)

Publication Number Publication Date
EP1459347A2 EP1459347A2 (en) 2004-09-22
EP1459347B1 true EP1459347B1 (en) 2011-06-15

Family

ID=8870759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02796902A Expired - Lifetime EP1459347B1 (en) 2001-12-20 2002-12-10 Vacuum tube and method of manufacturing thereof

Country Status (6)

Country Link
US (1) US7812540B2 (en)
EP (1) EP1459347B1 (en)
JP (1) JP2005513731A (en)
AU (1) AU2002361435A1 (en)
FR (1) FR2834122B1 (en)
WO (1) WO2003054900A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2411517A (en) * 2004-02-27 2005-08-31 E2V Tech Uk Ltd Collector arrangement
JP2007258615A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Electrostatic chuck
JP5129555B2 (en) * 2007-12-05 2013-01-30 独立行政法人日本原子力研究開発機構 Beam termination method and beam termination apparatus
JP2009252444A (en) * 2008-04-03 2009-10-29 Nec Microwave Inc Collector electrode and electron tube
TW201137915A (en) * 2010-04-20 2011-11-01 Tai Yiaeh Entpr Co Ltd Vacuum electricity introducing device
CN102403177B (en) * 2011-11-24 2014-06-04 安徽华东光电技术研究所 Traveling wave tube collector needle and processing technology thereof
CN107155255B (en) * 2017-06-26 2023-06-16 中国科学技术大学 Vacuum high-voltage high-current electrode
CN109742008B (en) * 2018-12-26 2024-03-05 重庆臻宝科技股份有限公司 Long-life electrode rod
CN110176317B (en) * 2019-04-04 2023-10-20 东华大学 Oxide gradient multiphase ceramic feed-through wire for nuclear power and preparation and application thereof
CN113594005A (en) * 2021-07-15 2021-11-02 南京三乐集团有限公司 Insulating material vacuum sealing and filling device and method for traveling wave tube heater subassembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214327A (en) * 1985-03-20 1986-09-24 Toshiba Corp Collector structure for microwave tube

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US245720A (en) * 1881-08-16 hendry
US248043A (en) * 1881-10-11 School-desk
NL7009601A (en) * 1970-06-30 1972-01-03
US3662212A (en) * 1970-07-15 1972-05-09 Sperry Rand Corp Depressed electron beam collector
US3806755A (en) * 1972-05-31 1974-04-23 Varian Associates Electron collector having means for reducing secondary electron interference in a linear beam microwave tube
JPS5838904B2 (en) * 1974-04-20 1983-08-26 日本電気株式会社 Microhakan
DE2526681C3 (en) * 1975-06-14 1979-07-12 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Traveling wave tube
US4277721A (en) * 1979-09-07 1981-07-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multistage depressed collector for dual mode operation
US4504762A (en) * 1982-06-25 1985-03-12 Hughes Aircraft Company Buffer for an electron beam collector
US4527092A (en) * 1983-09-30 1985-07-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multistage spent particle collector and a method for making same
US4734915A (en) * 1985-03-26 1988-03-29 Coherent, Inc. Conduction cooled laser bore structures formed from graphite and other materials
US4736379A (en) * 1985-12-06 1988-04-05 Coherent, Inc. Conduction cooled ion laser
US5025193A (en) * 1987-01-27 1991-06-18 Varian Associates, Inc. Beam collector with low electrical leakage
US5153901A (en) * 1988-01-06 1992-10-06 Jupiter Toy Company Production and manipulation of charged particles
US5227694A (en) * 1991-11-19 1993-07-13 Itt Corporation Collector apparatus for an electron beam
US5424605A (en) * 1992-04-10 1995-06-13 Silicon Video Corporation Self supporting flat video display
US5436525A (en) * 1992-12-03 1995-07-25 Litton Systems, Inc. Highly depressed, high thermal capacity, conduction cooled collector
KR0156032B1 (en) * 1993-05-28 1998-10-15 호소야 레이지 Image display device and driver therefor
US5668524A (en) * 1994-02-09 1997-09-16 Kyocera Corporation Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase
DE69514987T2 (en) * 1994-11-09 2000-06-29 Ngk Insulators Ltd Ceramic green sheet and process for making ceramic substrate
US5729583A (en) * 1995-09-29 1998-03-17 The United States Of America As Represented By The Secretary Of Commerce Miniature x-ray source
GB2312323B (en) * 1996-04-20 2000-06-14 Eev Ltd Collector for an electron beam tube
US5644131A (en) * 1996-05-22 1997-07-01 Hewlett-Packard Co. Hyperbolic ion trap and associated methods of manufacture
FR2754384B1 (en) 1996-10-04 2004-07-16 Thomson Tubes Electroniques QUICK FREQUENCY TUNING DEVICE FOR MICROWAVE TUBE AND MICROWAVE TUBE EQUIPPED WITH THIS DEVICE
US6616767B2 (en) * 1997-02-12 2003-09-09 Applied Materials, Inc. High temperature ceramic heater assembly with RF capability
US6208079B1 (en) * 1997-10-06 2001-03-27 Hughes Electronics Corporation Circumferentially-segmented collector usable with a TWT
US6044129A (en) * 1997-11-21 2000-03-28 Picker International, Inc. Gas overload and metalization prevention for x-ray tubes
US6429589B2 (en) * 1999-04-16 2002-08-06 Northrop Grumman Corporation Oil-cooled multi-staged depressed collector having channels and dual sleeves
KR100615103B1 (en) * 2000-02-16 2006-08-25 풀러린 인터내셔날 코포레이션 Nanotubes, field emission cathode and cathode ray tube having nanotubes and method for forming them
EP1193734A4 (en) * 2000-03-08 2006-06-28 Gs Yuasa Corp Electric discharge lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214327A (en) * 1985-03-20 1986-09-24 Toshiba Corp Collector structure for microwave tube

Also Published As

Publication number Publication date
FR2834122B1 (en) 2004-04-02
US20050130550A1 (en) 2005-06-16
AU2002361435A1 (en) 2003-07-09
AU2002361435A8 (en) 2003-07-09
FR2834122A1 (en) 2003-06-27
JP2005513731A (en) 2005-05-12
WO2003054900A2 (en) 2003-07-03
US7812540B2 (en) 2010-10-12
WO2003054900A3 (en) 2004-04-29
EP1459347A2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
EP1459347B1 (en) Vacuum tube and method of manufacturing thereof
EP0781921B1 (en) Ion source with closed electron drift
EP0283414B1 (en) Fuse with high density ceramic casing and method of fabrication of that fuse
EP0650557B1 (en) Fixed plasma motor
FR2649026A1 (en) PROCESS FOR SHAPING COMPACT BODIES
FR2487573A1 (en) MICROWAVE WINDOW ASSEMBLY AND MICROWAVE TUBE PROVIDED WITH SUCH AN ASSEMBLY
WO2000002226A1 (en) Multibeam electronic tube with magnetic field for correcting beam trajectory
US4527092A (en) Multistage spent particle collector and a method for making same
EP3338311B1 (en) Improved thermoelectric element and thermoelectric converter including at least one such element
FR2900770A1 (en) GUIDING DEVICES FOR ELECTROMAGNETIC WAVES AND METHOD FOR MANUFACTURING SUCH GUIDING DEVICES
EP0008791B1 (en) Improvement in homopolar machines with a cylindrical air gap
EP0048690B1 (en) High stability gas discharge tube for high power laser emission
FR2639936A1 (en) CERAMIC PIECE WITH MULTIPLE IMPROVED PROPERTIES AND METHOD FOR MANUFACTURING SUCH A PIECE
EP0117804B1 (en) Manufacturing method of a microwave cavity, and cavity obtained thereby
EP0035438B1 (en) Method for the hermetic encapsulation of very high frequency electronic components comprising the making of metallic traverses, and device made by such a method
EP0280940B1 (en) Diverter-collector for a tokamak nuclear fusion reactor
WO2020152284A1 (en) Process for manufacturing a ceramic-matrix composite part, and corresponding composite part and electrical component
FR2478869A1 (en) SHF tube coaxial window - uses centre conductor and crossbeam support of same thermal expansion coefficient at its sealing temp.
EP0802557B1 (en) Collector for an electron beam tube
FR2597016A1 (en) Method and device for compacting a powder by means of electromagnetic pulses and composite material obtained
FR2683091A1 (en) IMPROVED COOLING DEVICE FOR HYPERFREQUENCY TUBE.
EP1251544B1 (en) Microwave amplifier electron tube with miniature entry plug and method of fabrication
RU2047665C1 (en) Method for manufacture and thermal treatment of ignition electrodes from nickel alloy
FR2681726A1 (en) Insulating potting for indirect heating cathodes
Ebihara et al. Design, fabrication and performance of small, graphite electrode, multistage depressed collectors with 200-W, CW, 8-to 18-GHz traveling-wave tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040614

17Q First examination report despatched

Effective date: 20100318

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: VACUUM TUBE AND METHOD OF MANUFACTURING THEREOF

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Ref document number: 60240304

Country of ref document: DE

Effective date: 20110526

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211118

Year of fee payment: 20

Ref country code: FR

Payment date: 20211126

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221209

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606