EP0283414B1 - Fuse with high density ceramic casing and method of fabrication of that fuse - Google Patents

Fuse with high density ceramic casing and method of fabrication of that fuse Download PDF

Info

Publication number
EP0283414B1
EP0283414B1 EP88420094A EP88420094A EP0283414B1 EP 0283414 B1 EP0283414 B1 EP 0283414B1 EP 88420094 A EP88420094 A EP 88420094A EP 88420094 A EP88420094 A EP 88420094A EP 0283414 B1 EP0283414 B1 EP 0283414B1
Authority
EP
European Patent Office
Prior art keywords
fusible element
envelope
current
ceramic
limiting fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88420094A
Other languages
German (de)
French (fr)
Other versions
EP0283414A2 (en
EP0283414A3 (en
Inventor
Vojislav Narancic
Gilles Fecteau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of EP0283414A2 publication Critical patent/EP0283414A2/en
Publication of EP0283414A3 publication Critical patent/EP0283414A3/en
Application granted granted Critical
Publication of EP0283414B1 publication Critical patent/EP0283414B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49107Fuse making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to a high power current limiting fuse comprising an electrically conductive fuse element tightly surrounded by an envelope made of a high density rigid material (non-porous), in particular ceramic.
  • the invention also relates to a method of manufacturing such a fuse.
  • a fuse is an electrical device which conducts a current and which interrupts this same current when it exceeds a predetermined value, thereby protecting an electrical circuit against a current of too great intensity. Very high intensity fault currents are therefore interrupted well before they reach their maximum amplitude. A fuse therefore limits the energy that could develop in a faulty electrical circuit and damage it.
  • Conventional high power current limiting fuses usually consist of a fiberglass or ceramic insulating tube closed at each end by metal covers. These covers constitute terminals which allow the connection of the fuse in an electrical circuit to be protected.
  • These conventional fuses also contain one or more electrically conductive fuse elements which are in the form of wires or tapes and which are respectively connected at their two ends to the two covers.
  • the fusible elements are metallic and contain, for example, silver, copper, aluminum, etc. They are also surrounded by an arc extinguishing agent, generally quartz sand that has been compacted and filling the insulating tube.
  • the document US-A-3,838,375 (FRIND et al) to which the document DDA109 472 corresponds, and the document US-A-4 003 129 (KOCH et al) propose to introduce an inorganic binder into the quartz sand while retaining a certain porosity.
  • the results obtained by this means are superior to those of conventional fuses having undergone conventional sand compaction.
  • document CH-A-209,745 describes an electric fuse comprising contact parts and a body made of insulating material provided with at least one channel containing a fusible element. The two pieces in question are held together using screws or rivets. The cavity in which the fusible element is placed is, in practice, filled with silica sand introduced through an opening provided for this purpose.
  • An object of the present invention is to improve the operating characteristics of a current limiting fuse, and more precisely still of a high power current limiting fuse, by replacing the quartz sand including or not an organic binder by a envelope of rigid high density material, in particular ceramic, which tightly surrounds the fusible element and which has a high dielectric resistivity to high temperature of the electric arc and high resistance to pressure and high temperature shocks caused by the arc.
  • the present invention relates to a current limiting fuse comprising a fusible element, an arc extinguishing agent tightly surrounding the fusible element, this arc extinguishing agent having a high dielectric resistivity at high temperature d '' an electric arc occurring during the melting of the element, and a pair of terminals connected together via the fuse element, said terminals allowing the connection of the fuse element in an electric circuit likely to undergo a overcurrent;
  • this fuse is characterized in that the arc extinguishing agent consists of an envelope of non-porous rigid ceramic having a central cavity completely filled by the fusible element so as to leave no vacuum, said rigid non-porous ceramic having a high resistance to internal pressure and high temperature shocks caused by said electric arc.
  • the rigid non-porous ceramic constituting the envelope is a high density ceramic such as alumina, Al2O3, and Beryllium oxide, BeO, which also has high thermal conductivity and high specific heat which allow it quickly absorb the heat produced inside the enclosure by the electric arc.
  • a high density ceramic such as alumina, Al2O3, and Beryllium oxide, BeO, which also has high thermal conductivity and high specific heat which allow it quickly absorb the heat produced inside the enclosure by the electric arc.
  • ceramics having a high mechanical resistance as well as a high resistance to the high temperature of the electric arc favor a more rapid rise of the arc voltage in comparison with the fuses of the prior art, which causes a much faster interruption of the fault current.
  • a method of manufacturing a current limiting fuse as defined above, of the type comprising the insertion of a fuse element capable of conducting an electric current in an extinguishing agent d 'arc having a high dielectric resistivity at the high temperature of an electric arc occurring during the melting of said element, said insertion being carried out so that said arc extinguishing agent tightly surrounds said fusible element, and mounting subsequent of a pair of terminals connected together via the fuse element, said terminals allowing the connection of the fuse element in an electric circuit liable to undergo an overcurrent, method characterized in that one use a envelope made of a rigid non-porous ceramic as an arc extinguishing agent, said ceramic defining a cavity of the same shape and dimensions as the fusible element, so as to be completely filled without any vacuum by said fusible element during its insertion, said ceramic having a high resistance to internal pressure and high temperature shocks caused by said electric arc.
  • the step of mounting the pair of terminals on the envelope includes metallization of this envelope at the two ends.
  • the stage of production of the envelope comprises the production of two complementary parts made of rigid high density material and each having a surface of contact with the other of said two parts, the contact surface of one of these two complementary parts comprising a groove of the same shape and dimensions as the fusible element which is of elongated shape, and the step of inserting the fusible element consists of inserting this element inside the groove and assembling the two complementary parts by joining their contact surfaces.
  • a method of manufacturing a current limiting fuse comprises a step of producing an envelope made of a rigid non-porous ceramic which defines a cavity, this material having a high dielectric resistivity to high temperature as well as high resistance to internal pressure and high temperature shocks.
  • This method of manufacturing a current limiting fuse further comprises steps of injecting a molten metal inside said envelope cavity to form a fuse element capable of conducting an electric current and designed to melt and thus interrupt said electric current when the latter reaches a given value, and mounting on the envelope of a pair of terminals connected together via the fuse element, and therefore allowing the connection of this element in an electrical circuit liable to undergo an overcurrent.
  • the stage of production of the casing comprises the use of pieces of metal with high melting point to form the cavity of the casing .
  • a fiberglass or ceramic sheath can surround the envelope of the fuse according to the invention, thereby increasing the rigidity of the resulting fuse.
  • the preferably high power current limiting fuse F comprises a metallic fuse element 1 in the form of a ribbon.
  • the fusible element 1 comprises at least one reduction in width 2 (three of these width reductions being illustrated in FIG. 1 for example purposes) where an electric arc occurs when the fusible element blows at this location .
  • the parts of the element 1 reduced in width are the first susceptible to fusion. Because of their reduced cross-section, they heat up faster when subjected to an electric current.
  • the number of reductions in width of the ribbon forming the element 1, where electric arcs occur when the element 1 is fused at these locations, can vary and is conventionally selected according to the needs of the intended application. It is also well known to replace these width reductions with perforations made through the metal strip constituting the element 1.
  • the ceramic envelope 3 must have sufficient dimensions to allow it to withstand the shocks of internal pressure and high temperature caused by the creation of the electric arc at the interruption of the current, without cracking or explosion, thus ensuring a great seal. .
  • it can be of reduced size and reinforced by a cylindrical sheath 4 of ceramic or even of fiberglass.
  • the two ends of the casing 3 of the fuse F are metallized as indicated by the references 5 and 6. These metallizations are carried out conventionally directly on the ceramic. This results in two electrical terminals 5 and 6 which make it possible to connect the fuse F, more particularly its fuse element 1, in an electrical circuit to be protected liable to undergo an overcurrent. Obviously, during metallizations, the applied metal comes into contact with the ends of the fusible element 1, thereby connecting it between the terminals 5 and 6.
  • Figure 2 a illustrates the physical state of the fuse F, before the fuse element 1 blows, that is to say in conduction.
  • the fusible element 1 is then tightly surrounded by the ceramic envelope 3.
  • the very high temperature of the electric arc of cut-off very quickly vaporizes the element 1 and forms at the place where the arc occurs (reduction in width of the metallic strip ) a pressure which must be maintained by the great tightness of the ceramic envelope 3.
  • This pressure promotes a very rapid rise in the arc voltage, and when this reaches a value higher than the voltage of the source, an opposite current very quickly reduces the fault current to zero.
  • the condensation of metallic vapors in the form of droplets on the ceramic walls provides good electrical insulation between terminals 5 and 6 of the fuse, i.e. between the terminals created by the ends of the fuse element 1 on each side of its melted and vaporized part.
  • Alumina, Al2O3, and Beryllium oxide, BeO are ceramics which are particularly well suited for entering the manufacture of fuse F according to the invention. Indeed, these are capable of maintaining the pressure produced by the electric arc for a duration of less than 200 microseconds, which makes it possible to reach the peak value of the arc voltage. In the following milliseconds, the surfaces of these ceramics in contact with the electric arc are subjected to a high temperature as well as to a still high pressure and a slight part of these is brought to the melting point. A cavity slightly larger than the dimensions of the fuse element is thus formed under the combined effect of pressure and temperature, which promotes the decomposition of the gases produced and offers a greater dielectric distance between the terminals of the fuse created by the melting of element 1.
  • Figure 2 b shows the physical state of the fuse F after the element 1 has blown.
  • the cavity formed at the location of the melted part of element 1 is relatively small, which made it possible to maintain the pressure at the melting point of element 1.
  • FIG 3 shows a typical oscillogram of the operation of a fuse F according to the invention.
  • This oscillogram illustrates the very rapid rise of the arc voltage V following the melting of the fuse element 1. The instant at which this melting occurs is indicated by line B in Figure 3.
  • the oscillogram further illustrates the very rapid breaking of the fault current I, the maximum value of which is represented by line A, which ceases to increase when the arc voltage V is at least equal to the source voltage S.
  • the oscillogram of Figure 3 therefore demonstrates that the capacity of rigid high density ceramic to withstand the pressure and high temperature shocks, which allows the casing 3 to maintain the pressure at the point of creation of the arc at the cut of the current, ensures a rise very rapid arc voltage V compared to fuses of the prior art, from which comes the efficiency of interruption of the fault current I and, as will be explained in more detail below, a reduction of the joule integral (i integral as a function of the time of the term I2t) of the fuse F.
  • the difference between the maximum value of the current represented by line A and that of the cut current at the time of the start of the arc represented by line B is less than 1%.
  • the arc voltage V also ceases to increase. Consequently, with regard to the fuse F according to the invention, the rapid rise of the arc voltage V does not only mean a very rapid limitation of the fault current I, but also a limitation of the peak value of the voltage developed arc. Tests have shown that this overvoltage is greatly reduced compared to the fast fuses of the prior art using for example quartz sand with or without inorganic binder.
  • Figure 4 is a comparative series of curves which illustrate the operation of the fuse according to the invention compared to those of the prior art which use agglomerated or unglazed quartz sand as an arc extinguishing agent. It should be noted that the three fuses include substantially identical fuse elements.
  • curve C illustrates the slope of a presumed fault current, applied at time t0 to the various fuses.
  • Curve C in fact represents a short-circuit current and its evolution as a function of time, if it were not interrupted.
  • the fuse element of each fuse blows at the same time t1.
  • Curve D in FIG. 4 illustrates the evolution of the current in a traditional fuse using quartz sand which has been compacted but not agglomerated as an arc extinguishing agent.
  • This curve D shows that with such fuses, the fault current gradually increases after the fuse blows, then decreases slowly to reach a value of zero at time t2
  • This phenomenon is due, as demonstrated by the curve E, at the rather slow increase in the arc voltage in such a fuse and also at the relatively low peak value of this arc voltage.
  • Curve R illustrates the evolution of the fault current as a function of the time obtained with the fuse described in United States patent no. 3,838,375 (FRIND and AL).
  • This curve R clearly demonstrates that a fuse which uses as an arc extinguishing agent a quartz sand agglomerated using an inorganic binder provides better protection against overcurrents than a fuse using non-quartz sand agglomerated. Since the energy transmitted to the protected circuit corresponds to the integral as a function of time from t0 to t2 of the term I2t (joule integral), I representing as already mentioned the fault current, it It is therefore obvious that the fuse of patent no.
  • the evolution of the fault current as a function of time in a fuse according to the invention is represented by the curve S in FIG. 4.
  • the curve S clearly demonstrates the fundamental superiority of the fuse F according to the present invention. This improvement is provided by the high density rigid ceramic envelope for the various reasons explained above, and this without excessive increase in the arc voltage V (see Figure 3). Therefore, the appreciable reduction in the joule integral and the small increase in arc voltage have undeniable advantages of the fuse F.
  • the curves H and I represent the evolution of the current in a fuse with non-agglomerated quartz sand, and in a fuse according to the invention, respectively, the two fuses having substantially identical fuse elements and the vertical lines 9 and 10 indicate the moment of fusion of the element fuse for both fuse models.
  • the hatched part of the curve I shows the reduction of the total joule integral in the fuse F according to the invention.
  • the mass of the metallic fusible element 1 can be increased to delay the fusion. This procedure increases the maximum value of the cut current and thus increases the joule integral.
  • FIG. 5 b the evolution of the current as a function of time is presented in two types of fuses, that according to the invention (curve K) and a conventional fuse with non-agglomerated quartz sand (curve J).
  • the mass of the fuse element 1 of the fuse F according to the invention (curve K) has been increased compared to that of the fuse element of the conventional fuse so that the two fuses have identical total joule integrals.
  • the fuse F according to the invention (curve K) then offers a pre-arc joule integral of two to three times larger than that of the conventional fuse (curve J), which has an important advantage since the increase in the integral of total joule is zero.
  • the vertical lines 11 and 12 indicate the time of melting of the fuse elements of conventional fuses and according to the invention, respectively.
  • the fuse F according to the invention has another advantageous property, namely to be able to protect DC circuits. In fact, tests have confirmed that the breaking efficiency of a direct current of the fuse F is higher than that of the fuses of the prior art. An application of the fuse according to the invention for the protection of large power capacitor banks would therefore be possible. Another application of fuse F would be the protection of semiconductor circuits, thanks to its low Joule integral and its low arc overvoltage.
  • fuse F Another advantage of fuse F according to the invention is its high resistance to mechanical shock. It is well known that the resistance to mechanical shock of conventional high power fuses depends on the compacting of quartz sand or other non-agglomerated granular material surrounding the fusible element. Repeated mechanical shocks can indeed damage the fusible element (s), especially in conventional low-caliber fuses. As in fuse F according to the invention, all the parts form a rigid and compact mass, the rupture of the thin fusible elements is therefore avoided.
  • a first method of manufacturing the envelope 3 is illustrated in Figure 6 of the drawings.
  • Two elongated complementary pieces 13 and 14 of high density rigid ceramic with a cross section in the shape of a half moon are first produced.
  • a longitudinal groove 14 ⁇ is formed in the flat surface of the part 14, this groove matching the shape of the fusible element 1.
  • the flat surfaces of the parts 13 and 14 are joined using an inorganic ceramic cement.
  • the parts 13 and 14 thus joined together are then subjected to mechanical pressure in order to tighten them well one against the other, then baked in an oven at a temperature lower than the melting point of the metallic element 1. This results in a rigid and tight cylindrical envelope.
  • FIG. 7 illustrates a second method of manufacturing the ceramic envelope 3.
  • a cylindrical rod 15 as well as a tube 16, both made of high density rigid ceramic such as alumina, Al2O3, and Beryllium oxide, BeO, are produced beforehand, the rod 15 comprising a longitudinal groove 15 ⁇ .
  • the groove 15 ⁇ once again follows the shape of the element 1.
  • the rod 15 -element 1 assembly is then slid inside the tube 16, such that 'indicated by arrow 49.
  • the difference between the diameter internal of the tube 16 and the external diameter of the rod 15 leaves only a space between these rod and tube intended to be filled with an inorganic cement for appropriate ceramic.
  • the assembly is then placed in an oven for cooking at a temperature lower than the melting point of the fusible element, in order to form a cylindrical envelope of waterproof and very rigid ceramic.
  • FIGs 8 a) and 8 b) of the drawings Another method of manufacturing the casing 3 of the fuse F according to the invention is illustrated in Figures 8 a) and 8 b) of the drawings.
  • a tube 17 and several cylindrical elements 18 of short length are produced beforehand in a high density rigid ceramic.
  • a groove having a longitudinal portion and a transverse portion is formed on the side and at one end of each cylindrical element 18. Again, the groove of each cylindrical element 18 follows the shape of the fusible element 1.
  • the envelope of Figure 8 ceramic has the advantage of being able to separate two successive reductions in cross section 2 of the fusible element 1 by at least one cylindrical element 18 when these reductions in section are positioned in the geometric axis of the cylindrical envelope as as illustrated in Figure 8 b).
  • the electric arcs occurring in the fuse F when the element 1 blows at the locations of these section reductions are separated from each other by at least one of the cylindrical elements 18.
  • the cylindrical elements 18 are inserted end to end in the tube 17 with the fusible element 1 and connected together and to the tube 17 using an appropriate inorganic cement.
  • the assembly is then subjected to firing at a temperature lower than the melting point of the metallic element 1 to form a rigid and tight cylindrical envelope.
  • Figure 9 illustrates two complementary parts 19 and 20 which, when assembled, form a cylindrical rod high density rigid ceramic. This rod is then inserted inside a cylinder 22 formed inside a cylindrical piece 21 also of high density rigid ceramic.
  • the parts 19 and 20 When assembled, the parts 19 and 20 define a cavity 28. Molten metal 23 can be injected into the cavity 28 to form the fusible element. Centrifugal force can be used to ensure that the molten metal completely fills the cavity, without leaving any voids.
  • the fusible element is in the form of a ribbon comprising several circular perforations.
  • the parts 19, 20 and 21 are combined using an inorganic cement, then heat treated to form a tight and rigid envelope.
  • Parts 19 and 20 are joined using inorganic cement before metal injection.
  • the assembly of the parts 19 and 20 thus joined with the part 21 and any heat treatment of these parts can take place either before or after the injection of metal. If the heat treatment takes place after the injection of metal, it must be remembered that this must be carried out at a temperature below the melting point of the metal of the fusible element.
  • the cylindrical part 21 has three cylinders such as 22 to receive three rods such as 19, 20, thereby forming a fuse with three identical fuse elements.
  • Metals with a high melting point such as tungsten can be used in the manufacture of the high density rigid envelope 3 to form the cavity necessary for the insertion of the fusible element 1.
  • a tungsten ribbon or wire of the same shape that the fusible element is inserted into the ceramic during its manufacture. After forming and sintering the ceramic at high temperature and pressure, the tungsten tape or wire is removed and metal molten is injected into the cavity thus formed to form a fusible element.
  • FIG. 10 illustrates the use of several tungsten wires to form several parallel filiform cavities of uniform cross section such as 29 inside a rigid high density ceramic rod 25.
  • molten metal 24 is injected into each cavity 29, to form a fusible element.
  • the diameter of each cavity 29 is chosen according to the required characteristics of the fuse. Again, centrifugal force can be used to prevent the formation of any vacuum in the cavity when injecting the molten metal.
  • the rod 25 can optionally be inserted into a cylinder 27 formed in a cylindrical piece of high density rigid ceramic 26, and connected to the latter with an inorganic cement either before or after the injection of metal. Again, the rod 25 and the cylindrical part 26 thus joined together are subjected to a heat treatment to form a rigid and sealed envelope, before or after the injection of molten metal.
  • the cylindrical part 26 is provided with three cylinders such as 27 to receive three rods such as 25 each containing several fusible elements.
  • the fusible element 1 of the embodiments presented in Figures 6 and 7 can be manufactured by injection of molten metal.
  • a cylindrical sheath such as 4 ( Figure 1) can be placed on the ceramic shell.
  • This sheath is made of ceramic or fiberglass and has the function of increasing the mechanical rigidity of the fuse F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)

Description

La présente invention concerne un fusible limiteur de courant haute puissance comprenant un élément fusible conducteur d'électricité entouré de façon serrée par une enveloppe en un matériau rigide haute densité (non poreux), notamment en céramique. L'invention concerne également une méthode de fabrication d'un tel fusible.The present invention relates to a high power current limiting fuse comprising an electrically conductive fuse element tightly surrounded by an envelope made of a high density rigid material (non-porous), in particular ceramic. The invention also relates to a method of manufacturing such a fuse.

De façon générale, un fusible est un dispositif électrique qui conduit un courant et qui interrompt ce même courant lorsqu'il dépasse une valeur prédéterminée, pour ainsi protéger un circuit électrique contre un courant de trop grande intensité. Les courants de défaut de très grande intensité sont donc interrompus bien avant qu'ils n'atteignent leur amplitude maximale. Un fusible limite par conséquent l'énergie qui pourrait se développer dans un circuit électrique défectueux et l'endommager.Generally, a fuse is an electrical device which conducts a current and which interrupts this same current when it exceeds a predetermined value, thereby protecting an electrical circuit against a current of too great intensity. Very high intensity fault currents are therefore interrupted well before they reach their maximum amplitude. A fuse therefore limits the energy that could develop in a faulty electrical circuit and damage it.

Les fusibles limiteurs de courant haute puissance conventionnels se composent habituellement d'un tube isolant de fibre de verre ou de céramique fermé à chaque extrémité par des couvercles métalliques. Ces couvercles constituent des terminaux qui permettent la connexion du fusible dans un circuit électrique à protéger. Ces fusibles conventionnels renferment aussi un ou plusieurs éléments fusibles conducteurs d'électricité qui se présentent sous forme de fils ou de rubans et qui sont respectivement reliés à leurs deux extrémités aux deux couvercles. Les éléments fusibles sont métalliques et contiennent par exemple de l'argent, du cuivre, de l'aluminium, etc. Ils sont en outre entourés d'un agent extincteur d'arc, généralement du sable de quartz ayant subi un compactage et remplissant le tube isolant.Conventional high power current limiting fuses usually consist of a fiberglass or ceramic insulating tube closed at each end by metal covers. These covers constitute terminals which allow the connection of the fuse in an electrical circuit to be protected. These conventional fuses also contain one or more electrically conductive fuse elements which are in the form of wires or tapes and which are respectively connected at their two ends to the two covers. The fusible elements are metallic and contain, for example, silver, copper, aluminum, etc. They are also surrounded by an arc extinguishing agent, generally quartz sand that has been compacted and filling the insulating tube.

Au passage d'un courant de défaut à travers un élément fusible, le métal qui le compose atteint son point de fusion en des endroits déterminés par sa géométrie. Il se produit alors un arc électrique de coupure de courant dont la résistance augmente jusqu'à une valeur suffisante pour développer une tension plus élevée que celle de la source. Comme cette tension d'arc est de polarité opposée à celle de la source, le courant de défaut diminue alors jusqu'à une valeur nulle. Les caractéristiques de cette réduction de courant sont intimement liées à la nature de l'agent extincteur d'arc.When a fault current flows through a fusible element, the metal which composes it reaches its point of fusion in places determined by its geometry. There then occurs an electric arc of current cutoff whose resistance increases to a value sufficient to develop a higher voltage than that of the source. As this arc voltage has the opposite polarity to that of the source, the fault current then decreases to a zero value. The characteristics of this current reduction are intimately linked to the nature of the arc extinguishing agent.

A cause de la faible conductivité thermique du sable de quartz, et du remplissage partiel (environ 70%) par le sable de quartz de l'espace intérieur du tube isolant, il résulte une faible dissipation de chaleur lors de la production de l'arc électrique, ce qui augmente le temps de coupure du courant par le fusible et l'énergie développée à l'intérieur de celui-ci. Lors de la production de l'arc, le métal formant l'élément fusible est vaporisé et crée une pression, laquelle forme un canal d'arc dans le sable de quartz plus grand que les dimensions initiales de l'élément fusible. La tension d'arc augmente alors plus lentement, ce qui a pour effet d'augmenter le temps de coupure du courant.Because of the low thermal conductivity of quartz sand, and the partial filling (about 70%) by quartz sand of the interior space of the insulating tube, it results in a low heat dissipation during the production of the arc electric, which increases the cut-off time of the current by the fuse and the energy developed inside it. During the production of the arc, the metal forming the fusible element is vaporized and creates a pressure, which forms an arc channel in the quartz sand larger than the initial dimensions of the fusible element. The arc voltage then increases more slowly, which has the effect of increasing the power cut-off time.

Afin d'améliorer la conductivité thermique et la rigidité mécanique du sable de quartz, le document US-A-3 838 375 (FRIND et al) auquel correspond le document D.D.A.109 472, et le document US-A-4 003 129 (KOCH et al) proposent d'introduire un liant inorganique dans le sable de quartz tout en conservant une certaine porosité. Les résultats obtenus par ce moyen sont supérieurs à ceux des fusibles conventionnels ayant subi un compactage de sable classique.In order to improve the thermal conductivity and the mechanical rigidity of quartz sand, the document US-A-3,838,375 (FRIND et al) to which the document DDA109 472 corresponds, and the document US-A-4 003 129 (KOCH et al) propose to introduce an inorganic binder into the quartz sand while retaining a certain porosity. The results obtained by this means are superior to those of conventional fuses having undergone conventional sand compaction.

Par ailleurs, le document CH-A-209 745 décrit un fusible électrique comportant des pièces de contact et un corps en matière isolante pourvu d'au moins un canal contenant un élément fusible. Les deux pièces en question sont retenues ensemble à l'aide de vis ou de rivets. La cavité dans laquelle est placé l'élément fusible est, en pratique, remplie de sable de silice introduit par une ouverture prévue à cet effet.Furthermore, document CH-A-209,745 describes an electric fuse comprising contact parts and a body made of insulating material provided with at least one channel containing a fusible element. The two pieces in question are held together using screws or rivets. The cavity in which the fusible element is placed is, in practice, filled with silica sand introduced through an opening provided for this purpose.

Un but de la présente invention est d'améliorer les caractéristiques de fonctionnement d'un fusible limiteur de courant, et plus précisément encore d'un fusible limiteur de courant haute puissance, en remplaçant le sable de quartz incluant ou non un liant organique par une enveloppe en matériau rigide haute densité, en particulier en céramique, qui entoure de façon serrée l'élément fusible et qui présente une grande résistivité diélectrique à la température élevée de l'arc électrique et une grande résistance aux chocs de pression et de température élevée causée par l'arc.An object of the present invention is to improve the operating characteristics of a current limiting fuse, and more precisely still of a high power current limiting fuse, by replacing the quartz sand including or not an organic binder by a envelope of rigid high density material, in particular ceramic, which tightly surrounds the fusible element and which has a high dielectric resistivity to high temperature of the electric arc and high resistance to pressure and high temperature shocks caused by the arc.

Plus spécifiquement, la présente invention a pour objet un fusible limiteur de courant comprenant un élément fusible, un agent extincteur d'arc entourant de façon serrée l'élément fusible, cet agent extincteur d'arc présentant une grande résistivité diélectrique à la température élevée d'un arc électrique survenant lors de la fusion de l'élément, et une paire de terminaux reliés entre eux par l'intermédiaire de l'élément fusible, lesdits terminaux permettant la connexion de l'élément fusible dans un circuit électrique susceptible de subir une surintensité de courant ; ce fusible est caractérisé en ce que l'agent extincteur d'arc est constitué par une enveloppe de céramique rigide non poreuse présentant une cavité centrale complètement remplie par l'élément fusible d façon à ne laisser aucun vide, ladite céramique rigide non poreuse présentant une grande résistance aux chocs de pression interne et de température élevée causés par ledit arc électrique.More specifically, the present invention relates to a current limiting fuse comprising a fusible element, an arc extinguishing agent tightly surrounding the fusible element, this arc extinguishing agent having a high dielectric resistivity at high temperature d '' an electric arc occurring during the melting of the element, and a pair of terminals connected together via the fuse element, said terminals allowing the connection of the fuse element in an electric circuit likely to undergo a overcurrent; this fuse is characterized in that the arc extinguishing agent consists of an envelope of non-porous rigid ceramic having a central cavity completely filled by the fusible element so as to leave no vacuum, said rigid non-porous ceramic having a high resistance to internal pressure and high temperature shocks caused by said electric arc.

De préférence, la céramique rigide non poreuse constituant l'enveloppe est une céramique haute densité telle que l'alumine, Al₂O₃, et l'oxyde de Beryllium, BeO, qui présente en outre une grande conductivité thermique et une grande chaleur spécifique qui lui permettent d'absorber rapidement la chaleur produite à l'intérieur de l'enveloppe par l'arc électrique.Preferably, the rigid non-porous ceramic constituting the envelope is a high density ceramic such as alumina, Al₂O₃, and Beryllium oxide, BeO, which also has high thermal conductivity and high specific heat which allow it quickly absorb the heat produced inside the enclosure by the electric arc.

Tel qu'il sera explicité plus en détail ci-après, les céramiques possédant une grande résistance mécanique ainsi qu'une grande résistance à la température élevée de l'arc électrique favorisent une montée plus rapide de la tension d'arc en comparaison avec les fusibles de l'art antérieur, ce qui cause une interruption beaucoup plus rapide du courant de défaut.As will be explained in more detail below, ceramics having a high mechanical resistance as well as a high resistance to the high temperature of the electric arc favor a more rapid rise of the arc voltage in comparison with the fuses of the prior art, which causes a much faster interruption of the fault current.

Selon la présente invention, il est également prévu une méthode de fabrication d'un fusible limiteur de courant, tel que défini ci-dessus, du type comprenant l'insertion d'un élément fusible apte à conduire un courant électrique dans un agent extincteur d'arc présentant une grande résistivité diélectrique à la température élevée d'un arc électrique survenant lors de la fusion dudit élément, ladite insertion étant effectuée de manière à ce que ledit agent extincteur d'arc entoure de façon serrée ledit élément fusible, et le montage subséquent d'une paire de terminaux reliés entre eux par l'intermédiaire de l'élément fusible, lesdits terminaux permettant la connexion de l'élément fusible dans un circuit électrique susceptible de subir une surintensité de courant, méthode caractérisée en ce que l'on utilise une enveloppe constituée d'une céramique rigide non poreuse comme agent extincteur d'arc, ladite céramique définissant une cavité de même forme et dimensions que l'élément fusible, de façon à être complètement remplie sans aucun vide par ledit élément fusible lors de son insertion, ladite céramique présentant une grande résistance aux chocs de pression interne et de température élevée causés par ledit arc électrique.According to the present invention, there is also provided a method of manufacturing a current limiting fuse, as defined above, of the type comprising the insertion of a fuse element capable of conducting an electric current in an extinguishing agent d 'arc having a high dielectric resistivity at the high temperature of an electric arc occurring during the melting of said element, said insertion being carried out so that said arc extinguishing agent tightly surrounds said fusible element, and mounting subsequent of a pair of terminals connected together via the fuse element, said terminals allowing the connection of the fuse element in an electric circuit liable to undergo an overcurrent, method characterized in that one use a envelope made of a rigid non-porous ceramic as an arc extinguishing agent, said ceramic defining a cavity of the same shape and dimensions as the fusible element, so as to be completely filled without any vacuum by said fusible element during its insertion, said ceramic having a high resistance to internal pressure and high temperature shocks caused by said electric arc.

De préférence, l'étape de montage de la paire de terminaux sur l'enveloppe comporte la métallisation de cette enveloppe aux deux extrémités.Preferably, the step of mounting the pair of terminals on the envelope includes metallization of this envelope at the two ends.

Selon un mode de réalisation préféré de l'invention, l'étape de production de l'enveloppe comporte la production de deux pièces complémentaires constituées du matériau rigide haute densité et ayant chacune une surface de contact avec l'autre desdites deux pièces, la surface de contact de l'une de ces deux pièces complémentaires comprenant une rainure de même forme et dimensions que l'élément fusible qui est de forme allongée, et l'étape d'insertion de l'élément fusible consiste à insérer cet élément à l'intérieur de la rainure et à assembler les deux pièces complémentaires en joignant leurs surfaces de contact.According to a preferred embodiment of the invention, the stage of production of the envelope comprises the production of two complementary parts made of rigid high density material and each having a surface of contact with the other of said two parts, the contact surface of one of these two complementary parts comprising a groove of the same shape and dimensions as the fusible element which is of elongated shape, and the step of inserting the fusible element consists of inserting this element inside the groove and assembling the two complementary parts by joining their contact surfaces.

Selon un autre aspect de la présente invention, une méthode de fabrication d'un fusible limiteur de courant comprend une étape de production d'une enveloppe constituée d'une céramique rigide non poreuse qui définit une cavité, ce matériau présentant une grande résistivité diélectrique à température élevée ainsi qu'une grande résistance à des chocs de pression interne et de température élevée. Cette méthode de fabrication d'un fusible limiteur de courant comporte en outre des étapes d'injection d'un métal en fusion à l'intérieur de ladite cavité de l'enveloppe pour former un élément fusible apte à conduire un courant électrique et conçu pour fondre et ainsi interrompre ledit courant électrique lorsque ce dernier atteint une valeur donnée, et de montage sur l'enveloppe d'une paire de terminaux reliés entre eux par l'intermédiaire de l'élément fusible, et permettant donc la connexion de cet élément dans un circuit électrique susceptible de subir une surintensité de courant.According to another aspect of the present invention, a method of manufacturing a current limiting fuse comprises a step of producing an envelope made of a rigid non-porous ceramic which defines a cavity, this material having a high dielectric resistivity to high temperature as well as high resistance to internal pressure and high temperature shocks. This method of manufacturing a current limiting fuse further comprises steps of injecting a molten metal inside said envelope cavity to form a fuse element capable of conducting an electric current and designed to melt and thus interrupt said electric current when the latter reaches a given value, and mounting on the envelope of a pair of terminals connected together via the fuse element, and therefore allowing the connection of this element in an electrical circuit liable to undergo an overcurrent.

Selon un mode de réalisation préféré de cette dernière méthode de fabrication d'un fusible limiteur de courant, l'étape de production de l'enveloppe comporte l'utilisation de pièces de métal à haut point de fusion pour former la cavité de l'enveloppe.According to a preferred embodiment of this last method of manufacturing a current limiting fuse, the stage of production of the casing comprises the use of pieces of metal with high melting point to form the cavity of the casing .

Une gaine de fibre de verre ou encore de céramique peut entourer l'enveloppe du fusible selon l'invention pour ainsi augmenter la rigidité du fusible résultant.A fiberglass or ceramic sheath can surround the envelope of the fuse according to the invention, thereby increasing the rigidity of the resulting fuse.

Les avantages et autres caractéristiques de la présente invention ressortiront de la description non limitative qui suit de modes de réalisation préférés de celle-ci, donnés à titre non limitatif seulement avec référence aux dessins annexés dans lesquels:

  • La Figure 1 représente une coupe longitudinale d'un fusible selon l'invention, comportant une enveloppe en céramique rigide haute densité qui entoure de façon serrée un élément fusible;
  • La Figure 2 a) représente l'état physique du fusible de la Figure 1, avant fusion de l'élément fusible;
  • La Figure 2 b) représente l'état physique du fusible de la Figure 1, après fusion de l'élément fusible;
  • La Figure 3 présente un oscillogramme typique du fonctionnement du fusible selon l'invention lors d'une interruption de courant;
  • Les Figures 4, 5 a) et 5 b) sont des courbes qui démontrent les avantages du fusible selon l'invention par rapport aux fusibles de l'art antérieur;
  • La Figure 6 illustre un premier mode de fabrication de l'enveloppe de céramique du fusible selon l'invention;
  • La Figure 7 illustre un second mode de fabrication de l'enveloppe de céramique du fusible selon l'invention;
  • Les Figures 8 a) et 8 b) illustrent un troisième mode de fabrication de l'enveloppe de céramique du fusible selon la présente invention; et
  • Les Figures 9 et 10 illustrent des modes de fabrication du fusible selon l'invention, dans lesquels l'élément fusible est obtenu par injection de métal en fusion dans une cavité formée à l'intérieur de l'enveloppe de céramique.
The advantages and other characteristics of the present invention will emerge from the following non-limiting description of preferred embodiments thereof, given without limitation only with reference to the appended drawings in which:
  • Figure 1 shows a longitudinal section a fuse according to the invention, comprising a rigid high density ceramic envelope which tightly surrounds a fusible element;
  • Figure 2 a) shows the physical state of the fuse of Figure 1, before blowing of the fuse element;
  • Figure 2 b) shows the physical state of the fuse of Figure 1, after blowing of the fuse element;
  • FIG. 3 shows a typical oscillogram of the operation of the fuse according to the invention during a current interruption;
  • Figures 4, 5 a) and 5 b) are curves which demonstrate the advantages of the fuse according to the invention compared to fuses of the prior art;
  • Figure 6 illustrates a first method of manufacturing the ceramic envelope of the fuse according to the invention;
  • Figure 7 illustrates a second method of manufacturing the ceramic envelope of the fuse according to the invention;
  • Figures 8 a) and 8 b) illustrate a third method of manufacturing the ceramic envelope of the fuse according to the present invention; and
  • Figures 9 and 10 illustrate methods of manufacturing the fuse according to the invention, in which the fusible element is obtained by injecting molten metal into a cavity formed inside the ceramic shell.

Le fusible limiteur de courant de préférence haute puissance F selon la présente invention, tel qu'iliustré en coupe longitudinale à la Figure 1 des dessins, comporte un élément fusible métallique 1 sous forme de ruban. L'élément fusible 1 comporte au moins une réduction de largeur 2 (trois de ces réductions de largeur étant illustrées sur la Figure 1 pour fins d'exemple) où se produit un arc électrique lors de la fusion de l'élément fusible à cet endroit. Evidemment, les parties de l'élément 1 réduites en largeur sont les premières susceptibles de fusion. A cause de leur section transversale réduite, elles chauffent plus rapidement lorsque soumises à un courant électrique.The preferably high power current limiting fuse F according to the present invention, as shown in longitudinal section in FIG. 1 of the drawings, comprises a metallic fuse element 1 in the form of a ribbon. The fusible element 1 comprises at least one reduction in width 2 (three of these width reductions being illustrated in FIG. 1 for example purposes) where an electric arc occurs when the fusible element blows at this location . Obviously, the parts of the element 1 reduced in width are the first susceptible to fusion. Because of their reduced cross-section, they heat up faster when subjected to an electric current.

Le nombre de réductions de largeur du ruban formant l'élément 1, où se produisent des arcs électriques lors de la fusion de l'élément 1 à ces endroits, peut varier et est sélectionné de façon conventionnelle selon les besoins de l'application prévue. Il est aussi bien connu de remplacer ces réductions de largeur par des perforations pratiquées à travers le ruban métallique constituant l'élément 1.The number of reductions in width of the ribbon forming the element 1, where electric arcs occur when the element 1 is fused at these locations, can vary and is conventionally selected according to the needs of the intended application. It is also well known to replace these width reductions with perforations made through the metal strip constituting the element 1.

Les explications ci-dessous se rapportent à un seul arc électrique de coupure de courant. Il est cependant évident que celles-ci s'appliquent à chaque arc électrique lorsque l'élément fusible sous forme de ruban comporte plusieurs réductions de largeur ou encore plusieurs perforations.The explanations below relate to a single electric arc for power failure. It is however obvious that these apply to each electric arc when the fusible element in the form of ribbon comprises several reductions in width or even several perforations.

L'élément fusible 1 est entouré de façon serrée par une enveloppe de céramique rigide haute densité (non poreuse) 3 agissant comme agent extincteur d'arc. Cette céramique rigide peut être de l'alumine de formule chimique Al₂O₃, ou de l'oxyde de beryllium de formule chimique BeO, qui donnent d'excellents résultats. La céramique rigide utilisée dans la fabrication de l'enveloppe 3 peut toutefois être de diverses autres compositions, pourvu qu'elle soit non poreuse et possède en particulier les qualités suivantes:

  • a) une très grande résistance aux chocs de pression interne;
  • b) une très grande résistance aux chocs de température élevée;
  • c) une grande résistivité diélectrique aux températures élevées; et
  • d) une conductivité thermique élevée et une grande chaleur spécifique
The fusible element 1 is tightly surrounded by a rigid high density (non-porous) ceramic envelope 3 acting as an arc extinguishing agent. This rigid ceramic can be alumina with the chemical formula Al₂O₃, or beryllium oxide with the chemical formula BeO, which give excellent results. The rigid ceramic used in the manufacture of the envelope 3 may however be of various other compositions, provided that it is non-porous and has in particular the following qualities:
  • a) a very high resistance to internal pressure shocks;
  • b) a very high resistance to high temperature shocks;
  • c) high dielectric resistivity at high temperatures; and
  • d) high thermal conductivity and high specific heat

L'enveloppe de céramique 3 doit avoir des dimensions suffisantes pour lui permettre de résister aux chocs de pression interne et de température élevée causés par la création de l'arc électrique à la coupure du courant, sans craquement ni explosion pour ainsi assurer une grande étanchéité. Elle peut toutefois être de dimension réduite et renforcée par une gaine cylindrique 4 de céramique ou encore de fibre de verre.The ceramic envelope 3 must have sufficient dimensions to allow it to withstand the shocks of internal pressure and high temperature caused by the creation of the electric arc at the interruption of the current, without cracking or explosion, thus ensuring a great seal. . However, it can be of reduced size and reinforced by a cylindrical sheath 4 of ceramic or even of fiberglass.

Les deux extrémités de l'enveloppe 3 du fusible F sont métallisées tel qu'indiqué par les références 5 et 6. Ces métallisations sont effectuées de façon conventionnelle directement sur la céramique. Il en résulte deux terminaux électriques 5 et 6 qui permettent de connecter le fusible F, plus particulièrement son élément fusible 1, dans un circuit électrique à protéger susceptible de subir une surintensité de courant. Evidemment, lors des métallisations, le métal appliqué entre en contact avec les extrémités de l'élément fusible 1 pour ainsi relier celui-ci entre les terminaux 5 et 6.The two ends of the casing 3 of the fuse F are metallized as indicated by the references 5 and 6. These metallizations are carried out conventionally directly on the ceramic. This results in two electrical terminals 5 and 6 which make it possible to connect the fuse F, more particularly its fuse element 1, in an electrical circuit to be protected liable to undergo an overcurrent. Obviously, during metallizations, the applied metal comes into contact with the ends of the fusible element 1, thereby connecting it between the terminals 5 and 6.

La Figure 2 a) illustre l'état physique du fusible F, avant la fusion de l'élément fusible 1, c'est-à-dire en conduction. L'élément fusible 1 est alors entouré de façon serrée par l'enveloppe de céramique 3.Figure 2 a) illustrates the physical state of the fuse F, before the fuse element 1 blows, that is to say in conduction. The fusible element 1 is then tightly surrounded by the ceramic envelope 3.

Lors de la fusion de l'élément fusible 1, la très grande température de l'arc électrique de coupure de courant vaporise très rapidement l'élément 1 et forme à l'endroit où se produit l'arc (réduction de largeur du ruban métallique) une pression qui doit être maintenue par la grande étanchéité de l'enveloppe de céramique 3. Cette pression favorise une montée très rapide de la tension d'arc, et lorsque celle-ci atteint une valeur plus élevée que la tension de la source, un courant opposé ramène le courant de défaut très rapidement à une valeur nulle. La condensation des vapeurs métalliques en forme de gouttelettes sur les parois de la céramique assure une bonne isolation électrique entre les terminaux 5 et 6 du fusible, c'est-à-dire entre les bornes créées par les extrémités de l'élément fusible 1 de chaque côté de sa partie fondue et vaporisée.During the melting of the fusible element 1, the very high temperature of the electric arc of cut-off very quickly vaporizes the element 1 and forms at the place where the arc occurs (reduction in width of the metallic strip ) a pressure which must be maintained by the great tightness of the ceramic envelope 3. This pressure promotes a very rapid rise in the arc voltage, and when this reaches a value higher than the voltage of the source, an opposite current very quickly reduces the fault current to zero. The condensation of metallic vapors in the form of droplets on the ceramic walls provides good electrical insulation between terminals 5 and 6 of the fuse, i.e. between the terminals created by the ends of the fuse element 1 on each side of its melted and vaporized part.

L'alumine, Al₂O₃, et l'oxyde de Beryllium, BeO, sont des céramiques qui sont particulièrement bien adaptées pour entrer dans la fabrication du fusible F selon l'invention. En effet, celles-ci sont capables de maintenir la pression produite par l'arc électrique pour une durée de moins de 200 microsecondes, ce qui permet d'atteindre la valeur crête de la tension d'arc. Dans les quelques millisecondes qui suivent, les surfaces de ces céramiques en contact avec l'arc électrique sont soumises à une température élevée ainsi qu'à une pression encore élevée et une légère partie de celles-ci est portée au point de fusion. Une cavité légèrement plus grande que les dimensions de l'élément fusible est ainsi formée sous l'effet combiné de pression et de température, ce qui favorise la décomposition des gaz produits et offre une distance diélectrique plus grande entre les bornes du fusible créées par la fusion de l'élément 1. La condensation des vapeurs métalliques sur les parois de ces céramiques se fait, tel que déjà mentionné, en multiples gouttelettes de métal séparées les unes des autres d'une distance qui permet une excellente résistance diélectrique lorsque l'arc s'éteint. La grande résistivité diélectrique de ces céramiques à la température élevée de l'arc contribue également au rétablissement diélectrique rapide du fusible F. En outre, leur grande conductivité thermique et leur grande chaleur spécifique permettent à ces céramiques d'absorber rapidement la chaleur produite par l'arc électrique pour ainsi diminuer la température interne du fusible et contribuer à diminuer le temps de coupure du courant.Alumina, Al₂O₃, and Beryllium oxide, BeO, are ceramics which are particularly well suited for entering the manufacture of fuse F according to the invention. Indeed, these are capable of maintaining the pressure produced by the electric arc for a duration of less than 200 microseconds, which makes it possible to reach the peak value of the arc voltage. In the following milliseconds, the surfaces of these ceramics in contact with the electric arc are subjected to a high temperature as well as to a still high pressure and a slight part of these is brought to the melting point. A cavity slightly larger than the dimensions of the fuse element is thus formed under the combined effect of pressure and temperature, which promotes the decomposition of the gases produced and offers a greater dielectric distance between the terminals of the fuse created by the melting of element 1. The condensation of metallic vapors on the walls of these ceramics takes place, as already mentioned, in multiple metal droplets separated from each other by a distance which allows excellent dielectric strength when the arc goes out. The high dielectric resistivity of these ceramics at the high arc temperature also contributes to the rapid dielectric recovery of fuse F. In addition, their high thermal conductivity and their high specific heat allow these ceramics to rapidly absorb the heat produced by the ceramic. electric arc to thereby decrease the internal temperature of the fuse and help to reduce the power failure time.

La Figure 2 b) montre l'état physique du fusible F après la fusion de l'élément 1. La cavité formée à l'emplacement de la partie fondue de l'élément 1 est relativement restreinte, ce qui a permis de maintenir la pression à l'endroit de fusion de l'élément 1.Figure 2 b) shows the physical state of the fuse F after the element 1 has blown. The cavity formed at the location of the melted part of element 1 is relatively small, which made it possible to maintain the pressure at the melting point of element 1.

La Figure 3 présente un oscillogramme typique du fonctionnement d'un fusible F selon l'invention. Cet oscillogramme illustre la montée très rapide de la tension d'arc V suite à la fusion de l'élément fusible 1. L'instant auquel se produit cette fusion est indiqué par la ligne B sur la Figure 3. L'oscillogramme illustre en outre la coupure très rapide du courant de défaut I, dont la valeur maximale est représentée par la ligne A, qui cesse de croître quand la tension d'arc V est au moins égale à la tension de source S. L'oscillogramme de la Figure 3 démontre donc que la capacité de la céramique rigide haute densité à supporter les chocs de pression et de température élevée, qui permet à l'enveloppe 3 de maintenir la pression au point de création de l'arc à la coupure du courant, assure une montée très rapide de la tension d'arc V comparativement aux fusibles de l'art antérieur, d'où provient l'efficacité d'interruption du courant de défaut I et, tel qu'il sera explicité plus en détail ci-après, une réduction substantielle de l'intégrale de joule (intégrale en fonction du temps du terme I²t) du fusible F.Figure 3 shows a typical oscillogram of the operation of a fuse F according to the invention. This oscillogram illustrates the very rapid rise of the arc voltage V following the melting of the fuse element 1. The instant at which this melting occurs is indicated by line B in Figure 3. The oscillogram further illustrates the very rapid breaking of the fault current I, the maximum value of which is represented by line A, which ceases to increase when the arc voltage V is at least equal to the source voltage S. The oscillogram of Figure 3 therefore demonstrates that the capacity of rigid high density ceramic to withstand the pressure and high temperature shocks, which allows the casing 3 to maintain the pressure at the point of creation of the arc at the cut of the current, ensures a rise very rapid arc voltage V compared to fuses of the prior art, from which comes the efficiency of interruption of the fault current I and, as will be explained in more detail below, a reduction of the joule integral (i integral as a function of the time of the term I²t) of the fuse F.

Tel qu'également illustré par la Figure 3, l'écart entre la valeur maximale du courant représentée par la ligne A et celle du courant coupé à l'instant du début de l'arc représenté par la ligne B est inférieur à 1%. Lorsque le courant de défaut cesse d'augmenter et se renverse, la tension d'arc V cesse également d'augmenter. En conséquence, en ce qui concerne le fusible F selon l'invention, la montée rapide de la tension d'arc V ne signifie pas seulement une limitation trés rapide du courant de défaut I, mais aussi une limitation de la valeur crête de la tension d'arc développée. Des essais ont démontré que cette surtension est grandement réduite comparativement aux fusibles rapides de l'art antérieur utilisant par exemple le sable de quartz avec ou sans liant inorganique.As also illustrated in Figure 3, the difference between the maximum value of the current represented by line A and that of the cut current at the time of the start of the arc represented by line B is less than 1%. When the fault current ceases to increase and reverses, the arc voltage V also ceases to increase. Consequently, with regard to the fuse F according to the invention, the rapid rise of the arc voltage V does not only mean a very rapid limitation of the fault current I, but also a limitation of the peak value of the voltage developed arc. Tests have shown that this overvoltage is greatly reduced compared to the fast fuses of the prior art using for example quartz sand with or without inorganic binder.

La Figure 4 est une série comparative de courbes qui illustrent le fonctionnement du fusible selon l'invention par rapport à ceux de l'art antérieur qui utilisent comme agent extincteur d'arc du sable de quartz aggloméré ou non. Il est à noter que les trois fusibles comportent des éléments fusibles sensiblement identiques.Figure 4 is a comparative series of curves which illustrate the operation of the fuse according to the invention compared to those of the prior art which use agglomerated or unglazed quartz sand as an arc extinguishing agent. It should be noted that the three fuses include substantially identical fuse elements.

Dans la Figure 4, la courbe C illustre la pente d'un courant de défaut présumé, appliqué à l'instant t₀ aux différents fusibles. La courbe C représente en fait un courant de court-circuit et son évolution en fonction du temps, s'il n'était pas interrompu. L'élément fusible de chaque fusible fond à un même instant t₁.In Figure 4, curve C illustrates the slope of a presumed fault current, applied at time t₀ to the various fuses. Curve C in fact represents a short-circuit current and its evolution as a function of time, if it were not interrupted. The fuse element of each fuse blows at the same time t₁.

La courbe D de la Figure 4 illustre l'évolution du courant dans un fusible traditionnel utilisant comme agent extincteur d'arc du sable de quartz ayant subi un compactage,mais non aggloméré. Cette courbe D démontre qu'avec de tels fusibles, le courant de défaut augmente progressivement après la fusion de l'élément fusible, puis diminue lentement pour atteindre une valeur nulle à l'instant t₂ Ce phénoméne est dû, tel que démontré par la courbe E, à l'augmention plutôt lente de la tension d'arc dans un tel fusible et aussi à la valeur crête relativement faible de cette tension d'arc.Curve D in FIG. 4 illustrates the evolution of the current in a traditional fuse using quartz sand which has been compacted but not agglomerated as an arc extinguishing agent. This curve D shows that with such fuses, the fault current gradually increases after the fuse blows, then decreases slowly to reach a value of zero at time t₂ This phenomenon is due, as demonstrated by the curve E, at the rather slow increase in the arc voltage in such a fuse and also at the relatively low peak value of this arc voltage.

La courbe R illustre l'évolution du courant de défaut en fonction du temps obtenu avec le fusible décrit dans le brevet des Etats-Unis no. 3.838.375 (FRIND et AL). Cette courbe R démontre bien qu'un fusible qui utilise comme agent extincteur d'arc un sable de quartz aggloméré à l'aide d'un liant inorganique assure une meilleure protection contre les surintensités de courant qu'un fusible utilisant du sable de quartz non aggloméré. Puisque l'énergie transmise au circuit protégé correspond à l'intégrale en fonction du temps de t₀ à t₂ du terme I²t (intégrale de joule), I représentant tel que déjà mentionné le courant de défaut, il est donc évident que le fusible du brevet no. 3.838.375 (FRIND et AL) réduit de façon considérable l'énergie transmise au circuit protégé, en comparaison avec ceux utilisant comme agent extincteur d'arc du sable de quartz non aggloméré. Ceci résulte de l'augmentation beaucoup plus rapide de la tension d'arc du fusible selon le brevet américain no. 3.838.375 et de la valeur crête plus élevée de cette tension (voir courbe G de la Figure 4). Il se produit donc une réduction immédiate et progressive du courant à travers l'élément fusible, et ce jusqu'à ce que le courant soit interrompu au temps t₂.Curve R illustrates the evolution of the fault current as a function of the time obtained with the fuse described in United States patent no. 3,838,375 (FRIND and AL). This curve R clearly demonstrates that a fuse which uses as an arc extinguishing agent a quartz sand agglomerated using an inorganic binder provides better protection against overcurrents than a fuse using non-quartz sand agglomerated. Since the energy transmitted to the protected circuit corresponds to the integral as a function of time from t₀ to t₂ of the term I²t (joule integral), I representing as already mentioned the fault current, it It is therefore obvious that the fuse of patent no. 3,838,375 (FRIND and AL) considerably reduces the energy transmitted to the protected circuit, in comparison with those using non-agglomerated quartz sand as an arc extinguishing agent. This results from the much faster increase in the arc voltage of the fuse according to US patent no. 3,838,375 and the higher peak value of this voltage (see curve G in Figure 4). There is therefore an immediate and gradual reduction of the current through the fuse element, and this until the current is interrupted at time t₂.

L'évolution du courant de défaut en fonction du temps dans un fusible selon l'invention est représentée par la courbe S de la Figure 4. La courbe S démontre de façon évidente la supériorité fondamentale du fusible F selon la présente invention. Cette amélioration est apportée par l'enveloppe de céramique rigide haute densité pour les différentes raisons explicitées ci-dessus, et ce sans augmentation excessive de la tension d'arc V (voir Figure 3). Donc, la réduction appréciable de l'intégrale de joule et la faible augmentation de tension d'arc présentent des avantages indéniables du fusible F.The evolution of the fault current as a function of time in a fuse according to the invention is represented by the curve S in FIG. 4. The curve S clearly demonstrates the fundamental superiority of the fuse F according to the present invention. This improvement is provided by the high density rigid ceramic envelope for the various reasons explained above, and this without excessive increase in the arc voltage V (see Figure 3). Therefore, the appreciable reduction in the joule integral and the small increase in arc voltage have undeniable advantages of the fuse F.

Aux Figures 5 a) et 5 b), on compare deux fusibles, l'un utilisant comme agent extincteur d'arc du sable de quartz non aggloméré (correspondant à la courbe de gauche) et l'autre utilisant une enveloppe de céramique rigide haute densité en accord avec la présente invention (correspondant à la courbe de droite).In Figures 5 a) and 5 b), two fuses are compared, one using non-agglomerated quartz sand as arc extinguishing agent (corresponding to the curve on the left) and the other using a high rigid ceramic shell. density in accordance with the present invention (corresponding to the curve on the right).

Dans la Figure 5 a) des dessins, les courbes H et I représentent l'évolution du courant dans un fusible avec sable de quartz non aggloméré, et dans un fusible selon l'invention, respectivement, les deux fusibles possédant des éléments fusibles sensiblement identiques et les lignes verticales 9 et 10 indiquent l'instant de fusion de l'élément fusible pour les deux modèles de fusibles. La partie hachurée de la courbe I montre la réduction de l'intégrale de joule totale dans le fusible F selon l'invention.In Figure 5 a) of the drawings, the curves H and I represent the evolution of the current in a fuse with non-agglomerated quartz sand, and in a fuse according to the invention, respectively, the two fuses having substantially identical fuse elements and the vertical lines 9 and 10 indicate the moment of fusion of the element fuse for both fuse models. The hatched part of the curve I shows the reduction of the total joule integral in the fuse F according to the invention.

Dans le cas où la réduction de l'intégrale de joule est d'importance secondaire, la masse de l'élément fusible métallique 1 peut être augmentée pour retarder la fusion. Cette façon de procéder augmente la valeur maximale du courant coupé et augmente ainsi l'intégrale de joule. Dans la Figure 5 b), on présente l'évolution du courant en fonction du temps dans deux types de fusibles, celui selon l'invention (courbe K) et un fusible classique avec sable de quartz non aggloméré (courbe J). La masse de l'élément fusible 1 du fusible F selon l'invention (courbe K) a été augmentée par rapport à celle de l'élément fusible du fusible conventionnel de sorte que les deux fusibles possèdent des intégrales de joule totales identiques. Le fusible F selon l'invention, (courbe K) offre alors une intégrale de joule préarc de deux à trois fois plus grande que celle du fusible conventionnel (courbe J), ce qui présente un avantage important puisque l'augmentation de l'intégrale de joule totale est nulle. A noter que dans la Figure 5 b), les lignes verticales 11 et 12 indiquent l'instant de fusion des éléments fusibles des fusibles conventionnels et selon l'invention, respectivement.In the case where the reduction of the joule integral is of secondary importance, the mass of the metallic fusible element 1 can be increased to delay the fusion. This procedure increases the maximum value of the cut current and thus increases the joule integral. In FIG. 5 b), the evolution of the current as a function of time is presented in two types of fuses, that according to the invention (curve K) and a conventional fuse with non-agglomerated quartz sand (curve J). The mass of the fuse element 1 of the fuse F according to the invention (curve K) has been increased compared to that of the fuse element of the conventional fuse so that the two fuses have identical total joule integrals. The fuse F according to the invention, (curve K) then offers a pre-arc joule integral of two to three times larger than that of the conventional fuse (curve J), which has an important advantage since the increase in the integral of total joule is zero. Note that in Figure 5 b), the vertical lines 11 and 12 indicate the time of melting of the fuse elements of conventional fuses and according to the invention, respectively.

Il convient ici de mentionner que lors de la détermination de la masse de l'élément fusible pour obtenir une certaine intégrale de joule totale, il faut tenir compte de la grande conductivité thermique et de la grande chaleur spécifique de la céramique rigide haute densité utilisée. En effet, l'élément fusible 1 étant placé en contact avec la céramique, celle-ci assure une température plus faible de l'élément fusible 1 en service continu (conduction). Lorsque survient un courant de défaut, la fusion de l'élément 1 est retardée grâce à la grande masse céramique de l'enveloppe 3 qui absorbe et diffuse la chaleur.It should be mentioned here that when determining the mass of the fusible element to obtain a certain integral of the total joule, account must be taken of the high thermal conductivity and the high specific heat of the high density rigid ceramic used. Indeed, the fuse element 1 being placed in contact with the ceramic, this ensures a lower temperature of the fuse element 1 in continuous service (conduction). When a fault current occurs, the melting of element 1 is delayed thanks to the large ceramic mass of the envelope 3 which absorbs and diffuses the heat.

L'obtention d'une intégrale de joule préarc plus grande tout en conservant une intégrale de joule postarc faible (Figure 5 b)), est recherchée pour certaines applications et présente donc un avantage certain. Une telle augmentation de l'intégrale de joule préarc permet en particulier de protéger plus efficacement les circuits de moteurs et de transformateurs sans fonctionnement intempestif du fusible lors de l'enclenchement.Obtaining a larger pre-arc joule integral while retaining a low post-arc joule integral (Figure 5 b)) is sought after for certain applications and therefore has a definite advantage. Such an increase in the pre-arc joule integral makes it possible in particular to more effectively protect the circuits of motors and transformers without inadvertent operation of the fuse during switching on.

Le fusible F selon l'invention présente une autre propriété intéressante, à savoir de pouvoir protéger des circuits à courant continu. En effet, des essais ont confirmé que l'efficacité de coupure d'un courant continu du fusible F est plus élevée que celle des fusibles de l'art antérieur. Une application du fusible selon l'invention pour la protection de batteries de condensateurs de grande puissance serait donc possible. Une autre application du fusible F serait la protection de circuits à semi-conducteurs, grâce à sa faible intégrale de joule et sa faible surtension d'arc.The fuse F according to the invention has another advantageous property, namely to be able to protect DC circuits. In fact, tests have confirmed that the breaking efficiency of a direct current of the fuse F is higher than that of the fuses of the prior art. An application of the fuse according to the invention for the protection of large power capacitor banks would therefore be possible. Another application of fuse F would be the protection of semiconductor circuits, thanks to its low Joule integral and its low arc overvoltage.

Un autre avantage du fusible F selon l'invention est sa grande résistance aux chocs mécaniques. Il est bien connu que la résistance aux chocs mécaniques des fusibles haute puissance classiques dépend de la compactisation du sable de quartz ou autre matériau granulaire non aggloméré entourant l'élément fusible. Des chocs mécaniques répétés peuvent en effet endommager le ou les éléments fusibles, surtout dans les fusibles classiques de faibles calibres. Comme dans le fusible F selon l'invention, toutes les parties forment une masse rigide et compacte, la rupture des minces éléments fusibles est donc évitée.Another advantage of fuse F according to the invention is its high resistance to mechanical shock. It is well known that the resistance to mechanical shock of conventional high power fuses depends on the compacting of quartz sand or other non-agglomerated granular material surrounding the fusible element. Repeated mechanical shocks can indeed damage the fusible element (s), especially in conventional low-caliber fuses. As in fuse F according to the invention, all the parts form a rigid and compact mass, the rupture of the thin fusible elements is therefore avoided.

La fabrication d'enveloppes en céramique haute densité telle que l'alumine, Al₂O₃, et l'oxyde de Beryllium, BeO, exige une pression et une température élevée, soit plus de 1100°C. Il est impossible, par conséquent, d'insérer directement l'élément fusible métallique 1 lors de cette fabrication, à cause de sa température de fusion relativement faible.The manufacture of high density ceramic envelopes such as alumina, Al₂O₃, and Beryllium oxide, BeO, requires high pressure and temperature, more 1100 ° C. It is therefore impossible to directly insert the metal fusible element 1 during this manufacture, because of its relatively low melting temperature.

Par conséquent, des pièces de céramique sont plutôt formées préalablement avec un espace prévu pour recevoir l'élément fusible 1, ces pièces étant ensuite cimentées ensemble puis soumises à une cuisson à température réduite pour former l'enveloppe 3.Consequently, ceramic pieces are rather formed beforehand with a space provided for receiving the fusible element 1, these pieces then being cemented together then subjected to firing at reduced temperature to form the envelope 3.

Un premier mode de fabrication de l'enveloppe 3 est illustré à la Figure 6 des dessins. Deux pièces complémentaires allongées 13 et 14 en céramique rigide haute densité et de section transversale en forme de demi-lune sont tout d'abord produites. Une rainure longitudinale 14ʹ est formée dans la surface plane de la pièce 14, cette rainure épousant la forme de l'élément fusible 1. Lorsque l'élément 1 a été inséré dans la rainure 14ʹ, les surfaces planes des pièces 13 et 14 sont jointes à l'aide d'un ciment céramique inorganique. Les pièces 13 et 14 ainsi réunies sont par la suite soumises à une pression mécanique pour bien les serrer l'une contre l'autre, puis cuites dans un four à une température plus faible que le point de fusion de l'élément métallique 1. Il en résulte une enveloppe cylindrique rigide et étanche.A first method of manufacturing the envelope 3 is illustrated in Figure 6 of the drawings. Two elongated complementary pieces 13 and 14 of high density rigid ceramic with a cross section in the shape of a half moon are first produced. A longitudinal groove 14ʹ is formed in the flat surface of the part 14, this groove matching the shape of the fusible element 1. When the element 1 has been inserted in the groove 14ʹ, the flat surfaces of the parts 13 and 14 are joined using an inorganic ceramic cement. The parts 13 and 14 thus joined together are then subjected to mechanical pressure in order to tighten them well one against the other, then baked in an oven at a temperature lower than the melting point of the metallic element 1. This results in a rigid and tight cylindrical envelope.

La Figure 7 illustre un second mode de fabrication de l'enveloppe de céramique 3. Une tige cylindrique 15 ainsi qu'un tube 16, tous deux en céramique rigide haute densité telle que l'alumine, Al₂O₃, et l'oxyde de Beryllium, BeO, sont préalablement produites, la tige 15 comprenant une rainure longitudinale 15ʹ. La rainure 15ʹ épouse encore une fois la forme de l'élément 1. Lorsque l'élément métallique 1 a été inséré dans la rainure 15ʹ, l'ensemble tige 15 -élément 1 est alors glissé à l'intérieur du tube 16, tel qu'indiqué par la flèche 49. La différence entre le diamètre interne du tube 16 et le diamètre externe de la tige 15 ne laisse qu'un espace entre ces tige et tube destiné à être rempli avec un ciment inorganique pour céramique approprié. L'ensemble est par la suite placé dans un four pour cuisson à une température plus faible que le point de fusion de l'élément fusible, afin de former une enveloppe cylindrique de céramique étanche et très rigide.FIG. 7 illustrates a second method of manufacturing the ceramic envelope 3. A cylindrical rod 15 as well as a tube 16, both made of high density rigid ceramic such as alumina, Al₂O₃, and Beryllium oxide, BeO, are produced beforehand, the rod 15 comprising a longitudinal groove 15ʹ. The groove 15ʹ once again follows the shape of the element 1. When the metal element 1 has been inserted into the groove 15ʹ, the rod 15 -element 1 assembly is then slid inside the tube 16, such that 'indicated by arrow 49. The difference between the diameter internal of the tube 16 and the external diameter of the rod 15 leaves only a space between these rod and tube intended to be filled with an inorganic cement for appropriate ceramic. The assembly is then placed in an oven for cooking at a temperature lower than the melting point of the fusible element, in order to form a cylindrical envelope of waterproof and very rigid ceramic.

Une autre méthode de fabrication de l'enveloppe 3 du fusible F selon l'invention est illustrée aux Figures 8 a) et 8 b) des dessins. Dans ce cas, on produit préalablement un tube 17 et plusieurs éléments cylindriques 18 de faible longueur en une céramique rigide haute densité. Une rainure ayant une portion longitudinale et une portion transversale est formée sur le côté et à une extrémité de chaque élément cylindrique 18. Encore une fois, la rainure de chaque élément cylindrique 18 épouse la forme de l'élément fusible 1. L'enveloppe de céramique de la Figure 8 présente l'avantage de pouvoir séparer deux réductions de section transversale successives 2 de l'élément fusible 1 par au moins un élément cylindrique 18 lorsque ces réductions de section sont positionnées dans l'axe géométrique de l'enveloppe cylindrique tel qu'illustré à la Figure 8 b). De cette façon, les arcs électriques se produisant dans le fusible F lors de la fusion de l'élément 1 aux emplacements de ces réductions de section sont séparés l'un de l'autre par au moins un des éléments cylindriques 18. Les éléments cylindriques 18 sont insérés bout à bout dans le tube 17 avec l'élément fusible 1 et reliés ensemble et au tube 17 à l'aide d'un ciment inorganique approprié. L'ensemble est alors soumis à une cuisson à une température plus faible que le point de fusion de l'élément métallique 1 pour former une enveloppe cylindrique rigide et étanche.Another method of manufacturing the casing 3 of the fuse F according to the invention is illustrated in Figures 8 a) and 8 b) of the drawings. In this case, a tube 17 and several cylindrical elements 18 of short length are produced beforehand in a high density rigid ceramic. A groove having a longitudinal portion and a transverse portion is formed on the side and at one end of each cylindrical element 18. Again, the groove of each cylindrical element 18 follows the shape of the fusible element 1. The envelope of Figure 8 ceramic has the advantage of being able to separate two successive reductions in cross section 2 of the fusible element 1 by at least one cylindrical element 18 when these reductions in section are positioned in the geometric axis of the cylindrical envelope as as illustrated in Figure 8 b). In this way, the electric arcs occurring in the fuse F when the element 1 blows at the locations of these section reductions are separated from each other by at least one of the cylindrical elements 18. The cylindrical elements 18 are inserted end to end in the tube 17 with the fusible element 1 and connected together and to the tube 17 using an appropriate inorganic cement. The assembly is then subjected to firing at a temperature lower than the melting point of the metallic element 1 to form a rigid and tight cylindrical envelope.

La Figure 9 illustre deux pièces complémentaires 19 et 20 qui, lorsqu'assemblées, forment une tige cylindrique de céramique rigide haute densité. Cette tige est ensuite insérée à l'intérieur d'un cylindre 22 formé à l'intérieur d'une pièce cylindrique 21 également de céramique rigide haute densité.Figure 9 illustrates two complementary parts 19 and 20 which, when assembled, form a cylindrical rod high density rigid ceramic. This rod is then inserted inside a cylinder 22 formed inside a cylindrical piece 21 also of high density rigid ceramic.

Lorsqu'assemblées, les pièces 19 et 20 définissent une cavité 28. Du métal en fusion 23 peut être injecté dans la cavité 28 pour former l'élément fusible. Une force centrifuge peut être utilisée pour s'assurer que le métal en fusion remplisse complètement la cavité, sans laisser aucun vide. Dans la Figure 9, l'élément fusible a la forme d'un ruban comprenant plusieurs perforations circulaires.When assembled, the parts 19 and 20 define a cavity 28. Molten metal 23 can be injected into the cavity 28 to form the fusible element. Centrifugal force can be used to ensure that the molten metal completely fills the cavity, without leaving any voids. In Figure 9, the fusible element is in the form of a ribbon comprising several circular perforations.

Les pièces 19, 20 et 21 sont réunies à l'aide d'un ciment inorganique, puis traitées thermiquement pour former une enveloppe étanche et rigide. Les pièces 19 et 20 sont réunies à l'aide du ciment inorganique avant l'injection de métal. L'assemblage des pièces 19 et 20 ainsi réunies avec la pièce 21 et tout traitement thermique de ces pièces peut avoir lieu soit avant, soit après l'injection de métal. Si le traitement thermique a lieu après l'injection de métal, on doit se rappeler que celui-ci doit être réalisé à une température inférieure au point de fusion du métal de l'élément fusible.The parts 19, 20 and 21 are combined using an inorganic cement, then heat treated to form a tight and rigid envelope. Parts 19 and 20 are joined using inorganic cement before metal injection. The assembly of the parts 19 and 20 thus joined with the part 21 and any heat treatment of these parts can take place either before or after the injection of metal. If the heat treatment takes place after the injection of metal, it must be remembered that this must be carried out at a temperature below the melting point of the metal of the fusible element.

La pièce cylindrique 21 comporte trois cylindres tels que 22 pour recevoir trois tiges telles que 19, 20, pour ainsi former un fusible avec trois éléments fusibles identiques.The cylindrical part 21 has three cylinders such as 22 to receive three rods such as 19, 20, thereby forming a fuse with three identical fuse elements.

Des métaux a haut point de fusion tel que le tungstène peuvent être utilisés dans la fabrication de l'enveloppe 3 rigide haute densité pour former la cavité nécessaire à l'insertion de l'élément fusible 1. Un ruban ou fil de tungstène de même forme que l'élément fusible est inséré dans la céramique lors de sa fabrication. Après le formage et le frittage de la céramique à température et pression élevées, le ruban ou fil de tungstène est retiré et du métal en fusion est injecté dans la cavité ainsi formée pour constituer un élément fusible.Metals with a high melting point such as tungsten can be used in the manufacture of the high density rigid envelope 3 to form the cavity necessary for the insertion of the fusible element 1. A tungsten ribbon or wire of the same shape that the fusible element is inserted into the ceramic during its manufacture. After forming and sintering the ceramic at high temperature and pressure, the tungsten tape or wire is removed and metal molten is injected into the cavity thus formed to form a fusible element.

La Figure 10 illustre l'utilisation de plusieurs fils de tungstène pour former plusieurs cavités filiformes parallèles de section uniforme telles que 29 à l'intérieur d'une tige de céramique rigide haute densité 25. Après que les fils de tungstène aient été retirés, du métal en fusion 24 est injecté dans chaque cavité 29, pour former un élément fusible. Bien entendu, le diamètre de chaque cavité 29 est choisi selon les caractéristiques requises du fusible. Encore une fois, une force centrifuge peut être utilisée pour éviter la formation de tout vide dans la cavité lors de l'injection du métal en fusion. La tige 25 peut éventuellement être insérée dans un cylindre 27 formé dans une pièce cylindrique de céramique rigide haute densité 26, et reliée à celui-ci à l'aide d'un ciment inorganique soit avant soit après l'injection de métal. Encore une fois, la tige 25 et la pièce cylindrique 26 ainsi réunies sont soumises à un traitement thermique pour former une enveloppe rigide et étanche, avant ou après l'injection de métal en fusion.10 illustrates the use of several tungsten wires to form several parallel filiform cavities of uniform cross section such as 29 inside a rigid high density ceramic rod 25. After the tungsten wires have been removed, molten metal 24 is injected into each cavity 29, to form a fusible element. Of course, the diameter of each cavity 29 is chosen according to the required characteristics of the fuse. Again, centrifugal force can be used to prevent the formation of any vacuum in the cavity when injecting the molten metal. The rod 25 can optionally be inserted into a cylinder 27 formed in a cylindrical piece of high density rigid ceramic 26, and connected to the latter with an inorganic cement either before or after the injection of metal. Again, the rod 25 and the cylindrical part 26 thus joined together are subjected to a heat treatment to form a rigid and sealed envelope, before or after the injection of molten metal.

Tout comme dans le cas de la Figure 9, la pièce cylindrique 26 est munie de trois cylindres tels que 27 pour recevoir trois tiges telles que 25 contenant chacune plusieurs éléments fusibles.As in the case of FIG. 9, the cylindrical part 26 is provided with three cylinders such as 27 to receive three rods such as 25 each containing several fusible elements.

Selon l'enseignement ci-dessus, il devient facile de concevoir que l'élément fusible 1 des modes de réalisation présentés par les Figures 6 et 7 peut être manufacturé par injection de métal en fusion.According to the above teaching, it becomes easy to conceive that the fusible element 1 of the embodiments presented in Figures 6 and 7 can be manufactured by injection of molten metal.

Une fois la fabrication de l'enveloppe de céramique rigide haute densité complétée, celle-ci entourant de façon serrée le ou les éléments fusibles, les deux extrémités de cette enveloppe sont métallisées pour former deux terminaux (par exemple les terminaux 5 et 6 de la Figure 1) respectivement reliés aux deux extrémités de l'élément ou des éléments fusibles.Once the manufacture of the high density rigid ceramic envelope has been completed, this tightly surrounding the fusible element or elements, the two ends of this envelope are metallized to form two terminals (for example terminals 5 and 6 of the Figure 1) respectively connected at both ends of the fuse element or elements.

Par la suite, une gaine cylindrique telle que 4 (figure 1) peut être disposée sur l'enveloppe de céramique. Cette gaine est constituée de céramique ou de fibre de verre et a pour fonction d'augmenter la rigidité mécanique du fusible F.Thereafter, a cylindrical sheath such as 4 (Figure 1) can be placed on the ceramic shell. This sheath is made of ceramic or fiberglass and has the function of increasing the mechanical rigidity of the fuse F.

Claims (34)

  1. A current-limiting fuse (F) comprising a fusible element (1), an arc-quenching agent closely surrounding the fusible element (1), said arc-quenching agent having a high dielectric resistivity at the high temperature of an electric arc produced upon melting of said fusible element (1), and a pair of terminals (5,6) interconnected through the fusible element, said terminals (5,6) providing for connection of the fusible element (1) in an electric circuit to be protected against an overcurrent, characterized in that said arc-quenching element consists of an envelope (3) made of non-porous rigid ceramic having a central cavity completely filled by the fusible element (1) in such a manner as not to leave any free space, said high density porous non rigid ceramic having a high resistance to shocks of internal pressure and high temperature caused by the production of said electric arc.
  2. A current-limiting fuse according to claim 1, characterized in that said non-porous high density rigid ceramic further has a high thermal conductivity and a high specific heat to rapidly absorb the heat produced within said envelope (3) by the electric arc.
  3. A current-limiting fuse according to claim 1, characterized in that said ceramic is alumina of formula Al₂O₃.
  4. A current-limiting fuse according to claim 2, characterized in that said ceramic is beryllium oxide of formula BeO.
  5. A current-limiting fuse according to any one of claims 1 to 4, characterized in that said fusible element (1) is elongated and in that said envelope (3) is formed of two complementary pieces (13,14; 15,16) each having a surface of contact with the other of said two pieces, a groove (14',15') having the same shape and dimensions as the fusible element (1) being provided in the contact surface of one of said two complementary pieces (14,15).
  6. A current-limiting fuse according to claim 5, characterized in that said contact surfaces of the two complementary pieces (13,14; 15,16) are joined together.
  7. A current-limiting fuse according to claim 6, characterized in that said contact surfaces of the two complemenraty pieces (13,14; 15,16) are joined together by means of an inorganic cement.
  8. A current-limiting fuse according to any one of claims 1 to 4, characterized in that said fusible element (1) is elongated and in that said envelope (3) comprises a tubular portion (16) and a rod (15), said rod (15) having two ends and comprising a groove (15') interconnecting the two ends of the rod, said groove (15') having the same shape and dimensions as the fusible element (1), said rod (15) being mounted within the tubular portion (16) with the fusible element (1) being inserted in said groove (15').
  9. A current-limiting fuse according to claim 8, characterized in that said rod (15) is fixed with the tubular portion (16) by means of an inorganic cement.
  10. A current-limiting fuse according to any one of claims 1 to 4, characterized in that said fusible element (1) is elongated and in that said envelope (3) comprises a tubular portion (17) and a plurality of short cylindrical elements (18), said cylindrical elements (18) comprising grooves which follow the exact shape of the fusible element (1) and which are so positioned on said cylindrical elements (18) that the fusible element (1) follows a non linear course when inserted in the grooves of said short cylindrical elements (18) mounted end to end within said tubular portion (17) of the envelope (3).
  11. A current-limiting fuse according to claim 10, characterized in that said tubular portion (17) and said cylindrical elements (18) are joined together by means of an inorganic cement.
  12. A current-limiting fuse according to claim 10, characterized in that said fusible element (1) comprises a plurality of cross-section constrictions (2), and in that each pair of successive constrictions (2) are separated from each other by at least one of said short cylindrical elements (18).
  13. A current-limiting fuse according to claim 10, characterized in that each of said short cylindrical elements (18) comprises two planar end surfaces substantially parallel to each other and a substantially cylindrical surface interconnecting together said two planar surfaces, and in that each of said short cylindrical elements (18) comprises a longitudinal groove made in its substantially cylindrical surface and a transversal groove made in one of its two planar surfaces, said longitudinal and transversal grooves communicating with each other.
  14. A current-limiting fuse according to any one of the preceding claims, characterized in that it further comprises a sheath (4) covering the envelope (3) in order to increase the mechanical rigidity of the said envelope (3).
  15. A current-limiting fuse according to claim 14, characterized in that said sheath (4) is made of glassfiber.
  16. A current-limiting fuse according to claim 14, characterized in that said sheath (4) is made of ceramic.
  17. A current-limiting fuse according to any one of the preceding claims, characterized in that said envelope (3) is metalized at two different locations thereof to form said pair of terminals (5,6).
  18. A current-limiting fuse according to any one of claims 1 to 4, characterized in that said envelope (3) comprises a rod (19,20; 25) closely currounding at least one fusible element, and an external portion (21,26) defining a cavity (22; 27) to receive said rod (19,20; 25).
  19. A current-limiting fuse according to any one of claims 1 to 4, characterized in that said envelope (3) comprises a plurality of rods (19,20; 25) each closely surrounding at least one fusible element and an external portion (21, 26) defining cavities (22; 27) to receive said rods.
  20. A currenti-limiting fuse according to any one of claims 5 to 7, characterized in that said two complementary pieces (13, 14) are elongated and have a cross section in the form of a half-moon.
  21. A current-limiting fuse according to any one of claims 5 to 7, characterized in that said contact surfaces of the two complementary (13,14; 15,16) are joined together to define a cavity having the same shape and dimensions as the fusible element (1), said fusible element being formed by injection of molten metal in said cavity.
  22. A current-limiting fuse according to any one of claims 1 to 4, characterized in that said envelope (3) defines a cavity (28, 29) having the same shape and dimensions as the fusible element (1), said fusible element being formed by injection of molten metal 23,24) in said cariby (28,29).
  23. A method of manufacturing a current-limiting fuse (F) according to claim 1, of the type comprising inserting a fusible element (1) designed to conduct an electric current (I) into an arc-quenching agent having a high dielectric resistivity at the high temperature of an electric arc produced upon melting of the fusible element (1), said insertion being carried out in such a manner that said arc given agent closely surrounds the fusible element (1), and subsequently mounting a pair of terminals (5, 6) interconnected through the fusible element (1), said pair of terminals (5, 6) providing for connection of the fusible element (1) in an electric circuit to be protected against an overcurrent, characterized in that use is made of an envelope (3) made of high density non-porous rigid ceramic as arc-quenching agent, said ceramic defining a cavity having the same shape and dimensions as the fusible element (1) so as to be completely filled by said fusible element with no free space left during its insertion, said ceramic having a high resistance to shocks of internal pressure and high temperature caused by said electric arc.
  24. A method of manufacture according to claim 23, characterized in that said high density non-porous rigid ceramic further has a high thermal conductivity and a high specific heat in order to rapidly absorb the heat produced within said envelope (3) by the electric arc.
  25. A method of manufacture according to claim 24, characterized in that said ceramic comprises alumina of formula Al₂O₃.
  26. A method of manufacture according to claim 24, characterized in that said ceramic comprises beryllium oxide of formula BeO.
  27. A method of manufacture according to any one of claims 23 to 26, characterized in that said step of mounting the pair of terminals (5, 6) comprises metalizing said envelope (3) at two different locations thereof.
  28. A method of manufacture according to any one of claims 23 to 26, wherein said fusible element (1) is elongated, characterized in that:
       the envelope (3) is made of two complementary pieces (13, 14) made of said rigid ceramic and each having a half-moon shaped transversal cross-section defining a surface of contact with the other of said complementary pieces, the contact surface of one of the complementary pieces (13, 14) comprising a groove (14') having the same shape and dimensions as the fusible element (1); and
       said step of inserting said fusible element (1) consists in inserting said fusible element within said groove and in assembling together the two complementary pieces (13, 14), said assembly comprising (a) joining said two contact surfaces of the two complemenraty pieces by means of an inorganic cement, and (b) subjecting the so-joined complementary pieces to a pressure to press said two contact surfaces against each other, and to a heat treatment at a temperature lower than the melting point of the fusible element (1) for thereby forming a rigid and impervious envelope (3).
  29. A method of manufacture according to any one of claims 23 to 26, wherein said fusible element (1) is elongated, characterized in that:
       the envelope (3) is made of two complementary pieces (15, 16) made of said ceramic on of said pieces having an annular cross-section and the other piece the shape of a hod sized to be inserted into said annular piece, each of said pieces having a surface of contact with the other of said pieces, the surface of contact of one of said pieces comprising a groove (15') having the same shape and dimensions as the fusible element (1); and
       said step of inserting the fusible element (1) consists in inserting said fusible element within said groove (15'), in inserting said rod-shaped piece into the other piece of annular cross-section (15,16) and in assembling together said two pieces (15, 16), said assembly consisting of (a) joining said contact surfaces of the two complementary pieces (15,16) by means of an inorganic cement, and (b) subjecting the so-joined two complementary pieces to a heat treatment at a temperature lower than the melting point of the fusible element (1) for thereby forming a rigid and impervious envelope (3).
  30. A method of manufacture according to any one of claims 23 to 26, wherein said fusible element (1) is elongated, characterized in that:
       the envelope of ceramic is made of a tubular portion (17) and a plurality of short cylindrical elements (18), said cylindrical elements (18) comprising grooves which follow the exact shape of the fusible element (1) and which are so positioned on said cylindrical elements (18) that the fusible element (1) follows a non linear course when inserted in said grooves of the cylindrical elements (18) mounted end to end within said tubular portion (17); and
       said step of inserting the fusible element (1)    consists in (a) inserting the fusible element in said grooves of the cylindrical elements (18) and positioning end to end said cylindrical elements (18) along with the fusible element (1) within the tubular portion (17), (b) joining together said cylindrical elements (18) and tubular portion (17) by means of an inorganic cement, and (c) subjecting the low-joined cylindrical elements (18) and tubular portion (17) to a heat treatment at a temperature lower than the melting point of the fusible element (1) for thereby forming a rigid and impervious envelope (3).
  31. A method of manufacturing a current-limiting fuse (F) according to claim 1, characterized in that it comprises the following steps:
       producing an envelope (3) made of non-porous high density rigid ceramic defining a cavity (28: 29), said ceramic having a high dielectric resistivity at high temperatures as well as a high resistance to shocks of internal pressure and high temperature:
       injecting a molten metal (23, 24) within said cavity (28, 29) of the envelope so as to completely fill this cavity without leaving any free space to form a fusible element (1); and
       mounting on said envelope a pair of terminals (5, 6) interconnected together through the fusible element, said pair of terminals (5, 6) providing for connection of the fusible element (1) in an electric circuit to be protected against an overcurrent.
  32. A method of manufacture according to claim 31, wherein said non-porous rigid ceramic further has a high thermal conductivity and a high specific heat to rapidly absorb the heat produced within said envelope (3) by the electric arc.
  33. A method of manufacture according to claim 31 or 32, wherein said step of producing the envelope (3) comprises the use of at least one piece of metal having a high melting point to form said cavity (29) of the envelope (3).
  34. A method of manufacturing a current-limiting fuse (F) according to claim 31 or 32, wherein said fusible element (1) is elongated, characterized in that:
       said step of producing the envelope (3) comprises the production of two complementary pieces (13, 14; 15, 16) made of said ceramic and each having a surface of contact with the other of said two pieces, the contact surface of one of said two complementary pieces (14, 15) comprising a groove (14', 15') having the same shape and dimensions as the fusible element (1); and
       said step of producing the envelope further comprising assembling the two compementary pieces (13,14; 15, 16) by joining together said contact surfaces.
EP88420094A 1987-03-20 1988-03-21 Fuse with high density ceramic casing and method of fabrication of that fuse Expired - Lifetime EP0283414B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA000532649A CA1264791A (en) 1987-03-20 1987-03-20 Fuse having a non-porous rigid ceramic arc extinguishing body and method for fabricating such a fuse
CA532649 1987-03-20
IN226DE1988 IN172362B (en) 1987-03-20 1988-03-21

Publications (3)

Publication Number Publication Date
EP0283414A2 EP0283414A2 (en) 1988-09-21
EP0283414A3 EP0283414A3 (en) 1989-02-22
EP0283414B1 true EP0283414B1 (en) 1992-09-23

Family

ID=25671273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420094A Expired - Lifetime EP0283414B1 (en) 1987-03-20 1988-03-21 Fuse with high density ceramic casing and method of fabrication of that fuse

Country Status (11)

Country Link
US (2) US4855705A (en)
EP (1) EP0283414B1 (en)
JP (1) JPS63264845A (en)
KR (1) KR910005072B1 (en)
CN (2) CN1013719B (en)
AR (1) AR241557A1 (en)
BR (1) BR8801241A (en)
CA (1) CA1264791A (en)
DE (1) DE3874782T2 (en)
IN (1) IN172362B (en)
MX (1) MX169655B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629878Y2 (en) * 1990-10-11 1994-08-10 エス・オー・シー株式会社 High breaking ultra small fuse
US5153553A (en) * 1991-11-08 1992-10-06 Illinois Tool Works, Inc. Fuse structure
WO1996029721A1 (en) * 1995-03-20 1996-09-26 Cooper Industries, Inc. Female automotive fuse
US5770994A (en) * 1995-11-02 1998-06-23 Cooper Industries, Inc. Fuse element for an overcurrent protection device
US5975145A (en) * 1996-05-21 1999-11-02 Abb Power T&D Company Inc. Arc-quenching fuse tubes
US5903208A (en) * 1997-08-08 1999-05-11 Cooper Technologies Company Stitched core fuse
DE19839422A1 (en) * 1998-08-29 2000-03-02 Asea Brown Boveri Explosion protection for semiconductor modules
US6633055B2 (en) * 1999-04-30 2003-10-14 International Business Machines Corporation Electronic fuse structure and method of manufacturing
EP1597745B1 (en) * 2004-02-21 2006-09-27 Wickmann-Werke GmbH Coil melt conductor comprising an insulating intermediate coil for a fuse element
CN101138062B (en) * 2004-09-15 2010-08-11 力特保险丝有限公司 High voltage/high current fuse
US20060119465A1 (en) * 2004-12-03 2006-06-08 Dietsch G T Fuse with expanding solder
KR100698875B1 (en) * 2005-02-05 2007-03-22 일진전기 주식회사 Current limiting fuse for protecting a transformer
DE502005001781D1 (en) * 2005-06-02 2007-12-06 Wickmann Werke Gmbh Coiled melting conductor for a fuse element with plastic seal
CN101313382A (en) * 2005-10-03 2008-11-26 保险丝公司 Fuse with cavity forming enclosure
KR100690572B1 (en) * 2005-10-24 2007-03-09 오리셀 주식회사 Method of producing fuses
US8154376B2 (en) * 2007-09-17 2012-04-10 Littelfuse, Inc. Fuses with slotted fuse bodies
US9117615B2 (en) 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse
JP5764006B2 (en) * 2011-08-08 2015-08-12 矢崎総業株式会社 fuse
WO2013121373A1 (en) * 2012-02-15 2013-08-22 Mta S.P.A. Fuse
CN103730299A (en) * 2012-10-13 2014-04-16 温州市方为熔断器有限公司 Fuse for protecting solar photovoltaic power generation system
CA2917219A1 (en) * 2013-07-02 2015-01-08 Indelcon 2007, S.L. Overcurrent protection device for electrical circuits and use of the said device on a fuse link and an associated limiter fuse, as well as on semiconductor protection fuses
CN105120629A (en) * 2015-07-20 2015-12-02 浪潮电子信息产业股份有限公司 Method for ensuring cabinet server to operate normally, fan board and cabinet server
CN206976273U (en) * 2017-06-30 2018-02-06 厦门赛尔特电子有限公司 A kind of HVDC thermal cut-off
CN107464732B (en) * 2017-09-11 2020-01-03 南京萨特科技发展有限公司 PCB matrix fuse and manufacturing method thereof
WO2019217737A1 (en) * 2018-05-09 2019-11-14 Littelfuse, Inc. Circuit protection devices formed by additive manufacturing
US11217415B2 (en) 2019-09-25 2022-01-04 Littelfuse, Inc. High breaking capacity chip fuse
US11227737B2 (en) 2019-12-26 2022-01-18 Saft America Thermal fuse sleeving
TWM600502U (en) * 2020-06-05 2020-08-21 立德電子股份有限公司 Improved circuit structure for short circuit protection

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE364719C (en) * 1922-11-30 Josef Goette Heavy current fuse with a hinge-like collapsible cartridge body divided into two halves along the length
US319536A (en) * 1885-06-09 Method of making electrical conductors
BE438089A (en) * 1939-03-02
DE727343C (en) * 1941-05-23 1942-10-31 Patra Patent Treuhand Process for producing a vacuum-tight conductor leadthrough through quartz glass
FR1149961A (en) * 1956-04-19 1958-01-03 Force Et Lumiere Electr Soc D Improvements made to fuse circuit breakers, in particular those with high breaking capacity
US2877321A (en) * 1957-06-12 1959-03-10 Chase Shawmut Co High voltage fuses
US4030004A (en) * 1971-04-16 1977-06-14 Nl Industries, Inc. Dielectric ceramic matrices with end barriers
US3756685A (en) * 1972-03-10 1973-09-04 Steven Mfg Co Kaleidoscope
JPS4959957A (en) * 1972-10-16 1974-06-11
US3838375A (en) * 1973-01-29 1974-09-24 Gen Electric Current limiting fuse
US3806855A (en) * 1973-04-30 1974-04-23 Gen Electric Vapor state current limiting device
JPS5021605U (en) * 1973-06-21 1975-03-11
NL7416327A (en) * 1974-12-16 1976-06-18 Philips Nv ELECTRICAL RESISTANCE.
US4003129A (en) * 1975-10-09 1977-01-18 General Electric Company Method of making current limiting fuse having a filter disposed in one end cap
US4101860A (en) * 1976-05-20 1978-07-18 Mcgraw-Edison Company Protector for electric circuits
US4159458A (en) * 1977-08-01 1979-06-26 Wiebe Gerald L Encapsulated electrically conducting component with reservoir end caps
JPS5539168A (en) * 1978-09-13 1980-03-18 Mitsubishi Electric Corp Fuse and method of fabricating same
US4320374A (en) * 1979-03-21 1982-03-16 Kearney-National (Canada) Limited Electric fuses employing composite aluminum and cadmium fuse elements
US4374371A (en) * 1980-01-17 1983-02-15 Kearney-National, Inc. Cadmium electric fuse
JPS56114252A (en) * 1980-02-13 1981-09-08 Tokyo Shibaura Electric Co Current limiting fuse
US4326185A (en) * 1981-04-27 1982-04-20 San-O Industrial Company, Ltd. Electrical fuse with semi-cylindrical casings
JPS58111235A (en) * 1981-12-23 1983-07-02 株式会社村田製作所 Fuse
CA1172432A (en) * 1982-03-11 1984-08-14 Hydro-Quebec Winding apparatus for coreless current limiting fuses
US4540969A (en) * 1983-08-23 1985-09-10 Hughes Aircraft Company Surface-metalized, bonded fuse with mechanically-stabilized end caps
US4749980A (en) * 1987-01-22 1988-06-07 Morrill Glasstek, Inc. Sub-miniature fuse
US4769902A (en) * 1987-06-09 1988-09-13 Northern Telecom Limited Thermal fuse

Also Published As

Publication number Publication date
DE3874782T2 (en) 1993-04-01
US4855705A (en) 1989-08-08
US4890380A (en) 1990-01-02
KR880011853A (en) 1988-10-31
DE3874782D1 (en) 1992-10-29
AR241557A1 (en) 1992-08-31
IN172362B (en) 1993-07-03
CN1042027A (en) 1990-05-09
EP0283414A2 (en) 1988-09-21
BR8801241A (en) 1988-10-25
CN88102153A (en) 1988-10-05
EP0283414A3 (en) 1989-02-22
KR910005072B1 (en) 1991-07-22
CN1013719B (en) 1991-08-28
CA1264791A (en) 1990-01-23
MX169655B (en) 1993-07-16
CN1008673B (en) 1990-07-04
JPS63264845A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
EP0283414B1 (en) Fuse with high density ceramic casing and method of fabrication of that fuse
EP2375426B1 (en) Varistor including an electrode with jag portion forming a pole and lightning including such a varistor
EP2375424B1 (en) Device for protecting against overvoltages with parallel thermal disconnectors
EP2375425B1 (en) Device for protecting against surge voltages with enhanced thermal disconnector
EP2261940B1 (en) Coil for a contact of a vacuum switch having an increased mechanical endurance, and related vacuum switch and switchgear, in particular alternator load-break switch
EP2105994B1 (en) Joint structure for connecting two superconducting cables
FR2820879A1 (en) MOUNTING OF FUSE ELEMENT FOR FULL RANGE OF CURRENTS AND FUSES
US20020101323A1 (en) High-voltage current-limiting fuse
FR2489066A1 (en) INCANDESCENT CANDLES FOR DIESEL ENGINES
CH642781A5 (en) MICROWAVE WINDOW ASSEMBLY AND MICROWAVE TUBE PROVIDED WITH SUCH AN ASSEMBLY.
FR2515421A1 (en) THERMAL PROTECTOR CONTAINING A MELTING SUBSTANCE AND THUS CAUSES THE SHUTDOWN OF THE PROTECTED ELECTRICAL EQUIPMENT WHEN HEATED AT A CERTAIN TEMPERATURE
FR2719151A1 (en) Vacuum valve and method for manufacturing this valve, and vacuum circuit breaker having a vacuum valve and method for making this circuit breaker.
EP0350366B1 (en) Solid electrolytic capacitor, especially one made of tantalum, with an incorporated fuse
FR2725304A1 (en) FUSE FOR MICROPLATE
EP3035363B1 (en) Arc extinguishing chamber for electrical circuit breaker and circuit breaker comprising such a chamber
EP0794545B1 (en) Vacuum switch or circuit breaker
WO1996013043A1 (en) Lightning arrester device
EP0308847A1 (en) Rotating arc magnetic blast coil for the contact element of an electrical switch
EP2006874B1 (en) Fuse cut-off device for voltage surge protection and device for protecting against voltage surges comprising such a cut-off device
EP0434489B1 (en) Solid electrolytic capacitor, namely tantalum capacitor, with incorporated controllable fuse
FR2842019A1 (en) ARC CONTACT MEMBER FOR ELECTRICAL APPARATUS, MANUFACTURING METHOD THEREOF, CONTACT ASSEMBLY, AND ELECTRICAL APPARATUS THEREOF
EP0459873B1 (en) Solid electrolyte capacitor, namely tantalum capacitor, with stamped incorporated fuse and process for its manufacturing
FR3132991A1 (en) WINDING WITH INTEGRATED COOLING AND ELECTRICAL MACHINE COMPRISING SUCH WINDING
WO2011121216A1 (en) Fuse and sectioning switch comprising such a fuse
FR2596918A1 (en) Current-limiter fuse device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890726

17Q First examination report despatched

Effective date: 19910319

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3874782

Country of ref document: DE

Date of ref document: 19921029

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970312

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970320

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050321