EP1458300A1 - A surgical instrument - Google Patents

A surgical instrument

Info

Publication number
EP1458300A1
EP1458300A1 EP02791916A EP02791916A EP1458300A1 EP 1458300 A1 EP1458300 A1 EP 1458300A1 EP 02791916 A EP02791916 A EP 02791916A EP 02791916 A EP02791916 A EP 02791916A EP 1458300 A1 EP1458300 A1 EP 1458300A1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrodes
cutting blade
bipolar
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02791916A
Other languages
German (de)
French (fr)
Inventor
Charles Owen Goble
Mark George Marshall
Kester Julian Batchelor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gyrus Medical Ltd
Original Assignee
Gyrus Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0130975.6A external-priority patent/GB0130975D0/en
Priority claimed from GB0206207A external-priority patent/GB0206207D0/en
Priority claimed from GB0215402A external-priority patent/GB0215402D0/en
Application filed by Gyrus Group Ltd filed Critical Gyrus Group Ltd
Publication of EP1458300A1 publication Critical patent/EP1458300A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade

Definitions

  • This invention relates to a bipolar electrosurgical cutting device such as a scalpel blade, and to an electrosurgical system comprising an electrosurgical generator and a bipolar electrosurgical cutting device.
  • a bipolar electrosurgical cutting device such as a scalpel blade
  • an electrosurgical system comprising an electrosurgical generator and a bipolar electrosurgical cutting device.
  • Such systems are commonly used for the cutting of tissue in surgical intervention, most commonly in “keyhole” or minimally invasive surgery, but also in “open” surgery.
  • Electrosurgical cutting devices generally fall into two categories, monopolar and bipolar.
  • a radio frequency (RF) signal is supplied to an active electrode which is used to cut tissue at the target site, an electrical circuit being completed by a grounding pad which is generally a large area pad attached to the patient at a location remote from the target site.
  • RF radio frequency
  • both an active and a return electrode are present on the cutting device, and the current flows from the active electrode to the return electrode, often by way of an arc formed therebetween.
  • the active electrode is covered with a porous, electrically-insulating layer, separating the active electrode from the tissue to be treated and causing arcing between the electrode and the tissue.
  • the insulating layer is said to be between 0.125 and 0.25 mm (0.005 and 0.01 inches) in thickness.
  • Stasz proposed a variety of cutting blade designs. These were designed with relatively small gaps between two electrodes such that arcing would occur therebetween when an RF signal was applied to the blade, the arcing causing the cutting of the tissue. Because arcing was designed to occur between the electrodes, the typical thickness for the insulating material separating the electrodes was between 0.025 and 0.075 mm (0.001 and 0.003 inches). The present invention seeks to provide a bipolar cutting blade which is an improvement over the prior art.
  • an electrosurgical system comprising a bipolar cutting blade, a handpiece to which the cutting blade is secured, and an electrosurgical generator for supplying a radio frequency voltage signal to the cutting blade, the cutting blade comprising first and second electrodes, and an electrical insulator spacing apart the electrodes, the spacing being between 0.25 mm and 3.0 mm, and the electrosurgical generator being adapted to supply a radio frequency voltage signal to the cutting blade which has a substantially constant peak voltage value, the relationship between the peak voltage value and the spacing between the electrodes being such that the electric field intensity between the electrodes is between 0.1 volts/ ⁇ m and 2.0 volts/ ⁇ m, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode.
  • blade there is herein meant to include all devices which are designed such that both the active cutting electrode and the return electrode are designed to enter the incision made by the instrument. It is not necessary that the cutting device is only capable of making an axial incision, and indeed it will be shown below that embodiments of the present invention are capable of removing tissue in a lateral direction.
  • the first important feature of the present invention is that the spacing between the electrodes and the electric field intensity therebetween is carefully controlled such that there is no direct arcing between the electrodes in the absence of tissue. For the purposes of this specification, the spacing between the electrodes is measured in terms of the shortest electrical path between the electrodes.
  • the "spacing" between the electrodes is the shortest available conductive path between the electrodes.
  • the electric field intensity between the electrodes is preferably between 0.15 volts/ ⁇ m and 1.5 volts / ⁇ m, and typically between 0.2 volts/ ⁇ m and 1.5 volts/ ⁇ m.
  • the spacing between the first and second electrodes is between 0.25 mm and 1.0 mm, and the electric field intensity between the electrodes is between 0.33 volts/ ⁇ m and 1.1 volts/ ⁇ m.
  • the electric field intensity is such that the peak voltage between the first and second electrodes is less than 750 volts. This ensures that the field intensity is sufficient for arcing to occur between the first electrode and the tissue, but not directly between the first and second electrodes. However, even where direct arcing between the electrodes is prevented, there is still a potential problem if the two electrodes are similar in design. In a bipolar cutting device only one of the electrodes will assume a high potential to tissue (and become the "active" electrode), with the remaining electrode assuming virtually the same potential as the tissue (becoming the "return” electrode). Where the first and second electrodes are similar, which electrode becomes the active can be a matter of circumstance.
  • the electrode first contacting tissue will usually become the return electrode, with the other electrode becoming the active electrode. This means that in some circumstances one electrode will be the active electrode, and at other times the other electrode will be the active electrode. Not only does this make the device difficult for the surgeon to control (as it will be uncertain as to exactly where the cutting action will occur), but as it is likely that any particular electrode will at some time have been active.
  • the present invention provides that the first electrode has a characteristic which is dissimilar from that of the second electrode, in order to encourage one electrode to assume preferentially the role of the active electrode.
  • the characteristic of the first electrode which is dissimilar from that of the second electrode conveniently comprises the cross-sectional area of the electrode, the cross-sectional area of the first electrode being substantially smaller than that of the second electrode. This will help to ensure that the first electrode (being of a smaller cross-sectional area) will experience a relatively high initial impedance on contact with tissue, while the relatively larger area second electrode will experience a relatively lower initial impedance on contact with tissue. This arrangement will assist in encouraging the first electrode to become the active and the second electrode to become the return.
  • the characteristic of the first electrode which is dissimilar from that of the second electrode alternatively or additionally comprises the thermal conductivity of the electrode, the thermal conductivity of the first electrode being substantially lower than that of the second electrode.
  • the rate of rise of the impedance is a factor influencing which electrode will become active.
  • the impedance will rise with desiccation of the tissue, and the rate of desiccation will be influenced by the temperature of the electrode.
  • the electrode temperature will rise quickly as little heat is conducted away from the part of the electrode at which energy is delivered. This will ensure a relatively fast desiccation rate, producing a correspondingly fast rise in impedance and ensuring that the first electrode remains the active electrode.
  • the characteristic of the first electrode which is dissimilar from that of the second electrode may further comprise the thermal capacity of the electrode, the thermal capacity of the first electrode being substantially lower than that of the second electrode. As before, a low thermal capacity helps to maintain the temperature of the first electrode at a relatively high level, ensuring that it remains the active electrode.
  • an electrosurgical system comprising a bipolar cutting blade, a handpiece to which the cutting blade is secured, and an electrosurgical generator for supplying a radio frequency voltage signal to the cutting blade, the cutting blade comprising first and second electrodes, and an electrical insulator spacing apart the electrodes, the spacing being between 0.25 mm and 1.0 mm, and the electrosurgical generator being adapted to supply a radio frequency voltage signal to the cutting blade which has a substantially constant peak voltage value, the peak voltage value being respectively between 250 volts and 600 volts, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode.
  • the generator delivers the same peak voltages despite varying load conditions.
  • Heavy loading of the blade may otherwise make it stall (as load impedance approaches source impedance, the voltage may otherwise halve), while light loading may otherwise result in voltage overshoots and direct arcing between the electrodes.
  • the invention also resides in a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode, the spacing between the electrodes being between 0.25 mm and 1.0 mm, such that when the electrodes are in contact with tissue and an electrosurgical cutting voltage is applied therebetween, arcing does not occur directly between the electrodes, there also being provided means for ensuring that the temperature of the second electrode does not rise above 70° C.
  • the means for ensuring that the temperature of the second electrode does not rise above 70° C conveniently comprises means for minimising the transfer of heat from the first electrode to the second electrode.
  • One way of achieving this is to ensure that the first electrode is formed from a material having a relatively poor thermal conductivity, preferably less than 20 W/m.K. By making the first electrode a poor thermal conductor, heat is not transferred effectively away from the active site of the electrode and across to the second electrode, thereby helping to prevent the temperature of the second electrode from rising.
  • the heat can be inhibited from transferring from the first electrode to the second electrode by making the electrical insulator separating the electrodes from a material having a relatively poor thermal conductivity, preferably less than 40 W/m.K. Again, this helps to prevent heat generated at the first electrode from transferring to the second electrode.
  • Another way of inhibiting the transfer of heat is to attach the first electrode to the electrical insulator in a discontinuous manner.
  • the first electrode is attached to the electrical insulator at one or more point contact locations, and/or is perforated with a plurality of holes such as to reduce the percentage contact with the electrical insulator.
  • a preferred material for the first electrode is tantalum.
  • tantalum When tantalum is used for the active electrode, it quickly becomes coated with a layer of oxide material. This tantalum oxide is a poor electrical conductor, helping to ensure that the first electrode maintains its high impedance with respect to the tissue, and remains the active electrode.
  • Another way of helping to ensure that the temperature of the second electrode does not rise above 70° C is to maximise the transfer of heat away from the second electrode. Thus any heat reaching the second electrode from the first electrode is quickly transferred away before the temperature of the second electrode rises inordinately.
  • One way of achieving this is to form the second electrode from a material having a relatively high thermal conductivity, preferably greater than 150 W/m.K.
  • the second electrode may conveniently be provided with additional cooling means to remove heat therefrom, such as a heat pipe attached to the second electrode, or a cooling fluid constrained to flow along a pathway in contact with the second electrode.
  • additional cooling means such as a heat pipe attached to the second electrode, or a cooling fluid constrained to flow along a pathway in contact with the second electrode.
  • a temperature differential in use, between the first and second electrodes of at least 50° C, and preferably of between 100 and 200° C.
  • a third electrode adapted to coagulate tissue. This coagulation electrode is conveniently attached to the second electrode with a further electrical insulator therebetween.
  • the further electrical insulator it is preferable to arrange that heat is easily transferred across the further electrical insulator. This can be achieved by making the further insulator from a material having a relatively high thermal conductivity, or more typically, if the further insulator is not a good thermal conductor, by ensuring that the further insulator is relatively thin, typically no more than around 50 ⁇ m. In this way the transfer of heat across the further electrical insulator is greater than 5 mW/mm 2 .K.
  • the second and third electrodes are formed as conductive electrodes on an insulating substrate.
  • both the second and third electrodes act as return electrodes when the blade is used to cut tissue with the first electrode.
  • a coagulating RF signal is applied between the second and third electrodes.
  • a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode, the spacing between the electrodes being between 0.25 mm and 1.0 mm, such that when the electrodes are in contact with tissue and an electrosurgical cutting voltage is applied therebetween, arcing does not occur directly between the electrodes, there being additionally provided a third electrode adapted to coagulate tissue, the third electrode being separated from the second electrode by an additional insulator.
  • the second and third electrodes are conveniently provided in a side-by-side arrangement with the additional insulator therebetween.
  • the second and third electrodes are provided as layers in a sandwich structure with the additional insulator therebetween.
  • the first, second and third electrodes are each provided as layers in a sandwich structure with layers of insulator therebetween.
  • a first one of the second and third electrodes is provided with a cut-out portion, and the other one of the second or third electrodes is provided with a protruding portion.
  • the cut-out portion of the one electrode accommodates the protruding portion of the other electrode, typically such that the protruding portion is flush with the electrode surrounding the cut-out portion.
  • the first, second and third electrodes are provided as layers in a sandwich structure with the first electrode being in the middle, there being layers of insulator between each of the electrodes.
  • the second and third electrodes are substantially semi-circular in cross-section, and the first electrode protrudes slightly beyond the periphery of the second and third electrodes.
  • a method of cutting tissue at a target site comprising providing a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode; bringing the blade into position with respect to the target site such that the second electrode is in contact with tissue at the target site and the first electrode is adjacent thereto; supplying an electrosurgical cutting voltage to the cutting blade, the electrosurgical voltage and the spacing between the first and second electrodes being such that arcing does not occur in air between the first and second electrodes, but that arcing does occur between the first electrode and the tissue at the target site, current flowing through the tissue to the second electrode; and preventing heat build up at the second electrode such that the temperature of the second electrode does not rise above 70° C.
  • the method is such that both the first and second electrodes come into contact with tissue at the target site substantially
  • FIG. 1 is a schematic diagram of an electrosurgical system constructed in accordance with the present invention
  • FIG. 2 is a schematic cross-sectional view of an electrosurgical cutting blade constructed in accordance with the present invention
  • Figure 3 is a schematic diagram showing the lateral cutting action of the blade of Figure 2
  • Figure 4a to 4d are schematic cross-sectional views of alternative embodiments of electrosurgical cutting blades constructed in accordance with the invention
  • Figures 5a and 5b are schematic diagrams of electrosurgical cutting blades constructed in accordance with the present invention, incorporating cooling means
  • Figures 6a and 6b are schematic diagrams of electrosurgical cutting blades constructed in accordance with the present invention, incorporating an additional coagulation electrode.
  • a generator 10 has an output socket 10S providing a radio frequency (RF) output for an instrument 12 via a connection cord 14. Activation of the generator 10 may be performed from the instrument 12 via a connection in the cord 14, or by means of a footswitch unit 16, as shown, connected to the rear of the generator by a footswitch connection cord 18.
  • the footswitch unit 16 has two footswitches 16A and 16B for selecting a coagulation mode and a cutting mode of the generator 10 respectively.
  • the generator front panel has push buttons 20 and 22 for respectively setting coagulation and cutting power levels, which are indicated in a display 24. Push buttons 26 are provided as an alternative means for selection between coagulation and cutting modes.
  • the instrument 12 comprises a blade shown generally at 1 and including a generally flat first electrode 2, a larger second electrode 3, and an electrical insulator 4 separating the first and second electrodes.
  • the first electrode 2 is formed of stainless steel having a thermal conductivity of 18 W/m.K (although alternative materials such as Nichrome alloy may also be used).
  • the second electrode 3 is formed from a highly thermally-conducting material such as copper having a thermal conductivity of 400 W/m.K (alternative materials including silver or aluminium).
  • the surface of the second electrode 3 is plated with a biocompatible material such as a chromium alloy, or with an alternative non-oxidising material such as nickel, gold, platinum, palladium, stainless steel, titanium nitride or tungsten disulphide.
  • the electrical insulator 4 is formed from a ceramic material such as A1 2 0 3 which typically has a thermal conductivity of 30 W/m.K.
  • Other possible materials for the insulator 4 are available which have a substantially lower thermal conductivity. These include boron nitride, porcelain, steatite, Zirconia, PTFE, reinforced mica, silicon rubber or other ceramic materials such as foamed ceramics or mouldable glass ceramic such as that sold under the trademark MACOR.
  • a conductive lead 5 is connected to the first electrode 2, and a lead 6 is connected to the second electrode 3.
  • the RF output from the generator 10 is connected to the blade 1 via the leads 5 and 6 so that a radio frequency signal having a substantially constant peak voltage (typically around 400N) appears between the first and second electrodes 2 and 3.
  • a radio frequency signal having a substantially constant peak voltage typically around 400N
  • the RF voltage will cause arcing between one of the electrodes and the tissue surface.
  • the first electrode 2 is smaller in cross-sectional area, and has a lower thermal capacity and conductivity than that of the second electrode 3, the first electrode will assume the role of the active electrode and arcing will occur from this electrode to the tissue 7.
  • Electrical current will flow through the tissue 7 to the second electrode 3, which will assume the role of the return electrode. Cutting of the tissue will occur at the active electrode, and the blade may be moved through the tissue.
  • the blade 1 may be used to make an incision in the tissue 7, or moved laterally in the direction of the arrow 8 in Figure 3 to remove a layer of tissue.
  • Figure 2 shows a further design of blade in which the first electrode 2 is shaped so as to contact the insulator 4 only intermittently along its length, with regions 13 over which the electrode bows outwardly from the insulator 4. This helps to minimise further the transfer of heat from the first electrode 2, through the insulator 4, to the second electrode 3.
  • Figure 4b shows a further arrangement in which the first electrode 2 is provided with many perforations 15 such that it is in the form of a mesh.
  • Figure 4c shows another arrangement in which there is an additional corrugated electrode layer 17 located between the first electrode 2 and the insulator 4, As before, this assists in helping to prevent heat generated at the first electrode 2 from reaching the second electrode 3, so as to maintain the thermal differential therebetween.
  • Figure 4d shows a variation on the blade of Figure 2, in which the blade is formed as a hook 19.
  • the first electrode 2, the second electrode 3 and the insulator 4 are all hook-shaped, and the operation of the device is substantially as described with reference to Figure 2.
  • the hook electrode is particularly suited for parting tissue, whether used as a cold resection instrument without RF energisation, or as an RF cutting instrument. Tissue may be held in the angle 20 of the hook 19, while being manipulated or cut.
  • the second electrode 3 is constituted by a relatively large mass of copper which is capable of conducting heat away from the electrode tip.
  • the function of the electrode 3 can be -further enhanced by employing cooling means as illustrated in Figures 5a and 5b.
  • the second electrode 3 is attached to a heat pipe shown generally at 27.
  • the heat pipe 27 comprises a hollow closed tube 28 with a distal end 29 adjacent to the electrode 3, and a proximal end 30 within the handpiece of the instrument 12.
  • the tube 28 has a cavity 31 therein, containing a low boiling temperature liquid 32 such as acetone or alcohol.
  • heat from the electrode 3 causes the liquid 32 at the distal end 29 of the tube to vaporise, and this vapour subsequently condenses at the proximal end 30 of the tube because it is relatively cool with respect to the distal end 29. In this way, heat is transferred from the distal end of the electrode 3 to the proximal end thereof, from where it can be further dissipated by the handpiece of the instrument 12.
  • FIG. 5b shows an alternative arrangement in which the heat pipe of Figure 5a is replaced with a forced cooling system shown generally at 33.
  • the cooling system 33 comprises a tube 34, again with a distal end 29 and a proximal end 30.
  • the tube 34 includes a coaxial inner tube 35 defining an inner lumen 36 and an outer lumen 37.
  • the inner tube 35 is perforated towards the distal end of the tube, so that the inner and outer lumens 36 and 37 are in communication one with another.
  • a self-contained pump 38 causes a cooling fluid 39 to be circulated up the inner lumen 36 to the distal end 29, ret-uming via the outer lumen 37 to be recirculated continuously.
  • the circulating fluid is heated by the electrode 3, and the heat is taken by the fluid to the proximal end 30 of the tube 34. In this way, the second electrode 3 is kept cool, despite the elevated temperature at the first electrode 2.
  • FIG. 6a a blade 1 is shown in accordance with the construction of Figure 4b, and like parts are designated with like reference numerals.
  • the third electrode 40 is attached to the second electrode 3, on the opposite side to the first electrode 2, and mounted on a further electrical insulator 41.
  • RF signals may be supplied to the third electrode 40 from the generator 10 via a lead 42.
  • the insulator 41 is formed from a thin layer of silicon rubber, alternative materials for the insulator 41 including polyamide, PEEK or PVC materials.
  • the thin layer ensures that heat can transfer across the silicon rubber layer and that the coagulation electrode 40 can benefit from the thermal conductivity properties of the second electrode 3. In this way, the coagulation electrode 40 can remain relatively cool despite any heat previously generated by the first electrode 2.
  • tissue is cut as previously described.
  • the third electrode 40 is placed in contact with the tissue 7, and a coagulating RF signal is applied between the second electrode 3 and the third electrode 40.
  • Figure 6b shows an alternative embodiment in which the second electrode 3 and third electrode 40 are metallised tracks on a substrate 43 of aluminium nitride material. As before, this material is electrically insulating yet a good thermal conductor, to allow for the conduction of heat away from the second and third electrodes.
  • Figure 7 shows an arrangement in which the first electrode 2 is located between the second and third electrodes 3 and 40.
  • Both the electrodes 3 and 40 are approximately semi-circular in cross-section, and form a generally cylindrical structure with the first electrode 2 protruding slightly from the central region thereof.
  • the insulating layer 4 separates the first electrode 2 from the second electrode 3, and the insulating layer 41 separates the first electrode 2 from the third electrode 40.
  • the generator 10 applies a cutting RF signal between the first electrode 2 and one or both of the second or third electrodes 3, 40.
  • the generator 10 applies a coagulating RF signal between the second electrode 3 and the third electrode 40.
  • the relatively large surface area of the electrodes 3 and 40 allows for effective coagulation of tissue, as well as for the conduction away of heat during cutting as previously described.
  • Figure 8 shows an alternative design of instrument in which the second and third electrodes 3 and 40 are provided side-by-side.
  • the first electrode 2 is substantially planar, and an insulating layer 4 separates the first electrode from the second and third electrodes 3 and 40 on the other side of the instrument.
  • the electrodes 3 and 40 are disposed in side-by-side arrangement, with an insulating section 41 therebetween.
  • the instrument can cut tissue with an RF signal between the first electrode 2 and one of the second or third electrodes 3, 40, or alternatively coagulate tissue with an RF signal between the second and third electrodes.
  • Figure 9 shows a further embodiment in which the first, second and third electrodes are provided as a series of layers in a "sandwich" arrangement.
  • the first electrode 2 is shown as the top layer in Figure 9, with the third electrode 40 as the bottom layer, with the second electrode 3 sandwiched therebetween.
  • Insulating layers 4 and 41 respectively serve to separate the first, second, and third electrodes.
  • This arrangement provides a relatively thick edge to the blade 1, which is designed to facilitate coagulation of tissue.
  • Figure 10 shows an arrangement which utilises features from both the sandwich and side-by-side electrode structures.
  • the electrodes are again provided in a sandwich arrangement, Figure 10 showing the first electrode 2 on the bottom rather than the top as shown in Figure 9.
  • the second electrode 3 is again in the middle of the sandwich, separated from the first electrode by an insulating layer 4.
  • the third electrode 40 is shown as the top electrode in Figure 10, but has a central recess though which a raised portion 50 of the second electrode 3 can protrude.
  • the second and third electrodes are separated by an insulator 41, and the top surface of the protrusion 50 is flush with the top of the third electrode 40.
  • This arrangement allows either the sides of the blade 1 or the top face as shown in Figure 10 to be used for the coagulation of tissue.
  • Figure 11 shows an arrangement in which the end of the blade 1 comprises a central first electrode 2 with insulating layers 4 and 41 on either side thereof.
  • the insulating layers 4 and 41 each have a slanting beveled distal end, as shown at 51 and 52 respectively.
  • a second elecfrode 3 is attached to the insulating layer 4, the beveled end 51 resulting in the second electrode being set back axially from the first electrode 2 in the axis of the blade.
  • a third electrode 40 is attached to the insulating layer 41, the beveled end 52 resulting in the third electrode also being axially set back from the first electrode 2.
  • the beveled ends 51 and 52 allow for a minimum separation (shown at "x" in Fig 11) of 0.25 mm between the first electrode and the second and third electrodes, while maintaining an overall slim profile to the blade 1.
  • the first electrode 2 can be flush with the ends of the first and second insulating layers 4 and 41, or may project slightly therefrom as shown in Figure 11. As described previously, the transfer of heat by the first electrode can be reduced by a number of techniques, including attaching it to the insulating layers in a discontinuous manner, or perforating it with a plurality of holes in order to reduce heat transfer.
  • the invention relies on the careful selection of a number of design parameters, including the spacing between the first and second electrodes, the voltage supplied thereto, the size and materials selected for the electrodes, and for the electrical insulator or insulators.
  • This careful selection should ensure that there is no direct arcing between the electrodes, that only one electrode is encouraged to be the active electrode, and that the return electrode is kept cool either by preventing heat reaching it and/or by transferring heat away from it should the heat reach the second electrode.
  • the relatively cool return electrode ensures that there is relatively little or no thermal damage to tissue adjacent the return of the instrument, while the tissue assists in the conduction of heat away from the return.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

An electrosurgical cutting blade (1) comprises a first electrode (2), a second electrode (3), and an electrical insulator (4) separating the first and second electrodes. The first and second electrodes have dissimilar characteristics (cross-sectional area, thermal conductivity etc.) such that the first electrode (2) is encouraged to become an active electrode and the second electrode (3) is encouraged to become a return electrode. The spacing between the first and second electrodes (between 0.25 mm and 3.0 mm) and the peak voltage supplied to the electrodes (2 and 3) are both selected such that arcing does not occur directly between the electrodes, but between the first electrode and the tissue at the target site. The arrangement is such that, in use, a thermal differential of at least 50° C is established between the first and second electrodes (2 and 3), such that the second electrode is maintained below a temperature of 70° C. This is achieved either by thermally insulating the second electrode from the first electrode, and/or by transferring heat away from the second electrode, e.g. by conduction, forced cooling, or by means of a heat pipe (27).

Description

A Surgical Instrument
This invention relates to a bipolar electrosurgical cutting device such as a scalpel blade, and to an electrosurgical system comprising an electrosurgical generator and a bipolar electrosurgical cutting device. Such systems are commonly used for the cutting of tissue in surgical intervention, most commonly in "keyhole" or minimally invasive surgery, but also in "open" surgery.
Electrosurgical cutting devices generally fall into two categories, monopolar and bipolar. In a monopolar device a radio frequency (RF) signal is supplied to an active electrode which is used to cut tissue at the target site, an electrical circuit being completed by a grounding pad which is generally a large area pad attached to the patient at a location remote from the target site. In contrast, in a bipolar arrangement both an active and a return electrode are present on the cutting device, and the current flows from the active electrode to the return electrode, often by way of an arc formed therebetween.
An early example of a bipolar RF cutting device is US 4,706,667 issued to Roos, in which the return or "neutral" electrode is set back from the active electrode. Details for the areas of the cutting and neutral electrodes are given, and the neutral electrode is said to be perpendicularly spaced from the active electrode by between 5 and 15 mm. In a series of patents including US 3,970,088, US 3,987,795 and US 4,043,342, Morrison describes a cutting/coagulation device which has "sesquipolar" electrode structures. These devices are said to be a cross between monopolar and bipolar devices, with return electrodes which are carried on the cutting instrument, but which are preferably between 3 and 50 times larger in area than the cutting electrode. In one example (US 3,970,088) the active electrode is covered with a porous, electrically-insulating layer, separating the active electrode from the tissue to be treated and causing arcing between the electrode and the tissue. The insulating layer is said to be between 0.125 and 0.25 mm (0.005 and 0.01 inches) in thickness.
In another series of patents (including US 4,674,498, US 4,850,353, US 4,862,890 and US 4,958,539) Stasz proposed a variety of cutting blade designs. These were designed with relatively small gaps between two electrodes such that arcing would occur therebetween when an RF signal was applied to the blade, the arcing causing the cutting of the tissue. Because arcing was designed to occur between the electrodes, the typical thickness for the insulating material separating the electrodes was between 0.025 and 0.075 mm (0.001 and 0.003 inches). The present invention seeks to provide a bipolar cutting blade which is an improvement over the prior art. Accordingly, there is provided an electrosurgical system comprising a bipolar cutting blade, a handpiece to which the cutting blade is secured, and an electrosurgical generator for supplying a radio frequency voltage signal to the cutting blade, the cutting blade comprising first and second electrodes, and an electrical insulator spacing apart the electrodes, the spacing being between 0.25 mm and 3.0 mm, and the electrosurgical generator being adapted to supply a radio frequency voltage signal to the cutting blade which has a substantially constant peak voltage value, the relationship between the peak voltage value and the spacing between the electrodes being such that the electric field intensity between the electrodes is between 0.1 volts/μm and 2.0 volts/μm, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode.
By the term "blade", there is herein meant to include all devices which are designed such that both the active cutting electrode and the return electrode are designed to enter the incision made by the instrument. It is not necessary that the cutting device is only capable of making an axial incision, and indeed it will be shown below that embodiments of the present invention are capable of removing tissue in a lateral direction. The first important feature of the present invention is that the spacing between the electrodes and the electric field intensity therebetween is carefully controlled such that there is no direct arcing between the electrodes in the absence of tissue. For the purposes of this specification, the spacing between the electrodes is measured in terms of the shortest electrical path between the electrodes. Thus, even if electrodes are adjacent on to another such that the straight-line distance therebetween is less than 0.25 mm, if the insulator separating the electrodes is such that this straight line is not available as a conductive pathway, then the "spacing" between the electrodes is the shortest available conductive path between the electrodes. The electric field intensity between the electrodes is preferably between 0.15 volts/μm and 1.5 volts / μm, and typically between 0.2 volts/μm and 1.5 volts/μm. In one preferred arrangement, the spacing between the first and second electrodes is between 0.25 mm and 1.0 mm, and the electric field intensity between the electrodes is between 0.33 volts/μm and 1.1 volts/μm. Preferably, the electric field intensity is such that the peak voltage between the first and second electrodes is less than 750 volts. This ensures that the field intensity is sufficient for arcing to occur between the first electrode and the tissue, but not directly between the first and second electrodes. However, even where direct arcing between the electrodes is prevented, there is still a potential problem if the two electrodes are similar in design. In a bipolar cutting device only one of the electrodes will assume a high potential to tissue (and become the "active" electrode), with the remaining electrode assuming virtually the same potential as the tissue (becoming the "return" electrode). Where the first and second electrodes are similar, which electrode becomes the active can be a matter of circumstance. If the device is activated before becoming in contact with tissue, the electrode first contacting tissue will usually become the return electrode, with the other electrode becoming the active electrode. This means that in some circumstances one electrode will be the active electrode, and at other times the other electrode will be the active electrode. Not only does this make the device difficult for the surgeon to control (as it will be uncertain as to exactly where the cutting action will occur), but as it is likely that any particular electrode will at some time have been active.
When an electrode is active, there is a build up of condensation products on the surface thereof. This is not a problem when the electrode continues to be the active electrode, but it does make the electrode unsuitable for use as a return electrode. Thus, in the instance where two similar electrodes are employed, it is likely that, as each will at some times become active and at other times the return, the build up of products on both electrodes will lead to a decrease in performance of the instrument. Therefore, the present invention provides that the first electrode has a characteristic which is dissimilar from that of the second electrode, in order to encourage one electrode to assume preferentially the role of the active electrode. The characteristic of the first electrode which is dissimilar from that of the second electrode conveniently comprises the cross-sectional area of the electrode, the cross-sectional area of the first electrode being substantially smaller than that of the second electrode. This will help to ensure that the first electrode (being of a smaller cross-sectional area) will experience a relatively high initial impedance on contact with tissue, while the relatively larger area second electrode will experience a relatively lower initial impedance on contact with tissue. This arrangement will assist in encouraging the first electrode to become the active and the second electrode to become the return. The characteristic of the first electrode which is dissimilar from that of the second electrode alternatively or additionally comprises the thermal conductivity of the electrode, the thermal conductivity of the first electrode being substantially lower than that of the second electrode. In addition to the initial impedance, the rate of rise of the impedance is a factor influencing which electrode will become active. The impedance will rise with desiccation of the tissue, and the rate of desiccation will be influenced by the temperature of the electrode. By selecting an electrode material with a relatively low thermal conductivity, the electrode temperature will rise quickly as little heat is conducted away from the part of the electrode at which energy is delivered. This will ensure a relatively fast desiccation rate, producing a correspondingly fast rise in impedance and ensuring that the first electrode remains the active electrode.
The characteristic of the first electrode which is dissimilar from that of the second electrode may further comprise the thermal capacity of the electrode, the thermal capacity of the first electrode being substantially lower than that of the second electrode. As before, a low thermal capacity helps to maintain the temperature of the first electrode at a relatively high level, ensuring that it remains the active electrode.
According to a further aspect of the invention, there is provided an electrosurgical system comprising a bipolar cutting blade, a handpiece to which the cutting blade is secured, and an electrosurgical generator for supplying a radio frequency voltage signal to the cutting blade, the cutting blade comprising first and second electrodes, and an electrical insulator spacing apart the electrodes, the spacing being between 0.25 mm and 1.0 mm, and the electrosurgical generator being adapted to supply a radio frequency voltage signal to the cutting blade which has a substantially constant peak voltage value, the peak voltage value being respectively between 250 volts and 600 volts, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode. Given a particular electrode separation, it is highly desirable that the generator delivers the same peak voltages despite varying load conditions. Heavy loading of the blade may otherwise make it stall (as load impedance approaches source impedance, the voltage may otherwise halve), while light loading may otherwise result in voltage overshoots and direct arcing between the electrodes. The invention also resides in a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode, the spacing between the electrodes being between 0.25 mm and 1.0 mm, such that when the electrodes are in contact with tissue and an electrosurgical cutting voltage is applied therebetween, arcing does not occur directly between the electrodes, there also being provided means for ensuring that the temperature of the second electrode does not rise above 70° C.
As well as ensuring that the second electrode does not become active, it is also important to ensure that the temperature of the second electrode does not rise above 70° C, the temperature at which tissue will start to stick to the electrode. The means for ensuring that the temperature of the second electrode does not rise above 70° C conveniently comprises means for minimising the transfer of heat from the first electrode to the second electrode. One way of achieving this is to ensure that the first electrode is formed from a material having a relatively poor thermal conductivity, preferably less than 20 W/m.K. By making the first electrode a poor thermal conductor, heat is not transferred effectively away from the active site of the electrode and across to the second electrode, thereby helping to prevent the temperature of the second electrode from rising. Alternatively or additionally, the heat can be inhibited from transferring from the first electrode to the second electrode by making the electrical insulator separating the electrodes from a material having a relatively poor thermal conductivity, preferably less than 40 W/m.K. Again, this helps to prevent heat generated at the first electrode from transferring to the second electrode.
Another way of inhibiting the transfer of heat is to attach the first electrode to the electrical insulator in a discontinuous manner. Preferably, the first electrode is attached to the electrical insulator at one or more point contact locations, and/or is perforated with a plurality of holes such as to reduce the percentage contact with the electrical insulator.
A preferred material for the first electrode is tantalum. When tantalum is used for the active electrode, it quickly becomes coated with a layer of oxide material. This tantalum oxide is a poor electrical conductor, helping to ensure that the first electrode maintains its high impedance with respect to the tissue, and remains the active electrode.
Another way of helping to ensure that the temperature of the second electrode does not rise above 70° C is to maximise the transfer of heat away from the second electrode. Thus any heat reaching the second electrode from the first electrode is quickly transferred away before the temperature of the second electrode rises inordinately. One way of achieving this is to form the second electrode from a material having a relatively high thermal conductivity, preferably greater than 150 W/m.K.
The second electrode may conveniently be provided with additional cooling means to remove heat therefrom, such as a heat pipe attached to the second electrode, or a cooling fluid constrained to flow along a pathway in contact with the second electrode. Whichever method is employed, it is advisable for there to be a temperature differential, in use, between the first and second electrodes of at least 50° C, and preferably of between 100 and 200° C. Preferably, there is additionally provided a third electrode adapted to coagulate tissue. This coagulation electrode is conveniently attached to the second electrode with a further electrical insulator therebetween. It is necessary to ensure that the temperature of the coagulation electrode does not rise to too high a level, and so if the coagulation electrode is attached to the second electrode (which is designed in accordance with the present teaching to be a good thermal conductor), it is preferable to arrange that heat is easily transferred across the further electrical insulator. This can be achieved by making the further insulator from a material having a relatively high thermal conductivity, or more typically, if the further insulator is not a good thermal conductor, by ensuring that the further insulator is relatively thin, typically no more than around 50 μm. In this way the transfer of heat across the further electrical insulator is greater than 5 mW/mm2.K. In one arrangement, the second and third electrodes are formed as conductive electrodes on an insulating substrate. Thus both the second and third electrodes act as return electrodes when the blade is used to cut tissue with the first electrode. When the blade is used to coagulate tissue, a coagulating RF signal is applied between the second and third electrodes. According to a further aspect of the invention, there is provided a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode, the spacing between the electrodes being between 0.25 mm and 1.0 mm, such that when the electrodes are in contact with tissue and an electrosurgical cutting voltage is applied therebetween, arcing does not occur directly between the electrodes, there being additionally provided a third electrode adapted to coagulate tissue, the third electrode being separated from the second electrode by an additional insulator. The second and third electrodes are conveniently provided in a side-by-side arrangement with the additional insulator therebetween. Alternatively, the second and third electrodes are provided as layers in a sandwich structure with the additional insulator therebetween. In one convenient arrangement the first, second and third electrodes are each provided as layers in a sandwich structure with layers of insulator therebetween.
In one arrangement a first one of the second and third electrodes is provided with a cut-out portion, and the other one of the second or third electrodes is provided with a protruding portion. Preferably, the cut-out portion of the one electrode accommodates the protruding portion of the other electrode, typically such that the protruding portion is flush with the electrode surrounding the cut-out portion.
Alternatively, the first, second and third electrodes are provided as layers in a sandwich structure with the first electrode being in the middle, there being layers of insulator between each of the electrodes. In one arrangement, the second and third electrodes are substantially semi-circular in cross-section, and the first electrode protrudes slightly beyond the periphery of the second and third electrodes.
According to a final aspect of the invention, there is provided a method of cutting tissue at a target site comprising providing a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode; bringing the blade into position with respect to the target site such that the second electrode is in contact with tissue at the target site and the first electrode is adjacent thereto; supplying an electrosurgical cutting voltage to the cutting blade, the electrosurgical voltage and the spacing between the first and second electrodes being such that arcing does not occur in air between the first and second electrodes, but that arcing does occur between the first electrode and the tissue at the target site, current flowing through the tissue to the second electrode; and preventing heat build up at the second electrode such that the temperature of the second electrode does not rise above 70° C. Preferably, the method is such that both the first and second electrodes come into contact with tissue at the target site substantially simultaneously. The invention will now be described by way of example only, with reference to the accompanying drawings, in which:
Figure 1 is a schematic diagram of an electrosurgical system constructed in accordance with the present invention,
Figure 2 is a schematic cross-sectional view of an electrosurgical cutting blade constructed in accordance with the present invention,
Figure 3 is a schematic diagram showing the lateral cutting action of the blade of Figure 2,
Figure 4a to 4d are schematic cross-sectional views of alternative embodiments of electrosurgical cutting blades constructed in accordance with the invention, Figures 5a and 5b are schematic diagrams of electrosurgical cutting blades constructed in accordance with the present invention, incorporating cooling means, and Figures 6a and 6b, and Figures 7 to 11 are alternative electrosurgical cutting blades constructed in accordance with the present invention, incorporating an additional coagulation electrode.
Referring to Figure 1, a generator 10 has an output socket 10S providing a radio frequency (RF) output for an instrument 12 via a connection cord 14. Activation of the generator 10 may be performed from the instrument 12 via a connection in the cord 14, or by means of a footswitch unit 16, as shown, connected to the rear of the generator by a footswitch connection cord 18. In the illustrated embodiment, the footswitch unit 16 has two footswitches 16A and 16B for selecting a coagulation mode and a cutting mode of the generator 10 respectively. The generator front panel has push buttons 20 and 22 for respectively setting coagulation and cutting power levels, which are indicated in a display 24. Push buttons 26 are provided as an alternative means for selection between coagulation and cutting modes.
Referring to Figure 2, the instrument 12 comprises a blade shown generally at 1 and including a generally flat first electrode 2, a larger second electrode 3, and an electrical insulator 4 separating the first and second electrodes. The first electrode 2 is formed of stainless steel having a thermal conductivity of 18 W/m.K (although alternative materials such as Nichrome alloy may also be used). The second electrode 3 is formed from a highly thermally-conducting material such as copper having a thermal conductivity of 400 W/m.K (alternative materials including silver or aluminium). The surface of the second electrode 3 is plated with a biocompatible material such as a chromium alloy, or with an alternative non-oxidising material such as nickel, gold, platinum, palladium, stainless steel, titanium nitride or tungsten disulphide. The electrical insulator 4 is formed from a ceramic material such as A1203 which typically has a thermal conductivity of 30 W/m.K. Other possible materials for the insulator 4 are available which have a substantially lower thermal conductivity. These include boron nitride, porcelain, steatite, Zirconia, PTFE, reinforced mica, silicon rubber or other ceramic materials such as foamed ceramics or mouldable glass ceramic such as that sold under the trademark MACOR. A conductive lead 5 is connected to the first electrode 2, and a lead 6 is connected to the second electrode 3. The RF output from the generator 10 is connected to the blade 1 via the leads 5 and 6 so that a radio frequency signal having a substantially constant peak voltage (typically around 400N) appears between the first and second electrodes 2 and 3. Referring to Figure 3, when the blade 1 is brought into contact with tissue 7 at a target site, the RF voltage will cause arcing between one of the electrodes and the tissue surface. Because the first electrode 2 is smaller in cross-sectional area, and has a lower thermal capacity and conductivity than that of the second electrode 3, the first electrode will assume the role of the active electrode and arcing will occur from this electrode to the tissue 7. Electrical current will flow through the tissue 7 to the second electrode 3, which will assume the role of the return electrode. Cutting of the tissue will occur at the active electrode, and the blade may be moved through the tissue. The blade 1 may be used to make an incision in the tissue 7, or moved laterally in the direction of the arrow 8 in Figure 3 to remove a layer of tissue.
During cutting, considerable heat will be generated at the active electrode 2, and the electrode temperature may rise to 100 - 250° C. However, due to the poor thermal conductivity of the insulator 4, less heat is transmitted to the second electrode 3. Even when heat does reach the second electrode 3, the high thermal conductivity of the copper material means that much of the heat is conducted away from the electrode surface and into the body 9 of the electrode. This helps to ensure that a temperature differential is maintained between the first electrode 2 and the second electrode 3, and that the temperature of the second electrode 3 remains below 70° C for as long as possible. This ensures that the second electrode 3 remains the return electrode whenever the instrument 12 is activated, and also that tissue does not begin to stick to the electrode 3.
In addition to providing an insulator 4 which has a relatively low thermal conductivity, it is advantageous to ensure that the first electrode 2 contacts the insulator 4 as little as possible. In Figure 2 the electrode 2 is not secured to the insulator 4 and the electrode 3 in a continuous fashion, but by one or more point contact pins shown generally at 11. Figure 4a shows a further design of blade in which the first electrode 2 is shaped so as to contact the insulator 4 only intermittently along its length, with regions 13 over which the electrode bows outwardly from the insulator 4. This helps to minimise further the transfer of heat from the first electrode 2, through the insulator 4, to the second electrode 3. Figure 4b shows a further arrangement in which the first electrode 2 is provided with many perforations 15 such that it is in the form of a mesh. Once again, this helps to minimise the transfer of heat from the first electrode 2 to the insulator 4. Figure 4c shows another arrangement in which there is an additional corrugated electrode layer 17 located between the first electrode 2 and the insulator 4, As before, this assists in helping to prevent heat generated at the first electrode 2 from reaching the second electrode 3, so as to maintain the thermal differential therebetween. Figure 4d shows a variation on the blade of Figure 2, in which the blade is formed as a hook 19. The first electrode 2, the second electrode 3 and the insulator 4 are all hook-shaped, and the operation of the device is substantially as described with reference to Figure 2. The hook electrode is particularly suited for parting tissue, whether used as a cold resection instrument without RF energisation, or as an RF cutting instrument. Tissue may be held in the angle 20 of the hook 19, while being manipulated or cut.
Whichever design of electrode is employed, it is advantageous if heat which does cross from the first electrode 2 to the second electrode 3 can be transferred away from the tissue contact surface of the electrode 3. In the blade of Figure 2, the second electrode 3 is constituted by a relatively large mass of copper which is capable of conducting heat away from the electrode tip. The function of the electrode 3 can be -further enhanced by employing cooling means as illustrated in Figures 5a and 5b. In Figure 5a, the second electrode 3 is attached to a heat pipe shown generally at 27. The heat pipe 27 comprises a hollow closed tube 28 with a distal end 29 adjacent to the electrode 3, and a proximal end 30 within the handpiece of the instrument 12. The tube 28 has a cavity 31 therein, containing a low boiling temperature liquid 32 such as acetone or alcohol. In use, heat from the electrode 3 causes the liquid 32 at the distal end 29 of the tube to vaporise, and this vapour subsequently condenses at the proximal end 30 of the tube because it is relatively cool with respect to the distal end 29. In this way, heat is transferred from the distal end of the electrode 3 to the proximal end thereof, from where it can be further dissipated by the handpiece of the instrument 12.
Figure 5b shows an alternative arrangement in which the heat pipe of Figure 5a is replaced with a forced cooling system shown generally at 33. The cooling system 33 comprises a tube 34, again with a distal end 29 and a proximal end 30. The tube 34 includes a coaxial inner tube 35 defining an inner lumen 36 and an outer lumen 37. The inner tube 35 is perforated towards the distal end of the tube, so that the inner and outer lumens 36 and 37 are in communication one with another. In use, a self-contained pump 38 causes a cooling fluid 39 to be circulated up the inner lumen 36 to the distal end 29, ret-uming via the outer lumen 37 to be recirculated continuously. The circulating fluid is heated by the electrode 3, and the heat is taken by the fluid to the proximal end 30 of the tube 34. In this way, the second electrode 3 is kept cool, despite the elevated temperature at the first electrode 2.
The remainder of the Figures show arrangements in which a third electrode 40 is provided, in order to allow the coagulation or desiccation of the tissue 7. In Figure 6a, a blade 1 is shown in accordance with the construction of Figure 4b, and like parts are designated with like reference numerals. The third electrode 40 is attached to the second electrode 3, on the opposite side to the first electrode 2, and mounted on a further electrical insulator 41. RF signals may be supplied to the third electrode 40 from the generator 10 via a lead 42. The insulator 41 is formed from a thin layer of silicon rubber, alternative materials for the insulator 41 including polyamide, PEEK or PVC materials. The thin layer ensures that heat can transfer across the silicon rubber layer and that the coagulation electrode 40 can benefit from the thermal conductivity properties of the second electrode 3. In this way, the coagulation electrode 40 can remain relatively cool despite any heat previously generated by the first electrode 2. In use, tissue is cut as previously described. When it is desired to coagulate instead of cutting, the third electrode 40 is placed in contact with the tissue 7, and a coagulating RF signal is applied between the second electrode 3 and the third electrode 40.
Figure 6b shows an alternative embodiment in which the second electrode 3 and third electrode 40 are metallised tracks on a substrate 43 of aluminium nitride material. As before, this material is electrically insulating yet a good thermal conductor, to allow for the conduction of heat away from the second and third electrodes.
Figure 7 shows an arrangement in which the first electrode 2 is located between the second and third electrodes 3 and 40. Both the electrodes 3 and 40 are approximately semi-circular in cross-section, and form a generally cylindrical structure with the first electrode 2 protruding slightly from the central region thereof. The insulating layer 4 separates the first electrode 2 from the second electrode 3, and the insulating layer 41 separates the first electrode 2 from the third electrode 40. When the user intends the instrument to cut tissue, the generator 10 applies a cutting RF signal between the first electrode 2 and one or both of the second or third electrodes 3, 40. Conversely, when the user intends the instrument to coagulate tissue, the generator 10 applies a coagulating RF signal between the second electrode 3 and the third electrode 40. The relatively large surface area of the electrodes 3 and 40 allows for effective coagulation of tissue, as well as for the conduction away of heat during cutting as previously described.
Figure 8 shows an alternative design of instrument in which the second and third electrodes 3 and 40 are provided side-by-side. The first electrode 2 is substantially planar, and an insulating layer 4 separates the first electrode from the second and third electrodes 3 and 40 on the other side of the instrument. The electrodes 3 and 40 are disposed in side-by-side arrangement, with an insulating section 41 therebetween. As before, the instrument can cut tissue with an RF signal between the first electrode 2 and one of the second or third electrodes 3, 40, or alternatively coagulate tissue with an RF signal between the second and third electrodes.
Figure 9 shows a further embodiment in which the first, second and third electrodes are provided as a series of layers in a "sandwich" arrangement. The first electrode 2 is shown as the top layer in Figure 9, with the third electrode 40 as the bottom layer, with the second electrode 3 sandwiched therebetween. Insulating layers 4 and 41 respectively serve to separate the first, second, and third electrodes. This arrangement provides a relatively thick edge to the blade 1, which is designed to facilitate coagulation of tissue.
Figure 10 shows an arrangement which utilises features from both the sandwich and side-by-side electrode structures. The electrodes are again provided in a sandwich arrangement, Figure 10 showing the first electrode 2 on the bottom rather than the top as shown in Figure 9. The second electrode 3 is again in the middle of the sandwich, separated from the first electrode by an insulating layer 4. The third electrode 40 is shown as the top electrode in Figure 10, but has a central recess though which a raised portion 50 of the second electrode 3 can protrude. The second and third electrodes are separated by an insulator 41, and the top surface of the protrusion 50 is flush with the top of the third electrode 40. This arrangement allows either the sides of the blade 1 or the top face as shown in Figure 10 to be used for the coagulation of tissue.
Figure 11 shows an arrangement in which the end of the blade 1 comprises a central first electrode 2 with insulating layers 4 and 41 on either side thereof. The insulating layers 4 and 41 each have a slanting beveled distal end, as shown at 51 and 52 respectively. A second elecfrode 3 is attached to the insulating layer 4, the beveled end 51 resulting in the second electrode being set back axially from the first electrode 2 in the axis of the blade. In similar fashion, a third electrode 40 is attached to the insulating layer 41, the beveled end 52 resulting in the third electrode also being axially set back from the first electrode 2. The beveled ends 51 and 52 allow for a minimum separation (shown at "x" in Fig 11) of 0.25 mm between the first electrode and the second and third electrodes, while maintaining an overall slim profile to the blade 1. The first electrode 2 can be flush with the ends of the first and second insulating layers 4 and 41, or may project slightly therefrom as shown in Figure 11. As described previously, the transfer of heat by the first electrode can be reduced by a number of techniques, including attaching it to the insulating layers in a discontinuous manner, or perforating it with a plurality of holes in order to reduce heat transfer.
The invention relies on the careful selection of a number of design parameters, including the spacing between the first and second electrodes, the voltage supplied thereto, the size and materials selected for the electrodes, and for the electrical insulator or insulators. This careful selection should ensure that there is no direct arcing between the electrodes, that only one electrode is encouraged to be the active electrode, and that the return electrode is kept cool either by preventing heat reaching it and/or by transferring heat away from it should the heat reach the second electrode. The relatively cool return electrode ensures that there is relatively little or no thermal damage to tissue adjacent the return of the instrument, while the tissue assists in the conduction of heat away from the return.

Claims

Claims
1. An electrosurgical system comprising a bipolar cutting blade, a handpiece to which the cutting blade is secured, and an electrosurgical generator for supplying a radio frequency voltage signal to the cutting blade, the cutting blade comprising first and second electrodes, and an electrical insulator spacing apart the electrodes, characterized in that the spacing is between 0.25 mm and 3.0 mm, and the electrosurgical generator is adapted to supply a radio frequency voltage signal to the cutting blade which has a substantially constant peak voltage value, the relationship between the peak voltage value and the spacing between the electrodes being such that the electric field intensity between the electrodes is between 0.1 volts/μm and 2.0 volts/μm, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode.
2. An electrosurgical system according to claim 1, characterized in that the characteristic of the first electrode which is dissimilar from that of the second electrode comprises the cross-sectional area of the electrode, the cross-sectional area of the first electrode being substantially smaller than that of the second electrode.
3. An electrosurgical system according to claim 1 or claim 2, characterised in that the characteristic of the first electrode which is dissimilar from that of the second elecfrode comprises the thermal conductivity of the electrode, the thermal conductivity of the first electrode being substantially lower than that of the second electrode.
4. An electrosurgical system according to any one of claims 1 to 3, characterised in that the characteristic of the first electrode which is dissimilar from that of the second electrode comprises the thermal capacity of the electrode, the thermal capacity of the first electrode being substantially lower than that of the second electrode.
5. An electrosurgical system comprising a bipolar cutting blade, a handpiece to which the cutting blade is secured, and an electrosurgical generator for supplying a radio frequency voltage signal to the cutting blade, the cutting blade comprising first and second electrodes, and an electrical insulator spacing apart the electrodes, characterized in that the spacing is between 0.25 mm and 1.0 mm, and the electrosurgical generator is adapted to supply a radio frequency voltage signal to the cutting blade which has a substantially constant peak voltage value, the peak voltage value being between 250 volts and 600 volts, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode.
6. A bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second electrode is encouraged to become a return electrode, characterized in that the spacing between the electrodes is between 0.25 mm and 1.0 mm, such that, when the electrodes are in contact with tissue and an electrosurgical cutting voltage is applied therebetween, arcing does not occur directly between the electrodes, and that there is also provided means for ensuring that the temperature of the second electrode does not rise above 70° C.
7. A bipolar cutting blade according to claim 6, characterised in that the means for ensuring that the temperature of the second electrode does not rise above 70° C comprises means for minimising the transfer of heat from the first electrode to the second electrode.
8. A bipolar cutting blade according to claim 7, characterised in that the electrical insulator is formed from a material having a relatively poor thermal conductivity of less than 40 W/m.K.
9 A bipolar cutting blade according to claim 7 or claim 8, characterised in that the first electrode is attached to the electrical insulator in a discontinuous manner.
10. A bipolar cutting blade according to claim 9, characterised in that the first electrode is attached to the electrical insulator at one or more point contact locations.
11. A bipolar cutting blade according to claim 9 or claim 10, characterised in that the first electrode is perforated with a plurality of holes such as to reduce the percentage contact with the electrical insulator.
12. A bipolar cutting blade according to claim 6, characterised in that the means for ensuring that the temperature of the second elecfrode does not rise above 70° C comprises means for maximising the transfer of heat away from the second electrode.
13. A bipolar cutting blade according to claim 12, characterised in that the second electrode is formed from a material having a relatively high thermal conductivity of greater than 150 W/m.K.
14. A bipolar cutting blade according to claim 12 or claim 13, characterised in that the second elecfrode is provided with additional cooling means to remove heat therefrom.
15. A bipolar cutting blade according to any one of claims 6 to 14, characterised in that there is additionally provided a third electrode adapted to coagulate tissue.
16. A bipolar cutting blade according to claim 15, characterised in that the third electrode is attached to the second electrode with a further electrical insulator therebetween.
17. A bipolar cutting blade according to claim 16, characterised in that the arrangement is such that the transfer of heat across the further electrical insulator is greater than 5 mW/mm2.K.
18. A bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first elecfrode is encouraged to become an active electrode and the second electrode is encouraged to become a return elecfrode, characterized in that the spacing between the electrodes is between 0.25 mm and 1.0 mm, such that, when the electrodes are in contact with tissue and an electrosurgical cutting voltage is applied therebetween, arcing does not occur directly between the electrodes, and that there is additionally provided a third electrode adapted to coagulate tissue, the third electrode being separated from the second electrode by an additional insulator.
19. A bipolar cutting blade according to claim 18, characterised in that the second and third electrodes are provided in a side-by-side arrangement with the additional insulator therebetween.
20. A bipolar cutting blade according to claim 19, characterised in that the first, second and third electrodes are provided as layers in a sandwich structure with layers of insulator therebetween.
21. A bipolar cutting blade according to claim 19 or claim 20, characterised in that a first one of the second and third electrodes is provided with a cut-out portion.
22. A bipolar cutting blade according to claim 21, characterised in that the other one of the second or third electrodes is provided with a protruding portion.
23. A bipolar cutting blade according to claim 22, characterised in that the cut-out portion of the one electrode accommodates the protruding portion of the other electrode.
24. A bipolar cutting blade according to claim 23, characterised in that the protruding portion is flush with the elecfrode surrounding the cut-out portion.
25. A bipolar cutting blade according to claim 20, characterised in that the first, second and third electrodes are provided as layers in a sandwich structure with the first electrode being in the middle, there being layers of insulator between each of the electrodes.
26. A bipolar cutting blade according to claim 25, characterised in that the first electrode protrudes slightly beyond the periphery of the second and third elecfrodes.
27. A method of cutting tissue at a target site comprising providing a bipolar cutting blade comprising first and second electrodes and an electrical insulator spacing apart the electrodes, the first electrode having a characteristic which is dissimilar from that of the second electrode such that the first electrode is encouraged to become an active electrode and the second elecfrode is encouraged to become a return electrode; bringing the blade into position with respect to the target site such that the second electrode is in contact with tissue at the target site and the first elecfrode is adjacent thereto; supplying an electrosurgical cutting voltage to the cutting blade, characterized in that the electrosurgical voltage and the spacing between the first and second electrodes are such that arcing does not occur in air between the first and second electrodes, but that arcing does occur between the first elecfrode and the tissue at the target site, current flowing through the tissue to the second electrode; and by preventing heat build up at the second electrode such that the temperature of the second electrode does not rise above 70° C.
EP02791916A 2001-12-27 2002-12-23 A surgical instrument Ceased EP1458300A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB0130975 2001-12-27
GBGB0130975.6A GB0130975D0 (en) 2001-12-27 2001-12-27 A surgical instrument
GB0206207A GB0206207D0 (en) 2002-03-15 2002-03-15 A surgical instrument
GB0206207 2002-03-15
GB0215402 2002-07-03
GB0215402A GB0215402D0 (en) 2002-07-03 2002-07-03 A surgical instrument
PCT/GB2002/005893 WO2003055402A1 (en) 2001-12-27 2002-12-23 A surgical instrument

Publications (1)

Publication Number Publication Date
EP1458300A1 true EP1458300A1 (en) 2004-09-22

Family

ID=27256366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02791916A Ceased EP1458300A1 (en) 2001-12-27 2002-12-23 A surgical instrument

Country Status (5)

Country Link
EP (1) EP1458300A1 (en)
JP (1) JP4313205B2 (en)
CN (1) CN100362969C (en)
AU (1) AU2002358220B2 (en)
WO (1) WO2003055402A1 (en)

Families Citing this family (551)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0425842D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
ES2540098T3 (en) 2002-05-10 2015-07-08 Covidien Lp Surgical stapling device that has a material applicator set for wound closure
EP1503671B1 (en) 2002-05-10 2006-10-11 Tyco Healthcare Group Lp Wound closure material applicator and stapler
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
EP1762197B1 (en) 2004-06-18 2014-04-16 Olympus Corporation Instrument for cutting organism tissue
GB2415140A (en) 2004-06-18 2005-12-21 Gyrus Medical Ltd A surgical instrument
DE102004031141A1 (en) * 2004-06-28 2006-01-26 Erbe Elektromedizin Gmbh Electrosurgical instrument
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
GB0425843D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7607557B2 (en) 2005-11-04 2009-10-27 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7854735B2 (en) 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8348129B2 (en) 2009-10-09 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapler having a closure mechanism
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US20090206125A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Packaging for attaching buttress material to a surgical stapling instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
BR112013007717B1 (en) 2010-09-30 2020-09-24 Ethicon Endo-Surgery, Inc. SURGICAL CLAMPING SYSTEM
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CN103200892B (en) * 2010-10-20 2015-08-26 泰尔茂心血管系统公司 Surgical instrument
GB2487199A (en) 2011-01-11 2012-07-18 Creo Medical Ltd Electrosurgical device with fluid conduit
US9168082B2 (en) * 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9693816B2 (en) * 2012-01-30 2017-07-04 Covidien Lp Electrosurgical apparatus with integrated energy sensing at tissue site
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
GB2503673A (en) 2012-07-03 2014-01-08 Creo Medical Ltd Electrosurgical device with convex under surface
US9649146B2 (en) 2012-10-02 2017-05-16 Covidien Lp Electro-thermal device
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
BR112015021082B1 (en) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc surgical instrument
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
WO2015022842A1 (en) * 2013-08-16 2015-02-19 住友ベークライト株式会社 High-frequency treatment instrument
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
US20150053737A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. End effector detection systems for surgical instruments
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9687232B2 (en) 2013-12-23 2017-06-27 Ethicon Llc Surgical staples
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
GB201323171D0 (en) * 2013-12-31 2014-02-12 Creo Medical Ltd Electrosurgical apparatus and device
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456159B (en) 2014-04-16 2019-03-08 伊西康内外科有限责任公司 Fastener cartridge assembly and nail retainer lid arragement construction
BR112016023698B1 (en) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
BR112017014919A2 (en) * 2015-01-13 2018-01-09 Megadyne Med Prod Inc precision tapered blade electrosurgical instrument
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
RU2725081C2 (en) 2015-08-26 2020-06-29 ЭТИКОН ЭлЭлСи Strips with surgical staples allowing the presence of staples with variable properties and providing simple loading of the cartridge
MX2022009705A (en) 2015-08-26 2022-11-07 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue.
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
CN108430364B (en) 2015-11-25 2021-04-16 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Actuator, clamp, electrosurgical instrument and method for preparing actuator
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
US11510698B2 (en) 2016-07-06 2022-11-29 Gyrus Acmi, Inc. Multiple mode electrosurgical device
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
MX2019007295A (en) 2016-12-21 2019-10-15 Ethicon Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout.
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
GB2565575A (en) * 2017-08-17 2019-02-20 Creo Medical Ltd Electrosurgical apparatus for delivering RF and/or microwave energy into biological tissue
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US20190192147A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an articulatable distal head
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
JP2020044455A (en) * 2020-01-06 2020-03-26 ジャイラス エーシーエムアイ インク Thermal control devices for electrosurgical instruments
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11998201B2 (en) 2021-05-28 2024-06-04 Cilag CmbH International Stapling instrument comprising a firing lockout
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987795A (en) * 1974-08-28 1976-10-26 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
DE2944730A1 (en) * 1978-11-16 1980-05-29 Corning Glass Works SURGICAL INSTRUMENT
US4248231A (en) * 1978-11-16 1981-02-03 Corning Glass Works Surgical cutting instrument
US4476862A (en) * 1980-12-08 1984-10-16 Pao David S C Method of scleral marking
US5697882A (en) * 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US6106524A (en) * 1995-03-03 2000-08-22 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US6203542B1 (en) * 1995-06-07 2001-03-20 Arthrocare Corporation Method for electrosurgical treatment of submucosal tissue
IL122713A (en) * 1995-06-23 2001-04-30 Gyrus Medical Ltd Electrosurgical instrument
US6293942B1 (en) * 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6045532A (en) * 1998-02-20 2000-04-04 Arthrocare Corporation Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord
US6758846B2 (en) * 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO03055402A1 *

Also Published As

Publication number Publication date
CN1610526A (en) 2005-04-27
AU2002358220B2 (en) 2008-09-25
CN100362969C (en) 2008-01-23
JP4313205B2 (en) 2009-08-12
AU2002358220A1 (en) 2003-07-15
JP2005512726A (en) 2005-05-12
WO2003055402A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
US7211084B2 (en) Surgical system
AU2002358220B2 (en) A surgical instrument
US6832998B2 (en) Surgical instrument
US20060264929A1 (en) Surgical system
EP0886493B1 (en) A dermatological treatment probe
EP1330989B1 (en) An electrosurgical instrument
EP1025808B1 (en) Monopolar tissue ablator
EP0873089B1 (en) Electrosurgical instrument
KR100463935B1 (en) An electrosurgical instrument
AU756394B2 (en) An electrode assembly for an electrosurgical instrument
EP2079382B1 (en) Apparatus for electrosurgery comprising superposed electrodes with curved distal parts.
US6090106A (en) Electrosurgical instrument
EP2077786B1 (en) Electrosurgical device having floating-potential electrode and adapted for use with a resectoscope
US20040068307A1 (en) Surgical instrument
EP1407719A2 (en) A surgical instrument
JPH09501328A (en) Surgical incision method and device
JPH05337129A (en) Radio frequency bipolar electric surgical device
WO1999048430A1 (en) An electrosurgical instrument
WO2000000098A1 (en) Systems and methods for electrosurgical ablation of viable body structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20060419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GYRUS MEDICAL LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20180114