EP1456983B1 - Verfahren zur Implementierung eines Kommunikations-Sender-/Empfänger-Behinderungsemulators - Google Patents

Verfahren zur Implementierung eines Kommunikations-Sender-/Empfänger-Behinderungsemulators Download PDF

Info

Publication number
EP1456983B1
EP1456983B1 EP02798558A EP02798558A EP1456983B1 EP 1456983 B1 EP1456983 B1 EP 1456983B1 EP 02798558 A EP02798558 A EP 02798558A EP 02798558 A EP02798558 A EP 02798558A EP 1456983 B1 EP1456983 B1 EP 1456983B1
Authority
EP
European Patent Office
Prior art keywords
impairment
modeling
baseband
further characterized
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02798558A
Other languages
English (en)
French (fr)
Other versions
EP1456983A2 (de
EP1456983A4 (de
Inventor
Kenneth P. Kearney
Leonid Kazakevich
Timothy A. Axness
James Nolan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to EP09000577A priority Critical patent/EP2048802A3/de
Publication of EP1456983A2 publication Critical patent/EP1456983A2/de
Publication of EP1456983A4 publication Critical patent/EP1456983A4/de
Application granted granted Critical
Publication of EP1456983B1 publication Critical patent/EP1456983B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0087Monitoring; Testing using service channels; using auxiliary channels using auxiliary channels or channel simulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Definitions

  • the present invention relates to communications, communication networks and especially wireless type networks. More particularly the present invention relates to a method for evaluating network design and characteristics through the introduction of impairments to the network and enable more efficient and cost effective testing and evaluation.
  • a communication system typically transmits an information signal from a source to a destination over a medium, which may be guided or unguided such as copper, optical fiber or air, the medium being commonly referred to as the communication channel.
  • the information signal is altered, i.e., modulated, to match the characteristics of the channel.
  • the communication is demodulated at the receiving end to recover the information-bearing signal.
  • the communication system typically compromises a transmit modem, an up converter or transmitter, communication medium, down converter or receiver and a receiver modem.
  • the input data is modulated and up converted on to a predefined carrier frequency and outputted to the communication medium. Inverse operations are performed at the receiver.
  • Modulation techniques presently in use include frequency modulation (FM), frequency shift keying (FSK), phase shift keying (PSK), binary phase shift keying (BPSK) and differential phase shift keying (DPSK).
  • FM frequency modulation
  • FSK frequency shift keying
  • PSK phase shift keying
  • BPSK binary phase shift keying
  • DPSK differential phase shift keying
  • QAM quadrature amplitude modulation
  • QPSK quadrature phase shift keying
  • Modulation such as quadrature modulation is typically performed in a modem, providing a baseband output whereupon a predefined carrier frequency is modulated with the baseband output and is amplified and transmitted in the communication medium. Up conversion is utilized when channel frequencies are above the base band frequencies.
  • Phase modulation techniques must be capable of overcoming phase synchronization problems. For example, the I and Q channels employed in quadrature modulation must have the same gain, since mismatched signal gains or magnitudes create processing errors. Phase differences between the carrier waveform signals cause spillover between individual channels resulting in degraded performance. These impairments are a common occurrence and are due in part to the electronic mixers, filters, A/D converters and so forth employed in up and down converters. Each of the components contribute their own variations in specified value due, for example, to temperature, manufacturing tolerances and other factors affecting signal integrity.
  • Non-linear impairments are also encountered and are characterized by changes in output gain or phase, which vary in dependence upon magnitude of the input signal.
  • Two major signal impairments include:
  • the communication media In addition to the impairments encountered during up and down conversion, the communication media, whether guided or unguided is also influenced by obstacles, attenuation and wave reflections which perturbations affect signal level by many dB and are continually changing in a mobile communication environment.
  • the propagation characteristics vary widely depending upon whether a communication link is fixed or mobile, the condition of the propagation path and the composition of the medium itself.
  • Prior art testing techniques typically comprise signal generators, E b /N 0 (i.e., ratio of carrier of bit energy to noise energy) generators and meters, channel emulators and so forth. However this method does not include conversion components. Such a method is disclosed in US 5 233 628 .
  • the present invention provides a method for emulating signal impairments to enable dynamic evaluation of transmit and receive modem performance through the use of computer-generated models enabling both an evaluation of system performance as well as a comparison of results obtained from system designs respectively exposed to both impaired and unimpaired conditions to enable direct comparison prior to any hardware implementation. from system designs respectively exposed to both impaired and unimpaired conditions to enable direct comparison prior to any hardware implementation.
  • Figure 1 is a diagram showing a simplified transmitter useful in explaining the methodology of the present invention.
  • Figure 2 shows a simplified uplink receiver useful in explaining the methodology of the present invention.
  • Figure 3 shows a simplified downlink receiver useful in explaining the methodology of the present invention.
  • Figure 4 is a plot showing the time domain representation of phase ripple derivation.
  • Figure 5 is a diagram showing a phase ripple model.
  • Figure 6 is a plot showing the time domain representation of gain ripple derivation.
  • Figure 7 is a block diagram showing a gain ripple model.
  • the models developed were coded in C and imported into test benches built in Cadence's Signal Processing WorkSystem simulation environment.
  • the models developed allow introduction of a number of different radio impairments into a simulation environment that models the baseband physical layer. While the designers used the Cadence tool and coded the model in C code for this implementation, the same methodology would be applicable to different modeling environments and coding languages. Also the designers studied the effect on the 3G TDD signal but again the methodology and models could be used in other modulation schemes.
  • the radio impairment block (15 shown in Figure 1 , 33 and 36 shown in Figure 2 and 64 shown in Figure 3 ) includes a parameter the operator to select those impairments to include and to set the values for each impairment to be included.
  • Fig. 1 shows a test model in which quadrature phase shift keyed (QPSK) data is generated at 11 and undergoes finite impulse response filtering at 12 and 14. An impairment is introduced at 15. The impairments which are introduced are set forth in detail below. The peak to average ratios (PARs) are measured and compared at 17.
  • QPSK quadrature phase shift keyed
  • Receive FIR filtering on the transmitted signals is performed at 13 and 16 and the filtered signals are measured and compared for error vector magnitude (EVM), peak code domain error (PCDE), etc. at 18.
  • EVM error vector magnitude
  • PCDE peak code domain error
  • This test module evaluates a non-ideal transmitter in the absence and presence of various impairments.
  • the FIR filtering may be modified to less than ideal parameters to determine their effects on the transmitted signal with and/or without impairments.
  • FIG. 2 shows an uplink receiver test module 30 in which user QPSK data is combined at 31 with its own cell interference and multipath fading; and filtered by transmit FIRs at 32 and 35.
  • Other cell interference such as TDD interference from one or more neighboring cells with different scrambling codes is introduced at 40 and impairments are introduced at 33 and 36. Although the same impairments are provided, the settings of the impairments provided at 33 and 36 could be different for this test module with receiver diversity.
  • the resultant signals are filtered by receiver FIR filters 34 and 37 and then undergo functions performed by a receiver, such as demodulation, amplification, etc.
  • Non-ideal shaping filters of both transmit and receive type may also be modeled to determine how they affect design.
  • the module 60 in Fig. 3 examines the result of downlink receiver impairment wherein the user QPSK data connection, interference connection and multipath fading are combined at 61.
  • Filtering is performed at 63 by simulation of a transmit FIR filter. Other cell impairments are introduced at 62. The filtered, QPSK data and other cell interference are combined together with impairments introduced at 64. The "transmitted" signal undergoes filtering by receiver FIR filters simulated at 65. The functions normally performed on the received signals by a receiver are simulated at 66. The outputs from 66 are measured at 67 and includes BLER, raw BER, signal-to-interference ratio (SIR) estimate, etc.
  • SIR signal-to-interference ratio
  • Linear impairments include amplitude imbalance, phase imbalance, phase jitter, carrier leakage/suppression, carrier offset, and dc offset, each of which is described herein below.
  • Amplitude imbalance is a condition in the receiver/transmitter wherein the gain of the I and Q channels are not equal.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • Phase imbalance is a condition in the receiver/transmitter where the insertion phase between I and Q channels is offset from the expected 90 degrees.
  • Phase Jitter is a condition where the noise generated inside an amplifying device is manifested as a small amount of Gaussian noise modulating the phase between I and Q channels.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • the phase noise data is filtered to lie in the band of 2-10 kHz.
  • ⁇ 0 phase error in degrees.
  • Carrier leak/suppression is a condition created due to slight DC offsets inside the quadrature modulators and has the effect of creating additional intermodulation distortion or reducing carrier suppression.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • I cl k • cos( ⁇ )
  • Range for magnitude is limited to e> 12 dB, applied as a loss.
  • Range for phase angle is limited to 0 ⁇ ⁇ ⁇ 360 degrees.
  • Carrier offset is a condition where the carrier (i.e., local oscillator) is not exactly equal to the programmed frequency.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • errCarrOffset 2 ⁇ • carrOffsetHz/sampleRate.
  • carrOffsetHz carrier offset in Hertz.
  • txFIRoutSampleRate typically 5 for TDD for impairment applied between tx & rx FIRs.
  • DC offset is a condition in the receiver created due to slight DC offsets and has the effect of creating bias on the inphase and quadrature components of the signal.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • I dcoff dcOffI /100.0
  • Q dcoff dcOffQ /100.0
  • dcOffI DC offset for I component as percentage of full scale (assumed to be 1.0).
  • dcOffQ DC offset for Q component as percentage of full scale (assumed to be 1.0)
  • Non-linear impairments include AM-to-AM distortion and AM-to-PM distortion.
  • AM-to-AM distortion is an amplifier non-linearity condition where the output amplitude is not exactly proportional to the input amplitude, which condition typically occurs near or at the maximum output level of the amplifier.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • k coefficient of non-linearity for the AM-TO-AM distortion.
  • the range for intermodulation product is limited to the range between 50 db to 20 db below signal level.
  • AM-to-PM distortion is an amplifier non-linearity condition where a change to the input level causes a corresponding change in the insertion phase. This condition typically occurs near or at a maximum output level of the amplifier.
  • I' the impaired value of I
  • Q' the impaired value of Q
  • the non-linearity coefficient, k is related to degrees by the following model: For AM-PM distortion, apply the same tone to both channels.
  • Error degrees arc ⁇ tan ( 3 • k 2 - 7 • k + 2 ) / ( 3 • k 2 + 7 • k - 2 ) - 45
  • Filter response impairment modeling includes phase ripple (group delay variation), gain ripple and non-ideal shaping filters.
  • Phase ripple (Group Delay Variation) is a condition where the group delay varies across the signal bandwidth.
  • the major contributors to phase ripple are system filters.
  • the impairment is modeled as the product of phase impairment and an equalizer.
  • Figure 4 shows the time domain representation of the phase ripple derivation. Undesirable error terms have been dropped from the result.
  • Figure 5 shows a graphical representation of the impairment implemented by a plurality of delay lines arranged in a column D, a plurality of multipliers arranged in a column K, a plurality of summing circuits arranged in a column S and a normalization circuit N, Where:
  • phase ripple model parameters Software limits are defined for phase ripple model parameters.
  • the range for ripple frequency is limited to 120 to 960 KHz.
  • the range for peak-to-peak group delay is limited to the range from 1 to 600 nano seconds.
  • Gain ripple is a condition where the gain varies across the signal bandwidth.
  • the major contributors to gain ripple are system filters.
  • Figure 6 is a time domain representation of gain ripple derivation.
  • the impairment is modeled as shown in Figure 7 , Where:
  • the range for ripple frequency is limited to 120 to 960 KHz.
  • the range for peak-to-peak ripple amplitude is limited to the range form 0.2 to 2.0dB.
  • Non-ideal pulse shaping filters can contribute significantly to adjacent channel leakage power ratio (ACLR), error vector magnitude (EVM), peak code domain error (PCDE).
  • ACLR adjacent channel leakage power ratio
  • EVM error vector magnitude
  • PCDE peak code domain error
  • wired communications include fiber optic, copper or other conductive cables, coaxial cable and the like.

Claims (32)

  1. Verfahren zum Auswerten eines Senders, der zur Verwendung in einem digitalen Kommunikationssystem ausgelegt ist, dadurch gekennzeichnet, dass das Verfahren umfasst:
    a) modellhaftes Nachbilden eines Senders (11), um ein Ausgangssignal bereitzustellen, das zum gleichzeitigen Einsatz in sowohl ersten als auch zweiten Testkanälen FIR-gefiltert (12, 14) wird, wobei das Ausgangssignal modulierte Daten zur Verwendung in den Kanälen umfasst;
    b) Einleiten mindestens einer Störung (15) in einen der Kanäle; und
    c) direktes Messen (17) beider Ausgänge der Kanäle, ohne dabei einen Empfänger zu benötigen, um eine Wirkung der Störung auf den Senderausgang zur Unterstützung der Senderauslegung zu bestimmen.
  2. Verfahren nach Anspruch 1, wobei die Störung eine lineare Störung ist.
  3. Verfahren nach Anspruch 1, wobei die Störung eine nicht lineare Störung ist.
  4. Verfahren nach Anspruch 1, wobei mindestens eine lineare Störung und mindestens eine nicht lineare Störung eingeleitet wird.
  5. Verfahren zur Auswertung einer Netzauslegung, das ein Verfahren nach einem der Ansprüche 1 bis 4 umfasst und einen Empfänger auswertet, der zur Verwendung in einem digitalen Kommunikationssystem ausgelegt ist, wobei die Empfängerauswertung dadurch gekennzeichnet ist, dass sie umfasst:
    a) modellhaftes Nachbilden eines Empfängers (13, 16), der eingesetzt werden soll, um die Ausgangssignale (12, 14) in den Testkanälen zu empfangen;
    b) Demodulieren und Messen (18) der am Empfänger eingegangenen Signale, um eine Wirkung der Störung auf den Empfängerausgang zur Unterstützung der Empfängerauslegung zu bestimmen.
  6. Verfahren nach Anspruch 5, wobei die Störung eine lineare Störung ist.
  7. Verfahren nach Anspruch 5, wobei die Störung eine nicht lineare Störung ist.
  8. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden eines Basisbandsignals in komplexer I/Q-Darstellung gekennzeichnet ist.
  9. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Amplitudenungleichgewicht am Basisband gekennzeichnet ist.
  10. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Phasenungleichgewicht am Basisband gekennzeichnet ist.
  11. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Phasenjitter am Basisband gekennzeichnet ist.
  12. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Trägerstreuung am Basisband gekennzeichnet ist.
  13. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Trägerversatz am Basisband gekennzeichnet ist.
  14. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit DC-Versatz am Basisband gekennzeichnet ist.
  15. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden von HF-Störungen mit Phasenwelligkeit am Basisband gekennzeichnet ist.
  16. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Verstärkungswelligkeit am Basisband gekennzeichnet ist.
  17. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Verzerrung Amplitudenmodulation - Amplitudenmodulation am Basisband gekennzeichnet ist.
  18. Verfahren nach Anspruch 1, wobei Schritt (b) darüber hinaus durch modellhaftes Nachbilden einer HF-Störung mit Verzerrung Amplitudenmodulation - Phasenmodulation am Basisband gekennzeichnet ist.
  19. Verfahren nach Anspruch 1, darüber hinaus eine Auswertung des Senders umfassend, indem eine modellhafte nicht ideale endliche Impulsantwort-Filterungsnachbildung (FIR-Filterungsnachbildung) verwendet wird.
  20. Verfahren nach Anspruch 1, darüber hinaus eine modellhafte Nachbildung mindestens einer Störung umfassend, die in einem drahtlosen Umfeld anzutreffen ist.
  21. Verfahren nach Anspruch 1, darüber hinaus eine modellhafte Darstellung mindestens einer Störung umfassend, die in einem drahtgebundenen Umfeld anzutreffen ist.
  22. Verfahren nach Anspruch 15, wobei eine Phasenwelligkeit durch die Verwendung von Verzögerungsfunktionen, Multiplikatorfunktionen, Summierfunktionen und einer Normalisierungsfunktion implementiert wird.
  23. Verfahren nach Anspruch 16, wobei eine Verstärkungswelligkeitsstörung durch die Verwendung von Verzögerungsfunktionen, Multiplikatorfunktionen und Summierfunktionen implementiert wird.
  24. Verfahren nach Anspruch 5, wobei die modellhafte Nachbildung am Basisband stattfindet.
  25. Verfahren nach Anspruch 5, wobei Schritt (b) darüber hinaus dadurch gekennzeichnet ist, dass er eine modellhafte Nachbildung einer HF-Störung mit Amplitudenungleichgewicht am Basisband umfasst.
  26. Verfahren nach Anspruch 5, wobei Schritt (b) darüber hinaus dadurch gekennzeichnet ist, dass er eine modellhafte Nachbildung einer HF-Störung mit Phasenungleichgewicht am Basisband umfasst.
  27. Verfahren nach Anspruch 5, wobei Schritt (b) darüber hinaus dadurch gekennzeichnet ist, dass er eine modellhafte Nachbildung einer HF-Störung mit Phasenjitter am Basisband umfasst.
  28. Verfahren nach Anspruch 5, wobei Schritt (b) darüber hinaus dadurch gekennzeichnet ist, dass er eine modellhafte Nachbildung einer HF-Störung mit Phasenwelligkeit am Basisband umfasst.
  29. Verfahren nach Anspruch 5, wobei Schritt (b) darüber hinaus dadurch gekennzeichnet ist, dass er eine modellhafte Nachbildung einer HF-Störung mit Verstärkungswelligkeit am Basisband umfasst.
  30. Verfahren nach Anspruch 19, wobei Schritt (c) darüber hinaus umfasst:
    Empfangsfiltern (13, 16) und Messen (18) beider empfangener Signale, wobei die Messung eine Wirkung der Störung auf den Senderausgang zur Unterstützung der Senderauslegung bestimmen soll.
  31. Verfahren nach Anspruch 1, wobei Schritt (c) darüber hinaus umfasst:
    Messen von Verhältnissen Spitzenwert/Mittelwert (PARs - peak-to-average ratios) der empfangenen Signale.
  32. Verfahren nach Anspruch 30, wobei Schritt (c) darüber hinaus umfasst:
    Messen einer Fehlervektorgrößenordnung (EVM - error vector magnitude) und/oder eines Spitzen-Codebereichsfehlers (PCDE - peak code domain error) der empfangenen Signale (39).
EP02798558A 2001-12-20 2002-12-19 Verfahren zur Implementierung eines Kommunikations-Sender-/Empfänger-Behinderungsemulators Expired - Lifetime EP1456983B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09000577A EP2048802A3 (de) 2001-12-20 2002-12-19 Verfahren zur Implementierung eines Beeinträchtigungsemulators für einen Kommunikations-Sende-Empfänger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34431101P 2001-12-20 2001-12-20
PCT/US2002/040872 WO2003055083A2 (en) 2001-12-20 2002-12-19 Method for implementing a communication transceiver impairment emulator
US344311P 2010-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09000577A Division EP2048802A3 (de) 2001-12-20 2002-12-19 Verfahren zur Implementierung eines Beeinträchtigungsemulators für einen Kommunikations-Sende-Empfänger

Publications (3)

Publication Number Publication Date
EP1456983A2 EP1456983A2 (de) 2004-09-15
EP1456983A4 EP1456983A4 (de) 2005-03-30
EP1456983B1 true EP1456983B1 (de) 2009-03-11

Family

ID=23349983

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02798558A Expired - Lifetime EP1456983B1 (de) 2001-12-20 2002-12-19 Verfahren zur Implementierung eines Kommunikations-Sender-/Empfänger-Behinderungsemulators
EP09000577A Withdrawn EP2048802A3 (de) 2001-12-20 2002-12-19 Verfahren zur Implementierung eines Beeinträchtigungsemulators für einen Kommunikations-Sende-Empfänger

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09000577A Withdrawn EP2048802A3 (de) 2001-12-20 2002-12-19 Verfahren zur Implementierung eines Beeinträchtigungsemulators für einen Kommunikations-Sende-Empfänger

Country Status (9)

Country Link
US (1) US7336701B2 (de)
EP (2) EP1456983B1 (de)
AT (1) ATE425600T1 (de)
AU (1) AU2002364089A1 (de)
DE (1) DE60231544D1 (de)
DK (1) DK1456983T3 (de)
ES (1) ES2324402T3 (de)
TW (1) TWI234359B (de)
WO (1) WO2003055083A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095994A1 (de) * 2001-05-18 2002-11-28 Rohde & Schwarz Gmbh & Co. Kg Signalgenerator mit anzeigeeinrichtung
WO2006011078A1 (en) * 2004-07-19 2006-02-02 Koninklijke Philips Electronics N.V. Sir estimation techniques
US7860196B2 (en) * 2007-01-10 2010-12-28 Motorola, Inc. Method and circuit for estimating in-phase/quadrature signal amplitude imbalance
TWI398150B (zh) * 2007-03-23 2013-06-01 Via Tech Inc 鄰近通信小區之同步方法和裝置
US7890821B2 (en) * 2007-10-04 2011-02-15 Veriwave, Inc. Channel impairment emulator systems and methods
US8477888B2 (en) * 2008-06-24 2013-07-02 Qualcomm Incorporated Phase-noise resilient generation of a channel quality indicator
US8265921B2 (en) * 2010-02-25 2012-09-11 The Aerospace Corporation Systems and methods for concurrently emulating multiple channel impairments
US8824532B2 (en) * 2010-03-04 2014-09-02 Apple Inc. Method and apparatus to generate wireless test signals
US8615206B2 (en) 2010-06-30 2013-12-24 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for a radio transmission emulator
US8452187B2 (en) 2010-12-02 2013-05-28 Eastern Optx Inc. Bi-directional, compact, multi-path and free space channel replicator
US9461697B2 (en) * 2014-02-27 2016-10-04 Scintera Networks Llc In-service monitoring and cancellation of passive intermodulation interferences
US10056941B2 (en) * 2016-06-20 2018-08-21 Qualcomm Incorporated Wireless communication impairments correction
US10367706B2 (en) 2016-11-21 2019-07-30 At&T Intellectual Property I, L.P. Automatic identification of solutions for weather-related network impairments
US10880019B1 (en) 2018-12-20 2020-12-29 Acacia Communications, Inc Impairment generation
CN112671458A (zh) * 2019-10-15 2021-04-16 富士通株式会社 拉曼放大系统的传输损伤分解模型的建立方法、装置和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233628A (en) 1991-05-29 1993-08-03 Virginia Polytechnic Institute And State University Computer-based bit error simulation for digital wireless communications
US5937004A (en) 1994-10-13 1999-08-10 Fasulo, Ii; Albert Joseph Apparatus and method for verifying performance of digital processing board of an RF receiver
US6151559A (en) 1997-06-21 2000-11-21 Williams; Thomas H. System and method for characterizing undesirable noise of a signal path within a selected frequency band
GB2352129B (en) 1999-07-16 2003-08-27 Nokia Mobile Phones Ltd Test apparatus
US6977977B1 (en) * 2001-02-20 2005-12-20 Comsys Communication & Signal Processing Ltd. Compensation of I/Q gain mismatch in a communications receiver

Also Published As

Publication number Publication date
AU2002364089A1 (en) 2003-07-09
WO2003055083A3 (en) 2004-01-29
TW200302635A (en) 2003-08-01
TWI234359B (en) 2005-06-11
ES2324402T3 (es) 2009-08-06
DK1456983T3 (da) 2009-07-06
US20030202571A1 (en) 2003-10-30
EP2048802A3 (de) 2009-05-20
EP2048802A2 (de) 2009-04-15
EP1456983A2 (de) 2004-09-15
AU2002364089A8 (en) 2003-07-09
WO2003055083A2 (en) 2003-07-03
ATE425600T1 (de) 2009-03-15
DE60231544D1 (de) 2009-04-23
US7336701B2 (en) 2008-02-26
EP1456983A4 (de) 2005-03-30

Similar Documents

Publication Publication Date Title
EP1303933B1 (de) Emulation von übertragungsverzerrung
EP1456983B1 (de) Verfahren zur Implementierung eines Kommunikations-Sender-/Empfänger-Behinderungsemulators
EP0845885B1 (de) Vorrichtung zum Erzeugen eines modulierten Signals für ein digitales Kommunikationssystem mit Fadingsimulator
Huang On transmitter gain/phase imbalance compensation at receiver
Komaki et al. Characteristics of a high capacity 16 QAM digital radio system in multipath fading
Lodge et al. A comparison of data modulation techniques for land mobile satellite channels
Azizzadeh et al. Degradation of BER by group delay in digital phase modulation
Pimingsdorfer et al. Impact of SAW RF and IF filter characteristics on UMTS transceiver system performance
Morais et al. The effects of the amplitude and delay slope components of frequency selective fading on QPSK, Offset QPSK and 8 PSK systems
Poza et al. A wideband data link computer simulation model
Van Laere et al. Development, validation and utilization of an ITU-T G. 9903 PHY simulator for communication performance evaluation
EP1505751A2 (de) Emulation von Übertragungsverzerrung
Hweesa et al. Investigation the Performance Effect of Adjacent and Co-Channel Interferences on AWGN and Rayleigh Channels Using16-QAM Modulation
Dilek et al. Performance Evaluation of E-Band Transmit-Receive Front-Ends Based on Characterization of Joint Effects of IQ Imbalance and Carrier Phase/Frequency Offset
Huang et al. Design of a New High-Order QAM FM Communication Transceiver and Verification of mmWave Software Radio Platform
Kerczewski A study of the effect of group delay distortion on an SMSK satellite communications channel
Sanchez-Perez et al. DFE equalizers for GMSK with limiter-discriminator detection in frequency selective fading environment
Li et al. Behavioral modeling of quadrature modulators for characterization of nonlinear distortion
Prettie et al. On-the-move high-capacity trunk radio: laboratory simulation
KR101040418B1 (ko) 16진 직교 진폭 변조를 이용한 오버랩 기반 css 시스템에 대한 닫힌꼴 비트 오류율 성능 계산 방법 및 비트 오류율 계산 장치
Can et al. Analysis of distortion effects on differential EVM
Sankar et al. SDR based CCSDS Shaped Offset QPSK Modulator for Aerospace Applications
Patel et al. Laboratory experiments for understanding effects of RF impairments on received signal in satellite link
EP3014776B1 (de) Systeme und verfahren zur entzerrung in funkfrequenzsignalwegen
JP2001160982A (ja) 無線通信システムの基地局配置設計方法及び基地局配置設計プログラムを記載した記録媒体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040617

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

A4 Supplementary search report drawn up and despatched

Effective date: 20050214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERDIGITAL TECHNOLOGY CORPORATION

17Q First examination report despatched

Effective date: 20060906

17Q First examination report despatched

Effective date: 20060906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR IMPLEMENTING A COMMUNICATION TRANSCEIVER IMPAIRMENT EMULATOR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60231544

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2324402

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

26N No opposition filed

Effective date: 20091214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20131210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20131210

Year of fee payment: 12

Ref country code: DE

Payment date: 20131211

Year of fee payment: 12

Ref country code: SE

Payment date: 20131211

Year of fee payment: 12

Ref country code: GB

Payment date: 20131218

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20131210

Year of fee payment: 12

Ref country code: IT

Payment date: 20131219

Year of fee payment: 12

Ref country code: FR

Payment date: 20131209

Year of fee payment: 12

Ref country code: ES

Payment date: 20131112

Year of fee payment: 12

Ref country code: NL

Payment date: 20131210

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60231544

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20141231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141220

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141219

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141220