EP1456631A2 - Procede et dispositif de suppression et de compensation d'erreurs de signaux parasites dus a la gammagraphie dans des systemes de mesure radiometriques - Google Patents

Procede et dispositif de suppression et de compensation d'erreurs de signaux parasites dus a la gammagraphie dans des systemes de mesure radiometriques

Info

Publication number
EP1456631A2
EP1456631A2 EP02792970A EP02792970A EP1456631A2 EP 1456631 A2 EP1456631 A2 EP 1456631A2 EP 02792970 A EP02792970 A EP 02792970A EP 02792970 A EP02792970 A EP 02792970A EP 1456631 A2 EP1456631 A2 EP 1456631A2
Authority
EP
European Patent Office
Prior art keywords
radiometric
change
alm
measured value
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02792970A
Other languages
German (de)
English (en)
Inventor
Alecsandru Nistor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP1456631A2 publication Critical patent/EP1456631A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/288X-rays; Gamma rays or other forms of ionising radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material

Definitions

  • the invention relates to methods and devices for suppressing errors and compensating for interference signals caused by gammagraphy in radiometric measuring systems.
  • Radiometric measuring systems have proven themselves for many years as a non-contact measuring method in process measuring technology. They are used where process parameters, e.g. Level of a medium in a container, a separating layer and / or a density of the medium under difficult conditions, such as e.g. at extreme temperatures and pressures.
  • process parameters e.g. Level of a medium in a container, a separating layer and / or a density of the medium under difficult conditions, such as e.g. at extreme temperatures and pressures.
  • Known radiometric measuring systems usually include a radioactive radiator and a detector attached to or on a container or pipe, and an evaluation unit. Associated measurement methods are also known per se. In the chemical industry in particular, radiometric measurements are indispensable for difficult processes.
  • gammagraphy is often used for this purpose, in which measuring procedure radioactive emitters and detectors are also used. If such a gammagraphy measurement is carried out in the vicinity of a radiometric measuring system, however, the radioactive emitter used in the gammagraphy can lead to interference in the radiometric measuring system, so that the measurement of the process variables is falsified.
  • the affected radiometric measurement located near the grammage examination is stopped or stopped and the last measured value of the process variable is recorded, before the gamma analysis is started. ie saved, and quasi frozen.
  • the measurement of the Process variables through the radiometric measuring system is not available for process control.
  • the radiometric measuring system is switched on again and the measurement of the process variables is started again.
  • the invention is therefore based on the object of providing a method and a device which make it possible to enable or continue radiometric measurement of a process variable even during possible disturbances by simultaneous grammage measurements.
  • This object is achieved by a method for suppressing errors and compensating for interference signals caused by gammagraphy in a radiometric measuring system, with which a process variable (l) is determined by means of a radioactive radiator and a detector, which method comprises the following steps:
  • the associated process variable Z (.. + i) is determined from the calculated radiometric measured value Lc ⁇ + l) and is sent to the bus connected to the process control system together with an additional signal indicating a fault;
  • the following steps are carried out before the radiometric measuring system is started up and before the actual measuring operation is started:
  • a device for error suppression and compensation of interference signals caused by gammagraphy in a radiometric measuring system with a radioactive radiator and a detector which device comprises:
  • the measured value Lm ⁇ t) measured by the detector of the radiometric system which is a measure of a fill level of a medium in a container, a density of such a medium in a container or a separating layer of at least two phases of one or more media can be in a container or tube.
  • the advantage of the invention is that the process control is not impaired, in particular under safety, since the process variable to be measured can be monitored without interruption.
  • the invention offers the possibility of creating a device with which, in the sense of a retrofit kit, older and already installed radiometric measuring systems can be upgraded.
  • Fig. 1 a schematic representation of a part of a process monitored by a radiometric measuring system
  • Fig. 2 a schematic representation of a radiometric
  • Measuring system monitored part of a process with a gammagraphy measuring system operating in their vicinity;
  • Fig. 3 a schematic diagram of a device for evaluation
  • Fig. 4 a flowchart of a preferred first embodiment of a
  • Fig. 5 a flowchart of a preferred second embodiment of a
  • Fig. 6 a schematic representation of a conventional connection of a radiometric measuring system and others for the detection of others
  • Measuring devices serving process parameters to a process control system
  • Fig. 7 a schematic representation of a connection of a radiometric
  • a radiometric measuring system 14 is attached to a container 10, which contains a medium 12 inside, which comprises a radioactive radiator 16 and a detector 18. As shown in FIG. 1 and as is customary in such systems, the radioactive emitter 16 and the detector 18 are arranged on opposite sides of the container 10. A beam path of the radiation emitted by the radioactive radiator 16 and incident on the detector 18 is illustrated by dashed lines, but is not described in more detail here.
  • the radiometric measuring system 14 also includes evaluation electronics 20, in which a signal for the detected process variable L (t) is formed from a measured value Lm (t) measured at any time t by the detector 18.
  • the process variable E ( described here and below) is preferably the fill level of the medium 12 in the container 10. In principle, however, it can also be any other Act process variables that can be recorded with a radiometric measuring system, such as the density of a medium in a container or tube or the interface between two phases of one or more media in the container or in a tube.
  • the evaluation electronics 20, as shown in FIG. 1, are arranged separately from the detector 18 and connected to the latter by a cable. However, it can also be accommodated in a housing of the detector 18 or in a housing common to it. In most cases, the evaluation electronics 20 is connected to a bus line 22, via which the process variables obtained from measurement signals are sent to a process control system, not shown here. Instead of the bus line 22 shown in FIG. 1, a wireless bus is also conceivable as a connection to a process control system or a corresponding central control center.
  • a pressure measuring device 28 is used, which is attached in or on a second pipeline 30, which opens into the interior of the container 10 from above.
  • Changes in the pressure can indicate changes in the fill level Z , (/) of the medium in the container 10.
  • selected representation of the pressure gauge 28 in or on the second pipe 30 is not mandatory and not a limitation of the invention. It is known to the person skilled in the art that the pressure measuring device 28 can also be arranged in the container 10 in the region of its cover.
  • a valve 34 is arranged, by means of which the outflow of the medium 12 from the container 10 can be controlled.
  • changes in one or more process parameters R 1, R 2 , R 3 mean a change in the radiometric measurement value Lm ⁇ t) of the fill level L ⁇ t) .
  • a relationship existing between the changes in the process parameters R 1, R 2 , R 3 and a change in the radiometrically recorded measured value Lm (t) is preferably according to the invention under different operating and process conditions and at different, successive times t, and t ⁇ +1 recorded before the actual, regular commissioning of a special system or used as a function that is previously known and possibly adapted from a comparable system.
  • ARL ° 2 « / -r) ⁇ ° 2 (/ j + lr) Ur
  • ⁇ R 3 R 3 ((; _ r) ⁇ R3 «, + l-.) Is taken into account.
  • Fig. 1 also connecting lines from the flow meter 26 and from the pressure meter 28 to the bus line 22 are indicated.
  • the process parameters measured by the flow measuring device 26 and by the pressure measuring device 28 are also passed to the evaluation electronics 20 of the radiometric measuring system 14 for further evaluation and processing.
  • FIG. 2 shows schematically and simplified the container 10 shown in FIG. 1 and the radiometric measuring system 14 for determining the filling level of the medium 12, as well as a gamma-graphing measuring system 36 which is used in the vicinity in the area of an adjacent pipe bend 38 for its examination becomes.
  • a radioactive radiation emanating there from a radiator 40 and directed onto the pipe bend 38 is also received as interference 42 by the detector 18 of the radiometric measuring system 14 and interferes with or falsifies the measurement signals used to determine the fill level of the medium 12.
  • This additional external radiation received by the detector 18 means that a lower fill level is displayed than is actually present in the container. But this is highly undesirable and dangerous.
  • Fig. 3 shows a schematic diagram of a device 44 for evaluation, error suppression and compensation according to the invention.
  • An energy supply which is a matter of course for the device 44 for evaluation, error suppression and compensation is not shown here for reasons of simplicity and clarity.
  • a value to be output for the process variable L (t) is determined in the evaluation and error compensation device 48 according to the method for fault suppression and compensation of interference signals, which is described in more detail below, which value together with a corresponding one , a signal indicating a fault, for example an alarm signal, is output from output 50 to bus line 22 (see FIG. 1).
  • a value to be output for the process variable L l) is determined in the evaluation and error compensation device 48 for the last measured radiometric measured value Lm (t) and from the output 50 - without an alarm signal - to the Given bus line 22.
  • FIG. 4 illustrates in a flowchart a preferred first embodiment of a method according to the invention for evaluation, error suppression and compensation according to the invention.
  • an example of a time segment from an ongoing measurement operation is shown for two successive times t, and t l + x .
  • the radiometric measured value Lm (t) and several process parameters are measured.
  • the exemplary embodiment shown here is three, process parameters R 1, R 2 , R 3 , which are preferably the process parameters shown in FIG. 1 and the description associated with it.
  • ⁇ R 3 R 3 (h) - R 3 (/ I + 1) performed.
  • the values of the process parameters R 1, R 2 , R 3 measured for the time t 1 + x are loaded into the memory 58 and stand for the subsequent measurement time t, + 2 as comparison values for determining the changes ⁇ R,, ⁇ R 2 , ⁇ R 3 available for the following period t l + to t l + 2 .
  • the measured radiometric measured value Lm (tl + X) is loaded into the memory 58 and is available for the subsequent measurement instant tl + 2 as a comparison value for determining the change ALm for the period tl + x to t, +2 .
  • method illustrated 4 runs the described and in Fig. According to the invention again from, wherein the place of the time t l + x measured process parameters R 1 (l +1) , R 2 ( ,, +1) , R 3 ( , l + 1) those process parameters R, ( ,, +2) , R 2 (whi +2) recorded at the new point in time. R 3 (.. + 2) kick.
  • the time indices of the individual steps of the procedure must be adjusted accordingly.
  • the above-described determination 62 of the changes .DELTA.R, .DELTA.R 2 , .DELTA.R 3 is carried out accordingly for the new period under consideration.
  • the method according to the invention does not change by taking into account the delay time ⁇ , only the indices of the method shown in FIG. 4 are to be adapted accordingly. Proceed in the same way if there are different delay times with different process parameters.
  • 5 illustrates in a flow chart a further preferred embodiment of the method according to the invention for evaluation, error suppression and compensation according to the invention, which largely corresponds to the method shown in FIG. 4 and described above and method steps.
  • FIG. 5 also shows an example of a temporal section from an ongoing measuring operation for two successive times t 1 and t 1 + x . As with the method shown in FIG.
  • the process variable (H + 1) belonging to the radiometric measured value Lm ⁇ ll + X ) is formed, and is passed to the bus line 22 via the output 50.
  • FIG. 6 shows a conventional connection of a radiometric measurement system and other process parameters that are not recorded radiometrically serving measuring devices to a process control system shown schematically.
  • the evaluation electronics 20 of the radiometric measuring system 14, the flow measuring device 26 and the pressure measuring device 28 are usually connected directly to the bus line 22.
  • the wiring itself is shown in Fig. 6 for a conventional so-called two-wire system, for example according to the so-called HARD Communication Foundation.
  • the device 44 for error suppression and compensation according to the invention shown in FIG. 3 is provided in the form of a retrofit kit 72 (see FIG. 3 and the associated descriptive text), such a retrofit kit 72, such as 7, in the system for process measurement technology shown in FIG. 6, switch between the measuring devices 14 or 20, 26 and 28 and the bus line 22.
  • the retrofit kit 72 preferably comprises a housing and not shown here housed therein the same modules and components as the device 44 for error suppression and compensation shown in FIG. 3.
  • the inputs and outputs are connected in the manner shown in FIG. 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring Fluid Pressure (AREA)
  • Feedback Control In General (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

L'invention concerne des procédés et des dispositifs de suppression et de compensation d'erreurs de signaux parasites dus à la gammagraphie dans des systèmes de mesure radiométriques relatifs aux techniques de mesure de processus. L'invention concerne notamment un dispositif comprenant une entrée destinée à des valeurs de mesure Lm(t) d'une variable de processus L(t) mesurées par un détecteur, une entrée destinée à au moins un premier paramètre de processus P1 = P1(t-τ) mesuré de façon non radiométrique et éventuellement contrôlé, une modification de ce paramètre entraînant de façon différée une modification ΔLm = Lm(tj) Lm(tj+1) de la valeur de mesure radiométrique Lm(t), avec un temps de retard éventuel τk, τk pouvant aussi être égal à 0, ainsi qu'une sortie reliée à un système de contrôle de processus. Ce dispositif comprend par ailleurs une unité d'évaluation et de compensation des erreurs qui détermine, au cours du mode de mesure pour deux moments aléatoires consécutifs ti et ti+1, la modification ΔLm = Lm(ti) Lm(ti+1) à partir des valeurs de mesure radiométriques Lm(ti) et Lm(ti+1) détectées par le détecteur à ces deux moments, puis ladite unité compare cette modification d'après la relation mathématique ΔLm = ?(ΔP1) avec une modification ΔP1 = P1(ti-τ) P1(ti+1-τ) du premier paramètre de processus mesuré de façon non radiométrique, détectée dans l'intervalle de temps correspondant.
EP02792970A 2001-12-19 2002-12-11 Procede et dispositif de suppression et de compensation d'erreurs de signaux parasites dus a la gammagraphie dans des systemes de mesure radiometriques Withdrawn EP1456631A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10162703A DE10162703A1 (de) 2001-12-19 2001-12-19 Verfahren und Vorrichtung zur Fehlerausblendung und -Kompensation von durch Gammagraphie hervorgerufenen Störsignalen bei radiometrischen Meßsystemen
DE10162703 2001-12-19
PCT/EP2002/014083 WO2003052396A2 (fr) 2001-12-19 2002-12-11 Procede et dispositif de suppression et de compensation d'erreurs de signaux parasites dus a la gammagraphie dans des systemes de mesure radiometriques

Publications (1)

Publication Number Publication Date
EP1456631A2 true EP1456631A2 (fr) 2004-09-15

Family

ID=7710000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02792970A Withdrawn EP1456631A2 (fr) 2001-12-19 2002-12-11 Procede et dispositif de suppression et de compensation d'erreurs de signaux parasites dus a la gammagraphie dans des systemes de mesure radiometriques

Country Status (6)

Country Link
US (1) US7180054B2 (fr)
EP (1) EP1456631A2 (fr)
CN (1) CN1606690A (fr)
AU (1) AU2002358673A1 (fr)
DE (1) DE10162703A1 (fr)
WO (1) WO2003052396A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323062A1 (de) * 2003-05-20 2004-12-09 Endress + Hauser Gmbh + Co. Kg Meßgerät
DE102004007680A1 (de) * 2004-02-16 2005-09-01 Endress + Hauser Gmbh + Co. Kg Radiometrisches Meßgerät
CN100439879C (zh) * 2006-11-29 2008-12-03 上海辉博自动化仪表有限公司 一种用辅助材料代替放射源的非接触式物位测量方法
EP2228632B1 (fr) * 2009-03-11 2018-10-03 VEGA Grieshaber KG Appareil de mesure radiométrique doté d'une alimentation à deux conducteurs
DE102010043944B3 (de) 2010-11-15 2012-05-03 Berthold Technologies Gmbh & Co. Kg Verfahren zum Minimieren der Orientierungsabhängigkeit einer automatischen Driftkompensation eines Szintillationszählers
DE102010063240A1 (de) * 2010-12-16 2012-06-21 Endress + Hauser Gmbh + Co. Kg Radiometrisches Messgerät
CN102735313B (zh) * 2012-06-19 2014-07-30 郭云昌 一种确定连续式无源核子料位计中料位曲线的方法
CN102706409A (zh) * 2012-06-19 2012-10-03 郭云昌 一种有关提高无源核子料位计信噪比的方法
CN102706416A (zh) * 2012-06-19 2012-10-03 郭云昌 一种有关确定开关式无源核子料位计开关点的方法
GB201417969D0 (en) * 2014-10-10 2014-11-26 Johnson Matthey Plc Apparatus and method for determining a level of a fluid within a vessel
CN114553388A (zh) 2018-03-13 2022-05-27 华为技术有限公司 一种补偿时延的方法和设备
EP3922986A1 (fr) * 2020-06-10 2021-12-15 Berthold Technologies GmbH & Co. KG Procédé de mesure de taux de comptage ou de grandeurs mesurées en fonction des taux de comptage et dispositif de mesure de taux de comptage ou de grandeurs mesurées en fonction des taux de comptage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4114030C1 (fr) * 1991-04-29 1992-09-17 Laboratorium Prof. Dr. Rudolf Berthold Gmbh & Co, 7547 Wildbad, De
DE4233278C2 (de) * 1992-10-02 1995-03-09 Endress Hauser Gmbh Co Verfahren zur Unterdrückung von Fremdstrahlungseinflüssen bei radioaktiven Meßverfahren
DE4405238C2 (de) * 1994-02-18 1998-07-09 Endress Hauser Gmbh Co Anordnung zur Messung des Füllstands in einem Behälter
US6515285B1 (en) * 1995-10-24 2003-02-04 Lockheed-Martin Ir Imaging Systems, Inc. Method and apparatus for compensating a radiation sensor for ambient temperature variations
DE19722549A1 (de) 1997-05-30 1998-12-03 Bosch Gmbh Robert Elektrische Meßeinrichtung bzw. elektrisches Meßverfahren zur Erzeugung eines elektrischen Signals
DE19923688A1 (de) * 1999-05-22 2000-11-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Fehlererkennung bei Meßgrößen in einem Fahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03052396A2 *

Also Published As

Publication number Publication date
WO2003052396A2 (fr) 2003-06-26
CN1606690A (zh) 2005-04-13
AU2002358673A1 (en) 2003-06-30
DE10162703A1 (de) 2003-07-03
US20050116157A1 (en) 2005-06-02
AU2002358673A8 (en) 2003-06-30
US7180054B2 (en) 2007-02-20
WO2003052396A3 (fr) 2003-12-24

Similar Documents

Publication Publication Date Title
EP2937692B1 (fr) Capteur de qualite d'huile et appareil de friture dote d'un tel capteur de qualite d'huile
DE60029196T2 (de) Strömungsmessung mit diagnostischen mitteln
EP1456631A2 (fr) Procede et dispositif de suppression et de compensation d'erreurs de signaux parasites dus a la gammagraphie dans des systemes de mesure radiometriques
EP3631593B1 (fr) Dispositif de surveillance et procédé de surveillance d'un système
EP3273209B1 (fr) Procédé de fonctionnement d'un débitmètre et débitmètre
DE102009046758A1 (de) Sich selbst überwachende Durchflussmessanordnung und Verfahren zu deren Betrieb
EP1281079A2 (fr) Procede et dispositif de controle de gaz
WO2017103093A1 (fr) Procédé de surveillance d'au moins deux capteurs redondants
DE102020129074A1 (de) Durchflussmessgerät, Verfahren zum Betreiben eines Durchflussmessgeräts, Anlage und Verfahren zum Betreiben einer Anlage
EP3047730A1 (fr) Pulverisateur agricole dote d'un dispositif de determination de niveau de remplissage
EP2910976B1 (fr) Dispositif de vérification et procédé de détection d'une contamination de surface sur des objets allongés
DE3713542A1 (de) Durchflussgeschwindigkeits-messgeraet
EP0585280B1 (fr) Procede de mesure de la pression d'un gaz dans un accumulateur de gaz sous pression et dispositif pour la mise en oeuvre de ce procede
EP2629082A2 (fr) Dispositif de détection d'une pression partielle et procédé de fonctionnement de celui-ci
DE102010008511B4 (de) Flüssigkeitsmengenmessgerät und Verfahren zum Bestimmen einer volumetrischen Messgröße
EP3612279B1 (fr) Installation d'extinction d'incendie, système d'extinction d'incendie comportant cette dernière, ainsi que procédé pour la détermination de la propagation d'un feu
DE10327329A1 (de) Verfahren zur Überwachung einer Öl- und Luftschmiereinrichtung mit Hilfe eines Schlierensensors
EP2995927A1 (fr) Procede de determination d'une masse combustible et d'une densite de combustible
DE102021202464B3 (de) Verfahren zur kompensation des einflusses der reynolds-zahl auf die messung eines coriolis-massendurchflussmessgeräts und derartiges gerät
EP3084359B1 (fr) Procédé et ensemble de mesure de pression différentielle avec compensation à zéro
DE4434264C2 (de) Verfahren zur automatischen Prüfung und Einhaltung der Dosiergenauigkeit von Mehrkomponenten-Dosieranlagen
DE102005040768B4 (de) Verfahren und Vorrichtung zur Einspritzraten- und/oder Einspritzmassenbestimmung
DE19947992C2 (de) Verfahren und Messanlage zur Überprüfung eines Durchflussmessers im eingebauten Zustand
DE102009025701B4 (de) Kanalinspektionseinrichtung
DE4407061C2 (de) Anlage und Verfahren zur Fettgehaltssteuerung bei Milchflüssigprodukten auf der Basis der Messung des effektiven Fettgehaltes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040616

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090613