EP1452581A2 - Procédé d'amélioration de la compatibilité avec des élastomeres - Google Patents
Procédé d'amélioration de la compatibilité avec des élastomeres Download PDFInfo
- Publication number
- EP1452581A2 EP1452581A2 EP04250661A EP04250661A EP1452581A2 EP 1452581 A2 EP1452581 A2 EP 1452581A2 EP 04250661 A EP04250661 A EP 04250661A EP 04250661 A EP04250661 A EP 04250661A EP 1452581 A2 EP1452581 A2 EP 1452581A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricating oil
- oil composition
- dispersant
- succinimide
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 42
- 239000000806 elastomer Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 75
- 239000002270 dispersing agent Substances 0.000 claims abstract description 72
- 239000010687 lubricating oil Substances 0.000 claims abstract description 44
- 239000002585 base Substances 0.000 claims abstract description 21
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000002485 combustion reaction Methods 0.000 claims abstract description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 14
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 11
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 11
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 9
- 239000002199 base oil Substances 0.000 claims abstract description 8
- 230000001050 lubricating effect Effects 0.000 claims abstract description 7
- 239000013067 intermediate product Substances 0.000 claims abstract description 6
- 239000003513 alkali Substances 0.000 claims abstract description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 5
- 229960001860 salicylate Drugs 0.000 claims abstract description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 claims abstract description 4
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 3
- 239000007858 starting material Substances 0.000 claims abstract description 3
- -1 alkenyl succinimide Chemical compound 0.000 claims description 62
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 40
- 229960002317 succinimide Drugs 0.000 claims description 31
- 229940014800 succinic anhydride Drugs 0.000 claims description 10
- 239000000314 lubricant Substances 0.000 claims description 9
- 229920001281 polyalkylene Polymers 0.000 claims description 6
- 238000012360 testing method Methods 0.000 description 27
- 229920000768 polyamine Polymers 0.000 description 22
- 125000003118 aryl group Chemical group 0.000 description 19
- 239000003921 oil Substances 0.000 description 16
- 239000000654 additive Substances 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 13
- 239000003599 detergent Substances 0.000 description 12
- 238000009472 formulation Methods 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000006386 neutralization reaction Methods 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 9
- 229920001973 fluoroelastomer Polymers 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 150000007942 carboxylates Chemical class 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 7
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 230000021523 carboxylation Effects 0.000 description 6
- 238000006473 carboxylation reaction Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 235000011116 calcium hydroxide Nutrition 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Natural products OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000001384 succinic acid Substances 0.000 description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 2
- SZAQZZKNQILGPU-UHFFFAOYSA-N 2-[1-(2-hydroxy-3,5-dimethylphenyl)-2-methylpropyl]-4,6-dimethylphenol Chemical compound C=1C(C)=CC(C)=C(O)C=1C(C(C)C)C1=CC(C)=CC(C)=C1O SZAQZZKNQILGPU-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 239000012990 dithiocarbamate Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- WJECKFZULSWXPN-UHFFFAOYSA-N 1,2-didodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1CCCCCCCCCCCC WJECKFZULSWXPN-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- PXPMATOXBKCQOW-UHFFFAOYSA-N 1-(2-heptylimidazolidin-1-yl)propan-2-amine Chemical compound CCCCCCCC1NCCN1CC(C)N PXPMATOXBKCQOW-UHFFFAOYSA-N 0.000 description 1
- NWWCWUDRWYAUEC-UHFFFAOYSA-N 1-(2-methylpiperazin-1-yl)butan-2-amine Chemical compound CCC(N)CN1CCNCC1C NWWCWUDRWYAUEC-UHFFFAOYSA-N 0.000 description 1
- NJEGACMQQWBZTP-UHFFFAOYSA-N 1-piperazin-1-ylpropan-2-amine Chemical compound CC(N)CN1CCNCC1 NJEGACMQQWBZTP-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- QHPKIUDQDCWRKO-UHFFFAOYSA-N 2,6-ditert-butyl-4-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 QHPKIUDQDCWRKO-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- XQESJWNDTICJHW-UHFFFAOYSA-N 2-[(2-hydroxy-5-methyl-3-nonylphenyl)methyl]-4-methyl-6-nonylphenol Chemical compound CCCCCCCCCC1=CC(C)=CC(CC=2C(=C(CCCCCCCCC)C=C(C)C=2)O)=C1O XQESJWNDTICJHW-UHFFFAOYSA-N 0.000 description 1
- UUWNVZDCQGUMGB-UHFFFAOYSA-N 2-[3-(2-aminoethyl)imidazolidin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)C1 UUWNVZDCQGUMGB-UHFFFAOYSA-N 0.000 description 1
- PAOXFRSJRCGJLV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)CC1 PAOXFRSJRCGJLV-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- AKNMPWVTPUHKCG-UHFFFAOYSA-N 2-cyclohexyl-6-[(3-cyclohexyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(C2CCCCC2)=CC(C)=CC=1CC(C=1O)=CC(C)=CC=1C1CCCCC1 AKNMPWVTPUHKCG-UHFFFAOYSA-N 0.000 description 1
- MUHFRORXWCGZGE-KTKRTIGZSA-N 2-hydroxyethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCO MUHFRORXWCGZGE-KTKRTIGZSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- BGWNOSDEHSHFFI-UHFFFAOYSA-N 2-tert-butyl-4-[(3-tert-butyl-4-hydroxy-5-methylphenyl)methylsulfanylmethyl]-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CSCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 BGWNOSDEHSHFFI-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- MQWCQFCZUNBTCM-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylphenyl)sulfanyl-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(SC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O MQWCQFCZUNBTCM-UHFFFAOYSA-N 0.000 description 1
- BKZXZGWHTRCFPX-UHFFFAOYSA-N 2-tert-butyl-6-methylphenol Chemical compound CC1=CC=CC(C(C)(C)C)=C1O BKZXZGWHTRCFPX-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- STFIZEBRSSCPKA-UHFFFAOYSA-N 5-methyl-4,5-dihydro-1h-imidazole Chemical compound CC1CNC=N1 STFIZEBRSSCPKA-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- HBEMHMNHYDTVRE-UHFFFAOYSA-N ClC(CCCCCCCCCCCCCCCCC(=O)OC)(Cl)Cl Chemical compound ClC(CCCCCCCCCCCCCCCCC(=O)OC)(Cl)Cl HBEMHMNHYDTVRE-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- AOZDHFFNBZAHJF-UHFFFAOYSA-N [3-hexanoyloxy-2,2-bis(hexanoyloxymethyl)propyl] hexanoate Chemical compound CCCCCC(=O)OCC(COC(=O)CCCCC)(COC(=O)CCCCC)COC(=O)CCCCC AOZDHFFNBZAHJF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- SCJNCDSAIRBRIA-DOFZRALJSA-N arachidonyl-2'-chloroethylamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCCl SCJNCDSAIRBRIA-DOFZRALJSA-N 0.000 description 1
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- LMODBLQHQHXPEI-UHFFFAOYSA-N dibutylcarbamothioylsulfanylmethyl n,n-dibutylcarbamodithioate Chemical compound CCCCN(CCCC)C(=S)SCSC(=S)N(CCCC)CCCC LMODBLQHQHXPEI-UHFFFAOYSA-N 0.000 description 1
- GHKVUVOPHDYRJC-UHFFFAOYSA-N didodecyl hexanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCC GHKVUVOPHDYRJC-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical class NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- MBBWTVUFIXOUBE-UHFFFAOYSA-L zinc;dicarbamodithioate Chemical compound [Zn+2].NC([S-])=S.NC([S-])=S MBBWTVUFIXOUBE-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/06—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M177/00—Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/027—Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/14—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/144—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/36—Seal compatibility, e.g. with rubber
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
Definitions
- the present invention relates to a method of improving elastomer seal compatibility and dispersancy in an internal combustion engine. More particularly, the present invention relates to a method comprising contacting elastomer seals in an internal combustion engine with a lubricating oil composition having improved elastomer seal compatibility. Moreover, the present invention relates to the use of a lubricating oil composition able to render nitrogen-containing dispersants contained in lubricating oils compatible with elastomer seals used in internal combustion engines.
- crankcase lubricating oil compositions It is known to employ nitrogen-containing dispersants and/or detergents in the formulation of crankcase lubricating oil compositions. Many of the known dispersant/detergent compounds are based on the reaction of an alkenylsuccinic acid or anhydride with an amine or polyamine to produce an alkenylsuccinimide or an alkenylsuccinamic acid as determined by selected conditions of reaction.
- a continuing problem in the art of lubrication is to provide lubricating oil compositions which satisfy the demands imposed upon them by the original equipment manufacturers.
- One such requirement is that lubricants not contribute to premature deterioration of seals, clutch face plates or other parts made from elastomers such as fluoro, acrylic, silicone, nitrile and the like.
- Elastomers are increasingly being used in fabricating the flexible seals which are used in internal combustion engines. These seals are used, for example, to prevent leakage of lubricants at the point where moving parts, such as a crankshaft, leave the engine. Any substantial leakage of lubricant from the engine is obviously undesirable.
- elastomer seals are subject to discoloration and mechanical deterioration when used in engines which are lubricated with lubricating oils containing polyamine dispersants, i.e., nitrogen-containing dispersants.
- the polyamine dispersants interact with the elastomer seals, causing the seals to swell and to lose mechanical and dimensional integrity.
- the rate of attack of the elastomer seals by a polyamine dispersant appears to be directly proportional to the concentration of polyamine dispersant and to the operating temperature of the engine. As the engine operating temperature rises, the rate of decomposition of the seal rises proportionately.
- the mechanical strength and dimensional integrity of the seal increasingly deteriorates until the seal fails to prevent the leakage of lubricant from the engine.
- succinimides useful as dispersants and/or detergents are not always compatible with elastomer seals when present in lubricating oil compositions at concentration levels necessary to be effective in controlling engine deposits.
- nitrogenated components normally used in lubricants bis-succinimides with dispersant action have proved particularly critical towards elastomers, either when used alone or in combination with, for example, viscosity index improvement polymers of dispersant action containing nitrogenated monomers.
- both these classes of additive contain strongly basic amino groups (primary and/or secondary and/or tertiary).
- U.S. Patent No. 4,873,009 is also concerned, in part, with the use of succinimides as lube oil additives.
- This patent teaches in Col. 2, lines 28 et seq. that lube additives prepared from "long chain aliphatic polyamines", i.e., succinimides, "are excellent lube oil additives". It teaches such succinimides are "inferior to additives where the alkylene polyamine is hydroxyalkylated" (Col. 2, lines 31-32). Such hydroxyalkylated polyamine- based succinimides, however, “have the drawback that they tend to attack engine seals particularly those of the fluorocarbon polymer type" (Col. 2, lines 35-37). This patent solves the fluoroelastomer seal compatibility problem by directly borating the hydroxylated polyamine-based succinimide.
- U.S. Patent No. 4,940,552 relates to polyamine dispersants passivated toward fluorohydrocarbon compositions.
- the dispersants described comprise the reaction product of a Mannich polyamine dispersant with an amount of maleic anhydride sufficient to reduce the reactivity with fluorohydrocarbons of the dispersant.
- U.S. Patent No. 5,356,552 teaches succinimide additives post-treated with a cyclic carbonate having fluoroelastomer seal compatibility and for concentration levels at which fluoroelastomer seal compatibility is achieved, possess improved dispersancy and/or detergency.
- U.S. Patent No. 6,124,247 teaches that dispersants of mono-succinimides or bis-succinimides are even more effective if their relative basic nitrogen content is high, i.e. insofar as the number of nitrogen atoms of the polyamine is larger than the number of succinic anhydride groups substituted by a polyisobutenyl group.
- the higher the basic nitrogen content of these dispersants the more they favor the attack of the fluoroelastomer seal used in modern engines, because the basic nitrogen tends to reach with the acidic hydrogen atoms of this type of seal, and this attack results in the formation of cracks in the elastomer surface and the loss of other physical properties sought in this type of material.
- the patent provides that by using lubricating oil compositions containing a dispersant of mono-succinimide or bis-succinimide type, post-treated or not, in combination with a borated glycerol ester, one obtains a composition compatible with fluorocarbon elastomers.
- U.S. Patent No. 6,162,770 teaches a process for preparing an unsulfurized, alkali metal-free, detergent-dispersant composition having from 40% to 60% alkylphenol, from 10% to 40% alkaline earth alkylphenate, and from 20% to 40% alkaline earth single aromatic-ring alkylsalicylate.
- This composition may have an alkaline earth double aromatic-ring alkylsalicylate as long as the mole ratio of single-ring alkylsalicylate to double aromatic-ring alkylsalicylate is at least 8:1.
- This composition may be produced by the three-step process involving neutralization of alkylphenols, carboxylation of the resulting alkylphenate, and filtration of the product of the carboxylation step.
- the detergent-dispersant produced by the method can be used in an engine lubricating composition to improve antioxidant properties, high temperature deposit control, and black sludge control.
- the patent does not mention that the detergent-dispersant produced provides improved elastomer
- the present invention provides a method of improving elastomer seal compatibility and dispersancy in an internal combustion engine, said method comprising contacting the elastomer seal in the internal combustion engine with a lubricating oil composition comprising:
- the nitrogen-containing dispersant employed in the lubricating oil composition of the present invention is an ashless dispersant such as an alkenyl succinimide, an alkenyl succinic anhydride, an alkenyl succinate ester, and the like, or mixtures of such dispersants.
- Alkenyl succinimides are preferred. Bis-succinimides are more preferred.
- the present invention is directed to the use of a certain carboxylated detergent-dispersant to improve the elastomer seal compatibility in a lubricating oil composition containing a basic nitrogen-containing dispersant in an internal combustion engine.
- the present invention is based on the discovery that a certain carboxylated detergent-dispersant improves elastomer seal compatibility of lubricating oil compositions containing nitrogen-containing dispersants.
- the present invention relates to a method of improving elastomer seal compatibility and dispersancy in an internal combustion engine. More particularly, the present invention relates to a method comprising contacting elastomer seals in an internal combustion engine with a lubricating oil composition having improved elastomer seal compatibility.
- alkylphenol means a phenol group having one or more alkyl substituents; at least one of which has a sufficient number of carbon atoms to impart oil solubility to the phenol.
- alkaline earth metal means calcium, barium, magnesium, strontium, potassium, sodium, and lithium.
- alkaline earth alkylphenate means an alkaline earth metal salt of an alkylphenol.
- alkaline earth alkylsalicylate means an alkaline earth metal salt of an alkyl salicylic acid.
- alkaline earth single aromatic-ring alkylsalicylate means an alkaline earth alkylsalicylate having only one alkyl salicylic anion per each alkaline earth metal base cation.
- one mole of alkaline earth single aromatic-ring alkylsalicylate will contain one mole of aromatic ring and one mole of alkaline earth base cation.
- a calcium single aromatic-ring alkylsalicylate would have one aromatic ring for each calcium ion.
- alkaline earth double aromatic-ring alkylsalicylate means an alkaline earth alkylsalicylate having two alkyl salicylic anions per each alkaline earth metal base cation.
- alkaline earth double aromatic-ring alkylsalicylate will contain two moles of aromatic rings and one mole of alkaline earth base cation.
- a calcium double aromatic-ring alkylsalicylate would have two aromatic rings for each calcium ion.
- succinimide is understood in the art to include many of the amide, imide, etc. species which are also formed by the reaction of a succinic anhydride with an amine and is so used herein.
- the predominant product, however, is succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl- or alkylsubstituted succinic acid or anhydride with a polyamine.
- Total Base Number refers to the amount of base equivalent to milligrams of KOH in l gram of sample. Thus, higher TBN numbers reflect more alkaline products and therefore a greater alkalinity reserve.
- the TBN of a sample can be determined by ASTM D 2896 or any other equivalent procedure.
- the base oil of lubricating viscosity of the present invention may be mineral oils or synthetic oils.
- a base oil having a viscosity of at least about 2.5 cSt at about 40°C and a pour point below about 20°C, preferably at or below 0°C is desirable.
- the base oils may be derived from synthetic or natural sources.
- Mineral oils for use as the base oil in this invention include, for example, paraffinic, naphthenic and other oils that are ordinarily used in lubricating oil compositions.
- Synthetic oils include, for example, both hydrocarbon synthetic oils and synthetic esters and mixtures thereof having the desired viscosity.
- Hydrocarbon synthetic oils may include, for example, oils prepared from the polymerization of alpha olefins, i.e., polyalphaolefin or PAO, or from hydrocarbon synthesis procedures using carbon monoxide and hydrogen gases such as in a Fisher-Tropsch process.
- Useful synthetic hydrocarbon oils include liquid polymers of alpha olefins having the proper viscosity. Especially useful are the hydrogenated liquid oligomers of about C 6 to about C 12 alpha olefins such as 1-decene trimer.
- alkyl benzenes of proper viscosity such as didodecyl benzene, can be used.
- Useful synthetic esters include the esters of monocarboxylic acids and polycarboxylic acids, as well as mono-hydroxy alkanols and polyols. Typical examples are didodecyl adipate, pentaerythritol tetracaproate, di-2-ethylhexyl adipate, dilaurylsebacate, and the like. Complex esters prepared from mixtures of mono and dicarboxylic acids and mono and dihydroxy alkanols can also be used. Blends of mineral oils with synthetic oils are also useful.
- the lubricating oil composition of the present invention comprises a carboxylated detergent-dispersant additive (also referred to herein as "carboxylate” or “carboxylated detergent”) made by the following process.
- alkylphenols are neutralized using an alkaline earth base in the presence of at least one C 1 to about C 4 carboxylic acid. This reaction is carried out in the absence of alkali base, and in the absence of dialcohol or monoalcohol.
- the alkylphenols contain up to 98% of linear alkylphenol (preferably up to 35% linear alkylphenol) in mixture with up to 15% of branched alkylphenol.
- the linear alkyl radical contains about 12 to about 40 carbon atoms, more preferably about 18 to about 30 carbon atoms.
- the branched alkyl radical contains at least nine carbon atoms, preferably about 9 to about 24 carbon atoms, more preferably about 10 to about 15 carbon atoms.
- alkylphenol containing up to 35% of long linear alkylphenol is particularly attractive because a long linear alkyl chain promotes the compatibility and solubility of the additives in lubricating oils.
- long linear alkyl chain promotes the compatibility and solubility of the additives in lubricating oils.
- relatively heavy linear alkyl radicals in the alkylphenols makes the latter less reactive than branched alkylphenols, hence the need to use harsher reaction conditions to bring about their neutralization by an alkaline earth base.
- Branched alkylphenols can be obtained by reaction of phenol with a branched olefin, generally originating from propylene. They consist of a mixture of monosubstituted isomers, the great majority of the substituents being in the para position, very few being in the ortho position, and hardly any in the meta position. That makes them relatively reactive towards an alkaline earth base, since the phenol function is practically devoid of steric hindrance.
- linear alkylphenols can be obtained by reaction of phenol with a linear olefin, generally originating from ethylene. They consist of a mixture of monosubstituted isomers in which the proportion of linear alkyl substituents in the ortho, para, and meta positions is much more uniformly distributed. This makes them much less reactive towards an alkaline earth base since the phenol function is much less accessible due to considerable steric hindrance, due to the presence of closer and generally heavier alkyl substituents.
- the alkaline earth bases that can be used for carrying out this step include the oxides or hydroxides of calcium, magnesium, barium, or strontium, and particularly of calcium oxide, calcium hydroxide, magnesium oxide, and mixtures thereof.
- slaked lime calcium hydroxide is preferred.
- the C 1 to about C 4 carboxylic acids used in this step include formic, acetic, propionic and butyric acid, and may be used alone or in mixture. Preferably, a mixture of acids is used, most preferably a formic acid/acetic acid mixture.
- the molar ratio of formic acid/acetic acid should be from about 0.2:1 to about 100:1, preferably between about 0.5:1 and about 4:1, and most preferably 1:1.
- the carboxylic acids act as transfer agents, assisting the transfer of the alkaline earth bases from a mineral reagent to an organic reagent.
- the neutralization operation is carried out at a temperature of at least 200 °C., preferably at least 215 °C., and, more preferably, at least 240 °C.
- the pressure is reduced gradually below atmospheric in order to distill off the water of reaction. Accordingly the neutralization should be conducted in the absence of any solvent that may form an azeotrope with water. Preferably, the pressure is reduced to no more than 7,000 Pa (70 mbars).
- the quantities of reagents used should correspond to the following molar ratios:
- the alkylphenate obtained is kept for a period not exceeding fifteen hours at a temperature of at least 215 °C. and at an absolute pressure of between 5,000 and 105 Pa (between 0.05 and 1.0 bar). More preferably, at the end of this neutralization step the alkylphenate obtained is kept for between two and six hours at an absolute pressure of between 10,000 and 20,000 Pa (between 0.1 and 0.2 bar).
- the neutralization reaction is carried out without the need to add a solvent that forms an azeotrope with the water formed during this reaction.
- the carboxylation step is conducted by simply bubbling carbon dioxide into the reaction medium originating from the preceding neutralization step and is continued until at least 20 mole % of the alkylphenate to alkylsalicylate (measured as salicylic acid by potentiometric determination). It must take place under pressure in order to avoid any decarboxylation of the alkylsalicylate that forms.
- At least 22 mole % of the starting alkylphenols is converted to alkylsalicylate using carbon dioxide at a temperature of between 180 ° and 240 °C., under a pressure within the range of from above atmospheric pressure to 15 x 105 Pa (15 bars) for a period of one to eight hours.
- At least 25 mole % of the starting alkylphenols is converted to alkylsalicylate using carbon dioxide at a temperature equal to or greater than 200 °C. under a pressure of 4 x 105 Pa (4 bars).
- the product of the carboxylation step is then filtered.
- the purpose of the filtration step is to remove sediments, and particularly crystalline calcium carbonate, which might have been formed during the preceding steps, and which may cause plugging of filters installed in lubricating oil circuits.
- the carboxylated detergent-dispersant formed by this process can be characterized by its unique composition, with much more alkylphenol and alkaline earth metal single aromatic-ring hydrocarbyl salicylate than produced by other routes.
- the reaction product will typically have the following composition:
- this detergent-dispersant composition can be characterized by having only minor amounts of an alkaline earth double aromatic-ring alkylsalicylates.
- the mole ratio of single aromatic-ring alkylsalicylate to double aromatic-ring alkylsalicylate is at least 8:1.
- the TBN of the detergent-dispersant should be from about 100 to about 250, more preferably from about 150 to about 200.
- the carboxylated detergent-dispersant will typically range from about 0.5 to about 15 wt %, preferably from about 1 to about 12 wt % and more preferably about 1 to about 8 wt %, based on the weight of the total lubricating oil composition.
- the nitrogen-containing dispersant employed in the lubricating oil composition of the present invention is an ashless dispersant such as an alkenyl or alkyl succinimide, an alkenyl or alkyl succinic anhydride, an alkenyl or alkyl succinate ester, and the like, or mixtures of such dispersants.
- Ashless dispersants are broadly divided into several groups.
- One such group is directed to copolymers which contain a carboxylate ester with one or more additional polar function, including amine, amide, imine, imide, hydroxyl carboxyl, and the like. These products can be prepared by copolymerization of long chain alkyl acrylates or methacrylates with monomers of the above function.
- Such groups include alkyl methacrylate-vinyl pyrrolidinone copolymers, alkyl methacrylate-dialkylaminoethy methacrylate copolymers and the like.
- amides and polyamides or esters and polyesters such as tetraethylene pentamine, polyvinyl polysterarates and other polystearamides may be employed.
- Preferred dispersants are N-substituted long chain alkenyl succinimides.
- Alkenyl succinimides are usually derived from the reaction of alkenyl succinic acid or anhydride and alkylene polyamines. These compounds are generally considered to have the formula: wherein R 1 is a substantially hydrocarbon radical having a molecular weight from about 400 to about 3000, that is, R 1 is a hydrocarbyl radical, preferably an alkenyl radical, containing about 30 to about 200 carbon atoms; Alk is an alkylene radical of about 2 to about 10, preferably about 2 to about 6, carbon atoms, R 2 , R 3 , and R 4 are selected from a C 1 to about C 4 alkyl or alkoxy or hydrogen, preferably hydrogen, and x is an integer from 0 to about 10, preferably 0 to about 3.
- the actual reaction product of alkylene succinic acid or anhydride and alkylene polyamine will comprise the mixture of compounds including succinamic acids and succinimides. However, it is customary to designate this reaction product as a succinimide of the described formula, since this will be a principal component of the mixture. See, for example, U.S. Patent Nos, 3,202,678; 3,024,237; and 3,172,892, the descriptions of which are incorporated herein by way of reference. Reduction of the alkenyl substituted succinic anhydride produces the corresponding alkyl derivative.
- the mono alkenyl succinimide and bis alkenyl succinimide produced may depend on the charge mole ratio of polyamine to succinic groups and the particular polyamine used.
- Charge mole ratios of polyamine to succinic groups of about 1:1 may produce predominately mono alkenyl succinimide.
- Charge mole ratios of polyamine to succinic group of about 1:2 may produce predominately bis alkenyl succinimide.
- alkenyl or alkyl succinimide is a mono- or bis-succinimide prepared from a succinic anhydride substituted by polyisobutene of a polyalkylene polyamine as discussed in further detail below.
- Bis-succinimides are preferred.
- N-substituted alkenyl succinimides can be prepared by reacting maleic anhydride with an olefinic hydrocarbon followed by reacting the resulting alkenyl succinic anhydride with the alkylene polyamine.
- the R 1 radical of the above formula that is, the alkenyl radical, is preferably derived from a polymer prepared from an olefin monomer containing from about 2 to about 5 carbon atoms.
- the alkenyl radical is obtained by polymerizing an olefin containing from about 2 to about 5 carbon atoms to form a hydrocarbon having a molecular weight ranging from about 400 to about 3,000.
- Such olefin monomers are exemplified by ethylene, propylene, 1-butene, 2-butene, isobutene, and mixtures thereof.
- the preferred polyalkylene amines used to prepare the succinimides are of the formula: wherein z is an integer of from 0 to about 10 and Alk, R 2 , R 3 , and R 4 are as defined above.
- the alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines and also the cyclic and the higher homologs of such amines as piperazine and amino alkyl-substituted piperazines.
- ethylene diamine triethylene tetraamine, propylene diamine, decamethyl diamine, octamethylene diamine, diheptamethylene triamine, tripropylene tetraamine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, ditrimethylene triamine, 2-heptyl-3-(2-aminopropyl)-imidazoline, 4-methyl imidazoline, N,N-dimethyl-1 ,3-propane diamine, 1,3-bis(2-aminoethyl)imidazoline, 1-(2-aminopropyl)-piperazine, 1,4-bis(2-aminoethyl)piperazine and 2-methyl-1-(2-aminobutyl)piperazine. Higher homologs such as are obtained by condensing two or more of the above-illustrated alkylene amines likewise are useful.
- ethylene amines are especially useful. They are described in some detail under the heading "Ethylene Amines” in Encyclopedia of Chemical Technology, Kirk-Othmer, Vol. 5, pp. 898-905 (Interscience Publishers, New York, 1950).
- ethylene amine is used in a generic sense to denote a class of polyamines conforming for the most part to the structure: H 2 N(CH 2 CH 2 NH) a H wherein a is an integer from 1 to about 10.
- ethylene diamine diethylene triamine
- triethylene tetraamine tetraethylene pentamine
- pentaethylene hexamine pentaethylene hexamine
- alkenyl succinimides are post-treated succinimides such as post-treatment processes involving ethylene carbonate and boric acid disclosed by Wollenberg, et al., U.S. Patent No. 4,612,132; Wollenberg, et al., U.S. Patent No. 4,746,446; and the like as well as other post-treatment processes each of which are incorporated herein by reference in its entirety.
- the nitrogen-containing dispersant is a polyalkylene succinimide, preferably a polyisobutylene succinimide. More preferably, the nitrogen-containing dispersant is a polyisobutylene bis-succinimide.
- the nitrogen-containing dispersant employed in the present invention will be present in sufficient quantity to impart the desired dispersant properties to the lubricating oil composition in order to prevent the deposit of contaminants formed in oil during operation of the internal combustion engine.
- the nitrogen-containing dispersant will typically range from about 2 to about 13 wt %, preferably from about 4 to about 8 wt % and more preferably about 6 to about 7.5 wt %, based on the weight of the total lubricating oil composition.
- additive components are examples of some of the components that can be favorably employed in the present invention. These examples of additives are provided to illustrate the present invention, but they are not intended to limit it:
- a carboxylated detergent-dispersant was prepared as follows:
- a charge of 875 g of branched dodecylphenol (DDP) having a molecular mass of 270, (i.e. 3.24 moles) and 875 g of linear alkylphenol having a molecular mass of about 390 (i.e. 2.24 moles) was placed in a four-necked 4 liter glass reactor above which was a heat-insulated Vigreux fractionating column.
- DDP branched dodecylphenol
- linear alkylphenol having a molecular mass of about 390 i.e. 2.24 moles
- the agitator was started up and the reaction mixture was heated to 65°C, at which temperature 158 grams of slaked lime Ca(OH) 2 (i.e. 2.135 moles) and 19 g of a mixture (50/50 by weight) of formic acid and acetic acid were added.
- the reaction medium underwent further heating to 120°C at which temperature the reactor was placed under a nitrogen atmosphere, then heated up to 165°C and then the nitrogen introduction was stopped. Distillation of water commenced at this temperature.
- the temperature was increased to 240°C and the pressure was reduced gradually below atmospheric until an absolute pressure of 5,000 Pa (50 mbars) was obtained.
- the reaction mixture was kept for five hours under the preceding conditions.
- the reaction mixture was allowed to cool to 180°C, then the vacuum was broken under a nitrogen atmosphere and a sample was taken for analysis.
- the total quantity of distillate obtained was about 120 cm 3 ; demixing took place in the lower phase (66 cm 3 being water).
- Step (A) The product obtained in Step (A) was transferred to a 3.6-liter autoclave and heated to 180°C. At this temperature, scavenging of the reactor with carbon dioxide (CO 2 ) was commenced and continued for ten minutes. The amount of CO 2 used in this step was in the order of 20 grams.
- the present invention was evaluated for compatibility with elastomer seals in a bench test (PV 3344) by suspending a fluorocarbon test piece (AK 6) in an oil-based solution heated to 150 °C. for 282 hours, the oil being renewed every 92 hours, then by measuring the variation in the physical properties of the sample, in particular the tensile strength break (TSB) and the elongation at break (ELB), in accordance with procedure DIN 53504, by observing whether any cracks had formed at 100% elongation.
- the passing test criteria included the following: no evidence of crack development; a tensile strength break greater than 8N/mm2 and an elongation at break greater than 160%. This test procedure will be designated above and later simply as the "VW Bench Test".
- the formulation tested comprised a polyisobutenyl (PIB) bis-succinimide (the PIB having a molecular weight of 2300 and the bis-succinimide having been post-treated with ethylene carbonate)(6.5 wt %), low overbased (LOB) calcium sulfonate (0.68 wt %), carboxylated detergent, prepared in the manner described in Example 1, (2.45 wt %), high overbased (HOB) calcium alkylphenate (1.13 wt %), zinc dithiophosphate (0.69 wt %), a molybdenum-based anti-oxidant (0.05 wt %), a diphenylamine-based antioxidant (0.3 wt %), a friction modifier (0.25 wt %), a foam inhibitor (0.0025 wt %), a pour point depressant (0.15 wt %), a viscosity index improver (6.4 wt %), and a base oil
- Comparative Example A was conducted as described in Example 2 except that 1.97 wt % of a commercial medium overbased (MOB) calcium phenate was substituted for the carboxylate and 0.5 wt % of the friction modifier was used instead of 0.25 wt %.
- MOB medium overbased
- Example 2 and Comparative Example A are presented below in Table 1.
- Volkswagen PV 3344 Seal Test VW EAM Acrylate Seals
- VW ACM Acrylate Seals
- VW AK-6 Fluoroelastomer Seals Result
- Tensile Strength % (Limit ⁇ -40) Elongation, % (Limit ⁇ -40) Cracks in Seal (Limit: None)
- Example 1 The results in Table 1 indicate that the detergent-dispersant employed in the present invention enables you to pass the seal tests whereas a comparable commercial detergent, on an equal molar basis, fails these tests.
- Example 2 showed no seal cracks and were well within the passing limits of the Volkswagen VW seal test.
- Oil-Elastomer Compatibility is aimed at determining the degree of compatibility of lubricating oils and cured elastomers used in the automotive industry. Elastomer test pieces are immersed in the test oil for a given period of time and a given temperature. The size, the volume, the hardness, and the stress-strain properties are determined before and after immersion. The compatibility of the oil and the elastomer is estimated by the change in these characteristics.
- Example 3 The test in Example 3 was repeated with a lubricating oil composition containing the carboxylated detergent-dispersant (Formulation 4) employed in the present invention and compared with a lubricating oil composition containing a comparable commercially available detergent (Formulation 5) without the detergent-dispersant. The results are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US377915 | 2003-02-27 | ||
US10/377,915 US20040171501A1 (en) | 2003-02-27 | 2003-02-27 | Method for improving elastomer compatibility |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1452581A2 true EP1452581A2 (fr) | 2004-09-01 |
EP1452581A3 EP1452581A3 (fr) | 2004-12-22 |
EP1452581B1 EP1452581B1 (fr) | 2010-07-28 |
Family
ID=32771539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04250661A Expired - Lifetime EP1452581B1 (fr) | 2003-02-27 | 2004-02-06 | L' utilisé d'un carboxylate pour amèliorer la compatibilité avec les élastomers |
Country Status (6)
Country | Link |
---|---|
US (1) | US20040171501A1 (fr) |
EP (1) | EP1452581B1 (fr) |
JP (1) | JP2004256817A (fr) |
CA (1) | CA2457082A1 (fr) |
DE (1) | DE602004028304D1 (fr) |
SG (1) | SG135942A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1710294A1 (fr) | 2005-04-06 | 2006-10-11 | Infineum International Limited | Une méthode pour améliorer la stabilité ou la compatibilité des tensioactifs |
EP1803797A2 (fr) * | 2005-12-27 | 2007-07-04 | Chevron Japan Ltd. | Procédé pour améliorer la compatibilité d'un matériau d'étanchéité en caoutchouc acrylique dans un moteur à combustion interne |
GB2464590A (en) * | 2008-09-11 | 2010-04-28 | Infineum Int Ltd | A detergent for use in a lubricating oil |
EP2559748A1 (fr) * | 2011-08-19 | 2013-02-20 | Infineum International Limited | Composition dýhuile lubrifiante |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1914295B1 (fr) * | 2006-10-11 | 2013-12-04 | Total Marketing Services | Lubrifiant marin pour fioul à basse et haute teneur en soufre |
US8993496B2 (en) | 2010-03-31 | 2015-03-31 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
US9150811B2 (en) | 2010-03-31 | 2015-10-06 | Cherron Oronite Company LLC | Method for improving copper corrosion performance |
US8933001B2 (en) | 2010-03-31 | 2015-01-13 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
US8901050B2 (en) | 2010-03-31 | 2014-12-02 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
US8716202B2 (en) * | 2010-12-14 | 2014-05-06 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
EP2697343A4 (fr) * | 2011-04-11 | 2014-11-12 | Vanderbilt Chemicals Llc | Additifs d'huile lubrifiante à base de dithiocarbamate de zinc |
JP5746994B2 (ja) * | 2012-03-14 | 2015-07-08 | Jx日鉱日石エネルギー株式会社 | 潤滑油組成物及び内燃機関の潤滑方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993007242A1 (fr) * | 1991-10-08 | 1993-04-15 | Chevron Research And Technology Company | Additifs protegeant les joints d'etancheite au fluorocarbone destines aux huiles de graissage |
US5356552A (en) * | 1993-03-09 | 1994-10-18 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Chlorine-free lubricating oils having modified high molecular weight succinimides |
EP0933417A1 (fr) * | 1998-01-30 | 1999-08-04 | Chevron Chemical S.A. | Additif pour huiles lubrifiantes exempt de soufre et de métal alcalin |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4379064A (en) * | 1981-03-20 | 1983-04-05 | Standard Oil Company (Indiana) | Oxidative passivation of polyamine-dispersants |
US4940552A (en) * | 1981-03-20 | 1990-07-10 | Amoco Corporation | Passivation of polyamine dispersants toward fluorohydrocarbon compositions |
US4873009A (en) * | 1982-03-29 | 1989-10-10 | Amoco Corporation | Borated lube oil additive |
US4612132A (en) * | 1984-07-20 | 1986-09-16 | Chevron Research Company | Modified succinimides |
US4746446A (en) * | 1984-07-20 | 1988-05-24 | Chevron Research Company | Modified succinimides |
FR2625219B1 (fr) * | 1987-12-23 | 1990-12-21 | Orogil | Additifs detergents-dispersants a base de sels de metaux alcalino-terreux et alcalins pour huiles lubrifiantes |
FR2625220B1 (fr) * | 1987-12-23 | 1990-12-21 | Orogil | Procede de preparation d'additifs detergents-dispersants suralcalinises pour huiles lubrifiantes |
US5162086A (en) * | 1991-05-22 | 1992-11-10 | Texaco Inc. | Dispersant additive and lubricating oil composition containing same |
US5188745A (en) * | 1991-12-23 | 1993-02-23 | Texaco Inc. | Viton seal compatible dispersant and lubricating oil composition containing same |
DE4214653A1 (de) * | 1992-05-02 | 1993-11-04 | Henkel Kgaa | Motorengrundoele mit verbesserter dichtungsvertraeglichkeit |
US5334321A (en) * | 1993-03-09 | 1994-08-02 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Modified high molecular weight succinimides |
US6001785A (en) * | 1996-11-25 | 1999-12-14 | Chevron Chemical Company Llc | Detergent-dispersant additives for lubricating oils of the sulphurised and superalkalised, alkaline earth alkylsalicylate-alkaylphenate type |
FR2762848B1 (fr) * | 1997-05-05 | 2000-02-04 | Chevron Res & Tech | Utilisation de composes borates pour ameliorer la compatibilite d'huiles lubrifiantes avec des elastomeres fluorocarbones |
CA2277412A1 (fr) * | 1998-07-17 | 2000-01-17 | The Lubrizol Corporation | Huile pour moteur ayant un dispersant et de l'aldehyde/epoxide pour ameliorer le comportement du joint d'etancheite, et pour empecher l'accumulation de depots |
DE69827625T2 (de) * | 1998-09-09 | 2005-12-08 | Chevron Chemical S.A. | Verfahren zur Herstellung von Erdalkalimetall-Salzen mit hoher Basizität, insbesondere von einem an einem Ring gebundenen Hydrocarbylsalicylat-carboxylat |
US6348438B1 (en) * | 1999-06-03 | 2002-02-19 | Chevron Oronite S.A. | Production of high BN alkaline earth metal single-aromatic ring hydrocarbyl salicylate-carboxylate |
US6770605B1 (en) * | 2000-09-11 | 2004-08-03 | The Lubrizol Corporation | Modified polyisobutylene succinimide dispersants having improved seal, sludge, and deposit performance |
-
2003
- 2003-02-27 US US10/377,915 patent/US20040171501A1/en not_active Abandoned
-
2004
- 2004-02-05 CA CA002457082A patent/CA2457082A1/fr not_active Abandoned
- 2004-02-06 EP EP04250661A patent/EP1452581B1/fr not_active Expired - Lifetime
- 2004-02-06 DE DE602004028304T patent/DE602004028304D1/de not_active Expired - Lifetime
- 2004-02-09 SG SG200400576-5A patent/SG135942A1/en unknown
- 2004-02-26 JP JP2004052216A patent/JP2004256817A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993007242A1 (fr) * | 1991-10-08 | 1993-04-15 | Chevron Research And Technology Company | Additifs protegeant les joints d'etancheite au fluorocarbone destines aux huiles de graissage |
US5356552A (en) * | 1993-03-09 | 1994-10-18 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Chlorine-free lubricating oils having modified high molecular weight succinimides |
EP0933417A1 (fr) * | 1998-01-30 | 1999-08-04 | Chevron Chemical S.A. | Additif pour huiles lubrifiantes exempt de soufre et de métal alcalin |
US6162770A (en) * | 1998-01-30 | 2000-12-19 | Chevron Chemical Company Llc | Unsulfurized alkali metal-free, additive for lubricating oils |
US6262001B1 (en) * | 1998-01-30 | 2001-07-17 | Chevron Chemical Company Llc | Unsulfurized, alkali meta-free, additive for lubricating oils |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1710294A1 (fr) | 2005-04-06 | 2006-10-11 | Infineum International Limited | Une méthode pour améliorer la stabilité ou la compatibilité des tensioactifs |
EP1803797A2 (fr) * | 2005-12-27 | 2007-07-04 | Chevron Japan Ltd. | Procédé pour améliorer la compatibilité d'un matériau d'étanchéité en caoutchouc acrylique dans un moteur à combustion interne |
EP1803797A3 (fr) * | 2005-12-27 | 2010-07-28 | Chevron Japan Ltd. | Procédé pour améliorer la compatibilité d'un matériau d'étanchéité en caoutchouc acrylique dans un moteur à combustion interne |
GB2464590A (en) * | 2008-09-11 | 2010-04-28 | Infineum Int Ltd | A detergent for use in a lubricating oil |
GB2464590B (en) * | 2008-09-11 | 2011-06-22 | Infineum Int Ltd | A detergent for use in a lubricating oil |
EP2559748A1 (fr) * | 2011-08-19 | 2013-02-20 | Infineum International Limited | Composition dýhuile lubrifiante |
US10000719B2 (en) | 2011-08-19 | 2018-06-19 | Infineum International Limited | Lubricating oil composition |
Also Published As
Publication number | Publication date |
---|---|
EP1452581B1 (fr) | 2010-07-28 |
US20040171501A1 (en) | 2004-09-02 |
SG135942A1 (en) | 2007-10-29 |
JP2004256817A (ja) | 2004-09-16 |
CA2457082A1 (fr) | 2004-08-27 |
EP1452581A3 (fr) | 2004-12-22 |
DE602004028304D1 (de) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6001780A (en) | Ashless lubricating oil formulation for natural gas engines | |
JP5431642B2 (ja) | 高負荷ディーゼルエンジン用低硫黄低リン潤滑油組成物 | |
US8383562B2 (en) | System oil formulation for marine two-stroke engines | |
JP5431641B2 (ja) | 低硫黄低リン潤滑油組成物 | |
EP3072948B1 (fr) | Compositions d'huile lubrifiante pour machines de construction | |
US9175237B2 (en) | Trunk piston engine lubricating oil compositions | |
EP1452581B1 (fr) | L' utilisé d'un carboxylate pour amèliorer la compatibilité avec les élastomers | |
EP1803797B1 (fr) | Utilisation d'une composition lubrifiante pour améliorer la compatibilité d'un matériau d'étanchéité en caoutchouc acrylique dans un moteur à combustion interne | |
KR20170033245A (ko) | 윤활유 조성물의 제형화를 위한 첨가제 농축물 | |
JP2007169639A (ja) | 潤滑油組成物 | |
CA2280238A1 (fr) | Composition d'additif pour huile lubrifiante ayant un coefficient de frottement eleve a hautes temperatures | |
US20030224948A1 (en) | Lubricating oil additive comprising EC-treated succinimide, borated dispersant and corrosion inhibitor | |
JP2007154199A (ja) | 潤滑油組成物 | |
US20130157910A1 (en) | Diesel engine oils | |
JPH1135962A (ja) | 潤滑油組成物 | |
JP3936823B2 (ja) | エンジン油組成物 | |
KR20240151798A (ko) | 윤활유 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050615 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: USE OF A CARBOXYLATE FOR IMPROVING ELASTOMER COMPATIBILITY |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004028304 Country of ref document: DE Date of ref document: 20100909 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004028304 Country of ref document: DE Effective date: 20110429 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602004028304 Country of ref document: DE Representative=s name: HL KEMPNER PATENTANWAELTE, SOLICITORS (ENGLAND, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602004028304 Country of ref document: DE Representative=s name: HL KEMPNER PATENTANWALT, RECHTSANWALT, SOLICIT, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210212 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20221230 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230110 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20221230 Year of fee payment: 20 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004028304 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240205 |