EP1450005B1 - Kühleinrichtung für Turbinenscheiben - Google Patents

Kühleinrichtung für Turbinenscheiben Download PDF

Info

Publication number
EP1450005B1
EP1450005B1 EP04290324A EP04290324A EP1450005B1 EP 1450005 B1 EP1450005 B1 EP 1450005B1 EP 04290324 A EP04290324 A EP 04290324A EP 04290324 A EP04290324 A EP 04290324A EP 1450005 B1 EP1450005 B1 EP 1450005B1
Authority
EP
European Patent Office
Prior art keywords
upstream
annular
wall
radial
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04290324A
Other languages
English (en)
French (fr)
Other versions
EP1450005A1 (de
Inventor
Sébastien Imbourg
Jean-Luc Soupizon
Philippe Pabion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1450005A1 publication Critical patent/EP1450005A1/de
Application granted granted Critical
Publication of EP1450005B1 publication Critical patent/EP1450005B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc

Definitions

  • the present invention relates to the general field of cooling the high-pressure and low-pressure turbine discs of a turbomachine. It relates more particularly to a device for cooling the disk of the moving blades of the high-pressure turbine and the blades of the rotary blades of the low-pressure turbine of a turbomachine.
  • FIG. 7 schematically shows the junction between the high and low pressure turbines of a turbomachine with a known type of cooling device.
  • three annular flanges 100 are fixed to a lower platform 102 for supporting a fixed blade 104 of the distributor 106 of the low-pressure turbine.
  • the assembly of these flanges creates an annular cavity 108 supplied with cooling air by connecting sleeves 110 collecting air from the root of the fixed blade 104 of the distributor.
  • Holes 112 made in the flanges 100 make it possible to inject cooling air towards a disk 114 of a moving blade 116 of the high-pressure turbine and a disk 118 of a rotary blade 120 of the low-pressure turbine.
  • a fourth annular flange 122 extending radially between the assembly of the three flanges 100 and a flange 124 of the disc 114 of the moving blade allows the assembly to delimit a high-pressure enclosure 126 and a low-pressure enclosure 128.
  • the quality of the cooling of the high and low pressure turbine disks depends in particular on the cooling air supply of the injection cavity defined by the annular flanges of the cooling device. In particular, it is important to obtain a perfect seal of this cavity and to avoid pressure losses at the level of feeding of it. The pressure losses generally result from a poor quality of the air flow at the outlet of the connecting bushings.
  • the flow of air coming from the connecting bushings 110 undergoes a major change of direction (represented by the arrow 130) which is at the origin of pressure drops detrimental to the proper functioning of the device.
  • a gooseneck valve is characterized by lower and upper fixed blade support platforms that are elongated to increase the aerodynamic performance of the low pressure turbine.
  • the flanges of the cooling device of the turbine disks are bent in order to adapt to the elongated geometry of the lower platform of the distributor so that the cooling air coming from the base of the vanes undergoes changes. important direction.
  • these elbows flanges, areas with high pressure losses.
  • a cooling device for high-pressure turbine for, from the air circulating in a fixed blade, air injection into the root of the blades.
  • the present invention therefore aims to overcome such drawbacks by providing a turbine disk cooling device, in particular adapted to a geometry of the gooseneck distributor, which reduces the pressure drop while maintaining a perfect seal.
  • the assembly of these flanges can limit the pressure drop by creating a perfectly sealed air cooling cavity.
  • the upstream and downstream flanges of the cooling device do not form bends so that the air cavity can be directly supplied without loss of load from the air orifice made through a lower platform.
  • the cooling device has only two flanges which is a gain in mass compared to the devices of the prior art.
  • the injection portion of the upstream flange further comprises a second substantially longitudinal annular wall extending between the first and second radial walls and disposed between the first longitudinal wall and the sealing device so as to divide the lower zone into a zone. mounting and an injection area.
  • a plurality of substantially radial partitions extending between the first and second longitudinal walls and disposed perpendicular to the first and second radial walls divide the mounting area into a plurality of annular cavities.
  • the first longitudinal wall of the injection portion of the upstream flange comprises communication openings between the lower and upper zones so as to supply cooling air to at least one annular cavity, these communication openings being radially aligned with the orifice of air practiced through the lower platform.
  • This or these annular cavities supplied with cooling air comprises, at the level of the second longitudinal wall, at least one passage for supplying the injection zone with cooling air.
  • the injection zone has a plurality of bores in the first and second radial walls of the injection portion of the upstream flange to inject the cooling air to the turbine disks.
  • Connecting tubes are advantageously arranged in each communication opening in order to supply the cooling air or the annular cavities.
  • radial retention devices of each of these connecting tubes may be provided and the second radial wall of the injection portion of the upstream flange may comprise a plurality of annular windows for mounting the connecting tubes.
  • downstream flange advantageously comprises a connecting portion with the lower platform formed of a substantially radial annular wall, and a holding portion of the upstream flange formed of a substantially radial annular wall offset radially and longitudinally towards the upstream relative to the connecting portion and disposed against the second radial wall of the injection portion of the upstream flange, and a longitudinal wall extending between the radial walls of the connecting portion and the holding portion.
  • the cooling device may further comprise an additional annular flange extending radially between the sealing device and a disk flange of the blades of the high-pressure turbine so as to define a high-pressure chamber and a low-pressure chamber. pressure on both sides of the cooling device. Stiffening elements are preferably disposed between ends of the additional annular flange to improve the dynamic behavior of the cooling device.
  • Figure 1 shows a longitudinal section of a cooling device according to the invention in its environment.
  • a high-pressure turbine 10 of longitudinal axis XX provided with a plurality of blades 12 (only one is shown in Figure 1).
  • the blades 12 are all mounted on an annular disc 14 rotated about the longitudinal axis XX.
  • a low-pressure turbine 16 also of longitudinal axis XX, is disposed downstream of the high-pressure turbine 10 in the flow direction F of the gas flow from the high-pressure turbine.
  • the low-pressure turbine 16 comprises several turbine stages (only one stage is fully shown in FIG. 1) which each consist of a distributor 18 and a plurality of rotary vanes 20 placed behind each distributor.
  • the rotating blades 20 are all mounted on an annular disk 22 rotated about the longitudinal axis XX.
  • each distributor 18 is formed of a plurality of fixed vanes 24 supported by an upper annular platform 26 and a lower annular platform 28.
  • the distributor 18 of the first stage of the low-pressure turbine has a gooseneck configuration, that is to say that the upper and lower platforms 28 of the latter are elongated in order to increase the distance between the leading edge of the vanes 24 of the distributor and the trailing edge of the blades 12 of the high-pressure turbine 10.
  • This configuration improves the performance of the low-pressure turbine.
  • the present invention can also be applied to low-pressure turbine distributors whose blade support platforms are not elongated.
  • the cooling device 30 of the disk 14 of the blades 12 of the high-pressure turbine and the disk 22 of the rotary blades 20 of the low-pressure turbine is notably constituted by the assembly of an upstream annular flange 32 with a downstream annular flange 34.
  • the upstream flanges 32 and downstream 34 are each in the form of a ring whose axis of symmetry coincides with the longitudinal axis XX of the high and low pressure turbines.
  • the upstream flange 32 extends radially from a flange 36 disposed at an upstream end of the lower platform 28, while the downstream flange 34 extends radially from a flange 38 disposed at one end. downstream of the same platform.
  • These flanges upstream and downstream thus delimit an annular enclosure 40 which is sealed by a sealing device, for example by an annular plate 42 fixed between the free ends of the upstream and downstream flanges.
  • the annular enclosure 40 is supplied with air coming from a cooling circuit which equips each fixed blade 24 of the distributor 18.
  • air which is for example taken from the high-pressure compressor of the turbomachine, is introduced into each fixed blade 24 of the distributor by its top, then circulates in the fixed blade along a path delimited by a cooling cavity (not shown) optionally provided with a jacket before being discharged in particular at the foot 24a of the dawn through openings 44 passing through the lower platform 28.
  • These air evacuation ports 44 are arranged at the foot 24a of each blade, between the upstream flange 36 and the downstream flange 38 of the plate. lower form.
  • the upstream and downstream flanges each comprise a portion of connection with the upstream and downstream flanges 36 of the lower platform 28 of the distributor 18.
  • the connecting portions are formed by annular walls 46, 48 extending radially so as to bear against these flanges when mounting the lower platform 28 on the cooling device. The means for holding the connecting portions of the upstream and downstream flanges against the flanges will be described later.
  • the upstream flange 32 further comprises an injection portion formed in particular of a first annular wall 50 extending radially and which is offset longitudinally downstream with respect to the wall. 46 of its connecting portion, and a second radially extending second annular wall 52 which is offset with respect to the first wall 50, both radially towards the longitudinal axis XX and longitudinally downstream.
  • a first longitudinal annular wall 54 connects a lower end of the wall 46 of the connecting portion to an upper end of the second wall 52. This first longitudinal wall thus divides the annular enclosure 40 into a lower zone 40a and an upper zone 40b. .
  • the injection portion of the upstream flange further comprises a second annular longitudinal wall 56 which extends between the first and second radial walls 50, 52.
  • This second longitudinal wall 56 is also disposed between the first longitudinal wall 54 and the annular plate 42 forming the sealing device 42 so as to divide the lower zone 40a into a so-called assembly zone 58 and a so-called injection zone 60.
  • the mounting zone 58 is itself divided into a plurality of annular cavities 62 by radial partitions 64. These partitions radial members are disposed perpendicularly to the first 50 and second 52 radial walls of the injection portion of the upstream flange and extend between the first and second longitudinal walls 54, 56. They are regularly spaced all around the longitudinal axis XX of the turbines .
  • the mounting zone 58 is segmented into a plurality of annular cavities 62, while the injection zone 60 is continuous all around the longitudinal axis XX.
  • the first longitudinal wall 54 of the injection portion of the upstream flange comprises a plurality of openings 66 for communicating the upper zone 40b with the lower zone 40a in order to supply cooling air to the latter. More specifically, these openings 66 open in the upper zone 40b and open into certain annular cavities 62a formed in the mounting zone 58. In the embodiment illustrated in FIG. 6, the openings are arranged in such a way that the upper zone supplies cooling air with only one annular cavity 62 on two, and two openings opening into the same annular cavity are provided. Of course, one could imagine different configurations for the number of annular cavities communicating with the upper zone and for the number of communication openings per annular cavity thus fed.
  • the second annular longitudinal wall 56 has at least one passage 68 allowing the cooling air to pass from the annular cavity 62a to the injection zone 60.
  • the openings 66 are formed in the first longitudinal wall 54 so as to be axially aligned with the air openings 44 formed in the lower platform 28 ( Figure 1).
  • the injection zone 60 opens towards the disk 14 of the blades 12 of the high-pressure turbine and towards the disk 22 of the rotary blades 20 of the low-pressure turbine through a plurality of holes 70 made in the first and second radial walls 50, 52 of the injection portion of the upstream flange.
  • these holes 70 may be inclined (as in the figures) or straight holes. All Another system for calibrating a desired flow rate for cooling the disks of the high and low pressure turbines may also be suitable.
  • the air discharged through the orifices 44 of the lower platform 28 feeds the upper zone 40b and then some annular cavities 62a through the openings 66.
  • the air then diffuses into the injection zone 60 via the intermediate passages 68 before being discharged through the holes 70 for cooling the disk 14 of the blades of the high-pressure turbine and the disc 22 of the rotary blades of the low-pressure turbine.
  • annular cavity 62 on two is supplied with cooling air through the openings (cavities 62a).
  • the annular cavities 62b which are not supplied with air are intended to allow the fixing of the downstream flange on the upstream flange.
  • the second radial wall 52 of the injection portion of the upstream flange has, at least at some of these unpowered cavities 62b, bores 72 to be traversed by bolted connections of screw / nut type.
  • the first radial wall 50 of the injection portion comprises holes 74, for example circular, arranged opposite these bores.
  • connecting tubes 76 may be arranged in each of the openings 66 in order to guide the cooling air towards the annular cavities 62a.
  • annular windows 78 in the second radial wall 52 of the injection portion of the upstream flange at the level of the annular cavities 62a supplied with air.
  • the downstream flange 34 comprises, at a lower end opposite its connecting portion, a holding part of the upstream flange which is formed by a radially extending annular wall 80 which is offset with respect to the radial wall 48 of its part. connecting both radially to the longitudinal axis XX and longitudinally upstream.
  • This radial annular wall 80 is arranged to bear against the second radial wall 52 of the injection portion of the flange upstream. It is further centered with clamping on the upstream flange to complete the sealing of the cooling device.
  • a longitudinal annular wall 81 connects a lower end of the radial wall 48 of the connecting portion to an upper end of the radial wall 80 of the holding portion.
  • the radial wall 80 of the holding portion has a plurality of bores 82 to be traversed by the bolted connections. These holes 82 are arranged all around the longitudinal axis X-X so as to coincide with the holes 72 of the upstream flange when the upstream and downstream flanges are assembled against each other. The upstream and downstream flanges 32 and 34 can thus be held in abutment against each other, after the assembly of the lower platform 28, by means of bolted connections 83.
  • This particular arrangement of the holding means allows to obtain a slightly prestressed assembly of the lower platform 28 on the upstream 32 and downstream flanges 34 in order to improve the dynamic behavior of the cooling device while limiting the relative longitudinal displacements and ensuring a good seal of the lower and lower zones; higher.
  • the radial wall 80 of the holding portion of the downstream flange comprises radial retention devices of these tubes.
  • retention devices may for example be brackets 84 fixed against the radial wall 80 and whose dimensions are adapted to be housed in the annular windows 78 of the second radial wall 52 of the injection portion of the upstream flange.
  • the cooling device 30 thus formed comprises an additional annular flange 85 which extends radially between the sealing device 42 and a flange 86 of the disk 14 of the blades of the high-pressure turbine. with whom he is in contact.
  • This additional flange 85 thus makes it possible to define a high-pressure enclosure 87 and a low-pressure enclosure 88 on either side of the cooling device 30.
  • the contact between the flange 86 of the disc 14 and the lower end of the additional flange 85 is effected by means of sealing means.
  • these means may be made in the form of a labyrinth seal 89 arranged on the flange 86 and an abradable coating 90 disposed on the lower end of the additional flange 85.
  • the additional annular flange 85 has a substantially triangular cross section.
  • stiffening elements 91 may be arranged between the upper and lower ends of the additional flange. As shown in FIGS. 3 and 6, such stiffening elements may for example take the form of sheets fixed to the upper and lower ends of the additional flange 85.
  • the cooling device 30 may also include an anti-rotation device for assembling the upstream and downstream flanges 32 and 34.
  • an anti-rotation device may be formed of a plurality of radial pins 92 disposed on the downstream flange 34, in the extension of the radial annular wall 80 of its holding portion. As illustrated in Figure 1, these pins 92 and abut in notches 93 of the lower platform 28 of the distributor to prevent inadvertent rotation of the cooling device.
  • the pins may be formed on the upstream flange 32, for example at the first longitudinal wall 54 of its injection portion. In this case not shown in the figures, the pins also abut in notches of the lower platform.
  • the upstream and downstream flanges of the cooling device can be made in one and the same piece so as to constitute a single flange.
  • a flange must also be arranged at the radial wall of the connecting portion of the upstream flange to allow the use of specific tools to remove the preload when mounting the lower platform on the mono -flasque.
  • Such a single-flange variant makes it possible to eliminate the bolted connections, which reduces the mass of the assembly and the time of its assembly.
  • the cooling device thus defined has many advantages. In particular, it makes it possible to reduce the pressure drops, which makes it possible to reduce the specific consumption of the turbomachine. This reduction in pressure losses does not result in a degradation of the aerodynamic behavior of the device. In addition, such a device is ideal for a low-pressure turbine distributor having a gooseneck configuration. Note also that, the number of flanges being reduced compared to previous devices, the mass of the cooling device according to the invention is reduced and its mounting facilitated.

Claims (14)

  1. Vorrichtung (30) zum Kühlen von Scheiben (14, 22) von Hochdruck- und Niederdruckturbinen (10, 16) einer Turbomaschine, wobei die Vorrichtung eine ringförmige untere Plattform (28) zum Tragen wenigstens einer Leitschaufel (24) der Niederdruckturbine umfaßt und von wenigstens einer Luftöffnung (44) aus, die durch die ringförmige untere Plattform (28) hindurch ausgebildet und zwischen einem stromaufwärtigen Flansch (36) und einem stromabwärtigen Flansch (38) der unteren Plattform angeordnet ist, mit Kühlluft versorgt wird, wobei die Vorrichtung ferner folgendes umfaßt:
    einen ringförmigen stromaufwärtigen Flansch (32), der sich von dem stromaufwärtigen Flansch (36) der unteren Plattform aus radial erstreckt;
    einen ringförmigen stromabwärtigen Flansch (34), der sich von dem stromabwärtigen Flansch (38) der unteren Plattform aus radial erstreckt, wobei der stromaufwärtige und der stromabwärtige Flansch in Längsrichtung wenigstens einen ringförmigen Kühlluftraum (40) begrenzen;
    eine Dichtungsvorrichtung (42), die sich in Längsrichtung zwischen dem stromaufwärtigen und dem stromabwärtigen Flansch erstreckt, so daß der Kühlluftraum (40) dicht verschlossen wird;
    Mittel (83) zum Halten des stromaufwärtigen und des stromabwärtigen Flansches an dem stromaufwärtigen und dem stromabwärtigen Flansch der unteren Plattform; und
    eine Vielzahl von Bohrungen (70), um Kühlluft zu den Turbinenscheiben (14, 22) einzublasen;
    dadurch gekennzeichnet, daß der stromaufwärtige Flansch (32) einen Teil zum Verbinden mit der unteren Plattform (28), der von einer ringförmigen, im wesentlichen radialen Wand (46) gebildet ist, sowie einen Einspritzteil umfaßt, der von einer ersten ringförmigen, im wesentlichen radialen Wand (50), die radial und in Längsrichtung stromabwärts gegenüber dem Verbindungsteil versetzt ist, von einer zweiten ringförmigen, im wesentlichen radialen Wand (52), die in Längsrichtung stromabwärts gegenüber der ersten radialen Wand versetzt ist, und von einer ersten ringförmigen, im wesentlichen längsverlaufenden Wand (54) gebildet ist, die sich zwischen der radialen Wand (46) des Verbindungsteils und der zweiten radialen Wand (52) des Einspritzteils erstreckt, so daß der Kühlluftraum (40) in Längsrichtung in einen unteren Bereich (40a) und in einen oberen Bereich (40b) unterteilt wird.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Einspritzteil des stromaufwärtigen Flansches (32) ferner eine zweite ringförmige, im wesentlichen längsverlaufende Wand (56) aufweist, die sich zwischen der ersten und zweiten radialen Wand (50, 52) erstreckt und zwischen der ersten Längswand (54) und der Dichtungsvorrichtung (42) angeordnet ist, so daß der untere Bereich (40a) in einen Montagebereich (58) und in einen Einspritzbereich (60) unterteilt wird.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Einspritzteil des stromaufwärtigen Flansches (32) ferner eine Vielzahl von im wesentlichen radialen Trennwänden (64) umfaßt, die sich zwischen der ersten und der zweiten Längswand (54, 56) erstrecken und senkrecht zur ersten und zweiten radialen Wand (50, 52) angeordnet sind, so daß der Montagebereich (58) in eine Vielzahl von ringförmigen Hohlräumen (62) unterteilt wird.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die erste Längswand (54) des Einspritzteils des stromaufwärtigen Flansches (32) Verbindungsöffnungen (66) zwischen dem unteren Bereich (40a) und dem oberen Bereich (40b) aufweist, so daß wenigstens ein ringförmiger Hohlraum (62a) mit Kühlluft gespeist wird, wobei die Verbindungsöffnungen mit der durch die untere Plattform (28) hindurch ausgebildeten Luftöffnung (44) axial fluchten.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der wenigstens eine mit Kühlluft gespeiste ringförmige Hohlraum (62a) im Bereich der zweiten Längswand (56) wenigstens einen Durchgang (68) aufweist, um den Einspritzbereich (60) mit Kühlluft zu versorgen.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Einspritzbereich (60) eine Vielzahl von Bohrungen (70) aufweist, die in der ersten und zweiten radialen Wand (50, 52) des Einspritzteils des stromaufwärtigen Flansches (32) ausgebildet sind, um die Kühlluft zu den Turbinenscheiben (14, 22) einzublasen.
  7. Vorrichtung nach irgendeinem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß sie außerdem Verbindungsrohre (76) umfaßt, die in jeder Verbindungsöffnung (60) angeordnet sind, um die Kühlluft zu dem wenigstens einen ringförmigen Hohlraum (62a) zu leiten.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß sie ferner Vorrichtungen (84) zum radialen Halten eines jeden der Verbindungsrohre (76) umfaßt.
  9. Vorrichtung nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, daß die zweite radiale Wand (52) des Einspritzteils des stromaufwärtigen Flansches (32) eine Vielzahl von ringförmigen Fenstern (78) für die Montage der Verbindungsrohre (76) aufweist.
  10. Vorrichtung nach irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der stromabwärtige Flansch (34) einen Teil zum Verbinden mit der unteren Plattform (28), der von einer ringförmigen, im wesentlichen radialen Wand (48) gebildet ist, sowie einen Teil zum Halten des stromaufwärtigen Flansches umfaßt, der von einer ringförmigen, im wesentlichen radialen Wand (80), die radial und in Längsrichtung stromaufwärts gegenüber dem Verbindungsteil versetzt und an der zweiten radialen Wand (52) des Einspritzteils des stromaufwärtigen Flansches (32) angeordnet ist, sowie von einer ringförmigen, im wesentlichen längsverlaufenden Wand (81) gebildet ist, die sich zwischen der radialen Wand (48) des Verbindungsteils und der radialen Wand (80) des Halteteils erstreckt.
  11. Vorrichtung nach irgendeinem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie ferner einen zusätzlichen ringförmigen Flansch (85) umfaßt, der sich radial zwischen der Dichtungsvorrichtung (42) und einem Flansch (86) der Scheibe (14) von Laufschaufeln (12) der Hochdruckturbine (10) erstreckt, so daß ein Hochdruckraum (87) und ein Niederdruckraum (88) auf beiden Seiten der Kühlvorrichtung definiert wird.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß sie ferner Versteifungselemente (91) umfaßt, die zwischen Enden des zusätzlichen ringförmigen Flansches (85) angeordnet sind, um das dynamische Verhalten der Kühlvorrichtung zu verbessern.
  13. Vorrichtung nach irgendeinem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß sie außerdem eine Vorrichtung (92) zur Drehsicherung des stromaufwärtigen Flansches (32) und des stromabwärtigen Flansches (34) umfaßt.
  14. Vorrichtung nach irgendeinem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der stromaufwärtige und der stromabwärtige Flansch einstückig ausgebildet sind.
EP04290324A 2003-02-14 2004-02-09 Kühleinrichtung für Turbinenscheiben Expired - Lifetime EP1450005B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0301842A FR2851288B1 (fr) 2003-02-14 2003-02-14 Dispositif de refroidissement de disques de turbines
FR0301842 2003-02-14

Publications (2)

Publication Number Publication Date
EP1450005A1 EP1450005A1 (de) 2004-08-25
EP1450005B1 true EP1450005B1 (de) 2007-04-25

Family

ID=32732001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04290324A Expired - Lifetime EP1450005B1 (de) 2003-02-14 2004-02-09 Kühleinrichtung für Turbinenscheiben

Country Status (8)

Country Link
US (1) US7025562B2 (de)
EP (1) EP1450005B1 (de)
JP (1) JP4578117B2 (de)
CA (1) CA2456700C (de)
DE (1) DE602004006035T2 (de)
ES (1) ES2283955T3 (de)
FR (1) FR2851288B1 (de)
RU (1) RU2341669C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517666B2 (en) * 2005-09-12 2013-08-27 United Technologies Corporation Turbine cooling air sealing
IL181439A0 (en) * 2007-02-20 2007-07-04 Medic Nrg Ltd An endodontic file member
JP4884410B2 (ja) * 2008-03-04 2012-02-29 株式会社日立製作所 二軸ガスタービン
US8206080B2 (en) * 2008-06-12 2012-06-26 Honeywell International Inc. Gas turbine engine with improved thermal isolation
US9447694B2 (en) * 2012-01-30 2016-09-20 United Technologies Corporation Internal manifold for turning mid-turbine frame flow distribution
FR2995021B1 (fr) * 2012-09-04 2017-08-25 Snecma Dispositif d'alimentation en air pour turbines de moteurs d'aeronefs
FR3030614B1 (fr) * 2014-12-17 2019-09-20 Safran Aircraft Engines Ensemble de turbine haute pression de turbomachine
KR101663306B1 (ko) * 2015-10-02 2016-10-06 두산중공업 주식회사 가스터빈 디스크
US11021962B2 (en) * 2018-08-22 2021-06-01 Raytheon Technologies Corporation Turbulent air reducer for a gas turbine engine
FR3087839B1 (fr) * 2018-10-30 2020-10-23 Safran Aircraft Engines Turbine
FR3115562A1 (fr) * 2020-10-26 2022-04-29 Safran Aircraft Engines Injecteur d’air de refroidissement pour turbine de turbomachine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE533517A (de) * 1953-11-20
FR1351268A (fr) * 1963-03-20 1964-01-31 Rolls Royce Moteur à turbine à gaz comportant un aubage de turbine refroidi
US3945758A (en) * 1974-02-28 1976-03-23 Westinghouse Electric Corporation Cooling system for a gas turbine
US4187054A (en) * 1978-04-20 1980-02-05 General Electric Company Turbine band cooling system
US4217755A (en) * 1978-12-04 1980-08-19 General Motors Corporation Cooling air control valve
FR2604750B1 (fr) * 1986-10-01 1988-12-02 Snecma Turbomachine munie d'un dispositif de commande automatique des debits de ventilation de turbine
US5358374A (en) * 1993-07-21 1994-10-25 General Electric Company Turbine nozzle backflow inhibitor
US5503528A (en) * 1993-12-27 1996-04-02 Solar Turbines Incorporated Rim seal for turbine wheel
US5645397A (en) * 1995-10-10 1997-07-08 United Technologies Corporation Turbine vane assembly with multiple passage cooled vanes
JP3564286B2 (ja) * 1997-12-08 2004-09-08 三菱重工業株式会社 ガスタービン静翼の段間シールアクティブクリアランス制御システム
DE19824766C2 (de) * 1998-06-03 2000-05-11 Siemens Ag Gasturbine sowie Verfahren zur Kühlung einer Turbinenstufe
US6065928A (en) * 1998-07-22 2000-05-23 General Electric Company Turbine nozzle having purge air circuit
US6179555B1 (en) * 1998-10-06 2001-01-30 Pratt & Whitney Canada Corp. Sealing of T.O.B.I feed plenum
FR2786222B1 (fr) * 1998-11-19 2000-12-29 Snecma Dispositif d'etancheite a lamelle
DE19962244A1 (de) * 1999-12-22 2001-06-28 Rolls Royce Deutschland Kühlluft-Führungssystem im Hochdruck-Turbinenabschnitt eines Gasturbinen Triebwerkes

Also Published As

Publication number Publication date
US20040161334A1 (en) 2004-08-19
RU2341669C2 (ru) 2008-12-20
JP2004245224A (ja) 2004-09-02
DE602004006035T2 (de) 2008-01-03
US7025562B2 (en) 2006-04-11
CA2456700A1 (fr) 2004-08-14
ES2283955T3 (es) 2007-11-01
CA2456700C (fr) 2011-09-27
JP4578117B2 (ja) 2010-11-10
RU2004104120A (ru) 2005-07-27
FR2851288A1 (fr) 2004-08-20
EP1450005A1 (de) 2004-08-25
DE602004006035D1 (de) 2007-06-06
FR2851288B1 (fr) 2006-07-28

Similar Documents

Publication Publication Date Title
EP2009234B1 (de) Kühlvorrichtung der Hohlräume einer Rotorscheibe einer Strömungsmaschine
EP1847687B1 (de) Vorrichtung zur Abkühlung eines Turbinengehäuses einer Strömungsmaschine und zugehöriger Verteiler
CA2635637C (fr) Dispositif de refroidissement des alveoles d'un disque de rotor de turbomachine a double alimentation en air
CA2520282C (fr) Module de turbine pour moteur a turbine a gaz
EP1450005B1 (de) Kühleinrichtung für Turbinenscheiben
CA2772054C (fr) Compresseur de turbomachine ayant des injecteurs d'air
EP0789133A1 (de) Labyrinthträgerscheibe mit einer eingebauten Versteifung für Turbomaschinenrotor
EP3134620A1 (de) Turbinenschaufel einer turbomaschine mit einem kühlkreislauf mit verbesserter homogenität
FR2973433A1 (fr) Rotor de turbine pour une turbomachine
EP1452691B1 (de) Ringförmige Leitschaufelplattform einer Niederdruckstufe einer Gasturbine
FR2961250A1 (fr) Dispositif de refroidissement des alveoles d'un disque de rotor de turbomachine a l'aval du cone d'entrainement
FR3099520A1 (fr) Roue de turbomachine
FR2961249A1 (fr) Dispositif de refroidissement des alveoles d'un disque de rotor de turbomachine
FR3111942A1 (fr) Ensemble rotor d’une turbine basse pression d’une turbomachine
FR3109795A1 (fr) Carter intermediaire de redressement avec bras structural monobloc
FR3100836A1 (fr) Aubes mobiles pour turbine
FR3092865A1 (fr) Disque de rotor avec arret axial des aubes, ensemble d’un disque et d’un anneau et turbomachine
EP3847339B1 (de) Rotorscheibe mit axialer halterung der schaufeln, anordnung einer scheibe und eines ringes und turbomaschine
FR3066228A1 (fr) Limitation du deplacement d'un tube de liaison par engagement d'une portion incurvee de paroi d'enceinte pour turbomachine
FR3070717A1 (fr) Ensemble de turbine, distributeur et turbine de turbomachine munis de celui-ci
FR2960020A1 (fr) Dispositif et procede de refroidissement de disques de rotor d'une turbomachine
WO2023099857A1 (fr) Ensemble pour turbomachine comprenant un distributeur porté par une support annulaire
WO2020193913A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement optimise
EP3853445A1 (de) Turbinendichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004006035

Country of ref document: DE

Date of ref document: 20070606

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2283955

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130207

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004006035

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230119

Year of fee payment: 20

Ref country code: IT

Payment date: 20230120

Year of fee payment: 20

Ref country code: GB

Payment date: 20230120

Year of fee payment: 20

Ref country code: DE

Payment date: 20230119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004006035

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240208