EP1445580B1 - Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb - Google Patents
Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb Download PDFInfo
- Publication number
- EP1445580B1 EP1445580B1 EP04290137A EP04290137A EP1445580B1 EP 1445580 B1 EP1445580 B1 EP 1445580B1 EP 04290137 A EP04290137 A EP 04290137A EP 04290137 A EP04290137 A EP 04290137A EP 1445580 B1 EP1445580 B1 EP 1445580B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control signal
- electrodes
- vibration
- vibrating member
- quadrature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 claims description 16
- 239000013256 coordination polymer Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/567—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
- G01C19/5691—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators
Definitions
- the present invention relates to a method of implementing an electrostatic resonator for use as an inertial rotation sensor.
- electrostatic resonators comprising a metallized bell-shaped vibrating member adapted to be vibrated at a resonant frequency under the effect of electrostatic forces generated by electrodes disposed opposite a portion of the vibrating member.
- the resonator is adapted to operate in gyrometric mode or in gyro mode.
- the vibrating member is excited by means of a combination of control signals applied to the resonant frequency of the vibrating member and modulated to provide an amplitude control signal, a precession control signal. and a quadrature control signal, these control signals being applied so that a measure of the vibration of the vibrating member and a demodulation of that vibration at the resonant frequency of the vibrating member allow by appropriate equations of determine the rotational speed at which the resonator is subjected.
- An object of the invention is to provide a method of implementing an electrostatic vibrating resonator operating with high accuracy preferably using a reduced number of electrodes and connections of these electrodes.
- a method for implementing a resonator in a gyrometric mode having a vibrating member adapted to be vibrated at a resonant frequency under the effect of electrostatic forces generated by electrodes disposed opposite a portion of the vibrating member, the method comprising the steps of exciting the organ vibrating by means of a combination of control signals comprising an amplitude control signal, a precession control signal and an amplitude modulated quadrature control signal, to measure a vibration of the vibrating member and to demodulate the vibration at the resonance frequency of the vibrating member, the precession control signal being applied at a frequency twice the resonant frequency.
- the amplitude control signal is applied at a double frequency of the resonant frequency in a maintenance phase of the vibration of the vibrating organ.
- the quadrature control signal is applied as a continuous signal on common electrodes with the amplitude control signal.
- the electrostatic forces resulting from the quadrature control are the consequence of an intermodulation resulting from the gap variation with respect to the electrodes.
- the amplitude control signal is preferably applied so that the vibration of the vibrating member is oriented so that a vibration node faces an interval between two electrodes. The portion of the vibrating member facing an electrode is then subjected to a non-zero air gap variation that provides a strong intermodulation and consequently the best measurement accuracy.
- the amplitude control at a double frequency of the resonant frequency is applied to the vibrating member itself and the quadrature control is applied to electrodes that are simultaneously assigned to a detection. This results in increased dynamics improving the accuracy of the measurement with a minimum of connections.
- the resonator has been shown on a very enlarged scale and by exaggerating the thicknesses of the electrodes and air gaps.
- the resonator comprises in known manner a hemispherical vibrating member 1, for example a bell made of silica and fixed by a rod 4 to a base 3.
- the inner surface of the bell 1 and the edge of the latter and the rod 4 are covered with a layer of metal 2.
- the base 3 carries the main electrodes designated by the general reference numeral 5 and the special reference numerals 5.1, 5.2 ..., 5.8 to identify them individually.
- the electrodes 5 extend opposite the edge of the vibrating member 1.
- the resonator further comprises a guard electrode generally designated 6, divided into two parts 6.1 and 6.2 each comprising four auxiliary electrodes, bearing the general reference numeral 7, and the particular reference numerals 7.1 for the electrodes auxiliaries of Part 6.1, and 7.2 for auxiliary electrodes in Part 6.2.
- the electrodes 7.1 and 7.2 extend alternately between the electrodes 5.
- the part 6.1 of the guard electrode consists of a central disk from which the auxiliary electrodes 7.1 extend radially outwards while the part 6.2 of the guard electrode consists of a circular ring extending around the electrodes 5 and having auxiliary electrodes 7.2 radially inwardly projecting.
- the vibrating member is first vibrated by applying an AC amplitude control signal.
- the vibration can not be obtained by a signal at a frequency twice the resonant frequency of the vibrating member 1.
- the amplitude control signal is therefore applied to the resonant frequency.
- the amplitude control signal is applied so that vibration of the vibrating member is oriented so that a vibration node is facing an interval between two electrodes.
- the AC amplitude control signal is modally applied in quadrature to at least two electrodes.
- the AC amplitude control signal is applied in phase to at least two electrodes at 45 ° to each other, for example to the electrodes 5.1 and 5.2.
- the resulting vibration then has a belly opposite the gap between the electrodes 5.1 and 5.2 as illustrated by a thick double arrow in the figure.
- Corresponding stomachs appear in the intervals between electrodes 5.3 and 5.4, 5.5 and 5.6, 5.7 and 5.8.
- Simultaneously nodes are formed in the intervals between the electrodes 5.2 and 5.3, 5.4 and 5.5, 5.6 and 5.7, 5.8 and 5.1, as illustrated by small circles in thick lines on the figure 2 .
- the diametrically opposed electrodes i.e. the electrodes 5.5 and 5.6 in the example described above, are also powered with the same amplitude control signal.
- the vibration thus oriented therefore has a non-zero amplitude with respect to each main electrode 5.
- the same position of the vibration can also be obtained by feeding the electrode 5.2 or the electrodes 5.2 and 5.6 with a signal CA, and the electrode 5.3 or the electrodes 5.3 and 5.7 with a signal -CA (ie say in opposition of phase).
- the dynamics can be further increased by simultaneously supplying the eight main electrodes 5.
- the electrodes 5.1, 5.2, 5.5 and 5.6 are supplied with a signal CA, and the electrodes 5.3, 5.4, 5.7 and 5.8 with a signal -CA.
- the amplitude control is switched to a maintenance phase in which the AC amplitude control signal is applied at a frequency twice the frequency of the amplifier. resonance.
- the control signal can then be applied either to the electrodes 5 or to the metallized layer 2 of the bell 1. Indeed, at this frequency, the gap variation with respect to the electrodes is sufficient to generate electrostatic forces that maintain the vibration, even in the case where a same control signal is applied to all the electrodes 5 or in the case where a single amplitude control signal is applied to the bell.
- this precession control CP is applied to maintain the orientation of the vibration despite the movements of the equipment on which the resonator is mounted.
- this precession control CP the amplitude of which is moreover calculated in a known manner in itself, is applied at a double frequency of the resonant frequency, on the control electrodes with the appropriate sign to maintain the vibration in a stable orientation.
- the quadrature control CQ is preferably applied according to the invention according to a continuous signal whose amplitude is calculated in a manner known per se to cancel the drift of the resonator.
- the quadrature control is applied appropriately depending on the electrodes used for the application of this command.
- a CA - CP - CQ signal is applied to the electrode 5.1 while a AC + CP + CQ signal is applied to electrode 5.2.
- the dynamics can be increased by respectively applying the same signals to the electrodes 5.5 and 5.6.
- the signal CA - CP - CQ is applied to the electrodes 5.1, 5.3, 5.5 and 5.7 and the signal CA + CP + CQ is simultaneously applied to the electrodes 5.2, 5.4, 5.6, and 5.8 .
- the AC amplitude control signal is applied to the bell, this component is removed from the signal applied to the control electrodes.
- the two parts 6.1 and 6.2 of the guard electrode are connected to the ground in order to perform the usual functions of reducing crosstalk between the electrodes.
- the other electrodes are available to effect the detection of the modified vibration in order to calculate the precession control and the speed of rotation of the resonator. Only one electrode can be used to this reception. However, for a better dynamic, at least two electrodes, and preferably four electrodes, are used for reception.
- the measurement of the amplitude of the vibration can be carried out by one of the combinations D5.3 + D5.4, D5.3 + D5.7, D5.4 + D5.8, D5. 3 + D5.8, D5.4 + D5.7 or D5.3 + D5.4 + D5.7 + D5.8.
- the measurement of the amplitude can be carried out on the eight electrodes 5 by the combination D5.1 + D5.2 + D5.5 + D5.6 - D5.3 - D5.4 - D5.7 - D5.8.
- the servo error can be measured by one of the combinations D5.3 - D5.4, D5.3 - D5.8, D5.7 - D5.4 or D5.3 - D5.4 + D5. 7 - D5.8.
- the precession control is suppressed but the resonator can also be implemented in the same way as in the gyro mode.
- the orientation of the vibration is no longer fixed and is a function of the movements to which the resonator is subjected.
- the position of the nodes changes according to the movement of the resonator, so that at certain times, the position of a node coincides with the center of an electrode and in the case of a continuous quadrature control signal. , it is no longer subject to intermodulation due to an absence of gap variation.
- the guard electrode is used to apply quadrature control to electrodes that are not facing a vibration node.
- the main electrodes used are electrodes 5.1, 5.2, 5.5 and 5.6.
- the CA - CQ signal is applied to the electrodes 5.1 and 5.5 while the CA + CQ signal is applied to the electrodes 5.2 and 5.6.
- the node that was initially between the electrodes 5.2 and 5.3 moves until the node is near the middle of the electrode 5.2. In this situation the quadrature control applied to the electrode 5.2 loses is efficiency.
- the signal CA - CQ is switched on the part 6.1 of the guard electrode and the signal CA + CQ on the part 6.2 of the guard electrode.
- the node that faces the electrode 5.2 is then halfway between the electrodes 7.1 and 7.2 respectively subjected to the signals CA - CQ and CA + CQ.
- the air gap facing the electrodes 7.1 and 7.2 is therefore variable so that the quadrature control is subject to intermodulation.
- the quadrature control thus finds its full effectiveness.
- the control signals are thus alternately applied to the main electrodes 5 and the secondary electrodes 7 as the vibration is rotated in order to maintain the vibration nodes between the electrodes to which the quadrature control signal is applied.
- the increase in the number of electrodes to which the control signals are applied makes it possible to increase the dynamics and therefore the accuracy of operation. Furthermore, in the resonators used in the space domain it is not possible to switch the electrodes between a control function and a detection function. For an implementation in this field it is therefore usually necessary to assign half of the main electrodes to the control and the other half to the detection.
- the amplitude control is applied to the bell at a frequency twice the resonant frequency.
- the continuous quadrature control signal -CQ is applied to the main electrodes 5.1, 5.3, 5.5 and 5.7 while the continuous quadrature control signal CQ is applied to the main electrodes 5.2, 5.4, 5.6 and 5.8.
- each of the main and auxiliary electrodes is connected to a detection element which, in a manner known per se, is a charge amplifier, that is to say an operational amplifier comprising a capacitor disposed between the inverting input connected to an electrode of the resonator and the output of the amplifier.
- the quadrature control signal is applied to the non-inverting input and is added to the detection signal. Since the quadrature control signal is a known and continuous voltage, it is easy to subtract this signal to obtain the detection signal alone. It should be noted in this regard that two electrodes diametrically opposite can be connected in parallel to the same charge amplifier.
- the quadrature control is alternately applied to the main electrodes and to the auxiliary electrodes as previously indicated.
- eleven connections are required to be able to apply the control signal to eight electrodes and to collect the detection signal on eight electrodes.
- the gain of the detectors it is possible to calibrate the gain of the detectors so that it is the same in two ways in quadrature.
- an analysis of the vibration is performed at a frequency twice the resonance frequency for modally quadrature electrodes when a vibration node is facing them.
- This calibration can be performed either in an initialization phase by applying a precession command to place a vibration node successively opposite each of the electrodes, or by performing a calibration measurement whenever the vibration is detected in a position for which a vibration node is facing an electrode.
- the vibration is first oriented so that a vibration node is facing the electrodes 5.2, 5.6, 5.4 and 5.8, the electrodes 5.2 and 5.6 being connected in parallel with each other.
- a demodulation of the vibration at a frequency twice the resonance frequency makes it possible to determine the gains G1 and G2.
- the vibration is then oriented so that a vibration node is facing electrodes 5.1, 5.3, 5.5 and 5.7.
- the gains G3 and G4 of the charge amplifiers associated with each pair of electrodes are determined.
- the coefficient k is then applied during the demodulated detection at the resonant frequency.
- the amplitude control signal can be applied to the resonance frequency.
- the amplitude control is applied so that the vibration obtained has nodes between the electrodes, which makes it possible to obtain large air gap variations with respect to the electrodes and therefore a maximum intermodulation between the variations of the electrodes.
- gap and continuous control signals or control signals at a frequency twice the resonant frequency can also be implemented with a lower dynamic by generating the vibration in a conventional manner so that the vibration has knots and bellies facing the electrodes. This loss of dynamics will then have to be compensated by more powerful control electronics and detection electronics.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Claims (13)
- Verfahren zum Betrieb eines Resonators im gyrometrischen Modus, wobei der Resonator ein Schwingelement (1) umfasst, das dazu geeignet ist, unter der Wirkung von elektrostatischen Kräften, die von Elektroden erzeugt werden, die gegenüber einem Abschnitt des Schwingelements angeordnet sind, mit einer Resonanzfrequenz in Schwingung versetzt zu werden, wobei das Verfahren die Schritte umfasst: Erregen des Schwingelements mittels einer Kombination aus Steuersignalen, die ein Amplitudensteuersignal (CA), ein Präzessionssteuersignal (CP) und ein Quadratursteuersignal (CQ) umfasst, die amplitudenmoduliert sind, Messen einer Schwingung des Schwingelements und Demodulieren der Schwingung mit der Resonanzfrequenz des Schwingelements, dadurch gekennzeichnet, dass das Präzessionssteuersignal (CP) mit einer doppelten Frequenz der Resonanzfrequenz angelegt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in einer Phase des In-Schwingung-Versetzens das Amplitudensteuersignal (CA) mit der Resonanzfrequenz des Schwingelements angelegt wird und in einer Beetriebsphase das Amplitudensteuersignal (CA) mit einer doppelten Frequenz der Resonanzfrequenz angelegt wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass in der Betriebsphase das Amplitudensteuersignal (CA) an mindestens einer Hälfte der Elektroden angelegt wird, die auf symmetrische Weise relativ zum Schwingelement verteilt sind, oder am Schwingelement selbst.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Amplitudensteuersignal (CA) derart angelegt wird, dass die Schwingung des Schwingelements derart ausgerichtet ist, dass sich ein Schwingungsknoten gegenüber jedem Intervall zwischen zwei Elektroden befindet.
- Verfahren nach Anspruch 3 und Anspruch 4, in Kombination genommen, dadurch gekennzeichnet, dass mindestens während der Phase des In-Schwingung-Versetzens das Amplitudensteuersignal (CA) an mindestens zwei Elektroden angelegt wird, die zueinander modal um 90° phasenverschoben sind.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Quadratursteuersignal (CQ) ein kontinuierliches Signal ist, das an Elektroden angelegt wird, die dem Amplitudensteuersignal (CA) und dem Präzessionssteuersignal (CP) gemeinsam sind.
- Verfahren zum Betreiben eines Resonators im gyroskopischen Modus, wobei der Resonator ein Schwingelement (1) umfasst, das dazu geeignet ist, unter der Wirkung von elektrostatischen Kräften, die von Elektroden erzeugt werden, die gegenüber einem Abschnitt des Schwingelements angeordnet sind, mit einer Resonanzfrequenz in Schwingung versetzt zu werden, wobei das Verfahren die Schritte umfasst: Erregen des Schwingelements mittels einer Kombination von Steuersignalen, die in einer Betriebsphase ein Amplitudensteuersignal (CA) mit einer doppelten Frequenz der Resonanzfrequenz des Schwingelements und ein kontinuierliches Quadratursteuersignal (CQ) umfasst, die beide amplitudenmoduliert sind, Messen einer Schwingung des Schwingelements und Demodulieren der Schwingung mit der Resonanzfrequenz des Schwingelements, dadurch gekennzeichnet, dass die Amplitudensteuersignale und die Quadratursteuersignale um 90° phasenverschoben an den gemeinsamen Elektroden angelegt werden.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Amplitudensteuersignal (CA) an mindestens der Hälfte der auf symmetrische Weise verteilten Elektroden angelegt wird.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Quadratursteuersignal an Elektroden angelegt wird, die einen Schwingungsknoten einrahmen.
- Verfahren zum Betreiben eines Resonators im gyroskopischen Modus, wobei der Resonator ein Schwingelement (1) umfasst, das dazu geeignet ist, mit einer Resonanzfrequenz in Schwingung versetzt zu werden, mittels einer Kombination von Steuersignalen, die in einer Betriebsphase ein Amplitudensteuersignal (CA) mit einer doppelten Frequenz der Resonanzfrequenz des Schwingelements und ein kontinuierliches Quadratursteuersignal (CQ) umfassen, die beide amplitudenmoduliert sind, dadurch gekennzeichnet, dass das Verfahren die Schritte umfasst: Anlegen des Amplitudensteuersignals an dem Schwingungselement selbst, Anlegen des Quadratursteuersignals an den Elektroden, die gegenüber dem Schwingelement angeordnet sind, und gleichzeitiges Erfassen einer Schwingung des Schwingelements an genau diesen Elektroden.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Quadratursteuersignal an Elektroden angelegt wird, die einen Schwingungsknoten des Schwingelements einrahmen.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Quadratursteuersignal abwechselnd an zwei Elektrodengruppen angelegt wird, die ineinander verschachtelt sind.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein Ausgleich der Detektionsverstärkung der um 90° phasenverschobenen Elektroden durch eine Analyse der Schwingung bei doppelter Frequenz der Resonanzfrequenz erfolgt, um die realen Detektionsverstärkungen zu bestimmen, und Berechnung eines Ausgleichskoeffizienten.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0301383A FR2851041B1 (fr) | 2003-02-06 | 2003-02-06 | Procede de mise en oeuvre d'un resonateur sous l'effet de forces electrostatiques |
FR0301383 | 2003-02-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1445580A1 EP1445580A1 (de) | 2004-08-11 |
EP1445580B1 true EP1445580B1 (de) | 2010-03-10 |
Family
ID=32606007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04290137A Expired - Lifetime EP1445580B1 (de) | 2003-02-06 | 2004-01-20 | Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb |
Country Status (6)
Country | Link |
---|---|
US (3) | US7010977B2 (de) |
EP (1) | EP1445580B1 (de) |
AT (1) | ATE460643T1 (de) |
DE (1) | DE602004025871D1 (de) |
FR (1) | FR2851041B1 (de) |
SG (1) | SG135941A1 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2904870B1 (fr) * | 2006-08-09 | 2008-10-03 | Sagem Defense Securite | Procede d'alignement d'une centrale inertielle a capteur vibrant axisymetrique et centrale inertielle correspondante |
US7660662B2 (en) | 2006-12-28 | 2010-02-09 | Detroit Diesel Corporation | Fault code memory administrator with a driving cycle state machine concept |
FR2920224B1 (fr) * | 2007-08-23 | 2009-10-02 | Sagem Defense Securite | Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede |
US8186219B2 (en) | 2007-08-23 | 2012-05-29 | Sagem Defense Securite | Method of determining a speed of rotation of an axially symmetrical vibrating sensor, and a corresponding inertial device |
FR2932192B1 (fr) * | 2008-06-09 | 2011-01-21 | Sagem Defense Securite | Procede de metallisation d'une calotte vibrante et capteur vibrant obtenu |
FR2932563B1 (fr) * | 2008-06-13 | 2010-06-18 | Sagem Defense Securite | Capteur de rotation inertiel a derive compensee. |
FR2936049B1 (fr) * | 2008-09-16 | 2010-09-17 | Sagem Defense Securite | Resonateur a metallisation partielle pour detecteur de parametre angulaire. |
FR2940425B1 (fr) * | 2008-12-23 | 2011-01-14 | Sagem Defense Securite | Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede. |
FR2945342B1 (fr) * | 2009-05-07 | 2011-05-20 | Sagem Defense Securite | Capteur vibrant a deux voies activees en sequence |
FR2952428B1 (fr) * | 2009-11-12 | 2011-12-16 | Sagem Defense Securite | Capteur inertiel |
FR2952426B1 (fr) * | 2009-11-12 | 2012-10-05 | Sagem Defense Securite | Resonateur a couche metallisee partielle |
FR2952427B1 (fr) * | 2009-11-12 | 2012-02-24 | Sagem Defense Securite | Resonateur comportant une couche de passivation, capteur vibrant comportant un tel resonateur et procede de fabrication |
FR2958030B1 (fr) * | 2010-03-23 | 2012-04-20 | Sagem Defense Securite | Procede et dispositif de mesure angulaire avec compensation de non linearites |
FR2958029B1 (fr) * | 2010-03-23 | 2012-04-20 | Sagem Defense Securite | Procede de mesure angulaire au moyen d'un capteur vibrant auquel sont appliquees des commandes modulees |
FR2960635B1 (fr) * | 2010-05-26 | 2012-05-18 | Sagem Defense Securite | Capteur de rotation inertiel a structure simple |
CN103712611B (zh) * | 2012-09-29 | 2016-05-11 | 中国科学院沈阳自动化研究所 | 一种陀螺进动控制装置及方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4079630A (en) * | 1976-11-22 | 1978-03-21 | The Singer Company | Ellipticity control system for angular displacement sensor |
US4951508A (en) * | 1983-10-31 | 1990-08-28 | General Motors Corporation | Vibratory rotation sensor |
US5616864A (en) * | 1995-02-22 | 1997-04-01 | Delco Electronics Corp. | Method and apparatus for compensation of micromachined sensors |
US5652374A (en) * | 1995-07-10 | 1997-07-29 | Delco Electronics Corp. | Method and apparatus for detecting failure in vibrating sensors |
FR2749394B1 (fr) * | 1996-05-29 | 1998-08-07 | Sagem | Appareil de mesure de rotation |
FR2755227B1 (fr) * | 1996-10-31 | 1998-12-31 | Sagem | Appareil de mesure de rotation a resonateur mecanique vibrant |
US5760304A (en) * | 1997-02-18 | 1998-06-02 | Litton Systems, Inc. | Vibratory rotation sensor with AC forcing voltages |
US5850041A (en) * | 1997-03-21 | 1998-12-15 | Litton Systems, Inc. | Vibratory rotation sensor with AC forcing and sensing electronics |
DE19835578A1 (de) * | 1998-08-06 | 2000-02-10 | Bosch Gmbh Robert | Vorrichtung zur Ermittlung einer Drehrate |
US6158282A (en) * | 1999-07-07 | 2000-12-12 | Litton Systems Inc. | Extraction of double-oscillation-frequency sinusoids in vibratory rotation sensors |
GB0001294D0 (en) * | 2000-01-20 | 2000-03-08 | British Aerospace | Multi-axis sensing device |
GB0008365D0 (en) * | 2000-04-06 | 2000-05-24 | British Aerospace | Control syste for a vibrating structure gyroscope |
US6647785B2 (en) * | 2001-07-27 | 2003-11-18 | Litton Systems, Inc. | Nuclear radiation hard high accuracy rotation sensor system |
-
2003
- 2003-02-06 FR FR0301383A patent/FR2851041B1/fr not_active Expired - Fee Related
-
2004
- 2004-01-20 DE DE602004025871T patent/DE602004025871D1/de not_active Expired - Lifetime
- 2004-01-20 AT AT04290137T patent/ATE460643T1/de not_active IP Right Cessation
- 2004-01-20 EP EP04290137A patent/EP1445580B1/de not_active Expired - Lifetime
- 2004-02-02 US US10/768,164 patent/US7010977B2/en not_active Expired - Lifetime
- 2004-02-04 SG SG200400541-9A patent/SG135941A1/en unknown
-
2005
- 2005-12-21 US US11/312,427 patent/US7127947B2/en not_active Expired - Lifetime
- 2005-12-21 US US11/312,426 patent/US7127946B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1445580A1 (de) | 2004-08-11 |
US7127947B2 (en) | 2006-10-31 |
US20040154399A1 (en) | 2004-08-12 |
ATE460643T1 (de) | 2010-03-15 |
US7010977B2 (en) | 2006-03-14 |
DE602004025871D1 (de) | 2010-04-22 |
US20060096376A1 (en) | 2006-05-11 |
SG135941A1 (en) | 2007-10-29 |
FR2851041A1 (fr) | 2004-08-13 |
US7127946B2 (en) | 2006-10-31 |
US20060096375A1 (en) | 2006-05-11 |
FR2851041B1 (fr) | 2005-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1445580B1 (de) | Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb | |
EP2936056B1 (de) | Gyroskop mit vereinfachter kalibrierung und vereinfachtes kalibrierverfahren für ein gyroskop | |
CA2335763C (fr) | Capteur gyroscopique et appareil de mesure de rotation en comportant application | |
EP2181305B1 (de) | Verfahren zur bestimmung der drehzahl eines achsensymmetrischen vibrierenden sensors und trägheitsvorrichtung zur anwendung dieses verfahrens | |
FR2889586B1 (fr) | Gyroscope a masse vibratoire et procede pour minimiser les erreurs systematiques d'un tel gyroscope | |
FR2879749A1 (fr) | Capteur micromecanique de vitesse de rotation a suppression d'erreur | |
FR2551552A1 (fr) | Detecteur de vitesse angulaire utilisant deux accelerometres vibrants fixes a un parrallelogramme | |
FR3005160A1 (fr) | Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur | |
FR2910615A1 (fr) | Procede de calibrage du facteur d'echelle d'un gyrometre vibrant axisymetrique | |
FR2904870A1 (fr) | Procede d'alignement d'une centrale inertielle a capteur vibrant axisymetrique et centrale inertielle correspondante | |
EP2620751A1 (de) | Messvorrichtung mit Resonanzsensoren | |
CA2740529A1 (fr) | Mesure gyroscopique par un gyroscope vibrant | |
FR2800869A1 (fr) | Gyroscope a resonateur hemispherique et procede correspondant | |
EP1445581B1 (de) | Hemisphärischer Resonator mit zweiteiliger Schutzelektrode | |
FR2735869A1 (fr) | Dispositif et procede de mesure de vitesse angulaire | |
FR2892504A1 (fr) | Procedes et systemes utilisant des frequences intermediaires pour commander plusieurs gyroscopes | |
EP2232273B1 (de) | Verfahren zum korrigieren der verstärkung einer kapazitiven einheit und vorrichtung zu dessen umsetzung | |
FR2945342A1 (fr) | Capteur vibrant a deux voies activees en sequence | |
EP3615889A1 (de) | Resonator mit konfiguration zur integration in einen trägheitswinkelsensor | |
WO2022058303A1 (fr) | Capteur vibrant avec unité d'hybridation | |
FR2940425A1 (fr) | Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede. | |
FR3115101A1 (fr) | Procédé de calibration de l’écart de raideur et/ou de la quadrature d’un capteur inertiel vibrant | |
FR3120121A1 (fr) | Procédé de correction de la mesure d'un capteur inertiel angulaire vibrant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050107 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAGEM DEFENSE SECURITE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004025871 Country of ref document: DE Date of ref document: 20100422 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100621 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100611 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100610 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100712 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 |
|
26N | No opposition filed |
Effective date: 20101213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101230 Year of fee payment: 8 Ref country code: SE Payment date: 20101224 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: SAGEM DEFENSE SECURITE Free format text: SAGEM DEFENSE SECURITE#SOCIETE ANONYME LE PONANT DE PARIS 27, RUE LEBLANC#75015 PARIS (FR) -TRANSFER TO- SAGEM DEFENSE SECURITE#SOCIETE ANONYME LE PONANT DE PARIS 27, RUE LEBLANC#75015 PARIS (FR) |
|
BERE | Be: lapsed |
Owner name: SAGEM DEFENSE SECURITE Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20111223 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 460643 Country of ref document: AT Kind code of ref document: T Effective date: 20110120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20111220 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110120 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20131223 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602004025871 Country of ref document: DE Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602004025871 Country of ref document: DE Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602004025871 Country of ref document: DE Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN ELECTRONICS & DEFENSE, FR Effective date: 20170111 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20221220 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004025871 Country of ref document: DE |