EP1445580B1 - Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb - Google Patents

Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb Download PDF

Info

Publication number
EP1445580B1
EP1445580B1 EP04290137A EP04290137A EP1445580B1 EP 1445580 B1 EP1445580 B1 EP 1445580B1 EP 04290137 A EP04290137 A EP 04290137A EP 04290137 A EP04290137 A EP 04290137A EP 1445580 B1 EP1445580 B1 EP 1445580B1
Authority
EP
European Patent Office
Prior art keywords
control signal
electrodes
vibration
vibrating member
quadrature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04290137A
Other languages
English (en)
French (fr)
Other versions
EP1445580A1 (de
Inventor
Alain Renault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Sagem Defense Securite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite SA filed Critical Sagem Defense Securite SA
Publication of EP1445580A1 publication Critical patent/EP1445580A1/de
Application granted granted Critical
Publication of EP1445580B1 publication Critical patent/EP1445580B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5691Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators

Definitions

  • the present invention relates to a method of implementing an electrostatic resonator for use as an inertial rotation sensor.
  • electrostatic resonators comprising a metallized bell-shaped vibrating member adapted to be vibrated at a resonant frequency under the effect of electrostatic forces generated by electrodes disposed opposite a portion of the vibrating member.
  • the resonator is adapted to operate in gyrometric mode or in gyro mode.
  • the vibrating member is excited by means of a combination of control signals applied to the resonant frequency of the vibrating member and modulated to provide an amplitude control signal, a precession control signal. and a quadrature control signal, these control signals being applied so that a measure of the vibration of the vibrating member and a demodulation of that vibration at the resonant frequency of the vibrating member allow by appropriate equations of determine the rotational speed at which the resonator is subjected.
  • An object of the invention is to provide a method of implementing an electrostatic vibrating resonator operating with high accuracy preferably using a reduced number of electrodes and connections of these electrodes.
  • a method for implementing a resonator in a gyrometric mode having a vibrating member adapted to be vibrated at a resonant frequency under the effect of electrostatic forces generated by electrodes disposed opposite a portion of the vibrating member, the method comprising the steps of exciting the organ vibrating by means of a combination of control signals comprising an amplitude control signal, a precession control signal and an amplitude modulated quadrature control signal, to measure a vibration of the vibrating member and to demodulate the vibration at the resonance frequency of the vibrating member, the precession control signal being applied at a frequency twice the resonant frequency.
  • the amplitude control signal is applied at a double frequency of the resonant frequency in a maintenance phase of the vibration of the vibrating organ.
  • the quadrature control signal is applied as a continuous signal on common electrodes with the amplitude control signal.
  • the electrostatic forces resulting from the quadrature control are the consequence of an intermodulation resulting from the gap variation with respect to the electrodes.
  • the amplitude control signal is preferably applied so that the vibration of the vibrating member is oriented so that a vibration node faces an interval between two electrodes. The portion of the vibrating member facing an electrode is then subjected to a non-zero air gap variation that provides a strong intermodulation and consequently the best measurement accuracy.
  • the amplitude control at a double frequency of the resonant frequency is applied to the vibrating member itself and the quadrature control is applied to electrodes that are simultaneously assigned to a detection. This results in increased dynamics improving the accuracy of the measurement with a minimum of connections.
  • the resonator has been shown on a very enlarged scale and by exaggerating the thicknesses of the electrodes and air gaps.
  • the resonator comprises in known manner a hemispherical vibrating member 1, for example a bell made of silica and fixed by a rod 4 to a base 3.
  • the inner surface of the bell 1 and the edge of the latter and the rod 4 are covered with a layer of metal 2.
  • the base 3 carries the main electrodes designated by the general reference numeral 5 and the special reference numerals 5.1, 5.2 ..., 5.8 to identify them individually.
  • the electrodes 5 extend opposite the edge of the vibrating member 1.
  • the resonator further comprises a guard electrode generally designated 6, divided into two parts 6.1 and 6.2 each comprising four auxiliary electrodes, bearing the general reference numeral 7, and the particular reference numerals 7.1 for the electrodes auxiliaries of Part 6.1, and 7.2 for auxiliary electrodes in Part 6.2.
  • the electrodes 7.1 and 7.2 extend alternately between the electrodes 5.
  • the part 6.1 of the guard electrode consists of a central disk from which the auxiliary electrodes 7.1 extend radially outwards while the part 6.2 of the guard electrode consists of a circular ring extending around the electrodes 5 and having auxiliary electrodes 7.2 radially inwardly projecting.
  • the vibrating member is first vibrated by applying an AC amplitude control signal.
  • the vibration can not be obtained by a signal at a frequency twice the resonant frequency of the vibrating member 1.
  • the amplitude control signal is therefore applied to the resonant frequency.
  • the amplitude control signal is applied so that vibration of the vibrating member is oriented so that a vibration node is facing an interval between two electrodes.
  • the AC amplitude control signal is modally applied in quadrature to at least two electrodes.
  • the AC amplitude control signal is applied in phase to at least two electrodes at 45 ° to each other, for example to the electrodes 5.1 and 5.2.
  • the resulting vibration then has a belly opposite the gap between the electrodes 5.1 and 5.2 as illustrated by a thick double arrow in the figure.
  • Corresponding stomachs appear in the intervals between electrodes 5.3 and 5.4, 5.5 and 5.6, 5.7 and 5.8.
  • Simultaneously nodes are formed in the intervals between the electrodes 5.2 and 5.3, 5.4 and 5.5, 5.6 and 5.7, 5.8 and 5.1, as illustrated by small circles in thick lines on the figure 2 .
  • the diametrically opposed electrodes i.e. the electrodes 5.5 and 5.6 in the example described above, are also powered with the same amplitude control signal.
  • the vibration thus oriented therefore has a non-zero amplitude with respect to each main electrode 5.
  • the same position of the vibration can also be obtained by feeding the electrode 5.2 or the electrodes 5.2 and 5.6 with a signal CA, and the electrode 5.3 or the electrodes 5.3 and 5.7 with a signal -CA (ie say in opposition of phase).
  • the dynamics can be further increased by simultaneously supplying the eight main electrodes 5.
  • the electrodes 5.1, 5.2, 5.5 and 5.6 are supplied with a signal CA, and the electrodes 5.3, 5.4, 5.7 and 5.8 with a signal -CA.
  • the amplitude control is switched to a maintenance phase in which the AC amplitude control signal is applied at a frequency twice the frequency of the amplifier. resonance.
  • the control signal can then be applied either to the electrodes 5 or to the metallized layer 2 of the bell 1. Indeed, at this frequency, the gap variation with respect to the electrodes is sufficient to generate electrostatic forces that maintain the vibration, even in the case where a same control signal is applied to all the electrodes 5 or in the case where a single amplitude control signal is applied to the bell.
  • this precession control CP is applied to maintain the orientation of the vibration despite the movements of the equipment on which the resonator is mounted.
  • this precession control CP the amplitude of which is moreover calculated in a known manner in itself, is applied at a double frequency of the resonant frequency, on the control electrodes with the appropriate sign to maintain the vibration in a stable orientation.
  • the quadrature control CQ is preferably applied according to the invention according to a continuous signal whose amplitude is calculated in a manner known per se to cancel the drift of the resonator.
  • the quadrature control is applied appropriately depending on the electrodes used for the application of this command.
  • a CA - CP - CQ signal is applied to the electrode 5.1 while a AC + CP + CQ signal is applied to electrode 5.2.
  • the dynamics can be increased by respectively applying the same signals to the electrodes 5.5 and 5.6.
  • the signal CA - CP - CQ is applied to the electrodes 5.1, 5.3, 5.5 and 5.7 and the signal CA + CP + CQ is simultaneously applied to the electrodes 5.2, 5.4, 5.6, and 5.8 .
  • the AC amplitude control signal is applied to the bell, this component is removed from the signal applied to the control electrodes.
  • the two parts 6.1 and 6.2 of the guard electrode are connected to the ground in order to perform the usual functions of reducing crosstalk between the electrodes.
  • the other electrodes are available to effect the detection of the modified vibration in order to calculate the precession control and the speed of rotation of the resonator. Only one electrode can be used to this reception. However, for a better dynamic, at least two electrodes, and preferably four electrodes, are used for reception.
  • the measurement of the amplitude of the vibration can be carried out by one of the combinations D5.3 + D5.4, D5.3 + D5.7, D5.4 + D5.8, D5. 3 + D5.8, D5.4 + D5.7 or D5.3 + D5.4 + D5.7 + D5.8.
  • the measurement of the amplitude can be carried out on the eight electrodes 5 by the combination D5.1 + D5.2 + D5.5 + D5.6 - D5.3 - D5.4 - D5.7 - D5.8.
  • the servo error can be measured by one of the combinations D5.3 - D5.4, D5.3 - D5.8, D5.7 - D5.4 or D5.3 - D5.4 + D5. 7 - D5.8.
  • the precession control is suppressed but the resonator can also be implemented in the same way as in the gyro mode.
  • the orientation of the vibration is no longer fixed and is a function of the movements to which the resonator is subjected.
  • the position of the nodes changes according to the movement of the resonator, so that at certain times, the position of a node coincides with the center of an electrode and in the case of a continuous quadrature control signal. , it is no longer subject to intermodulation due to an absence of gap variation.
  • the guard electrode is used to apply quadrature control to electrodes that are not facing a vibration node.
  • the main electrodes used are electrodes 5.1, 5.2, 5.5 and 5.6.
  • the CA - CQ signal is applied to the electrodes 5.1 and 5.5 while the CA + CQ signal is applied to the electrodes 5.2 and 5.6.
  • the node that was initially between the electrodes 5.2 and 5.3 moves until the node is near the middle of the electrode 5.2. In this situation the quadrature control applied to the electrode 5.2 loses is efficiency.
  • the signal CA - CQ is switched on the part 6.1 of the guard electrode and the signal CA + CQ on the part 6.2 of the guard electrode.
  • the node that faces the electrode 5.2 is then halfway between the electrodes 7.1 and 7.2 respectively subjected to the signals CA - CQ and CA + CQ.
  • the air gap facing the electrodes 7.1 and 7.2 is therefore variable so that the quadrature control is subject to intermodulation.
  • the quadrature control thus finds its full effectiveness.
  • the control signals are thus alternately applied to the main electrodes 5 and the secondary electrodes 7 as the vibration is rotated in order to maintain the vibration nodes between the electrodes to which the quadrature control signal is applied.
  • the increase in the number of electrodes to which the control signals are applied makes it possible to increase the dynamics and therefore the accuracy of operation. Furthermore, in the resonators used in the space domain it is not possible to switch the electrodes between a control function and a detection function. For an implementation in this field it is therefore usually necessary to assign half of the main electrodes to the control and the other half to the detection.
  • the amplitude control is applied to the bell at a frequency twice the resonant frequency.
  • the continuous quadrature control signal -CQ is applied to the main electrodes 5.1, 5.3, 5.5 and 5.7 while the continuous quadrature control signal CQ is applied to the main electrodes 5.2, 5.4, 5.6 and 5.8.
  • each of the main and auxiliary electrodes is connected to a detection element which, in a manner known per se, is a charge amplifier, that is to say an operational amplifier comprising a capacitor disposed between the inverting input connected to an electrode of the resonator and the output of the amplifier.
  • the quadrature control signal is applied to the non-inverting input and is added to the detection signal. Since the quadrature control signal is a known and continuous voltage, it is easy to subtract this signal to obtain the detection signal alone. It should be noted in this regard that two electrodes diametrically opposite can be connected in parallel to the same charge amplifier.
  • the quadrature control is alternately applied to the main electrodes and to the auxiliary electrodes as previously indicated.
  • eleven connections are required to be able to apply the control signal to eight electrodes and to collect the detection signal on eight electrodes.
  • the gain of the detectors it is possible to calibrate the gain of the detectors so that it is the same in two ways in quadrature.
  • an analysis of the vibration is performed at a frequency twice the resonance frequency for modally quadrature electrodes when a vibration node is facing them.
  • This calibration can be performed either in an initialization phase by applying a precession command to place a vibration node successively opposite each of the electrodes, or by performing a calibration measurement whenever the vibration is detected in a position for which a vibration node is facing an electrode.
  • the vibration is first oriented so that a vibration node is facing the electrodes 5.2, 5.6, 5.4 and 5.8, the electrodes 5.2 and 5.6 being connected in parallel with each other.
  • a demodulation of the vibration at a frequency twice the resonance frequency makes it possible to determine the gains G1 and G2.
  • the vibration is then oriented so that a vibration node is facing electrodes 5.1, 5.3, 5.5 and 5.7.
  • the gains G3 and G4 of the charge amplifiers associated with each pair of electrodes are determined.
  • the coefficient k is then applied during the demodulated detection at the resonant frequency.
  • the amplitude control signal can be applied to the resonance frequency.
  • the amplitude control is applied so that the vibration obtained has nodes between the electrodes, which makes it possible to obtain large air gap variations with respect to the electrodes and therefore a maximum intermodulation between the variations of the electrodes.
  • gap and continuous control signals or control signals at a frequency twice the resonant frequency can also be implemented with a lower dynamic by generating the vibration in a conventional manner so that the vibration has knots and bellies facing the electrodes. This loss of dynamics will then have to be compensated by more powerful control electronics and detection electronics.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Claims (13)

  1. Verfahren zum Betrieb eines Resonators im gyrometrischen Modus, wobei der Resonator ein Schwingelement (1) umfasst, das dazu geeignet ist, unter der Wirkung von elektrostatischen Kräften, die von Elektroden erzeugt werden, die gegenüber einem Abschnitt des Schwingelements angeordnet sind, mit einer Resonanzfrequenz in Schwingung versetzt zu werden, wobei das Verfahren die Schritte umfasst: Erregen des Schwingelements mittels einer Kombination aus Steuersignalen, die ein Amplitudensteuersignal (CA), ein Präzessionssteuersignal (CP) und ein Quadratursteuersignal (CQ) umfasst, die amplitudenmoduliert sind, Messen einer Schwingung des Schwingelements und Demodulieren der Schwingung mit der Resonanzfrequenz des Schwingelements, dadurch gekennzeichnet, dass das Präzessionssteuersignal (CP) mit einer doppelten Frequenz der Resonanzfrequenz angelegt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in einer Phase des In-Schwingung-Versetzens das Amplitudensteuersignal (CA) mit der Resonanzfrequenz des Schwingelements angelegt wird und in einer Beetriebsphase das Amplitudensteuersignal (CA) mit einer doppelten Frequenz der Resonanzfrequenz angelegt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass in der Betriebsphase das Amplitudensteuersignal (CA) an mindestens einer Hälfte der Elektroden angelegt wird, die auf symmetrische Weise relativ zum Schwingelement verteilt sind, oder am Schwingelement selbst.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Amplitudensteuersignal (CA) derart angelegt wird, dass die Schwingung des Schwingelements derart ausgerichtet ist, dass sich ein Schwingungsknoten gegenüber jedem Intervall zwischen zwei Elektroden befindet.
  5. Verfahren nach Anspruch 3 und Anspruch 4, in Kombination genommen, dadurch gekennzeichnet, dass mindestens während der Phase des In-Schwingung-Versetzens das Amplitudensteuersignal (CA) an mindestens zwei Elektroden angelegt wird, die zueinander modal um 90° phasenverschoben sind.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Quadratursteuersignal (CQ) ein kontinuierliches Signal ist, das an Elektroden angelegt wird, die dem Amplitudensteuersignal (CA) und dem Präzessionssteuersignal (CP) gemeinsam sind.
  7. Verfahren zum Betreiben eines Resonators im gyroskopischen Modus, wobei der Resonator ein Schwingelement (1) umfasst, das dazu geeignet ist, unter der Wirkung von elektrostatischen Kräften, die von Elektroden erzeugt werden, die gegenüber einem Abschnitt des Schwingelements angeordnet sind, mit einer Resonanzfrequenz in Schwingung versetzt zu werden, wobei das Verfahren die Schritte umfasst: Erregen des Schwingelements mittels einer Kombination von Steuersignalen, die in einer Betriebsphase ein Amplitudensteuersignal (CA) mit einer doppelten Frequenz der Resonanzfrequenz des Schwingelements und ein kontinuierliches Quadratursteuersignal (CQ) umfasst, die beide amplitudenmoduliert sind, Messen einer Schwingung des Schwingelements und Demodulieren der Schwingung mit der Resonanzfrequenz des Schwingelements, dadurch gekennzeichnet, dass die Amplitudensteuersignale und die Quadratursteuersignale um 90° phasenverschoben an den gemeinsamen Elektroden angelegt werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Amplitudensteuersignal (CA) an mindestens der Hälfte der auf symmetrische Weise verteilten Elektroden angelegt wird.
  9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Quadratursteuersignal an Elektroden angelegt wird, die einen Schwingungsknoten einrahmen.
  10. Verfahren zum Betreiben eines Resonators im gyroskopischen Modus, wobei der Resonator ein Schwingelement (1) umfasst, das dazu geeignet ist, mit einer Resonanzfrequenz in Schwingung versetzt zu werden, mittels einer Kombination von Steuersignalen, die in einer Betriebsphase ein Amplitudensteuersignal (CA) mit einer doppelten Frequenz der Resonanzfrequenz des Schwingelements und ein kontinuierliches Quadratursteuersignal (CQ) umfassen, die beide amplitudenmoduliert sind, dadurch gekennzeichnet, dass das Verfahren die Schritte umfasst: Anlegen des Amplitudensteuersignals an dem Schwingungselement selbst, Anlegen des Quadratursteuersignals an den Elektroden, die gegenüber dem Schwingelement angeordnet sind, und gleichzeitiges Erfassen einer Schwingung des Schwingelements an genau diesen Elektroden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Quadratursteuersignal an Elektroden angelegt wird, die einen Schwingungsknoten des Schwingelements einrahmen.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Quadratursteuersignal abwechselnd an zwei Elektrodengruppen angelegt wird, die ineinander verschachtelt sind.
  13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein Ausgleich der Detektionsverstärkung der um 90° phasenverschobenen Elektroden durch eine Analyse der Schwingung bei doppelter Frequenz der Resonanzfrequenz erfolgt, um die realen Detektionsverstärkungen zu bestimmen, und Berechnung eines Ausgleichskoeffizienten.
EP04290137A 2003-02-06 2004-01-20 Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb Expired - Lifetime EP1445580B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0301383A FR2851041B1 (fr) 2003-02-06 2003-02-06 Procede de mise en oeuvre d'un resonateur sous l'effet de forces electrostatiques
FR0301383 2003-02-06

Publications (2)

Publication Number Publication Date
EP1445580A1 EP1445580A1 (de) 2004-08-11
EP1445580B1 true EP1445580B1 (de) 2010-03-10

Family

ID=32606007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04290137A Expired - Lifetime EP1445580B1 (de) 2003-02-06 2004-01-20 Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb

Country Status (6)

Country Link
US (3) US7010977B2 (de)
EP (1) EP1445580B1 (de)
AT (1) ATE460643T1 (de)
DE (1) DE602004025871D1 (de)
FR (1) FR2851041B1 (de)
SG (1) SG135941A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904870B1 (fr) * 2006-08-09 2008-10-03 Sagem Defense Securite Procede d'alignement d'une centrale inertielle a capteur vibrant axisymetrique et centrale inertielle correspondante
US7660662B2 (en) 2006-12-28 2010-02-09 Detroit Diesel Corporation Fault code memory administrator with a driving cycle state machine concept
FR2920224B1 (fr) * 2007-08-23 2009-10-02 Sagem Defense Securite Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede
US8186219B2 (en) 2007-08-23 2012-05-29 Sagem Defense Securite Method of determining a speed of rotation of an axially symmetrical vibrating sensor, and a corresponding inertial device
FR2932192B1 (fr) * 2008-06-09 2011-01-21 Sagem Defense Securite Procede de metallisation d'une calotte vibrante et capteur vibrant obtenu
FR2932563B1 (fr) * 2008-06-13 2010-06-18 Sagem Defense Securite Capteur de rotation inertiel a derive compensee.
FR2936049B1 (fr) * 2008-09-16 2010-09-17 Sagem Defense Securite Resonateur a metallisation partielle pour detecteur de parametre angulaire.
FR2940425B1 (fr) * 2008-12-23 2011-01-14 Sagem Defense Securite Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede.
FR2945342B1 (fr) * 2009-05-07 2011-05-20 Sagem Defense Securite Capteur vibrant a deux voies activees en sequence
FR2952428B1 (fr) * 2009-11-12 2011-12-16 Sagem Defense Securite Capteur inertiel
FR2952426B1 (fr) * 2009-11-12 2012-10-05 Sagem Defense Securite Resonateur a couche metallisee partielle
FR2952427B1 (fr) * 2009-11-12 2012-02-24 Sagem Defense Securite Resonateur comportant une couche de passivation, capteur vibrant comportant un tel resonateur et procede de fabrication
FR2958030B1 (fr) * 2010-03-23 2012-04-20 Sagem Defense Securite Procede et dispositif de mesure angulaire avec compensation de non linearites
FR2958029B1 (fr) * 2010-03-23 2012-04-20 Sagem Defense Securite Procede de mesure angulaire au moyen d'un capteur vibrant auquel sont appliquees des commandes modulees
FR2960635B1 (fr) * 2010-05-26 2012-05-18 Sagem Defense Securite Capteur de rotation inertiel a structure simple
CN103712611B (zh) * 2012-09-29 2016-05-11 中国科学院沈阳自动化研究所 一种陀螺进动控制装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079630A (en) * 1976-11-22 1978-03-21 The Singer Company Ellipticity control system for angular displacement sensor
US4951508A (en) * 1983-10-31 1990-08-28 General Motors Corporation Vibratory rotation sensor
US5616864A (en) * 1995-02-22 1997-04-01 Delco Electronics Corp. Method and apparatus for compensation of micromachined sensors
US5652374A (en) * 1995-07-10 1997-07-29 Delco Electronics Corp. Method and apparatus for detecting failure in vibrating sensors
FR2749394B1 (fr) * 1996-05-29 1998-08-07 Sagem Appareil de mesure de rotation
FR2755227B1 (fr) * 1996-10-31 1998-12-31 Sagem Appareil de mesure de rotation a resonateur mecanique vibrant
US5760304A (en) * 1997-02-18 1998-06-02 Litton Systems, Inc. Vibratory rotation sensor with AC forcing voltages
US5850041A (en) * 1997-03-21 1998-12-15 Litton Systems, Inc. Vibratory rotation sensor with AC forcing and sensing electronics
DE19835578A1 (de) * 1998-08-06 2000-02-10 Bosch Gmbh Robert Vorrichtung zur Ermittlung einer Drehrate
US6158282A (en) * 1999-07-07 2000-12-12 Litton Systems Inc. Extraction of double-oscillation-frequency sinusoids in vibratory rotation sensors
GB0001294D0 (en) * 2000-01-20 2000-03-08 British Aerospace Multi-axis sensing device
GB0008365D0 (en) * 2000-04-06 2000-05-24 British Aerospace Control syste for a vibrating structure gyroscope
US6647785B2 (en) * 2001-07-27 2003-11-18 Litton Systems, Inc. Nuclear radiation hard high accuracy rotation sensor system

Also Published As

Publication number Publication date
EP1445580A1 (de) 2004-08-11
US7127947B2 (en) 2006-10-31
US20040154399A1 (en) 2004-08-12
ATE460643T1 (de) 2010-03-15
US7010977B2 (en) 2006-03-14
DE602004025871D1 (de) 2010-04-22
US20060096376A1 (en) 2006-05-11
SG135941A1 (en) 2007-10-29
FR2851041A1 (fr) 2004-08-13
US7127946B2 (en) 2006-10-31
US20060096375A1 (en) 2006-05-11
FR2851041B1 (fr) 2005-03-18

Similar Documents

Publication Publication Date Title
EP1445580B1 (de) Verfahren zum Betrieb eines Resonators mit elektrostatischem Antrieb
EP2936056B1 (de) Gyroskop mit vereinfachter kalibrierung und vereinfachtes kalibrierverfahren für ein gyroskop
CA2335763C (fr) Capteur gyroscopique et appareil de mesure de rotation en comportant application
EP2181305B1 (de) Verfahren zur bestimmung der drehzahl eines achsensymmetrischen vibrierenden sensors und trägheitsvorrichtung zur anwendung dieses verfahrens
FR2889586B1 (fr) Gyroscope a masse vibratoire et procede pour minimiser les erreurs systematiques d'un tel gyroscope
FR2879749A1 (fr) Capteur micromecanique de vitesse de rotation a suppression d'erreur
FR2551552A1 (fr) Detecteur de vitesse angulaire utilisant deux accelerometres vibrants fixes a un parrallelogramme
FR3005160A1 (fr) Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur
FR2910615A1 (fr) Procede de calibrage du facteur d'echelle d'un gyrometre vibrant axisymetrique
FR2904870A1 (fr) Procede d'alignement d'une centrale inertielle a capteur vibrant axisymetrique et centrale inertielle correspondante
EP2620751A1 (de) Messvorrichtung mit Resonanzsensoren
CA2740529A1 (fr) Mesure gyroscopique par un gyroscope vibrant
FR2800869A1 (fr) Gyroscope a resonateur hemispherique et procede correspondant
EP1445581B1 (de) Hemisphärischer Resonator mit zweiteiliger Schutzelektrode
FR2735869A1 (fr) Dispositif et procede de mesure de vitesse angulaire
FR2892504A1 (fr) Procedes et systemes utilisant des frequences intermediaires pour commander plusieurs gyroscopes
EP2232273B1 (de) Verfahren zum korrigieren der verstärkung einer kapazitiven einheit und vorrichtung zu dessen umsetzung
FR2945342A1 (fr) Capteur vibrant a deux voies activees en sequence
EP3615889A1 (de) Resonator mit konfiguration zur integration in einen trägheitswinkelsensor
WO2022058303A1 (fr) Capteur vibrant avec unité d'hybridation
FR2940425A1 (fr) Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede.
FR3115101A1 (fr) Procédé de calibration de l’écart de raideur et/ou de la quadrature d’un capteur inertiel vibrant
FR3120121A1 (fr) Procédé de correction de la mesure d'un capteur inertiel angulaire vibrant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050107

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM DEFENSE SECURITE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004025871

Country of ref document: DE

Date of ref document: 20100422

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

26N No opposition filed

Effective date: 20101213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101230

Year of fee payment: 8

Ref country code: SE

Payment date: 20101224

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SAGEM DEFENSE SECURITE

Free format text: SAGEM DEFENSE SECURITE#SOCIETE ANONYME LE PONANT DE PARIS 27, RUE LEBLANC#75015 PARIS (FR) -TRANSFER TO- SAGEM DEFENSE SECURITE#SOCIETE ANONYME LE PONANT DE PARIS 27, RUE LEBLANC#75015 PARIS (FR)

BERE Be: lapsed

Owner name: SAGEM DEFENSE SECURITE

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20111223

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 460643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20111220

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131223

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004025871

Country of ref document: DE

Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004025871

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004025871

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN ELECTRONICS & DEFENSE, FR

Effective date: 20170111

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004025871

Country of ref document: DE