EP1443808A2 - Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln - Google Patents

Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln Download PDF

Info

Publication number
EP1443808A2
EP1443808A2 EP03029437A EP03029437A EP1443808A2 EP 1443808 A2 EP1443808 A2 EP 1443808A2 EP 03029437 A EP03029437 A EP 03029437A EP 03029437 A EP03029437 A EP 03029437A EP 1443808 A2 EP1443808 A2 EP 1443808A2
Authority
EP
European Patent Office
Prior art keywords
inverter
frequency
circuit
preheating
discharge lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03029437A
Other languages
English (en)
French (fr)
Other versions
EP1443808A3 (de
EP1443808B1 (de
Inventor
Bernd Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1443808A2 publication Critical patent/EP1443808A2/de
Publication of EP1443808A3 publication Critical patent/EP1443808A3/de
Application granted granted Critical
Publication of EP1443808B1 publication Critical patent/EP1443808B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a circuit arrangement according to the preamble of Claim 1. It is in particular a circuit arrangement that preheating electrode coils before igniting discharge lamps of discharge lamps.
  • Circuit arrangements for starting and operating discharge lamps come in electronic control gear for discharge lamps. Under the start The discharge lamps are subsequently preheated by electrode filaments of the discharge lamps during a preheating phase and the ignition of the discharge lamps understood during an ignition phase.
  • the start of discharge lamps with a preheating and an ignition phase is also used in English Program called start.
  • the ignition phase is followed by an operating phase in which the discharge lamp has an arc discharge.
  • An electronic control gear for discharge lamps with the Start program is required according to the prior art, a circuit arrangement which comprises a control unit, which controls the sequence and sequence of preheating, ignition and operating phases.
  • Circuit arrangements with an inverter which have a matching network Feeds energy into one end of the electrode filaments.
  • the each other ends are connected via a resonance capacitor.
  • the resonance capacitor and a lamp choke are part of a resonant circuit, the one Has resonance frequency, which is in the undamped case at a natural frequency.
  • the matching network is required to match the source resistance of the inverter to transform a source resistance of the operating device that is used to operate Discharge lamps is suitable.
  • the resonant circuit is generally a component of the matching network.
  • the inverter generates an inverter voltage at an inverter output with an inverter frequency that is in a preheating phase at a high Preheating frequency is greater than the natural frequency.
  • the value of the resonance capacitor and the preheating frequency are selected so that there is a heating current through the electrode filaments, which is sufficient for the respective lamp type Preheating causes.
  • the inverter frequency is reduced in an ignition phase, until it is so close to the natural frequency that it is connected to a Discharge lamp sets an ignition voltage that ignites the discharge lamp causes.
  • An operating phase follows the ignition of the discharge lamp.
  • controlled variables such as B. lamp power or lamp current supplied to a controller.
  • the controller acts on the inverter frequency via a manipulated variable in such a way that sets a desired lamp power or lamp current.
  • a control unit is required which is in the correct chronological order sets the required inverter frequency in the respective phases.
  • To the control unit must regulate lamp power or lamp current Deactivate during the preheating and ignition phase as there is an inverter frequency in these phases is required that is not of lamp power or lamp current depends.
  • the present invention enables the above. Saving control unit.
  • the task is essentially solved in that a circuit arrangement was found, which accomplishes a preheating, ignition and operating phase without need a control unit.
  • a circuit arrangement according to the invention has a preheating resistor damping of the resonant circuit during a preheating phase via the electrode coils causes the resonant frequency of the resonant circuit from the Natural frequency is reduced to a damping resonance frequency.
  • the preheating resistor assumes a value that is designed so that the Resonance frequency of the resonance circuit is close to the natural frequency.
  • a controller regulates via a control signal that influences the inverter frequency the lamp current or the lamp power.
  • lamp current denotes the current caused by the gas discharge from connected to lamp terminals Discharge lamps flow.
  • a first controller input (B 1) is fed a first electrical quantity, the corresponds to the lamp current, whereby in the event that there is no gas discharge, the first electrical quantity assumes a starting value and in the event that a gas discharge is present, the first electrical quantity is above a minimum value.
  • the circuit arrangement is designed such that in the event that the first electrical variable takes on the starting value, the controller the inverter to a start frequency that is between the damping resonance frequency and the natural frequency.
  • the start frequency is output as long as the first electrical size is below the minimum value.
  • the circuit arrangement either in the preheating or Starting phase.
  • the type of phase is determined by the value of the preheating resistor.
  • the circuit arrangement is in the preheating phase.
  • the resonance frequency of the resonance circuit is due to the real part of the resistance the electrode coils and the preheating resistor to the damping resonance frequency pressed.
  • the start frequency is above the damping resonance frequency.
  • the offset between the start frequency and the damping resonance frequency, as well as the damping of the resonance circuit cause that to connected Discharge lamps have a voltage that is not necessary for ignition sufficient.
  • the resonance frequency increases of the resonant circuit and approaches the start frequency which the Inverter still outputs.
  • the damping of the Resonant circuit Both effects lead to a change in the circuit arrangement in the ignition phase.
  • Discharge lamps are connected during the ignition phase a voltage whose value is so high that the discharge lamps ignite.
  • the figure shows an embodiment for a circuit arrangement according to the invention for starting and operating discharge lamps.
  • resistors are represented by the letter R, transistors by the Letter T, coil by letter L, amplifier by letter A, Diodes through the letter D, node potentials through the letters N and Capacitors denoted by the letter C followed by a number.
  • a mains voltage can be connected to the connections J1 and J2.
  • the circuit arrangement is operated on a mains voltage.
  • the present invention is not designed to operate on a line voltage bound.
  • a circuit arrangement according to the invention can, for example also operate on a battery voltage.
  • a filter consisting of two capacitors C1, C2 and two coils L1, L2, the mains voltage consisting of a full-bridge rectifier supplied from the diodes D1, D2, D3, D4.
  • the full bridge rectifier starts its positive output, a node N21, with respect to a reference node N0 the rectified mains voltage is ready.
  • circuitry measures for Reduction of mains harmonics necessary.
  • One such measure is the installation of so-called charge pumps.
  • the advantage of charge pumps is that they are small circuitry expenditure, which is necessary for their realization.
  • the topology of a charge pump means that the rectifier has one electronic pump switch is coupled to the main energy storage. Thereby arises between the rectifier and the electronic pump switch Pumping node.
  • the pump node is connected to the inverter output via a pump network coupled.
  • the pump network can contain components that are also the Adaptation network can be assigned.
  • the principle of the charge pump exists in that during a half period of the inverter frequency over the pump node Energy taken from the mains voltage and buffered in the pump network becomes. In the following half period of the inverter frequency is the temporarily stored energy via the electronic pump switch to the main energy storage fed.
  • the rectified mains voltage is via the diodes D5 and D6 two pump nodes N22 and N23 are supplied.
  • the embodiment in the figure therefore has two so-called pump branches. To decouple the pump branches from each other diodes D5 and D6 are necessary. If there is only one pump branch, a Pump nodes are connected directly to the rectifier output, node 21. However, it should be noted that the diodes used in the rectifier can switch fast enough to follow the inverter frequency. If so is not the case, even with only one pump branch, a fast diode must be between Rectifier output and pump node are switched. In the embodiment in Figure 2, the pump nodes are coupled to the positive output of the rectifier. Charge pump topologies are also known from the literature, in which Pump nodes are coupled to the negative output of the rectifier.
  • An electronic pump switch leads from the pump nodes N22 and N23, which are designed as diodes D7 and D8, to node N24. Between N24 and N0 the main energy store, which is designed as an electrolytic capacitor C3, is connected.
  • node N21 is connected to node N24.
  • the components D5, D6, D7, D8, C8, C9, and L4 are then omitted.
  • C3 feeds the inverter, which is designed as a half-bridge.
  • B. flyback converter or full bridge can be used.
  • Advantageous a half bridge is used for lamp powers between 5W and 300W, because it represents the least expensive topology.
  • there is Half bridge from a series connection of two half bridge transistors T1 and T2 and a series connection of two coupling capacitors C4 and C5. Both series connections are connected in parallel to C3.
  • a lamp choke L3 is located between N25 and a lamp voltage node N27 connected.
  • the connection J3 is connected to N27, to that in the exemplary embodiment the series connection of two discharge lamps Lp1 and Lp2 is connected.
  • the present However, the invention can also be carried out with one or more lamps.
  • the Current through the discharge lamps Lp1 and Lp2 flows through a connection J8, through a winding W1 of a measuring transformer to node N26.
  • the inverter voltage is connected to a series connection of two discharge lamps Lp1, Lp2 and the lamp choke L3.
  • the current fed into J3 does not only flow through the gas discharge of the discharge lamps Lp1, Lp2 but also by an outer filament of the first discharge lamp Lp1 to a connection J4. From there through a winding W4 of a heating transformer, further by a variable resistor R1, further by a winding W3 of the measuring transformer for connection J7. There is an external one at connection J7 Filament of the second discharge lamp Lp2 connected, the other end of the Connection J8 leads. There are two inner filaments of the discharge lamps Lp1 and Lp2 each via the connections J5 and J6 with the winding W5 of the heating transformer connected.
  • the arrangement described in this paragraph causes the inverter voltage not just a current through the gas discharge of the discharge lamps Lp1, Lp2 but also a heating current through the outer coils and a heating current through the inner coils of the Discharge lamps Lp1, Lp2. If only one discharge lamp is to be operated, so the heating transformer can be omitted.
  • the heating current is essentially before the ignition of the discharge lamps Lp1, Lp2 during a preheating phase as preheating current for preheating the filaments needed.
  • the preheating resistor R1 essentially determines the value of the heating current. During the preheating phase, the value of R 1 is so low that lamp data predetermined heating current is reached. After the preheating phase, the Value of R1 so that compared to the current through the gas discharge of the discharge lamps Lp1, Lp2 negligible heating current flows.
  • R1 is implemented by a so-called PTC or PTC thermistor. It is a Resistance that has a low resistance when cold. By the The PTC thermistor heats up the heating current, which increases its resistance.
  • R1 can also be implemented by an electronic switch that is in the preheating phase is closed and then open. In series with this switch can be a resistor be switched with constant resistance value. So that's a quick one Transition from the preheating phase to the ignition phase possible.
  • the arrangement described for preheating the coils is during the Preheat phase by damping the resonance frequency one in the next section described resonance circuit lower than its natural frequency.
  • an inverter frequency is selected during the preheating phase Natural frequency lies. This advantageously results in a high heating current and thus a short preheating phase.
  • the lamp voltage node N27 is connected via a first resonance capacitor C6 connected to the pump node N23. Between N23 and N0 is a second resonance capacitor C7 switched. C6 and C7 form a resonant circuit with the lamp choke L3. To determine the natural frequency of the resonance circuit, C6 and C7 considered in series. The effective capacity value of C6 and C7 regarding the natural frequency is thus the quotient of the product and the sum of the Capacitance values of C6 and C7.
  • the resonant circuit becomes after the preheating phase excited near its natural frequency, an ignition voltage develops across the lamps, which leads to the ignition of the discharge lamps.
  • L3 works after ignition together with C6 and C7 as a matching network that has an output impedance of Inverter is transformed into an impedance necessary for the operation of the discharge lamps.
  • the combination works by connecting C6 and C7 to the pump node N23 of L3, C6 and C7 not only as a resonance circuit and matching network, but at the same time as a pump network.
  • the potential at N23 is lower than that current mains voltage, the pump network L3, C6, C7 draws energy from the Mains voltage. If the potential at N23 exceeds the voltage at the main energy storage C3, the energy absorbed by the mains voltage is given to C3.
  • the ratio of the capacitance values of C6 and C7 the Effect of the network L3, C6, C7 can be compared as a pump network.
  • the bigger the capacity value of C7 is chosen, the less the effect of Network L3, C6, C7 as a pump network.
  • the present invention will use no charge pump C7 can be omitted.
  • a further pumping effect is based on a capacitor C8, which is between N23 and the connection node N25 of the half-bridge transistors T1, T2 is connected.
  • C8 also not only acts as a pump network, but also fulfills the task a snubber capacitor. Snubber capacitors are common as a measure for switch relief in inverters.
  • the pump network for the second pump branch consists of a series connection of one Pump choke L4 and a pump capacitor C9. This pump network is between the connection node N25 of the half-bridge transistors T1, T2 and Pump node N22 switched.
  • two Pump branches are used so that the pumped energy is divided into several components becomes. This makes it possible to dimension the components more cost-effectively. Also this gives a degree of freedom in the design of the dependency of the pumped Energy from operating parameters of the discharge lamps.
  • the invention is but can also be implemented with just one pump branch.
  • the half-bridge transistors T1, T2 are designed as MOSFETs. Other electronic too Switches can be used for this.
  • T1 and T2 are provided with an integrated circuit IC1.
  • IC1 is a circuit from International Rectifier IR2153. There are also alternative circuits to this type on the Market available; z. B. L6571 from STM.
  • the circuit IR2153 contains one So-called high-sidc driver, which is also used to control the half-bridge trunsistor T1 can, although it has no connection to the reference potential N0. These are one Diode D10 and a capacitor C10 necessary.
  • the IC1 is supplied with operating voltage via connection 1 of the IC1.
  • a voltage source VCC between terminal 1 of IC1 and N0 intended.
  • this voltage source VCC can be realized.
  • the IC can be operated via a Resistor are supplied by the rectified mains voltage.
  • the IC1 Apart from the driver circuits for the half-bridge transistors, the IC1 only contains an oscillator whose oscillation frequency is set via connections 2 and 3 can be. Because of the present invention, there is no effort in IC1 necessary for a control device. It can therefore be an inexpensive type for IC1 be used.
  • the oscillation frequency of said oscillator corresponds to that Inverter frequency.
  • Between the connections 2 and 3 is a frequency determining Resistor R3 switched.
  • the series connection is between connection 3 and N0 a frequency-determining capacitor C11 and the emitter-collector path of a bipolar transistor T3. Parallel to the emitter-collector path A diode D9 is connected from T3 so that C11 can be charged and discharged.
  • the inverter frequency can be adjusted by a voltage between the basic connection of T3 and N0 can be set and thus forms a manipulated variable for a control loop.
  • the base connection of T3 is connected to a manipulated variable node N28.
  • T3, IC1 and their wiring can thus be regarded as controllers.
  • the functions of the IC1 and its wiring can also be implemented by any voltage or current controlled oscillator, which has driver circuits controls the half-bridge transistors.
  • the control loop in the exemplary embodiment records the current through the Gas discharge of the discharge lamps Lp1, Lp2.
  • the measuring transformer has a winding W2.
  • the winding direction in the measuring transformer is designed so that from the heating current in winding W3 is subtracted from a total current in winding W1 is so that a current flows in winding W2, which corresponds to the current through the gas discharge of the discharge lamps Lp1, Lp2 is proportional.
  • a full bridge rectifier formed by diodes D11, D12, D13 and D14 directs the current through winding W2 is the same and leads it via a low-resistance measuring resistor R4 to N0.
  • the Voltage drop across R4 is thus a measure of the current through the gas discharge of the Discharge lamps Lp1, Lp2. Via a low pass for averaging, which by a resistor R5 and a capacitor C13 is formed, the voltage drop occurs at R4 to the input of a non-inverting measuring amplifier.
  • the measuring amplifier is made in a known manner by an operational amplifier AMP and the resistors R6, R7 and R8 realized.
  • the exemplary embodiment is a Gain of the measuring amplifier set at approx. 10.
  • the measuring amplifier can be omitted or by an impedance converter, such as. B. an emitter follower.
  • the output of the measuring amplifier is via a diode D15 with the manipulated variable node N28 connected. This is the control loop for regulating the current through the Gas discharge of the discharge lamps Lp1, Lp2 closed.
  • the diode D15 is necessary so that the potential of N28 can be raised to a value above that value specified by the measuring amplifier.
  • the anode of D15 is a first Controller input.
  • the circuit arrangement is designed such that without lamp current the potential of N28 takes on the starting value.
  • the starting value is chosen so that it is below a minimum value, which is the operating range of the transistor T3 and thus limiting the controller. So there are fluctuations in the potential of N28 no influence on the inverter frequency as long as the potential of N28 is below the minimum value. There is no regulation; the control loop is not closed.
  • the starting value at the potential of node N28 causes an inverter frequency via T3 and IC 1, which corresponds to the start frequency.
  • the start frequency it is advantageous using C11 and R3 selected a frequency as low as possible because it is high Heating currents in the electrode coils and thus short preheating phases can be realized.
  • the ignition phase provides for the half-bridge switches and for the components of the resonance circuit represents a high load.
  • To the circuit arrangement before an overload To protect, is a protective circuit in the embodiment of the figure intended. If the ignition voltage is too high, this will change the inverter frequency raised and thus a greater difference to the natural frequency of the resonant circuit set.
  • the protective circuit only works when the ignition voltage is switched on by means of a threshold switch is set.
  • the threshold switch is in the figure by a Varistor MOV implemented. It is connected in series with a capacitor C12, a resistor R2 and a diode D17 that make up the lamp voltage node N27 connects to the manipulated variable node N28.
  • the anode of D 17 represents one second controller input.
  • N28 is via the parallel connection of a resistor R9 and a capacitor C 14 connected to N0.
  • N27 there is a voltage compared to N0, which is a measure of that in the resonant circuit formed from L3, C6 and C7 vibrating reactive energy and thus for the ignition voltage is. If this voltage exceeds the threshold voltage of the varistor MOV, see above a current flows through R9 and C14 is charged. So that the tension on Control variable node N28 raised. This causes an increase in the inverter frequency and the reactive energy vibrating in the resonance circuit is reduced because the Inverter frequency further moves away from the natural frequency of the resonance circuit.
  • the diode D16 is connected between N0 and the connection point of R2 and D17. In combination with C12 at N28, the sum of positive and negative amplitude of the voltage applied through the varistor MOV leaves.
  • Any other threshold switch can be used instead of the MOV find how he z. B. built up by Zener diodes or suppressor diodes can be.
  • the threshold value of the MOV varistor is in the application example 250Veff selected. A higher value means more reactive energy in the resonance circuit approved, resulting in a higher ignition voltage on the discharge lamps Lp1, Lp2, but also leads to a higher load on components. On the The threshold value of the varistor MOV can thus set a desired optimum become.
  • the value of the resistance R2 influences the strength of the effect of the invention Intervention on the control loop at the manipulated variable node N28. It is also advantageous a non-linear relationship between the voltage at the manipulated variable node N28 and the inverter frequency. This nonlinear relationship is shown in the application example realized by the nonlinear characteristic of T3. He will also on the dependence of the frequency of the oscillator in the IC1 on the voltage at Connection 3 of the IC1 influenced. A sharp rise in the voltage at N27 leads due to the non-linearity to a disproportionate increase in the inverter frequency, whereby an overload of components such. B. the voltage load of C3 or the current load of T 1 and T2 is prevented.
  • a lamp current flows that converts the potential at node 28 to one Value that lies in the working range of T3. This is the control loop for the Lamp current closed.
  • T3 sets an inverter frequency via IC1, which causes a desired lamp current.

Abstract

Schaltungsanordnung zum Start und Betrieb von Entladungslampen (Lp1, Lp2) mit einer Regelung des Lampenstroms und einer Vorheizung von Elektrodenwendeln. Für die Abfolge von Vorheiz-, Zünd- und Betriebsphase ist keine Steuereinrichtung nötig. Dies wird durch einen Vorheizwiderstand, der seinen Wert nach der Vorheizphase ändert, in Kombination mit erfindungsgemäßen Reglereigenschaften erreicht. <IMAGE>

Description

Technisches Gebiet
Die Erfindung geht aus von einer Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine Schaltungsanordnung, die vor einer Zündung von Entladungslampen eine Vorheizung von Elektrodenwendeln der Entladungslampen vornimmt.
Stand der Technik
Schaltungsanordnungen zum Start und Betrieb von Entladungslampen kommen in elektronischen Betriebsgeräten für Entladungslampen zum Einsatz. Unter dem Start der Entladungslampen wird im folgenden eine Vorheizung von Elektrodenwendeln der Entladungslampen während einer Vorheizphase und eine die Zündung der Entladungslampen während einer Zündphase verstanden. Der Start von Entladungslampen mit einer Vorheiz- und einer Zündphase wird im englischen Sprachgebrauch auch Programm Start genannt. Auf die Zündphase folgt eine Betriebsphase, in der die Entladungslampe eine Bogenentladung aufweist.
Ein elektronisches Betriebsgerät für Entladungslampen mit Programm Start benötigt nach dem Stand der Technik eine Schaltungsanordnung, die eine Steuereinheit umfasst, die den Ablauf und die Abfolge von Vorheiz-, Zünd- und Betriebsphase steuert.
Bekannt sind Schaltungsanordnungen mit einem Wechselrichter, der über ein Anpassnetzwerk Energie in jeweils ein Ende der Elektrodenwendeln einspeist. Die jeweils anderen Enden sind über einen Resonanzkondensator verbunden. Der Resonanzkondensator und eine Lampendrossel sind Teil eines Resonanzkreises, der eine Resonanzfrequenz aufweist, die im ungedämpften Fall bei einer Eigenfrequenz liegt. Das Anpassnetzwerk wird benötigt, um den Quellwiderstand des Wechselrichters in einen Quellwiderstand des Betriebsgeräts zu transformieren, der zum Betrieb von Entladungslampen geeignet ist. Der besagte Resonanzkreis ist im allgemeinen Bestandteil des Anpassnetzwerks.
Der Wechselrichter erzeugt an einem Wechselrichterausgang eine Wechselrichterspannung mit einer Wechselrichterfrequenz, die in einer Vorheizphase bei einer hohen Vorheizfrequenz liegt, die größer'ist als die Eigenfrequenz. Der Wert des Resonanzkondensators und der Vorheizfrequenz sind so gewählt, dass sich ein Heizstrom durch die Elektrodenwendeln einstellt, der eine für den jeweiligen Lampentyp ausreichende Vorheizung bewirkt.
Nach der Vorheizphase wird in einer Zündphase die Wechselrichterfrequenz abgesenkt, bis sie so nahe der Eigenfrequenz liegt, dass sich an einer angeschlossenen Entladungslampe eine Zündspannung einstellt, die eine Zündung der Entladungslampe bewirkt.
Auf die Zündung der Entladungslampe folgt eine Betriebsphase. Dabei werden Regelgrößen wie z. B. Lampenleistung oder Lampenstrom einem Regler zugeführt. Der Regler wirkt über eine Stellgröße derart auf die Wechselrichterfrequenz, dass sich eine gewünschte Lampenleistung oder ein gewünschter Lampenstrom einstellt.
Der beschriebene Stand der Technik ist in verschiedenen Ausführungsformen in folgenden Schriften beschrieben:
  • EP 0 845 928 (Mita)
  • EP 0 930 808 (Kanazawa)
  • Im Stand der Technik wird eine Steuereinheit benötigt, die in zeitlich richtiger Abfolge in den jeweiligen Phasen die erforderliche Wechselrichterfrequenz einstellt. Zu dem muss die Steuereinheit die Regelung von Lampenleistung oder Lampenstrom während der Vorheiz- und Zündphase deaktivieren, da in diesen Phasen eine Wechselrichterfrequenz erforderlich ist, die nicht von Lampenleistung oder Lampenstrom abhängt.
    Mit steigendem Kostendruck bei den die Erfindung betreffenden Betriebsgeräten für Entladungslampen wird es immer wichtiger, Teile dieser Betriebsgeräte einzusparen.
    Darstellung der Erfindung
    Die vorliegende Erfindung ermöglicht es die o. g. Steuereinheit einzusparen.
    Es ist Aufgabe der vorliegenden Erfindung, eine kostengünstige Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, das den Start und den Betrieb von Entladungslampen mit Vorheiz-, Zünd- und Betriebsphase bewerkstelligt.
    Diese Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen des Oberbegriffs des Anspruchs 1 durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
    Im wesentlichen wird die Aufgabe dadurch gelöst, dass eine Schaltungsanordnung gefunden wurde, die eine Vorheiz-, Zünd- und Betriebsphase bewerkstelligt, ohne eine Steuereinheit zu benötigen.
    Eine erfindungsgemäße Schaltungsanordnung besitzt einen Vorheizwiderstand, der während einer Vorheizphase über die Elektrodenwendeln eine Dämpfung des Resonanzkreises bewirkt, wodurch die Resonanzfrequenz des Resonanzkreises von der Eigenfrequenz auf eine Dämpfungsresonanz-Frequenz reduziert wird. Nach der Vorheizphase nimmt der Vorheizwiderstand einen Wert an, der so ausgelegt ist, dass die Resonanzfrequenz des Resonanzkreises nahe der Eigenfrequenz liegt.
    Ein Regler regelt über ein Stellsignal, das die Wechselrichterfrequenz beeinflusst, den Lampenstrom oder die Lampenleistung. Der Begriff Lampenstrom bezeichnet den Strom, der durch die Gasentladung von an Lampenklemmen angeschlossenen Entladungslampen fließt.
    Einem ersten Reglereingang (B 1), wird eine erste elektrische Größe eingespeist, die dem Lampenstrom entspricht, wobei für den Fall, dass keine Gasentladung vorliegt, die erste elektrische Größe einen Startwert annimmt und für den Fall, dass eine Gasentladung vorliegt, die erste elektrische Größe über einem Minimalwert liegt.
    Erfindungsgemäß ist die Schaltungsanordnung so ausgelegt, dass für den Fall, dass die erste elektrische Größe den Startwert annimmt, der Regler den Wechselrichter auf eine Startfrequenz einstellt, die zwischen der Dämpfungsresonanz-Frequenz und der Eigenfrequenz liegt. Die Startfrequenz wird so lange ausgegeben, wie die erste elektrische Größe unter dem Minimalwert liegt. Eine Regelung findet demnach bei Werten der ersten elektrischen Größe unter dem Minimalwert nicht statt. In diesem Zustand befindet sich die Schaltungsanordnung entweder in der Vorheiz- oder der Zündphase. Die Art der Phase wird durch den Wert des Vorheizwiderstandes bestimmt.
    Ist der Wert des Vorheizwiderstandes niedrig, so fließt ein hoher Heizstrom durch die Elektrodenwendeln: Die Schaltungsanordnung befindet sich in der Vorheizphase. Die Resonanzfrequenz des Resonanzkreises ist durch den Realteil des der Widerstands der Elektrodenwendeln und des Vorheizwiderstands auf die Dämpfungsresonanz-Frequenz gedrückt. Erfindungsgemäß liegt die Startfrequenz über der Dämpfungsresonanz-Frequenz. Der Versatz zwischen Startfrequenz und Dämpfungsresonanz-Frequenz, sowie die Dämpfung des Resonanzkreises bewirken, dass an angeschlossenen Entladungslampen eine Spannung anliegt, die für eine Zündung nicht ausreicht.
    Steigt nach der Vorheizphase der Wert des Vorheizwiderstands an, so steigt die Resonanzfrequenz des Resonanzkreises und nähert sich der Startfrequenz, die der Wechselrichter immer noch ausgibt. Gleichzeitig verringert sich die Dämpfung des Resonanzkreises. Beide Effekte führen zu einem Wechsel der Schaltungsanordnung in die Zündphase. Währen der Zündphase liegt an angeschlossenen Entladungslampen eine Spannung an, deren Wert so hoch ist, dass die Entladungslampen zünden.
    Damit stellt sich ein Lampenstrom ein, der erfindungsgemäß zu einem Wert für die erste elektrische Größe führt, der über dem Minimalwert liegt. Damit beginnt der Regler zu arbeiten; d. h. er stellt eine Wechselrichterfrequenz ein, die eine gewünschte Lampenleistung oder einen gewünschten Lampenstrom bewirkt. In diesem Zustand befindet sich die Schaltungsanordnung in der Betriebsphase.
    Durch die dargestellte erfindungsmäßige Abstimmung von Dämpfungsresonanz-Frequenz, Eigenfrequenz, Startfrequenz, Startwert, Minimalwert und Vorheizwiderstand ist keine o. g. Steuereinheit nötig, die die Abfolge der Phasen der Schaltungsanordnung steuert.
    Kurze Beschreibung der Zeichnung
    Im folgenden soll die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf eine Zeichnung näher erläutert werden.
    Die Figur zeigt ein Ausführungsbeispiel für eine erfindungsgemäße Schaltungsanordnung zum Start und Betrieb von Entladungslampen.
    Im folgenden werden Widerstände durch den Buchstaben R, Transistoren durch den Buchstaben T, Spulen durch den Buchstaben L, Verstärker durch den Buchstaben A, Dioden durch den Buchstaben D, Knotenpotenziale durch den Buchstaben N und Kondensatoren durch den Buchstaben C jeweils gefolgt von einer Zahl bezeichnet.
    Bevorzugte Ausführung der Erfindung
    In der Figur ist ein Ausführungsbeispiel für eine erfindungsgemäße Schaltungsanordnung zum Start und Betrieb von Entladungslampen dargestellt.
    An den Anschlüssen J1 und J2 ist eine Netzspannung anschließbar. Im vorliegenden Ausführungsbeispiel wird die Schaltungsanordnung an einer Netzspannung betrieben. Die vorliegende Erfindung ist jedoch nicht an den Betrieb an einer Netzspannung gebunden. Eine erfindungsgemäße Schaltungsanordnung kann beispielsweise auch an einer Batteriespannung betreiben werden.
    In der Figur wird über ein Filter, bestehend aus zwei Kondensatoren C1, C2 und zwei Spulen L1, L2, die Netzspannung einem Vollbrückengleichrichter bestehend aus den Dioden D1, D2, D3, D4 zugeführt. Der Vollbrückengleichrichter stellt an seinem positiven Ausgang, einem Knoten N21, bezüglich einem Bezugsknoten N0 die gleichgerichtete Netzspannung bereit.
    Falls die in Rede stehenden Schaltungsanordnungen in Betriebsgeräte zu Anwendung kommen, die an einer Netzspannung betrieben werden, unterliegen sie einschlägigen Vorschriften bezüglich Netzstrom-Oberschwingungen, z. B. IEC 1000-3-2. Damit diese Vorschriften eingehalten werden, sind schaltungstechnische Maßnahmen zur Reduzierung von Netzstrom-Oberschwingungen nötig. Eine derartige Maßnahme ist der Einbau sog. Ladungspumpen. Der Vorteil von Ladungspumpen besteht im geringen schaltungstechnischen Aufwand, der für deren Realisierung nötig ist.
    Die Topologie einer Ladungspumpe beinhaltet, dass der Gleichrichter über einen elektronischen Pumpschalter mit dem Hauptenergiespeicher gekoppelt ist. Dadurch entsteht zwischen dem Gleichrichter und dem elektronischen Pumpschalter ein Pumpknoten. Der Pumpknoten ist über ein Pumpnetzwerk mit dem Wechselrichterausgang gekoppelt. Das Pumpnetzwerk kann Bauteile enthalten, die zugleich dem Anpassnetzwerk zugeordnet werden können. Das Prinzip der Ladungspumpe besteht darin, dass während einer Halbperiode der Wechselrichterfrequenz über den Pumpknoten Energie der Netzspannung entnommen und im Pumpnetzwerk zwischengespeichert wird. In der darauf folgenden Halbperiode der Wechselrichterfrequenz wird die zwischengespeicherte Energie über den elektronischen Pumpschalter dem Hauptenergiespeicher zugeführt.
    Der Netzspannung wird demnach Energie im Takt der Wechselrichterfrequenz entnommen. Im allgemeinen enthält das elektronische Betriebsgerät Filterschaltungen, die Spektralanteile des Netzstroms unterdrücken, die bei der Wechselrichterfrequenz oder darüber liegen. Die Ladungspumpe kann so ausgelegt werden, dass die Oberschwingungen des Netzstroms so gering sind, dass besagte Vorschriften eingehalten werden. Folgende Schriften beschreiben ausführlich Ladungspumpen für elektronische Betriebsgeräte für Entladungslampen:
  • Qian J., Lee F.C., Yamauchi T.:"Analysis, Design and Experiments of a High-Power-Factor Electronic Ballast", IEEE Transactions on Industry Applications, Vol. 34, No. 3, May/June 1998
  • Qian J., Lee F.C., Yamauchi T.:"New Continuous Current Charge Pump Power-Factor-Corretion Electronic Ballast", IEEE Transactions on Industry Applications, Vol. 35, No. 2, March/April 1999
  • Da es sowohl Ladungspumpen als auch die vorliegende Erfindung einen geringen Schaltungstechnischen Aufwand bedeuten, ist es vorteilhaft, die vorliegende Erfindung mit einer Ladungspumpe zu kombinieren.
    In der Figur wird über die Dioden D5 und D6 die gleichgerichtete Netzspannung zwei Pumpknoten N22 und N23 zugeführt. Das Ausführungsbeispiel in der Figur besitzt demnach zwei sog. Pumpzweige. Um die Pumpzweige gegeneinander zu entkoppeln sind die Dioden D5 und D6 nötig. Bei nur einem Pumpzweig kann ein Pumpknoten direkt mit dem Gleichrichterausgang, dem Knoten 21, verbunden werden. Dabei ist jedoch zu beachten, dass die im Gleichrichter verwendeten Dioden schnell genug schalten können, um der Wechselrichterfrequenz zu folgen. Falls dies nicht der Fall ist, muss auch bei nur einem Pumpzweig eine schnelle Diode zwischen Gleichrichterausgang und Pumpknoten geschaltet werden. Im Ausführungsbeispiel in Figur 2 sind die Pumpknoten mit dem positiven Ausgang des Gleichrichters gekoppelt. Aus der Literatur sind auch Ladungspumpen-Topologien bekannt, bei denen Pumpknoten mit dem negativen Ausgang des Gleichrichters gekoppelt sind.
    Von den Pumpknoten N22 und N23 führt jeweils ein elektronischer Pumpschalter, die als Dioden D7 und D8 ausgeführt sind, zum Knoten N24. Zwischen N24 und N0 ist der Hauptenergiespeicher, der als Elektrolytkondensator C3 ausgeführt ist, geschaltet.
    Falls die vorliegende Erfindung ohne Ladungspumpe ausgeführt werden soll, muss der Knoten N21 mit dem Knoten N24 verbunden werden. Die Bauteile D5, D6, D7, D8, C8, C9, und L4 entfallen dann.
    C3 speist den Wechselrichter, der als Halbbrücke ausgeführt ist. Es sind jedoch auch andere Wandlertopologien wie z. B. Sperrwandler oder Vollbrücke einsetzbar. Vorteilhaft wird für Lampenleistungen zwischen 5W und 300W eine Halbbrücke eingesetzt, da sie die kostengünstigste Topologie darstellt. Im wesentlichen besteht die Halbbrücke aus einer Serienschaltung zweier Halbbrückentransistoren T1 und T2 und einer Serienschaltung zweier Koppelkondensatoren C4 und C5. Beide Serienschaltungen sind parallel zu C3 geschaltet. Ein Verbindungsknoten N25 der Halbbrückentransistoren und ein Verbindungsknoten N26 der Koppelkondensatoren bilden den Wechselrichterausgang an dem eine rechteckförmige Wechselrichterspannung mit einer Wechselrichterfrequenz anliegt.
    Zwischen N25 und einem Lampenspannungsknoten N27 ist eine Lampendrossel L3 geschaltet. An N27 ist der Anschluss J3 geschaltet, an dem im Ausführungsbeispiel die Serienschaltung zweier Entladungslampen Lp1 und Lp2 geschaltet ist. Die vorliegende Erfindung ist jedoch auch mit einer oder mehreren Lampen ausführbar. Der Strom durch die Entladungslampen Lp1 und Lp2 fließt über einen Anschluss J8, durch eine Wicklung W1 eines Messtransformators zum Knoten N26. Im wesentlichen wird damit die Wechselrichterspannung an eine Serienschaltung zweier Entladungslampen Lp1, Lp2 und der Lampendrossel L3 angelegt.
    Der in J3 eingespeiste Strom fließt nicht nur durch die Gasentladung der Entladungslampen Lp1, Lp2 sondern auch durch eine äußere Wendel der ersten Entladungslampe Lp1 zu einem Anschluss J4. Von dort weiter durch eine Wicklung W4 eines Heiztransformators, weiter durch einen variablen Widerstand R1, weiter durch eine Wicklung W3 des Messtransformators zum Anschluss J7. Am Anschluss J7 ist eine äußere Wendel der zweiten Entladungslampe Lp2 angeschlossen, deren anderes Ende zum Anschluss J8 führt. Zwei innere Wendeln der Entladungslampen Lp1 und Lp2 sind jeweils über die Anschlüsse J5 und J6 mit der Wicklung W5 des Heiztransformators verbunden. Durch die in diesem Absatz beschrieben Anordnung bewirkt die Wechselrichterspannung nicht nur einen Strom durch die Gasentladung der Entladungslampen Lp1, Lp2 sondern auch einen Heizstrom durch die äußeren Wendeln und über den Heiztransformator auch einen Heizstrom durch die inneren Wendeln der Entladungslampen Lp1, Lp2. Soll nur eine Entladungslampe betrieben werden, so kann der Heiztransformator entfallen.
    Der Heizstrom wird im wesentlichen vor der Zündung der Entladungslampen Lp1, Lp2 während einer Vorheizphase als Vorheizstrom für die Vorheizung der Wendeln benötigt. Den Wert des Heizstroms bestimmt wesentlich der Vorheizwiderstand R1. Während der Vorheizphase ist der Wert von R 1 so gering, dass ein durch Lampendaten vorgegebener Heizstrom erreicht wird. Nach der Vorheizphase erhöht sich der Wert von R1, so dass im Vergleich zum Strom durch die Gasentladung der Entladungslampen Lp1, Lp2 vernachlässigbarer Heizstrom fließt. Im Ausführungsbeispiel ist R1 durch einen sog. PTC oder Kaltleiter realisiert. Dabei handelt es sich um einen Widerstand der im kalten Zustand einen geringen Widerstand aufweist. Durch den Heizstrom wird der Kaltleiter aufgeheizt, wodurch sein Widerstandswert steigt. R1 kann auch durch einen elektronischen Schalter realisiert werden, der in der Vorheizphase geschlossen und danach geöffnet ist. In Serie zu diesem Schalter kann ein Widerstand mit konstantem Widerstandswert geschaltet sein. Damit ist ein schneller Übergang von der Vorheizphase zur Zündphase möglich.
    Durch die beschriebene Anordnung zum Vorheizen der Wendeln ist während der Vorheizphase durch Dämpfung die Resonanzfrequenz eines im nächsten Abschnitt beschrieben Resonanzkreises geringer als dessen Eigenfrequenz. Erfindungsgemäß wird während der Vorheizphase eine Wechselrichterfrequenz gewählt, die unter der Eigenfrequenz liegt. Vorteilhaft ergibt sich damit sich ein hoher Heizstrom und damit eine kurze Vorheizphase.
    Der Lampenspannungsknoten N27 ist über einen ersten Resonanzkondensator C6 mit dem Pumpknoten N23 verbunden. Zwischen N23 und N0 ist ein zweiter Resonanzkondensator C7 geschaltet. C6 und C7 bilden mit der Lampendrossel L3 einen Resonanzkreis. Zur Festlegung der Eigenfrequenz des Resonanzkreises, wird C6 und C7 in Serie geschaltet betrachtet. Der wirksame Kapazitätswert von C6 und C7 bezüglich der Eigenfrequenz ist somit der Quotient aus dem Produkt und der Summe der Kapazitätswerte von C6 und C7. Wird der Resonanzkreis nach der Vorheizphase nahe seiner Eigenfrequenz angeregt, so entsteht über den Lampen eine Zündspannung, die zur Zündung der Entladungslampen führt. Nach der Zündung wirkt L3 zusammen mit C6 und C7 als Anpassnetzwerk, das eine Ausgangsimpedanz des Wechselrichters in eine zum Betrieb der Entladungslampen nötige Impedanz transformiert.
    Durch die Verbindung von C6 und C7 mit dem Pumpknoten N23 wirkt die Kombination von L3, C6 und C7 jedoch nicht nur als Resonanzkreis und Anpassnetzwerk, sonder gleichzeitig als Pumpnetzwerk. Ist das Potenzial an N23 niedriger als die momentane Netzspannung, so bezieht das Pumpnetzwerk L3,C6,C7 Energie aus der Netzspannung. Übersteigt das Potenzial an N23 die Spannung am Hauptenergiespeichcr C3, so wird die von der Netzspannung aufgenommene Energie an C3 abgegeben. Durch die Wahl des Verhältnisses der Kapazitätswerte von C6 und C7 kann die Wirkung des Netzwerks L3, C6, C7 als Pumpnetzwerk abgeglichen werden. Je größer der Kapazitätswert von C7 gewählt wird, desto geringer ist die Wirkung des Netzwerks L3, C6, C7 als Pumpnetzwerk. Wird die vorliegende Erfindung ohne Ladungspumpe ausgeführt, so kann C7 entfallen.
    Eine weitere Pumpwirkung geht von einem Kondensator C8 aus, der zwischen N23 und den Verbindungsknoten N25 der Halbbrückentransistoren T1,T2 geschaltet ist. Auch C8 wirkt nicht nur als Pumpnetzwerk, sondern erfüllt gleichzeitig die Aufgabe eines Snubber-Kondensators. Snubber-Kondensatoren sind allgemein als Maßnahme zur Schalterentlastung in Wechselrichtern bekannt.
    Das Pumpnetzwerk für den zweiten Pumpzweig besteht aus der Serienschaltung einer Pumpdrossel L4 und eines Pumpkondensators C9. Dieses Pumpnetzwerk ist zwischen den Verbindungsknoten N25 der Halbbrückentransistoren T1,T2 und den Pumpknoten N22 geschaltet. Beim vorliegenden Ausführungsbeispiel werden zwei Pumpzweige verwendet, damit die gepumpte Energie auf mehrere Bauteile aufgeteilt wird. Damit ist eine kostengünstigere Dimensionierung der Bauteile möglich. Auch erhält man dadurch einen Freiheitsgrad bei der Auslegung der Abhängigkeit der gepumpten Energie von Betriebsparametern der Entladungslampen. Die Erfindung ist jedoch auch mit nur einem Pumpzweig realisierbar.
    Die Halbbrückentransistoren T1, T2 sind als MOSFET ausgelegt. Auch andere elektronische Schalter können dafür eingesetzt werden. Zur Ansteuerung der Gates von T1 und T2 ist im Ausführungsbeispiel ein integrierter Schaltkreis IC1 vorgesehen. IC1 ist im vorliegenden Beispiel ein Schaltkreis der Firma International Rectifier vom Typ IR2153. Es sind auch alternative Schaltkreise zu diesem Typ auf dem Markt erhältlich; z. B. L6571 der Firma STM. Der Schaltkreis IR2153 enthält einen sog. High-Sidc-Treiber mit dem auch der Halbbrückentrunsistor T1 angesteuert werden kann, obwohl er keinen Anschluss am Bezugspotenzial N0 hat. Dazu sind eine Diode D10 und ein Kondensator C10 nötig.
    Die Betriebsspannungsversorgung des IC1 erfolgt über den Anschluss 1 des IC1. In Figur 2 ist dazu eine Spannungsquelle VCC zwischen Anschluss 1 des IC1 und N0 vorgesehen. Es sind allgemein mehrere Möglichkeiten bekannt, wie diese Spannungsquelle VCC realisiert werden kann. Im einfachsten Fall kann das IC über einen Widerstand von der gleichgerichteten Netzspannung versorgt werden.
    Außer den Treiberschaltungen für die Halbbrückentransistoren enthält das IC1 lediglich einen Oszillator, dessen Schwingfrequenz über die Anschlüsse 2 und 3 eingestellt werden kann. Aufgrund der vorliegenden Erfindung ist in IC1 kein Aufwand für eine Steuereinrichtung nötig. Es kann deshalb für IC1 ein kostengünstiger Typ verwendet werden. Die Schwingfrequenz des besagten Oszillators entspricht der Wechselrichterfrequenz. Zwischen den Anschlüssen 2 und 3 ist ein frequenzbestimmender Widerstand R3 geschaltet. Zwischen Anschluss 3 und N0 ist die Serienschaltung eines frequenzbestimmenden Kondensators C11 und der Emitter-Kollektor-Strecke eines Bipolartransistors T3 geschaltet. Parallel zur Emitter-Kollektor-Strecke von T3 ist eine Diode D9 geschaltet, damit C11 ge- und entladen werden kann. Durch eine Spannung zwischen dem Basisanschluss von T3 und N0 kann die Wechselrichterfrequenz eingestellt werden und bildet somit eine Stellgröße für einen Regelkreis. Der Basisanschluss von T3 ist mit einem Stellgrößenknoten N28 verbunden. T3, IC1 und deren Beschaltung kann somit als Regler aufgefasst werden.
    Die Funktionen des IC1 und dessen Beschaltung können auch realisiert werden durch einen beliebigen spannungs- oder stromgesteuerten Oszillator, der über Treiberschaltungen die Ansteuerung der Halbbrückentransistoren bewerkstelligt.
    Der Regelkreis im Ausführungsbeispiel erfasst als Regelgröße den Strom durch die Gasentladung der Entladungslampen Lp1, Lp2. Dazu besitzt der Messtransformator eine Wicklung W2. Der Wickelsinn im Messtransformator ist so ausgelegt, dass von einem Gesamtstrom in Wicklung W1 der Heizstrom in Wicklung W3 abgezogen wird, so dass in Wicklung W2 ein Strom fließt, der dem Strom durch die Gasentladung der Entladungslampen Lp1, Lp2 proportional ist. Ein Vollbrückengleichrichter gebildet durch Dioden D11, D12, D13 und D14 richtet den Strom durch Wicklung W2 gleich und führt ihn über einen niederohmigen Messwiderstand R4 auf N0. Der Spannungsabfall an R4 ist somit ein Maß für den Strom durch die Gasentladung der Entladungslampen Lp1, Lp2. Über einen Tiefpass zur Mittelwertbildung, der durch einen Widerstand R5 und einen Kondensator C13 gebildet wird, gelangt der Spannungsabfall an R4 an den Eingang eines nicht invertierenden Messverstärkers.
    Der Messverstärker wird in einer bekannten Weise durch einen Operationsverstärker AMP und die Widerstände R6, R7 und R8 realisiert. Im Ausführungsbeispiel ist eine Verstärkung des Messverstärkers von ca. 10 eingestellt. Für den Fall, dass der Spannungsabfall an R4 Werte aufweist, die direkt als Stellgröße verwendet werden können, kann der Messverstärker entfallen oder durch einen Impedanzwandler, wie z. B. einen Emitterfolger, ersetzt werden.
    Der Ausgang des Messverstärkers ist über eine Diode D15 mit dem Stellgrößenknoten N28 verbunden. Damit ist der Regelkreis zur Regelung des Stroms durch die Gasentladung der Entladungslampen Lp1, Lp2 geschlossen. Die Diode D15 ist nötig, damit das Potenzial von N28 auf einen Wert angehoben werden kann, der über dem vom Messverstärker vorgegebenen Wert liegt. Die Anode von D15 stellt einen ersten Reglereingang dar.
    Erfindungsgemäß ist die Schaltungsanordnung so ausgelegt, dass ohne Lampenstrom das Potenzial von N28 den Startwert annimmt. Der Startwert ist so gewählt, dass er unterhalb eines Minimalwerts liegt, der den Arbeitsbereich des Transistors T3 und damit des Reglers begrenzt. Schwankungen des Potenzials von N28 haben somit keinen Einfluß auf die Wechselrichterfrequenz, solange das Potenzial von N28 unter dem Minimalwert liegt. Eine Regelung findet nicht statt; der Regelkreis ist nicht geschlossen.
    Der Startwert am Potenzial des Knotens N28 bewirkt über T3 und IC 1 eine Wechselrichterfrequenz, die der Startfrequenz entspricht. Für die Startfrequenz wird vorteilhaft mittels C11 und R3 eine möglichst niedrige Frequenz gewählt, da damit hohe Heizströme in den Elektrodewendeln und damit kurze Vorheizphasen realisiert werden.
    Die Zündphase stellt für die Halbbrückenschalter und für die Bauelemente des Resonanzkreises eine hohe Belastung dar. Um die Schaltungsanordnung vor einer Überlastung zu schützen, ist im Ausführungsbeispiel nach der Figur eine Schutzschaltung vorgesehen. Bei zu hoher Zündspannung wird dadurch die Wechselrichterfrequenz angehoben und somit eine größere Differenz zur Eigenfrequenz des Resonanzkreises eingestellt.
    Die Schutzschaltung wirkt erst über einer Zündspannung, die mittels eines Schwellwertschalter eingestellt wird. Der Schwellwertschalter ist in der Figur durch einen Varistor MOV realisiert. Er liegt in einer Serienschaltung mit einem Kondensators C12, einem Widerstand R2 und einer Diode D17, die den Lampenspannungsknoten N27 mit dem Stellgrößenknoten N28 verbindet. Die Anode von D 17 stellt einen zweiten Reglereingang dar. N28 ist über die Parallelschaltung eines Widerstandes R9 und eines Kondensators C 14 mit N0 verbunden.
    An N27 liegt gegenüber N0 eine Spannung an, die ein Maß für die im Resonanzkreis gebildet aus L3, C6 und C7 schwingende Blindenergie und damit für die Zündspannung ist. Überschreitet diese Spannung die Schwellspannung des Varistors MOV, so fließt ein Strom durch R9 und C14 wird aufgeladen. Damit wird die Spannung am Stellgrößenknoten N28 angehoben. Dies bewirkt einen Anstieg der Wechselrichterfrequenz und die im Resonanzkreis schwingende Blindenergie wird reduziert, da die Wechselrichterfrequenz weiter von der Eigenfrequenz des Resonanzkreises abrückt.
    Zwischen N0 und dem Verbindungspunkt von R2 und D17 ist die Diode D16 geschaltet. Damit wird im Zusammenspiel mit C12 an N28 die Summe aus positiver und negativer Amplitude der Spannung angelegt, die der Varistor MOV passieren lässt. Statt des Varistors MOV kann ein beliebiger anderer Schwellwertschalter Verwendung finden, wie er z. B. durch Zener-Dioden oder Suppressor-Dioden aufgebaut werden kann. Der Schwellwert des Varistors MOV ist im Anwendungsbeispiel 250Veff gewählt. Durch einen höheren Wert wird mehr Blindenergie im Resonanzkreis zugelassen, was zu einer höheren Zündspannung an den Entladungslampen Lp1, Lp2, aber auch zu einer höheren Belastung von Bauelementen führt. Über den Schwellwert des Varistors MOV kann somit ein gewünschtes Optimum eingestellt werden.
    Der Wert des Widerstands R2 beeinflusst die Stärke der Wirkung des erfindungsgemäßen Eingriffs auf den Regelkreis am Stellgrößenknoten N28. Vorteilhaft ist auch ein nichtlinearer Zusammenhang zwischen der Spannung am Stellgrößenknoten N28 und der Wechselrichterfrequenz. Dieser nichtlineare Zusammenhang wird im Anwendungsbeispiel durch die nichtlineare Kennlinie von T3 realisiert. Zudem wird er von der Abhängigkeit der Frequenz des Oszillators im IC1 von der Spannung am Anschluss 3 des IC1 beeinflusst. Ein starker Anstieg der Spannung an N27 führt durch die Nichtlinearität zu einer überproportionalen Erhöhung der Wechselrichterfrequenz, wodurch einer Überlastung von Bauteilen, wie z. B. der Spannungsbelastung von C3 oder der Strombelastung von T 1 und T2, vorgebeugt wird.
    Nach der Zündung fließt ein Lampenstrom, der das Potenzial am Knoten 28 auf einen Wert hebt, der im Arbeitsbereich von T3 liegt. Damit ist der Regelkreis für den Lampenstrom geschlossen. T3 stellt über IC1 eine Wechselrichterfrequenz ein, die einen gewünschten Lampenstrom bewirkt.

    Claims (7)

    1. Schaltungsanordnung zum Start und Betrieb von Entladungslampen (Lp1, Lp2) mit folgenden Merkmalen:
      ein Wechselrichter, der an einem Wechselrichterausgang (N25, N26) eine Wechselrichterspannung abgibt, die eine Wechselrichterfrequenz aufweist,
      an den Wechselrichterausgang (N25) sind über ein Anpassnetzwerk (L3, C6, C7), das einen Resonanzkreis (L3, C6, C7) mit einer Eigenfrequenz aufweist, über Lampenklemmen (J3-J6) Entladungslampen (Lp1, Lp2) mit Elektrodenwendeln anschließbar,
      ein Vorheizwiderstand (R 1), der während einer Vorheizphase über die Elektrodenwendeln eine Dümpfung des Resonanzkreises (L3, C6, C7) bewirkt, wodurch die Resonanzfrequenz des Resonanzkreises (L3, C6, C7) von der Eigenfrequenz auf eine Dämpfungsresonanz-Frequenz reduziert wird,
      eine Zündphase, in der der Vorheizwiderstand (R 1) Werte annimmt, die im Vergleich zur Vorheizphase eine reduzierte Dämpfung des Resonanzkreises (L3, C6, C7) bewirken, wodurch sich die Resonanzfrequenz des Resonanzkrciscs (L3, C6, C7) der Eigenfrequenz nähert,
      ein Regler, dessen Reglerausgang ein Stellsignal ausgibt, wobei der Reglerausgang derart mit dem Wechselrichter gekoppelt ist, dass das Stellsignal die Wechselrichterfrequenz beeinflusst,
      ein erster Reglereingang, in den eine erste elektrische Größe eingespeist wird, die dem Strom der Gasentladung einer angeschlossenen Entladungslampe (Lp1, Lp2) entspricht, wobei für den Fall, dass keine Gasentladung vorliegt, die erste elektrische Größe einen Startwert annimmt und für den Fall, dass eine Gasentladung vorliegt, die erste elektrische Größe über einem Minimalwert liegt,
      dadurch gekennzeichnet, dass
      für den Fall, dass die erste elektrische Größe den Startwert annimmt, der Regler eine Wechselrichterfrequenz bewirkt, die zwischen der Dämpfungsresonanz-Frequenz und der Eigenfrequenz liegt und
      für den Fall, dass die erste elektrische Größe über dem Minimalwert liegt, der Regler eine Wechselrichterfrequenz bewirkt, die zu einem gewünschten Lampenstrom oder einer gewünschten Lampenleistung führt.
    2. Schaltungsanordnung gemäß Anspruch 1,
      dadurch gekennzeichnet, dass,
      der Regler einen zweiten Reglereingang aufweist, in den über einen Schwellwertschalter (MOV) eine zweite elektrische Größe eingespeist wird, die einer zweiten Betriebsgröße entspricht, die ein Maß für die Blindenergie ist, die im Resonanzkreis (L3, C6, C7) schwingt,
      wobei der Wert der zweiten elektrischen Größe beim Überschreiten des Schwellwerts des Schwellwertschalters (MOV) einen größeren Wert der Wechselrichterfrequenz bewirkt.
    3. Schaltungsanordnung gemäß einem der vorigen Ansprüche,
      dadurch gekennzeichnet, dass,
      der Wechselrichter eine Ladungspumpe beinhaltet.
    4. Schaltungsanordnung gemäß einem der vorigen Ansprüche,
      dadurch gekennzeichnet, dass,
      der Wechselrichter ein Halbbrückenwechselrichter ist.
    5. Schaltungsanordnung gemäß einem der vorigen Ansprüche,
      dadurch gekennzeichnet, dass,
      der Vorheizwiderstand (R1) ein temperaturabhängiger Widerstand mit positivem Temperaturkoeffizienten ist.
    6. Schaltungsanordnung gemäß einem der Ansprüche 1 bis 4,
      dadurch gekennzeichnet, dass
      der Vorheizwiderstand (R1) in Serie zu einem elektronischen Schalter geschaltet ist.
    7. Verfahren zum Start und Betrieb von Entladungslampen mit einer Schaltungsanordnung gemäß Anspruch 1 gekennzeichnet durch folgende Schritte:
      Bedämpfen des Resonanzkreises (L3, C6, C7) durch einen Vorheizwiderstand (R1) über Elektrodenwendeln von angeschlossenen Entladungslampen,
      Rücknahme der Dämpfung des Resonanzkreises(L3, C6, C7).
    EP03029437A 2003-01-28 2003-12-19 Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln Expired - Lifetime EP1443808B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10303277 2003-01-28
    DE10303277A DE10303277A1 (de) 2003-01-28 2003-01-28 Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln

    Publications (3)

    Publication Number Publication Date
    EP1443808A2 true EP1443808A2 (de) 2004-08-04
    EP1443808A3 EP1443808A3 (de) 2006-03-22
    EP1443808B1 EP1443808B1 (de) 2008-10-08

    Family

    ID=32602995

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03029437A Expired - Lifetime EP1443808B1 (de) 2003-01-28 2003-12-19 Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln

    Country Status (8)

    Country Link
    US (1) US6936976B2 (de)
    EP (1) EP1443808B1 (de)
    KR (1) KR101009518B1 (de)
    CN (1) CN100551197C (de)
    AT (1) ATE410911T1 (de)
    CA (1) CA2456367A1 (de)
    DE (2) DE10303277A1 (de)
    TW (1) TWI333804B (de)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004044180A1 (de) 2004-09-13 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
    DE102007016322A1 (de) * 2007-04-04 2008-10-09 Tridonicatco Gmbh & Co. Kg Schaltung zur Wendelheizung
    US7982406B2 (en) * 2007-05-07 2011-07-19 Simon Richard Greenwood Active lamp current crest factor control
    KR101468858B1 (ko) * 2007-07-10 2014-12-03 도요세이칸 그룹 홀딩스 가부시키가이샤 가열 전극 및 그것을 사용한 피가열재의 가열 방법
    DE102008004399A1 (de) * 2008-01-14 2009-07-16 HÜCO electronic GmbH Elektronisches Vorschaltgerät mit Strommesseinrichtung, Verfahren zu seiner Steuerung und Beleuchtungsgerät
    DE202008008165U1 (de) * 2008-06-18 2009-11-05 Tridonicatco Gmbh & Co. Kg Betriebsgerät für Gasentladungslampen oder andere Leuchtmittel mit Lampenstrommessung
    CN111683778B (zh) * 2017-09-29 2022-12-30 伊利诺斯工具制品有限公司 用于预热焊丝的系统、方法和设备

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0621743A1 (de) * 1993-04-23 1994-10-26 Koninklijke Philips Electronics N.V. Schaltung zur Leistungsfaktorverbesserung
    EP1049361A2 (de) * 1999-04-28 2000-11-02 Mitsubishi Denki Kabushiki Kaisha Gerät zum Betreiben einer Entladungslampe
    US6144169A (en) * 1998-12-29 2000-11-07 Philips Electronics North America Corporation Triac dimmable electronic ballast with single stage feedback power factor inverter

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP3858317B2 (ja) * 1996-11-29 2006-12-13 東芝ライテック株式会社 放電灯点灯装置及び照明装置
    JP2982804B2 (ja) 1998-01-16 1999-11-29 サンケン電気株式会社 放電灯点灯装置
    US6020691A (en) * 1999-04-30 2000-02-01 Matsushita Electric Works R & D Laboratory, Inc. Driving circuit for high intensity discharge lamp electronic ballast
    US6593703B2 (en) * 2001-06-15 2003-07-15 Matsushita Electric Works, Ltd. Apparatus and method for driving a high intensity discharge lamp

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0621743A1 (de) * 1993-04-23 1994-10-26 Koninklijke Philips Electronics N.V. Schaltung zur Leistungsfaktorverbesserung
    US6144169A (en) * 1998-12-29 2000-11-07 Philips Electronics North America Corporation Triac dimmable electronic ballast with single stage feedback power factor inverter
    EP1049361A2 (de) * 1999-04-28 2000-11-02 Mitsubishi Denki Kabushiki Kaisha Gerät zum Betreiben einer Entladungslampe

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    HESTERMAN B L ET AL: "A novel parallel-resonant programmed start electronic ballast" INDUSTRY APPLICATIONS CONFERENCE, 1999. THIRTY-FOURTH IAS ANNUAL MEETING. CONFERENCE RECORD OF THE 1999 IEEE PHOENIX, AZ, USA 3-7 OCT. 1999, PISCATAWAY, NJ, USA,IEEE, US, 3. Oktober 1999 (1999-10-03), Seiten 249-255, XP010355161 ISBN: 0-7803-5589-X *

    Also Published As

    Publication number Publication date
    CN1558706A (zh) 2004-12-29
    CN100551197C (zh) 2009-10-14
    TWI333804B (en) 2010-11-21
    EP1443808A3 (de) 2006-03-22
    US20040150356A1 (en) 2004-08-05
    DE10303277A1 (de) 2004-07-29
    TW200414827A (en) 2004-08-01
    US6936976B2 (en) 2005-08-30
    KR101009518B1 (ko) 2011-01-18
    EP1443808B1 (de) 2008-10-08
    DE50310605D1 (de) 2008-11-20
    CA2456367A1 (en) 2004-07-28
    ATE410911T1 (de) 2008-10-15
    KR20040069291A (ko) 2004-08-05

    Similar Documents

    Publication Publication Date Title
    DE69828862T2 (de) Mittels eines triacs dimmbare kompakte leuchtstofflampe mit niedrigem leistungsfaktor
    EP0781077A2 (de) Schaltungsanordnung zum Betrieb einer Lampe
    DE102005007346A1 (de) Schaltungsanordnung und Verfahren zum Betreiben von Gasentladungslampen
    DE102005058484A1 (de) Schaltungsanordnung und Verfahren zum Betreiben mindestens einer LED
    DE3335153C2 (de)
    DE19843643B4 (de) Schaltungsanordnung zum Starten und Betreiben einer Hochdruck-Entladungslampe
    EP0637118A1 (de) Schaltungsanordnung zur Begrenzung des Einschaltstromes und der Ueberspannung eines elektronischen Vorschaltgerätes
    EP1443807B1 (de) Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen
    EP1443808B1 (de) Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln
    EP1397029B1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen
    EP0057910B1 (de) Schaltung zur geregelten Speisung eines Verbrauchers
    EP1635620B1 (de) Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
    EP1033907A2 (de) Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und Betriebsverfahren
    DE4122544C1 (de)
    EP1732364B1 (de) Schaltungsanordnung und Verfahren zur netzspannungsabhängigen Leistungsregelung eines elektronischen Geräts, insbesondere eines elektronischen Vorschaltgeräts
    EP0389847B1 (de) Schaltungsanordnung
    EP1326484B1 (de) Betriebsgerät für Gasentladungslampen
    EP1553810A2 (de) Schaltungsanordnung zum Betrieb von Lichtquellen mit Leistungsfaktorkorrektur
    DE102004050060B4 (de) Tiefsetzerschaltung
    EP0642295B1 (de) Elektronisches Vorschaltgerät zum Versorgen einer Last, beispielsweise einer Lampe
    EP1396937A2 (de) Betriebsschaltung mit verbesserter Leistungsversorgung einer Treiberschaltung
    DE10220471A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen
    EP0395782B1 (de) Oszillator
    DE4036604A1 (de) Schaltungsanordnung zum betrieb einer entladungslampe
    DE10205516A1 (de) Schaltungsanordnung zur Leistungsfaktor-Korrektur

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20060421

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20070209

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50310605

    Country of ref document: DE

    Date of ref document: 20081120

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090108

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090218

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    BERE Be: lapsed

    Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

    Effective date: 20081231

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    26N No opposition filed

    Effective date: 20090709

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081219

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090409

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20081008

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090109

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20101110

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20101207

    Year of fee payment: 8

    Ref country code: NL

    Payment date: 20101203

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101229

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50310605

    Country of ref document: DE

    Owner name: OSRAM GMBH, DE

    Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

    Effective date: 20111130

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20120701

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111220

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111219

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 410911

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20111219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120701

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111219

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50310605

    Country of ref document: DE

    Owner name: OSRAM GMBH, DE

    Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

    Effective date: 20130205

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50310605

    Country of ref document: DE

    Owner name: OSRAM GMBH, DE

    Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

    Effective date: 20130822

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20131219

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20131220

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20141211

    Year of fee payment: 12

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20141219

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20150831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141231

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50310605

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160701