EP1442215A1 - Rotorwellen/naben-einheit für eine windenergieanlage - Google Patents

Rotorwellen/naben-einheit für eine windenergieanlage

Info

Publication number
EP1442215A1
EP1442215A1 EP02782741A EP02782741A EP1442215A1 EP 1442215 A1 EP1442215 A1 EP 1442215A1 EP 02782741 A EP02782741 A EP 02782741A EP 02782741 A EP02782741 A EP 02782741A EP 1442215 A1 EP1442215 A1 EP 1442215A1
Authority
EP
European Patent Office
Prior art keywords
rotor
hub
shaft
wind turbine
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02782741A
Other languages
English (en)
French (fr)
Inventor
Richard Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerodyn Engineering GmbH
Original Assignee
Aerodyn Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerodyn Engineering GmbH filed Critical Aerodyn Engineering GmbH
Publication of EP1442215A1 publication Critical patent/EP1442215A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a rotor shaft / hub unit for a wind turbine with a rotor hub connected to a blade or blade bearing connection and provided with a rotor bearing seat.
  • the Energyerzeuqunq by a wind turbine basie v L on the energy conversion of translatory movement of air in Rotatio ⁇ senargi, d. ⁇ on the Rotorbl t ⁇ ter occurs.
  • the rotor blades together with the rotor hub form the rotor, by means of which the rotational energy in the rotor hub is converted into mechanical energy in the form of a torque.
  • This torque is transmitted from the rotor hub to the red shaft and from there via the gearbox to the generator, in which the mechanical energy is converted into electrical energy.
  • the hub and shaft are loaded with bending moments, torsional moments, axial and transverse forces, both statically and dynamically.
  • the rotor hub and rotor shaft are usually manufactured as individual components from spheroidal graphite cast iron or tempered steel and then screwed together for assembly.
  • This design has several disadvantages.
  • a disadvantage is that the individual components are very heavy due to the properties of the materials used, which makes component assembly difficult.
  • Another disadvantage is the need to screw the individual components together. For this, elaborate connection places with very tight manufacturing tolerances.
  • the design of screw connections of two individual components in general and especially under alternating loads makes it necessary to oversize the components locally at the connection point, which in turn has a negative effect on the component costs.
  • a rotor is also known in which a pair of rotor blades are held together with a connecting rod. Furthermore, from US BI 6,227,803 a wind turbine with a plastic nacelle box is known, which is attached to a partially elastic tower. The propeller blades of the rotor consist of a c -section and a 1- section section.
  • the invention has for its object to provide a rotor in which the rotor is light and easy to assemble.
  • this task is solved by the rotor hub and rotor being made in one piece from fiber composite materials.
  • the blade or blade bearing connection can be designed as metallic inserts integrated in the laminate of the rotor hub.
  • the rotor bearing seat can be designed as a bushing integrated in the laminate of the rotor shaft.
  • the invention thus proposes a component combination in which the individual components of the rotor hub and the rotor shaft are combined to form an integral component made of fiber composite materials.
  • the combination of the two individual components to form an integral component and the use of fiber composite materials lead to a number of technical and economic advantages.
  • fiber composite materials Compared to the commonly used metallic materials, fiber composite materials have a very high specific strength and rigidity, which means that a lighter component can be realized if the same requirements are met.
  • Fiber composites are all materials that consist of one or more fiber types and a resin matrix with or without additives.
  • a particular advantage of the use of fiber composite materials is that any fibers can be used with any orientation, the direction-dependent mechanical properties of the material thereby precisely to the Bela c ..tungsart and a vote direction. This enables a more extensive weight optimization of the component compared to the use of metallic materials.
  • the combination of the two individual components to form an integral component eliminates the need to provide interfaces with narrow manufacturing tolerances that would be required for screwing the Eir17.ej.baute.ile. Local component oversizing to enable screwing is also eliminated. The assembly effort that would be required to screw the two individual components together is also eliminated.
  • the weight saving also contributes to further scaling up of the wind energy plants enable, because the tower head mass of the wind turbine is a critical aspect in this regard.
  • the invention is explained below with reference to a drawing.
  • the single figure shows a schematic cross section through the rotor shaft / hub combination.
  • the component body which consists of the main areas rotor hub 3 and rotor shaft 6, is made of fiber composite.
  • the blade or blade bearing connection 1 serves to connect the rotor blade directly or via a bearing to the hub 3.
  • This connection consists of metallic inserts with blind hole threads which are integrated into the laminate of the rotor hub 3.
  • At the front in the rotor hub 3 there is an access hole 2 so that the interior of the rotor hub 3 is accessible.
  • a rotor locking disk 4 is used to lock the rotor of the wind turbine during maintenance work and is connected directly to the rotor hub 3 or to the rotor bearing seat 5 by means of an adhesive or screw connection.
  • the rotor locking disk 4 consists of + - either from a conventional material or a fiber composite material.
  • the rotor bearing seat 5 serves to receive the rotor bearing and is designed in the form of a bush made of metal, plastic or a fiber composite material. This bushing is either integrated into the laminate of the rotor shaft 6 or connected to the laminate of the rotor shaft 6 from the outside by gluing and / or screwing. Spring washer and guide fit 7 are used to connect the rotor shaft 6 to the gearbox.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Rotorwellen/naben-Einheit für eine Windenergieanlage mit einer mit einem Blatt- oder Blattlageranschluss (1) versehenen Rotornabe (3) und einer mit der Rotornabe (3) verbundenen, mit einem Rotorlagersitz (5) versehenen Rotorwelle (6), bei der Rotornabe (3) und Rotorwelle (6) einstückig aus Faserverbundwerkstoffen gefertigt ausgebildet sind

Description

Rotorwellen/naben-Einheit für eine Windenergieanlage
Die Erfindung betrifft eine Rotorwellen/naben-Einheit für eine Wj_ndenergieanlage mit einer mit einem Blatt- oder Blattlageranschluß versehenen Rotornabe verbundenen, mit einem Rotorlagersitz versehenen Rotorwelle.
Die Energieerzeuqunq durch ein Windenergieanlage basiev L auf der Energiewandlung von translatorischer Luftbewegung in Rotatioπsenargi , d.ϊε über die Rotorbl^t ter erfolgt. Die Rotorblätter bilden gemeinsam mit der Rotornabe den Rotor, durch den die Rotationsenergie in der Rotornabe in mechanische Energie in Form eines Drehmoments u yewandelc wird. Dieses Drehmoment wird von der Rotornabe in die Rot rwel e übertragen und von dort, über das Getriebe, dem Generator zugeführt, in dem die mechanische Energie, in elektrische Energie umgewandelt wird. Hierbei werden Nabe und Welle mit Biegemomenten, Torsionsmomenten, axialen Kräften und Querkräften sowohl statisch als auch dynamisch belastet.
Üblicherweise werden Rotornabe und Rotorwelle als einzelne Bauteile aus Kugelgraphitguß oder Vergütungsstahl gefertigt und anschließend zur Montage miteinander verschraubt. Diese Bauweise hat verschiedene Nachteile. Ein Nachteil liegt darin, daß die einzelnen Bauteile aufgrund der Eigenschaften der verwendeten Werkstoffe sehr schwer sind, wodurch die Bauteilmontage erschwert wird. Ein weiterer Nachteil liegt in der Notwendigkeit, die Einzelbauteile miteinander zu verschrauben. Hierfür müssen an den jeweiligen Einzelbauteilen aufwendige Verbindungsschnitt- stellen mit sehr engen Fertigungstoleranzen vorgesehen werden. Die Auslegung von Verschraubungen zweier Einzelbauteile im allgemeinen und speziell unter Wechselbela- stungen macht eine lokale Überdimensionierung der Bauteile an der Verbindungsstelle erforderlich, was wiederum eine negative Auswirkung auf die Bauteilkosten hat.
Aus der DE C2 35 02 963 ist weiter ein Rotor bekannt, bei dem ein Paar Rotorflügel mit einem Verbindungsstab zusammengehalten werden. Weiter ist aus der US BI 6,227,803 eine Windenergieanlage mit einem Gondelkasten aus Kunststoff bekannt, der auf einem teilelastischen Turm befestigt ist. Die Propellerflügel des Rotors bestehen dabei aus einem c tangenartigen Abschnitt und einem pla1- tenir- tiegen Abschnitt.
Der Erfindung liegt die Aufgabe zugrunde, einen Rotor zu schaffen, bei dem der Rotor leicht und einfach zu montieren ist.
lfinάnngsgemäß wird diese Aufg e dedυrch gelost, daß Rotornabe und Rotor einstückig aus Faserverbundwerkstoffen gefertigt ausgebildet sind.
Blatt oder Blattlageranschluß können als in dem Laminat der Rotornabe integrierte metallische Inserts ausgebildet sein. Der Rotorlagersitz kann als in dem Laminat der Rotorwelle integrierte Buchse ausgebildet sein.
Durch die Erfindung wird also eine Bauteilkombination vorgeschlagen, in der die Einzelbauteile Rotornabe und Rotorwelle zu einem integralen, in Faserverbundwerkstoffen gefertigten Bauteil kombiniert werden. Die Kombination der beiden Einzelbauteile zu einem integralen Bauteil und die Verwendung von Faserverbundwerkstoffen führen zu einer Anzahl technischer und wirtschaftlicher Vorteile. Im Vergleich zu den üblicherweise verwendeten metallischen Werkstoffen weisen Faserverbundwerkstoffe eine sehr hohe spezifische Festigkeit und Steifigkeit auf, wodurch sich bei Erfüllung der gleichen Anforderungen ein leichteres Bauteil verwirklichen läßt. Als Faserverbundwerkstoffe werden alle Werkstoffe bezeichnet, die aus einem oder mehreren Fasertypen und einer Harzmatrix mit oder ohne Zusätzen bestehen. Ein besonderer Vorteil der Verwendung von Faserverbundwerkstoffen liegt darin, daß beliebige Fasern mit beliebiger Orientierung eingesetzt werden können, wodurch sich die richtungsabhängigen mechanischen Eigenschaften des Werkstoffes genau auf die Belac..tungsart und -richtung abstimmen lassen. Dies ermöglicht eine weitgehendere Gewichtsoptimierung des Bauteils im Vergleich zur Verwendung von metallischen Werkstoffen.
Durch die Kombination der beiden Einzelbauteile zu einem integralen Bauteil entfällt die Notwendigkeit, Schnittstel en mit engen Fertigungstoleranzen vorzusehen, die für die Verschraubung der Eir17.ej.baute.ile erforderlieh wären. Auch eine lokale Bauteilüberdimensionierung zur Ermöglichung einer Verschraubung entfällt. Ebenso entfällt der Montageaufwand, der für die Verschraubung der beiden Einzelbauteile erforderlich wäre.
Aufgrund der besseren Nutzung von Werkstoffen mit höheren spezifischen mechanischen Eigenschaften und der Bauteilintegration ergibt sich ein höheres wirtschaftliches Potential im Vergleich zu den miteinander verschraubten, aus metallischen Werkstoffen hergestellten Einzelbauteilen.
Die Gewichtseinsparung leistet außerdem einen Beitrag dazu, das weitere Hochskalieren der Windenergieanlagen zu ermöglichen, da diesbezüglich speziell die Turmkopfmasse der Windenergieanlage ein kritischer Aspekt ist.
Die Erfindung wird im folgenden anhand einer Zeichnung erläutert. Die einzige Figur zeigt einen schematischen Querschnitt durch die Rotorwellen/Naben-Kombination.
Der Bauteilkörper, der aus den Hauptbereichen Rotornabe 3 und Rotorwelle 6 besteht, ist aus Faserverbundstoff hergestellt. Der Blatt- bzw. Blattlageranschluß 1 dient zur Verbindung des Rotorblattes direkt oder über ein Lager mit der Nabe 3. Diese Verbindung besteht aus metallischen Inserts mit Sacklochgewinden, die in das Laminat der Rot- ornabe 3 integriert sind. Vorne in der Rotornabe 3 befindet sich ein Zugangsloch 2, damit das Innere der Rotornabe 3 zugänglich ist. Eine Rotorarretierscheibe 4 dient zur Arretierung des Rotors der Windenergieanlage bei Wartungsarbeiten und ist durch eine Verklebung oder Verschraubung direkt mit der Rotornabe 3 oder mit dem Rotorlagersitz 5 verbunden. Di^ Rotorarretierscheibe 4 besteh+- entweder aus einem üie a iischen Werkstoff oder einest Faserverbundwerkstoff. Der Rotorlagersitz 5 dient zur Aufnahme des Rotorlagers und ist in Form einer Buchse aus Metall, Kunststoff oder einem Faserverbundwerkstoff ausgeführt. Diese Buchse wird entweder in das Laminat der Rotorwelle 6 integriert oder von außen durch Verklebung und/oder Verschraubung mit dem Laminat der Rotorwelle 6 verbunden. Spannscheiben- und Führungspassung 7 dienen zur Verbindung der Rotorwelle 6 mit dem Getriebe.

Claims

Patentansprüche
1. Rotorwellen/naben-Einheit für eine Windenergieanlage mit einer mit einem Blatt- oder Blattlageranschluß (1) versehenen Rotornabe (3) und einer mit der Rotornabe (3) verbundenen, mit einem Rotorlagersitz (5) versehenen Rotorwelle (6) ,
dadurch gekennzeichnet, daß otornabe (3) und Rotorwel- le (6) einstückig aus Faserverbundwerkstoffen gefertigt ausgebildet sind.
2. Rotorweilen 'naben-Einheit nach Anspruch 1 dadiUTh gekennzeichnet, daß der Blatt- oder Blattlageranschluß (1) als in dem Laminat der Rotornabe (3) integrierte metallische Inserts ausgebildet ist.
3. Rotorwellen/naben-Einheit nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß der Rotorlagersitz (5) als in dem Laminat der Rotorwelle (6) integrierte Buchse ausgebildet ist.
EP02782741A 2001-10-31 2002-10-22 Rotorwellen/naben-einheit für eine windenergieanlage Withdrawn EP1442215A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10153683 2001-10-31
DE10153683A DE10153683C1 (de) 2001-10-31 2001-10-31 Rotorwellen/naben-Einheit für eine Windenergieanlage
PCT/DE2002/003979 WO2003038275A1 (de) 2001-10-31 2002-10-22 Rotorwellen/naben-einheit für eine windenergieanlage

Publications (1)

Publication Number Publication Date
EP1442215A1 true EP1442215A1 (de) 2004-08-04

Family

ID=7704296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782741A Withdrawn EP1442215A1 (de) 2001-10-31 2002-10-22 Rotorwellen/naben-einheit für eine windenergieanlage

Country Status (4)

Country Link
US (1) US7011497B2 (de)
EP (1) EP1442215A1 (de)
DE (1) DE10153683C1 (de)
WO (1) WO2003038275A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214779C1 (de) * 2002-04-03 2003-11-27 Aerodyn Energiesysteme Gmbh Verfahren zum Herstellen einer Rotornaben/-wellen-Einheit einer Windenergieanlage aus einem Faserverbundwerkstoff
ES2206028B1 (es) * 2002-06-13 2005-03-01 Manuel Torres Martinez Perfeccionamientos en los aerogeneradores de produccion electrica.
NL1024463C2 (nl) * 2003-10-06 2005-04-07 Polymarin Holding B V Rotor voor gebruik in een windturbine en werkwijze voor het maken van de rotor.
DE102004013624A1 (de) * 2004-03-19 2005-10-06 Sb Contractor A/S Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage
US7633177B2 (en) * 2005-04-14 2009-12-15 Natural Forces, Llc Reduced friction wind turbine apparatus and method
US8029239B2 (en) * 2005-11-18 2011-10-04 General Electric Company Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
US7438533B2 (en) * 2005-12-15 2008-10-21 General Electric Company Wind turbine rotor blade
EP2063115B1 (de) * 2007-11-26 2019-06-05 Siemens Gamesa Renewable Energy A/S Direktantriebsgenerator und Windturbine
DK2063116T3 (en) * 2007-11-26 2017-03-20 Siemens Ag Directly powered generator and wind turbine
US8192572B2 (en) 2008-04-25 2012-06-05 General Electric Company Composite wind turbine tower and a method for fabricating same
EP2169814B2 (de) * 2008-09-25 2016-10-26 Siemens Aktiengesellschaft Statoranordnung, Generator, Windturbine und Verfahren zur Positionierung einer Statoranordnung
DE102010010283A1 (de) 2010-03-04 2011-09-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotornabe in Faserverbundbauweise für Windkraftanlagen
US8246312B2 (en) 2011-06-24 2012-08-21 General Electric Company Hub assembly for use with a wind turbine and method of making the same
US10598159B2 (en) 2016-05-06 2020-03-24 General Electric Company Wind turbine bearings
DE102018129867A1 (de) * 2018-11-27 2020-05-28 Wobben Properties Gmbh Verfahren zum Steuern einer Windenergieanlage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329117A (en) * 1980-04-22 1982-05-11 United Technologies Corporation Wind turbine with drive train disturbance isolation
EP0085127B1 (de) * 1982-02-02 1986-01-29 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Rotor, insbesondere für ein Drehflügelflugzeug, mit einer Rotornabe aus Faserverbundwerkstoff
DE3439257C2 (de) * 1984-10-26 1986-10-23 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Rotor, insbesondere für ein Drehflügelflugzeug
CH666728A5 (de) * 1985-01-18 1988-08-15 Escher Wyss Gmbh Rotor einer windkraftanlage.
US4915590A (en) * 1987-08-24 1990-04-10 Fayette Manufacturing Corporation Wind turbine blade attachment methods
US4966525A (en) * 1988-02-01 1990-10-30 Erik Nielsen Yawing device and method of controlling it
US5140856A (en) * 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5405246A (en) * 1992-03-19 1995-04-11 Goldberg; Steven B. Vertical-axis wind turbine with a twisted blade configuration
DE4316712A1 (de) * 1993-05-19 1994-11-24 Thomas Fischer Selbstregelnde Luftschraube
KR100269764B1 (ko) * 1996-11-30 2000-10-16 심현진 풍력 발전 장치
DE19733372C1 (de) * 1997-08-01 1999-01-07 Aloys Wobben Rotorblatt und Rotor einer Windenergieanlage
ES2206028B1 (es) * 2002-06-13 2005-03-01 Manuel Torres Martinez Perfeccionamientos en los aerogeneradores de produccion electrica.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03038275A1 *

Also Published As

Publication number Publication date
WO2003038275A1 (de) 2003-05-08
US20040253117A1 (en) 2004-12-16
DE10153683C1 (de) 2003-05-22
US7011497B2 (en) 2006-03-14

Similar Documents

Publication Publication Date Title
WO2003038275A1 (de) Rotorwellen/naben-einheit für eine windenergieanlage
EP1398499B1 (de) Befestigung von Rotorblättern an der Nabe einer Windenergieanlage
EP2097641B1 (de) Leistungsverzweigtes windkraftgetriebe
DE19711869A1 (de) Windenergieanlage mit integriertem Triebstrang
EP3455493B1 (de) Windenergieanlagen-rotorblatt, und windenergieanlage mit selbigem
DE102016219008A1 (de) Planetengetriebe mit Anlaufscheiben
EP3819511B1 (de) Wälzlageranordnung
DE102012214339A1 (de) Rotorwelle für eine Windturbine
DE102016007663A1 (de) Rohrförmiger Faserverbundkörper mit integrierter stufenloser Längenverstellung
DE102016219002A1 (de) Planetengetriebe mit Anlaufscheiben
DE202008010028U1 (de) Anordnung zur Lagerung einer Antriebswelle eines Automatgetriebes
EP3204633B1 (de) Windenergieanlagen-rotorblatt
EP1910707A1 (de) Stellantrieb für armaturen mit einem planetengetriebe
EP0064151A1 (de) Wellenkupplung
WO2012031730A1 (de) Welle zum übertragen von drehmomenten
WO2017080794A1 (de) Radlagervorrichtung, sowie verfahren zur montage einer radlagervorrichtung
DE10235069B4 (de) Werkzeugmaschine mit einer Spindelvorrichtung
DE102019203340A1 (de) Differential- oder Verteilergetriebe
EP2373900B1 (de) Lageranordnung
EP3710281B1 (de) Fahrzeugradanordnung und verfahren zur herstellung einer fahrzeugradanordnung
DE2950581C2 (de) Antriebswelle, insbesondere Gelenkwelle, aus faserverstärktem Kunststoff mit festgeklemmten Anschlußeinrichtungen
DE102021204808A1 (de) Lageranordnung einer Zwischenwelle eines Übersetzungsgetriebes
DE102011006123B4 (de) Radträger mit Radlager für ein Kraftfahrzeug
DE10303775B4 (de) Fahrzeugachse
DE102015226031B4 (de) Differentialbauwelle für einen Elektromotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090908